MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

A.lL. Memo No. 1020 February 1988

System Validation via Constraint Modeling.
by
Richard C. Waters

Abstract

Currently, there are two major approaches to system validation: testing and code
inspection. Fach of these methods indirectly checks the correctness of a system by
attempting to find faults in the system. It is advantageous to apply both methods
to a system because the strengths and weaknesses of the methods are complementary.
Testing is good at finding failures in the usual operation of the system even if these
failures are created by complex interactions between modules. Code inspection is good
at finding local faults in single modules even if these faults only manifest themselves
as failures in unusual situations.

Constraint modeling could be an important third method of system validation.
The essence of constraint modeling is the creation of a model that represents key
aspects of the behavior of a system, while ignoring other aspects. Given the model,
constraint propagation can be used to detect inconsistencies in the operation of the
system. The advantage of constraint modeling as a means of system validation is that
it is complementary to both testing and code inspection. In particular, constraint
modeling can locate errors even if they are caused by non-local faults and manifest
themselves as failures only in unusual situations.

As a result, even though the ability of constraint modeling to find errors is limited
both by the simplifications which are introduced when making the model and by the
power of the constraint propagator available, constraint modeling has the potential for
significantly increasing overall system reliability when used in conjunction with testing
and code inspection.

Copyright © Massachusetts Institute of Technology, 1988

This report describes research done at the Artificial Intelligence Laboratory of the Massachusetts Insti-
tute of Technology. Support for the laboratory’s artificial intelligence research has been provided in part by
the National Science Foundation under grant IRI-8616644, in part by the IBM Corporation, in part by the
NYNEX Corporation, in part by the Siemens Corporation, and in part by the Advanced Research Projects
Agency of the Department of Defense under Office of Naval Research contract N00014-85-K-0124.

The views and conclusions contained in this document are those of the authors, and should not be
interpreted as representing the policies, neither expressed nor implied, of the National Science Foundation,
of the IBM Corporation, of the NYNEX Corporation, of the Siemens Corporation or of the Department of
Defense.



Current Approaches to System Validation

As used here, the term system validation denotes the process of checking that a system
satisfies its specifications. In contrast to verification (which denotes proving that a system
satisfies its specifications) validation methods take the basic approach of looking for potential
failures in a system. If no failures are found, then a certain degree of confidence in the validity
of the system is justified. However, using this kind of approach, it is never possible to obtain
complete confidence in a system, because it is never possible to look for every conceivable
failure.

Testing. The most common form of system validation is testing. Given the specification
for a system, test cases are created which embody microscopic facets of the specification.
Each test case specifies a situation (e.g., a set of input data) and what is supposed to happen
in that situation (e.g., a set of output data). In order to use a test case to check a system,
one need only put the system in the specified situation (e.g., by feeding it the appropriate
input data) and observe the results.

If the system fails a test, then one can say with total confidence that a failure has been
detected. However, it is more difficult to evaluate exactly what it means when the system
passes a test. At a minimum, this means that the system is correct with regard to the
particular specification facet captured by the test case. However, this is of limited value,
because the specification facets captured by individual test cases are extremely small.

Fortunately, one can take advantage of the fact that programs are basically quite orderly
in nature to conclude that if a system works correctly in a particular situation, it will most
likely work correctly in similar situations. (This statement is very vague, but captures the
spirit of an important point. Much of the research on test case generation can be viewed
as investigating exactly what it means for two situations to be similar. At the least, two
situations cannot be similar unless they lead to the same execution path through a program
and trigger the same implications in the specification.)

For testing to be effective, one must create a suite of test cases that covers a wide range
of situations. That is to say, a significant percentage of all possible situations must be similar
to situations which are actually tested by the suite. In order to satisfy this criterion, one
must have a good understanding of what situations are possible and which situations are
similar. Unfortunately, there is no short cut to obtaining such an understanding. Although
there are a tools which can be of assistance (e.g., tools which ensure that a suite of tests
cases exercises every statement in a system), creating a good suite of test cases requires an
in depth understanding of both the system and its specification, and is more of an art than
a science.

Given a sufficiently large set of well-designed test cases, testing can be very effective
as a method for validating the operation of a system in usual situations. However, there
are a number of reasons why testing is relatively ineffective as a method for validating the
operation of a system in unusual situations.

Suppose that there is a system which exhibits a failure f in a situation s. This failure
will not be detected by testing unless the suite of test cases contains a test corresponding to
some situation s’ which is similar to s. Suppose that s and the situations similar to it are
unusual, in that they are very unlikely to occur during the usual operation of the system. If
this is the case, the ability of testing to detect f depends upon the ability of the test case
writer to imagine that situations like s are possible. Perhaps more importantly, the ability



of testing to find f also depends on the extent to which the tester is motivated to seek out
unusual situations to test.

Beyond the basic limits imposed by the tester’s imagination and motivation, there are
a number of subsidiary reasons why unusual situations tend to be inadequately tested. In
particular, there are almost always many more unusual situations than usual ones. Given
the limited amount of resources typically available, it is often not possible to write a full
range of tests corresponding to unusual situations, nor would it be possible to run such a
large suite of test cases. In addition, unusual situations often correspond to highly elaborate
input scenarios. This makes it particularly hard to devise tests for these situations and
particularly expensive to run the tests which are devised.

The fundamental law of faults. It is useful to make a distinction between faults,
errors, and failures (see [1]). A failure is an externally visible incorrect behavior of a system.
An erroris an incorrect internal state which may or may not be externally detectable as a
failure. A fault is a mistake in a program which causes one or more errors and failures.

On the surface, the goal of testing is the detection of failures. However, its real goal is
the detection faults. This is so, because the only way to correct failures is to correct the
underlying faults, and if all the faults are fixed, all the failures will be fixed, whether or
not they have been detected. Fortuitously, testing is actually better at finding faults then
failures. This is so, because of what could be termed the fundamental law of faults:

Most faults cause a lot of errors and failures.

At first glance, it might appear disadvantageous that single faults cause lots of failures.
However, it makes faults much easier to detect. In particular, testing can determine that
there is a fault as long as it can detect any of the failures it causes. Put another way, a fault
is hard to detect only if every failure it causes is hard to detect. There are, of course, all
too many faults of this kind. However, things would be much worse if failures were truly
independent of each other.

Code inspection. A form of system validation which complements testing is code
inspection. In this process, one or more people study a system and its specification and
attempt to satisfy themselves that the system is correct. This inspection usually combines
a search for errors using simulated step by step evaluation with a direct search for specific
kinds of common faults. This process is most rigorous when it is applied by people other than
the programmers who wrote the system. However, code inspection is also vitally important
as the primary means by which programmers develop confidence in the code they write.

When code inspection identifies a fault, one can say with total confidence that this fault
exists. However, as with testing, it is not easy to evaluate exactly what it means when a
code inspection fails to find any faults. Unfortunately, it seldom means that there are no
faults. More commonly, it merely means that there are no faults which are easy to find. This
is a step in the right direction, but far from fully satisfactory.

The nature of human information processing abilities places significant limits on the
usefulness of code inspection. In particular, people are quite limited in the total amount
of detail they can attend to at a given moment. As a result, code inspection is limited to
comparing individual subroutines (or small modules containing a few subroutines) with their
specifications. Given a sufficiently small context, code inspection is very effective at finding
faults. However, code inspection is relatively ineffective at finding errors which stem from



the interaction between widely separated subroutines. The fundamental problem is that it is
all too likely that the individual subroutines are reasonable enough by themselves and that
no inspector will ever look at the subroutines simultaneously.

In addition to being limited to relatively local inspections, people are limited in the
complexity of the analyses they can perform. If a fault is abstruse enough, it will be missed
even if it is entirely local. Further, code inspection is inherently rather informal. There is
nothing beyond discussion between the members of the inspection team to ensure that the
inspectors have considered all of the relevant aspects of a subroutine.

The advantages of a combined approach to validation. The usefulness of testing
as a method for system validation is limited by the fact that, after a certain point, the benefit
derived from additional amounts of testing diminishes rapidly. A reasonably good set of test
cases can find a reasonably large number of faults reasonably cheaply. However, attempting
to go very far beyond this rapidly gets to the point where very large amounts of effort are
required to find each additional fault.

The diminishing returns from testing stem from the fact that, as discussed above, testing
is good at finding some kinds of faults and bad at finding other kinds. The same can be said
of code inspection. As a result, code inspection suffers from diminishing returns as well.

Although testing and code inspection both suffer from diminishing returns, these two
approaches are largely orthogonal in that the degree of effort needed to find a given fault
with testing is largely unrelated to the degree of effort needed to find the same fault using
code inspection. In particular, faults which are hard to find with testing (e.g., faults linked to
unusual situations) are sometimes much easier to find with code inspection and faults which
are hard to find with code inspection (e.g., non-local faults) are sometimes much easier to
find with testing.

The orthogonality of testing and code inspection suggests that it is much better to apply
a given amount of system validation resources half to testing and half to code inspection,
rather than exclusively to either approach alone. Such a combined strategy can significantly
increased confidence in a system. One can be reasonably confident that every fault that is
easy to detect with either method has been found.

This paper proposes a third approach to system validation (constraint modeling) which
is orthogonal to both testing and code inspection. In particular, constraint modeling pro-
vides an avenue for detecting the kinds of faults which tend to elude both testing and code
inspection (e.g., non-local faults linked to unusual situations). Constraint modeling holds
the promise of further increasing the level of confidence obtainable from a given amount of
effort by dividing this effort among three separate approaches.

Constraint Modeling

Constraint modeling is a well-known technique in artificial intelligence for performing
partial reasoning about complex artifacts [3, 10, 11, 12]). The following section provides a
tutorial description of constraint modeling. Readers who are familiar with this technique
can skip directly to the next section.

There are two basic parts to constraint modeling. The first consists of creating a model
which represents some of the key features of an artifact while ignoring others. The second
(constraint propagation) is a particular kind of efficient reasoning method which can be used
to draw conclusions about the model.



As an example of constraint modeling, consider the simple electronic circuit fragment in
Figure 1. At the top of the circuit, there is a power bus p, which is maintained at 5 volts.
At the bottom, there is a ground bus g, which is maintained at 0 volts. A 1000 ohm resistor
r and a transistor ¢ are connected in series between power and ground. A wire labeled
comes in from the left side of the figure and is connected to the base of t. A wire labeled y is
connected to the junction j which connects r and ¢. The other end of this wire is connected
to the base of a second transistor u.

Even given a circuit fragment as simple as the one in Figure 1, it is quite difficult to
analyze the behavior of the circuit in full detail. However, constraint modeling can be used
to draw conclusions about key aspects of this behavior.

Constraint models. Figure 2 shows an example of a constraint model (or network)
corresponding to the circuit in Figure 1. Each component in the circuit is represented by
a node in the model (represented as a box in the figure). These components consist of the
power bus p, the ground line g, the junction j, the resistor r, and the transistors ¢ and wu.
The terminals of each device are given identifying names. For example, the transistor ¢ has
three terminals: the base b, the emitter e, and the collector ¢. Each terminal is represented
in the model by two ports: one corresponding to the voltage V and one corresponding to
the current I. For example, the port V represents the voltage at the base of the transistor
t. The wires in the circuit are represented by connecting links in the model which indicate
equality between ports. The values V;, I, V,, and I, are identified as being of particular
interest.

To the right of each node is the set of constraints associated with the node. These
constraints (or transfer functions) describe the behavior of the component being modeled.
An item in the circuit is modeled using a node with constraints (as opposed to links between
ports of nodes) if and only if the constraints which are required to describe the item are
more complex than mere equalities. This is the reason why the junction j is modeled as a
node while the wires in the circuit are not.

p 5 volts

1000 ohms

g 0 -volts

Figure 1: A simple circuit.



Consider the various sets of constraints in turn. The power bus is modeled as maintaining
a voltage of 5 volts no matter what the current is—i.e., ¥, =5 and I, is unconstrained.
Similarly, the ground line is modeled as maintaining a voltage of 0 no matter what the
current is.

The constraints on r describe the basic characteristics of a resistor. The first constraint
(I? =1I?) specifies that the current flowing into the resistor is always the same as the current
flowing out. (In the model, current is considered to be positive when it flows from upper
left to lower right.) If I?* and I® are both known, then this constraint can be used as a
consistency check. If I? # I® then something is seriously wrong. If either I® or I? is known,
then the constraint can be used to calculate the other quantity. As a result, the constraint
embodies two different transfer functions. If neither I¢ nor I? is known, the constraint has
no immediate implications.

The second constraint on r (12 <.01) is an applicability condition. If the current is greater
than .01 amps, the resistor will overheat. The third constraint (V,2—V;> = I#%1000) relates
the current through the resistor and the voltage drop across the resistor. The constraint
implies three different transfer functions. If any two of the quantities V2, V?, and I? are

G L | T
Ve I° I*=1* I*<.01
Ve—Vb = 1241000
V;.b It T
Vj“ I;' V;P:‘:}b:V]c
I¢ =124]¢
‘/j ) J J J . .
I Vi L It=0
v v
Iy
! ]3
V;c Itc ‘/tf I‘s
Vet yo
I t IP=0 It=If I¢<.005
z Iy VE=Vie=1Iixt,
Ve It if V>~V <2 then t, =4000 else t, = 250
Vv, I V, =0

Figure 2: A constraint model of the circuit in Figure 1.



known, then the third one can be calculated.
Ve = I°%1000+V}

r

VP = V°—I°x1000

r

I = (V’-V;)/1000

The constraints on the junction j specify that the voltage on all the wires at the junction
must be the same and the current entering the junction must be equal to the current leaving
the junction. As above, the second constraint implies three transfer functions. If any two
currents are known, the third can be calculated.

The constraints on the transistor ¢ specify a simplified model of its behavior. The first
two constraints state that the current through the base is always zero and that the current
entering the collector is the same as the current leaving the emitter. The third constraint
(I <.005) is an applicability condition which reflects the fact that the transistor will overheat
if too much current is applied.

The last two constraints represent the transistor as a variable resistor with two states. If
the voltage between the base and emitter is low, then the resistance between the collector and
emitter is high. Conversely, if this voltage difference is high, the resistance is low. Together,
these constraints imply four transfer functions. For example if V, V¢, and V,* are known,
I{ can be calculated.

A particularly interesting situation arises if V,?, V¢, and I? are known. In this case, the
constraint can be used both as a consistency check and as a transfer function. The values
of V¢, V¢, and I{ must be consistent with one of the two states of the transistor. If they
are, then it is possible to determine whether or not V?—V,;® < 2. (Transfer functions yielding
this kind of partial information are actually more common than transfer functions yielding
completely precise results.)

The constraints on u are analogous to the constraints on ¢. (In general, the form of the
constraints is the same for every node of a given type.) However, only one of these constraints
is relevant to the examples below. In the interest of simplicity, only this one constraint is
shown in the figure.

Constraint propagation. Given the constraint model in Figure 2, the behavior of the
circuit in Figure 1 can be analyzed using constraint propagation. Constraint propagation
consists of two kinds of steps: information transmission (over links between nodes) and
information utilization (using the constraints at individual nodes). Constraint propagation
efficiently computes global conclusions by combining local deductions performed at individual
nodes. The efficiency of the algorithm stems from the fact that each utilization step is small
and local and the topology of the model limits the effects which a transmission step can
have.

Information transmission steps are trivial operations. If a piece of information exists at
one end of a link and not at the other, then it is transferred across the link. (This can
be implemented very efficiently by using a single memory cell which is shared by all of the
ports connected to the link.) Once the piece of information reaches the other end of the
link, it may or may not be utilized by the destination node. If it is, then new information
may appear at one or more ports of the destination node. This information may trigger
additional transmission steps which may trigger additional utilization and so on. Cycles of
constraint propagation continue until the model reaches a state where no new information
is created at any node.



For example, in Figure 2, constraint propagation would begin with the following five
steps of information transmission: I} =0 — I,=0, I!=0 — [, =0 — If=0, V,=5— V=5,
and V; =0 — V2 =0.

Information utilization. The question of what happens once a new piece of informa-
tion reaches a node is inherently much more complex. There are two basic ways in which
information is utilized: to compute additional information and to detect contradictions.

The preceding discussion of Figure 2 presupposes a particularly simple kind of utilization.
It is assumed that all of the information which is transferred between nodes is in the form
of concrete numbers and that these numbers are utilized by detecting inequalities between
numbers and by computing new numbers. There are three possibilities which have to be
considered whenever a number is transmitted over a link:

(A) The value may already have been stored at the end of the link. In this situation,
no action need be taken.

(B) There is already a value at the end of the link, but this value is different from the
transmitted value. In this situation, a contradiction has been detected—there is
something wrong with some assumption which has been made.

(C) There was no previous value at the end of the link. In this situation, the con-
straints on the node have to be checked to see if they are consistent with the new
datum. If any constraint is violated, then a contradiction has been detected. In
addition, the constraints on the node have to be checked to see if any of them can
be used to compute new information at some port of the destination node. If this
is possible, then these new values are recorded and propagation must continue
starting with these new values.

Examples 1, 2, and 4 below show how simple numerical propagation operates. In these
examples it should be noted that the order of propagation has been chosen to facilitate the
exposition. In actual fact the propagation would occur in a less ordered way. However, the
propagation process is still very efficient.

Complex utilization. Constraint propagation of numerical values (or other literal
quantities) is efficient and can be useful in many situations, however, it is limited in the
power of the deductions which can be performed. There are a wide variety of ways in
which more complex information can be utilized. An interesting generalization which gives
a useful increase in deductive power with only a small increase in computation is passing
sets of possible values around the model rather than single values. This makes it possible
to simultaneously reason about alternate possibilities. Each transmission step results in the
intersection of the sets of possibilities at the two ends of a link. The constraints on a node
are then used to further narrow the possibilities associated with the ports of a node. This in
turn, triggers additional set intersections and so on. Eventually, many sets can be reduced
to a single element (representing a definite value), even though every set had many elements
to start with. In addition, some sets may be reduced to having no elements, which indicates
the existence of a contradiction.

The prototypical example of the propagation of possibility sets is Waltz’s line drawing
interpretation program (see [12]). Given a perspective drawing of a group of blocks and the
shadows they cast, he showed that the propagation of possibility sets describing the charac-
teristics of individual lines could be used to identify which subgroups of lines correspond to
single objects.



A further increase in power can be obtained by passing symbolic information around in a
constraint model. In Example 3 below, symbolic expressions are passed between nodes and
simple expression manipulation routines are used to deduce expressions from expressions.
This kind of approach can lead to significantly more powerful conclusions, however, it risks
getting bogged down in excessively complex local deductions. As a result, it is important to
keep the deductive apparatus simple. At the current time, picking the right level of deduction
is an art rather than a science, however, there are a number of examples (e.g., [11]) which
show that a profitable middle ground exists.

Example 1. Suppose that it is asserted that V, =4. This triggers a chain of trivial
deductions culminating in the conclusion that V; <2 as follows. First, V, =4 — Vf=4 —
V#=4 — V,>=4. This in turn implies that I?=(5—4)/1000=.001. (This is consistent with the
requlrement that I? <.01.) Next, I?=.001 — I?=.001. Since I{=0, I?=.001 — I’=.001 —
I:=.001. (This is consistent w1th the reqmrement that It < 005 ) Fmally, Vy=4—-Vi=4—
Vb 4 — VFf=4. (This is consistent with the fact that Vc Ve=4—-0=1 °*4000 001*4000 )
As a result, the last constraint associated with ¢ 1mphes that V2—0 < 2 which implies that
Ve<2.

Example 2. Suppose that it is asserted that V, =3. In this situation propagation
proceeds in exactly the same way as in Example 1. It is concluded that V> =3 and therefore
It =(5—3)/1000 = .002. It is then concluded that If =.002. In addition, it is concluded
that V¢ =3. However, this is not consistent with elther of the possible states of ¢, because
.002%250 # 3—0 # .002*4000. A contradiction has been found. Under the assumptions of the
model, it is not possible for V, to be equal to 3.

Example 3. Suppose that it is asserted that V,, =3. This triggers a chain of deductions
culminating in the conclusion that V,=1. To start with, V=3 — V;”=3 — t,=250. However,
no more numerical deductions can be performed. In order to gain any further information
from the model, more powerful kinds of deduction have to be applied. As mentioned above,
a standard way to do this is to introduce symbolic computation based on the propagation of
simple expressions in addition to numerical values. This is significantly more complex than
the propagation of numerical values, but still much simpler than general purpose deduction.

In this example, the symbolic value V, can be propagated through the node j to conclude
that V, =V?=V_¢. Similarly, If=0 — It =I7. Combined with the other facts which are
known, this implies that:

V,—0 = I°%250
5-V, = I*1000

Solving these two equations simultaneously reveals that V, =1 and I¢ =.004. (In conjunc-

tion with the examples above, this example illustrates the bidirectional nature of constraint

propagation—information propagates outward from wherever it is to wherever it is not.)
Example 4. Suppose that the resistance of r is 250 ohms instead of 1000 and that it is

asserted that V; =3. Everything proceeds in exactly the same way as in Example 3 until it
is determined that:

V,—0 = Ix250
5—V, = I4250



Solving these two equations simultaneously reveals that V, =2.5 and If=.01. This, however,
contradicts the requirement that I7 < .005. This contradiction has a somewhat different
character than the one in Example 2. It reveals a failure in the design of the circuit (the
resistance of r must be larger than the value assumed, if ¢ is to be protected from being
overloaded), rather than a faulty assumption about the value of a voltage.

Partial modeling. A key thing to notice about the examples above is the importance
of the fact that the constraint network in Figure 2 is only a partial model of the circuit in
Figure 1. The model is partial, because it ignores many aspects of the circuit. It ignores the
fact that the wires themselves have resistance. It ignores AC characteristics (i.e., inductance
and capacitance). It ignores the fact that there is some current through the base of a
transistor. It ignores the fact that the relationship between the voltage drop from the base
to the emitter and the resistance from the collector to the emitter is much more complicated
than a step function. The simplifications are reflected both in the topology of the model
(e.g., the choice of what parts of the circuit become nodes) and in the constraints associated
with the nodes.

However, even ignoring all these aspects of the circuit, the model captures the basic
non-linearity of the transistor and the fundamental operation of the circuit. As a result, it
is possible to draw useful conclusions from the model. There are many conclusions which
cannot be drawn, but the ones which can be drawn are basically correct. (In the domain of
electronic circuits a considerable body of knowledge has evolved which indicates what kinds
of simplifications can safely be used in which situations. In the software examples in the
next section, the safety of the simplifications chosen is justified in greater detail.)

The advantage of the simplifications is that they make reasoning about the circuit prac-
tical. In principle, it would be possible to draw the same conclusions based on a complete
theory of the physics of each device and wire in the circuit. However, performing the required
deductions and algebraic manipulations would be enormously complicated.

System Validation via Constraint Modeling

In order to apply constraint modeling to the task of system validation one need merely
create a constraint model which describes some aspect of the system and its specification.
Constraint propagation can then be used to discover contradictions in the model. Each
contradiction discovered corresponds to a failure or error in the system. (Contradictions
correspond to errors as well as failures, because constraint models typically contain significant
amounts of information about internal behavior as well as external behavior.)

The primary weakness of constraint modeling as a validation tool is that it can only draw
conclusions about the things which are in the model. As a result, it can only provide partial
validation.

The main attraction of constraint modeling as a validation technique is that its primarily
weakness is very different from the primary weaknesses of testing and code inspection. As a
result, it is beneficial to combine the three techniques.

Whereas testing has trouble finding failures in unusual situations, constraint propagation
investigates every possibility equally without any bias toward usual situations. In addition,
while testing is oriented primarily toward checking for failures, constraint propagation checks
for internal errors as well, thereby increasing the range of fault symptoms which can be
detected.



Whereas code inspection is inherently local, constraint propagation investigates the in-
teraction of information collected from arbitrarily distant points in the model. In addition,
while the informal nature of code inspection can cause details to be overlooked, constraint
propagation always follows up every detail.

A weakness constraint modeling shares with code inspection is that it is limited in the
complexity of the deductions it can make. In particular, constraint propagation is typically
not capable of deriving every possible conclusion from the information in the constraints.
As a result, constraint propagation can miss a contradiction if it is sufficiently abstruse.

Another interesting aspect of constraint modeling is that, unlike many formal techniques,
it is at its best when applied in the large. When applied to small problems, the only real
benefit of constraint modeling is that it is thorough and automatic, because in small prob-
lems, the relatively simple deductions which are possible are not particularly impressive in
comparison with code inspection. However, when applied to large systems, the leverage pro-
vided by constraint modeling multiplies as constraint propagation triggers the interaction of
information which is widely separated in the model. Further, although constraint propaga-
tion can be time consuming, any opportunity to trade off human time for computer time is
always worth pursuing.

Current Examples of System Validation via Constraint Modeling

There are two common methods of system validation (type checking and automatic sys-
tem construction) which can be viewed as constraint modeling. Each of these methods is a
good example of how constraint modeling can be applied to programs.

Type checking. Given a subroutine, type checking implicitly constructs a constraint
model where each function call, procedure call, and operation is a node. These nodes have
ports corresponding to the inputs and outputs of the function, procedure, or operation. The
ports are connected by links which reflect the data flow in the subroutine. The model also
contains a node for each variable in the subroutine. These nodes have a single port which is
connected to every place where the variable is read or written.

In basic type checking, the constraints associated with the nodes in the model all have a
particularly simple form. Each constraint specifies a type which is mandatorily linked with
a port. For example, an instance of the Fortran function SQRT would have constraints that
specified that its input and output are both real numbers. A variable J might be associated
with a constraint which specifies that it is an integer.

The process of checking that the types used in a subroutine are consistent proceeds using
constraint propagation as described in the last section. However, this processing is simplified
because the constraints have such a simple form. Since each constraint specifies a constant
type, every transfer function associated with a node is a constant function. That is to say,
the type at a port is always the same no matter what is known about other ports. Further,
if the type is known at a port it is always known no matter how little is known about other
ports. As a result, information never needs to propagate through nodes. The only thing
which is necessary is to check that the type at the end of a link connecting two ports agrees
with the type at the other end. The sole result of basic type checking is a list of the places
where type conflicts occur. These conflicts can be reported to the programmer or, in some
situations, resolved by automatically applying coercions (e.g., when an integer is assigned to
a real valued variable).

10



Even this basic form of type checking is an excellent example of the power of constraint
modeling. Very large simplifications are being made. (From the point of view of the model,
the functions SQRT, SIN, and ATAN are all identical.) Given the magnitude of this simplifica-
tion, one would not dream of suggesting that a subroutine that does not contain any type
errors must therefore be correct. However, the simplification is conservative in that it is next
to impossible for a program which contains type conflicts to be correct. Further, a wide
variety of faults have the collateral effect of causing type errors. As a result, a wide variety
of faults can be detected using type checking, even though the type error itself is almost
never the essence of the fault.

More complex forms of type checking are based on more complicated constraint propa-
gation. Consider the overloading of names. Many programming languages have the feature
that a single name can be used for many different things (e.g., several operators or several
functions) as long as the individual things can be differentiated based on argument and/or
result types. As a trivial example, consider Fortran. The operator “+” stands for a family of
operations which add integers, reals, complex numbers, and so on. Which specific operation
is meant is determined by looking at the types of the arguments of the operation. This can
be looked at as an example of constraint propagation using non-constant transfer functions.
The input ports of a “+” node can have several different types. A constraint specifies what
the type of the output port is based on the input types. In addition, given the input types,
the constraint indicates which specific “+” operation is required.

Probably the most complex support for overloading is provided by Ada [13]. In Ada,
function names, procedure names, operator names, and literal data items (e.g., enumeration
elements) can all be overloaded. As a result, it is not always possible to resolve overloading
by looking at input types. It is sometimes necessary to reason in the other direction by
looking at the output type. Thus, bidirectional constraint propagation is used to resolve
overloading.

A related example is provided by the language ML [7]. In ML, programmers are not
required to specify the types of variables. Bidirectional constraint propagation is used to
determine the type of a variable based on the way the variable is used.

Restricting what can be written The discussion above is equally applicable whether
or not a language requires strong typing. If strong typing is required, then every port must
have a type constraint. If weak typing is allowed, then some ports will not have a user
specified type. However, if a large number of ports are untyped, then the type checking
model will contain very little redundancy and constraint propagation will not be able to do
very much useful checking.

This brings up an important issue. The usefulness of a partial validation approach such
as type checking can be greatly enhanced if programmers are willing to cooperate. In most
modern languages it has been decided that the programmer’s cooperation with type checking
should be made mandatory (i.e., via strong typing). In a similar manner, code inspections are
facilitated if programmers write code which is clear and concise. (Unfortunately, although
coding standards can be helpful, there is no obvious way to make this mandatory.)

Automatic system construction. The prototypical problem attacked by automatic
system construction tools is the construction of an up-to-date and consistent, executable
version of a system. This is done by using constraint propagation applied to a model which is
very different from the one used for type checking (see 2, 9]). In a system construction model
there are essentially two kinds of nodes: data objects and processes. The data object nodes

11



represent units of the system from the standpoint of construction (e.g., a file of functions, a
binary file which is the result of compilation, or a grammar file which is used as the input
to a parser generator). The process nodes represent operations on these data objects (e.g.,
compiling, linking, or generating a parser). Each process node has a number of input and
output ports and is annotated with a statement which specifies how to actually perform the
operation. The links between the nodes specify which data object is created by each process
and which processes use each data object.

The constraints on the nodes have an extremely simple form. Each object node is anno-
tated with the time at which it was last modified. Each process node is given a constraint
that requires the time associated with the output object to be greater than the maximum
time associated with any input object.

In order to construct a consistent version of the system, constraint propagation is applied
in order to determine where the constraints on the process nodes are violated. Whenever
one of these constraints is violated, a record is made of the fact that the process must be
run, and the time associated with the output object is increased to reflect the fact that it
will be recreated. If any process nodes use this object, then this change of time will lead
to additional constraint violations. The output of the propagation step is a list of processes
which have to be run in order to create a consistent version of the system.

The determination of what processes must be run can be done very efficiently, because
the constraint on the process nodes is inherently unidirectional and the construction model
must be acyclic. As a result, a single sweep over the model suffices to determine all constraint
violations.

As with type checking, it is interesting to note that constraint modeling yields very useful
results even thought the model contains extremely little information about the system and
the way it is modified. (From the point of view the model, every different kind of modification
is the same. The only relevant feature is the time at which it is performed.) Given the
magnitude of this simplification, it is not surprising that automatic system construction
tools can only approximate the goal of running the construction processes when and only
when necessary. However, the simplification is carefully chosen to be conservative in that
one can be confident of the fact that a processes never needs to be run when its constraint
is satisfied.

As has been suggested by a number of researchers (see [9]), an obvious direction in which
to extend automatic system construction tools would be toward having a more detailed
constraint model. In particular, the kinds of modifications could be modeled in more detail.
For example, a record could be kept of all the changes to each data object. This record would
show the nature of each modification and the time it took place. More complex constraints
could then be used to determine when processes need to be run. For example, a compilation
does not have to be performed if all the changes to a source file are confined to comments.

More General Uses of Constraint Modeling

Both type checking and automatic system construction are very simple examples of con-
straint propagation. System validation could be enhanced by using more complex constraint
propagation.

Extending type checking. There are many ways in which type checking can and is
being extended. For example, it is very useful to apply type checking at the inter-module

12



level based on interface specifications as well as at the intra-module level. The constraint
modeling perspective suggests two additional directions of extension.

Consider basic type checking. From the point of view of constraint modeling, the essence
of type checking is the fact that the transfer functions are constant functions. The efficiency
of type checking algorithms stems directly from this fact rather than anything to do with
types per se. The same algorithms could be used to check for the consistency of anything
which can be expressed in terms of constant transfer functions. There is no need for the
analysis to be restricted to what is commonly thought of as a type. One should think, “what
is the most specific assertion which can be made”, rather then merely thinking, “what is the
type of this object”.

Abandoning the usual connotation of the word type suggests a second extension. The
term type has become associated with the idea that every object should have a single type.
However, there is no need for things to be so limited. Rather, each object could be tagged
with several type-like features. Type checking could be simultaneously applied to each of
these features. For example, each object might be given a representational type essentially
similar to what is currently considered to be a type and additional type features indicating
how the object should be used (e.g., information about modifiability or security issues).

Although only modestly more powerful than what is done now, the extensions suggested
above represent a more general point of view which could be useful. Both of the extensions
could easily be generalized to cover the resolution of overloading and type determination as

in ML.

Dimensional analysis. A particularly interesting example of how one could move
beyond simple notions of type is the often suggested (but apparently seldom implemented)
idea of extending type checking to including dimensional analysis [4, 5, 6, 8]. Given the
usefulness of dimensional analysis when working with equations in physics and engineering,
dimensional analysis aught to be quite helpful when validating mathematical software. The
essence of dimensional analysis is the observation that, in order for an equation to make
physical sense, the two sides of the equation must have the same dimensionality. For example,
if one side of an equation is the product of two lengths, then the other side of the equation
must also have the net dimensionality of an area. In a programming context, this example
could be rephrased by saying that the product of two lengths can only be assigned to a
variable which is intended to hold an area.

It has been suggested that dimensional analysis could be supported by extending nu-
meric types so that they contain dimensional information. However, this would be quite
cumbersome since it would lead to a proliferation of types representing the cross product
between the basic numeric types and the possible dimensionalities (e.g., integer areas, real
areas, double precision areas, etc.). It would be better to introduce dimensionality as a
separate type-like feature. The storage types could be handled in the standard way while
the dimensional types were handled using slightly more complex constraint propagation.

In order to support dimensional analysis, the nodes corresponding to variables in the
type checking model would be annotated with constraints stating the dimensions of the
value stored in the variable. (If strong dimensional typing was desired, then every variable
declaration would include a statement of dimensionality.)

Each computational node in the model would be annotated with constraints specifying
the effects of the node on dimensionality. For example, the operation “*” would have a
constraint stating that the dimensions of the output are the product of the dimensions of

13



the inputs (e.g., the product of two areas has the dimensions of length to the fourth power).
As in the example in Figure 2, this constraint leads to multiple transfer functions. For
example, if the output is an area and one input is a volume, then the other input must have
the dimensions of one divided by length.

The inputs and outputs of user functions might well be required to have specific dimen-
sionalities. However, user functions that are more complex from a dimensional standpoint
could be supported as long as some method was provided so that the user could state the
dimensions of the result as a function of the dimensions of the inputs.

In order to perform a dimensional analysis to check the validity of a program, one would
only need to apply constraint propagation to the dimensional information. The dimensional
information associated with variables would be propagated through operations and compared
with the dimensional information attached to other variables and to user functions requiring
specific dimensionalities.

(The effect of a dimensional analysis could be obtained using standard type checking
by treating an operation such as “¢” as an overloaded operation with one specific instance
corresponding to every dimensionally different pair of inputs. However, there are too many
different possibilities for this to be a practical approach. It would be much easier to simply
use a more powerful notion of constraint propagation.)

Reasoning about units. A third kind of type-like information which is related to
dimensions are units (e.g., feet, inches, seconds). Information about units can be propagated
in essentially the same way as information about dimensions. However, it would be profitable
to handle units separately, because while automatic coercion cannot be applied to dimensions,
it can be applied to units. For example, the product of two lengths in feet cannot be compared
with a product of a length in feet and a time in seconds, however, it can be compared with
the product of two lengths in inches if an appropriate conversion is done.

Estimating numerical error bounds. Another interesting application of constraint
propagation which would be somewhat similar to dimensional analysis would be the estima-
tion of numerical error bounds. It is straightforward to state for each operation what the
error bounds of the result is, given the error bounds (and representational precision) of the
inputs. It would be possible to declare similar information in conjunction with user defined
functions. Given this information, it would be straightforward to determine a set of error
bounds for every quantity computed in a subroutine as long as the number of iterations of
each loop were independent of the input data. This could be used to compute worst case
estimates of the error bounds to be associated with user functions.

The computed error bounds could be compared with declared minimal requirements, or
simply computed in the style of ML. They could also be used to check that the program
does not print meaningless digits, or run the risk of computing a value which does not have
any meaningful digits.

Estimating time bounds. Similarly, if the number of iterations of the loops in a
program were independent of the input data, a constraint modeling approach could be used
to estimate the amount of time required for programs to execute based on estimations of the
time required by primitive operations. This approach might be particularly helpful when
analyzing real time systems. In particular, it could be used to estimate whether or not a
system could handle its intended throughput.

14



Domain Specific Models

The examples of constraint modeling above have the virtue that they are all domain
independent. That is to say, they can be applied to any kind of program as well as any
other kind. This gives them wide applicability. However, they are all relatively shallow in
that they cannot easily take advantage of domain knowledge. It should be possible to obtain
more comprehensive validation results by building a model which is tailored to a particular
kind of system and contains significant amounts of domain knowledge.

Given a large system of programs, one would look at the specifications for the system
and construct a constraint model which encodes a small but significant portion of the spec-
ifications in the form of constraints which are amenable to propagation. It is expected that
this model would be closely adapted to the characteristics of the particular system rather
than following some rigid pattern.

Under the assumption that type checking and dimensional analysis encode perhaps 1%
of the specifications for a system. The basic goal is to use every degree of freedom possible
in order to encode perhaps 5% of the specifications in a more complex (but still tractable)
set of constraints.

Research is currently under way in an attempt to show the efficacy of this approach.
Given that this research is not yet complete, it is difficult to lay out the approach in full
detail. However, the basic features of the approach can be summarized.

Designing a type of constraint model for a class of systems. When designing a
constraint model, there are two fundamental degrees of freedom: the form of the model and
the kind of information which is to be expressed as constraints. Given these decisions, the
exact model and constraints follow from the system being modeled.

When considering a system of subroutines, the most obvious kind of model to use is one
which is based on the data flow in the system (i.e., a model similar to the one used by type
checking). However, this is not the only possibility. It might be better to organize the model
around gross data flow between modules or around control flow. In any event, there must be
some simple uniform criterion for determining what units in the system (e.g., function calls,
subroutines, subsystems) should become nodes in the model and what connections between
these units should become links in the model.

The most fundamental decision when designing a constraint model is the choice of what
kind of information to encoded as constraints. In particular, the form of the constraints
determines the character of the units in the system which will become nodes in the model.
In addition, the links in the model follow from the way in which the constraints are intended
to propagate.

As illustrated by the examples above, there are many kinds of information (e.g., type
information and dimensionality) which should be generally useful when modeling almost any
kind of system. However, it is expected that the greatest leverage will come from picking
kinds of information which are intimately associated with the specific system to be modeled.
By the very nature of this information, it is impossible to describe it in general. However,
several criteria should be kept in mind.

To start with, the information must be relevant to a relatively wide range of units in the
system. This is true, because the great strength of constraint propagation is its ability to rub
together information from a wide variety of locations in the model. In order for this to work
to maximum effect, each class of information must be present at a wide variety of locations

15



in the model. As an extreme example, suppose that a certain class of information is present
at only one node in a model (e.g., only one node says anything about dimensionality). In
this situation, there is nothing which constraint propagation can do with this information
except copy it to other nodes.

Equally important, the information must be amenable to propagation. Although this is
certainly of paramount importance, it is not clear to what extent there are any quantifiable
criteria for determining what kinds of information are easily propagatable. It is hoped that
the current research will yield some insights in this area.

Although still somewhat nebulous, there is one characteristic common to several of the
examples in this paper which seems to facilitate propagation. It is apparently beneficial
to consider quantities which take on a relatively small number of discrete values rather
than a large number of possible values. If a large number of values are possible, then it
is seldom practical to reason about specific values. One either has to reason symbolically
about possible values (which often introduces complexities which are beyond the current
capabilities of automatic deduction) or resort to reasoning qualitatively about classes of
values (which reduces the problem to one of reasoning about quantities which take on a
small number of values.)

Building a specific constraint model for a particular system. The creative part
of constraint modeling revolves around the choice of the kind of information to represent
and the way to represent it. Once this has been done, the actual construction of a model
should be more or less straightforward.

Given the form of the model, it should typically be possible to derive the detailed pattern
of nodes and links more or less automatically from the code for the system being modeled.
(This is the case in all of the examples in this paper.) Deriving the constraints associated
with the nodes is a more difficult task.

In the absence of a machine readable specification, the constraint derivation process is
of necessity a manual one, because the information in the constraints comes primarily from
the specification for a system rather then from its code. For example, in order to use type
checking, the programmer must explicitly declare a significant amount of type information.

Although the constraint derivation process is expected to be manual, it need not be overly
difficult. Given the classes of information which have been chosen, one need only look at
each unit of the system which corresponds to a node in the model and develop constraints
for the unit based on its specification.

The process of deriving a set of constraints for a unit can naturally be divided into two
phases. The first phase is the determination of what the constraints should be. This is
almost certainly not automatable and is intimately tied up with the process of developing
the specification for the system. For each class of information which has been selected for
modeling, the relevant set of constraints essentially encode the answer to the question “how
does the unit effect this class of information?”.

The second phase is verifying that the constraints correctly describe the unit in question.
In the near term it is expected that this task will also be manual. It would be natural to
include it as part of the code inspection process. However, it is quite possible that this
part of the process could eventually be automated. Since it involves proving relatively small
theorems about small programs it may be within the reach of automatic theorem proving
techniques relatively soon. At any rate, it is much more realistic as a potential application
of these techniques than full-scale verification.

16



A key feature of both phases of the constraint derivation process is that they are inherently
local in nature and therefore in tune with human information processing capabilities. An
important way to look at the benefits of constraint propagation is that it bootstraps locally
validatable information into global conclusions.

Partial verification. It is interesting to consider the relationship between constraint
modeling and verification. If, taken in their entirety, the constraints in a model are complete
with regard to some class of information, then the failure of constraint propagation to find
any contradictions can often be taken as formal proof of correctness with regard to this class
of information. For example, if strong typing is applied to a program and no type conflicts
exist, then it can be guaranteed that although there may well be errors in the program, these
errors do not involve inappropriate operations on data.

Robustness in the face of incompleteness. Although completeness is clearly bene-
ficial, it is difficult to achieve. An important benefit of constraint modeling is that it is very
tolerant of incompleteness. If a constraint is left out, nothing catastrophic happens. The
only effect is that some deductions will no longer be possible. This degrades the ability of
constraint propagation to find failures, but in a gradual way.

There are many reasons why it is next to impossible to achieve completeness. Most fun-
damentally, specifications tend to be incomplete. Since the constraints are derived from the
specification, they tend to be incomplete as well. Further, there are plenty of opportunities
for leaving out one or more constraints for essentially inconsequential reasons.

In addition, it may be necessary to intentionally leave out some constraints because they
are too complex to usefully express. The fact that constraint modeling can tolerate this
provides an important degree of freedom when devising a propagatable representation for
a class of information. It is permissible (and useful) to devise a representation which only
works 90% of the time. (This probably degrades the performance of constraint propagation
by 50% or more, but still allows constraint modeling to be beneficial.)

A Research Plan

To date, the research presented here has been confined to thought experiments. At
the very least, this investigation has revealed that constraint modeling is a useful basis for
understanding some of the validation methods currently in use. Going beyond this, it has
suggested a provocative direction in which to look for new validation methods.

The next step is to test these ideas by applying them in real world situations. A large real
time control system has been obtained and efforts are underway to create a constraint model
for it which is useful for validation. Since this system has been very thoroughly tested, there
may not be any faults in it that can be easily detected by any means. Experiments will be
performed by introducing new faults into the system which are difficult to detect by testing
and code inspection, and seeing which of these faults are easy to detect using constraint prop-
agation. If successful, these experiments will show that domain specific constraint modeling
can be a useful validation tool.

If these experiments are successful, the next step in the research will I to analyze
the experiments with particular attention to determining what kinds of infuriation can
profitably be represented as constraints and which cannot. (Depending ou the amount
of symbolic computation which is required, implementing a system which does the actual
propagation is relatively easy (see [10]).) The long term goal will be the creation of a

17



comprehensive theory of how to distill a significant part of a specification for a system
into propagatable constraints. However, it should be noted that domain specific constraint
modeling could be a very important validation method even if it has to be applied on a case
by case basis rather than guided by a comprehensive theory.

References

(1] A. Avizienis & J. Kelly, “Fault-Tolerance by Design Diversity: Concepts and
Experiments”, IEEE Computer, 17(8):67-80, August 1984.

[2] E. Borison, “A Model of Software Manufacturing”, in Advanced Programming
Environments, Proceedings of an International Workshop, Conradi R., Didriksen M.,
and Wanvik D.H. (editors), Lecture notes in Computer Science, 244:187-215,
Springer-Verlag, June 1986.

[3] A. Borning, “The Programming Language Aspects of Thinglab, A
Constraint-Oriented Simulation Laboratory”, ACM Transactions on Programming
Languages and Systems, 3(4):353-387, October 1981.

[4] A. Dreiheller, M. Moerschbacher, & B. Mohr, “PHYSICAL: Programming Pascal with
Physical Units”, ACM Sigplan Notices, 21(12):114-123, December 1986.

[5] N.H. Gehani, “Units of Measure as a Data Attribute”, Computer Languages, 2:93-111,
1977.

[6] N.H. Gehani, “Ada’s Derived Types and Units of Measure”, Software—Practice and
Experience, 15(6):555-569, June 1985.

[7] M. Gordon, R. Milner, & C. Wadsworth, Edinburgh LCF: A Mechanical Logic of
Computing, Lecture notes in Computer Science, 78, Springer-Verlag, 1979.

[8] R. Manner, “Strong Typing and Physical Units”, ACM Sigplan Notices, 21(3):11-20,
March 1986.

[9] R.E. Robbins, Build: A Tool for Maintaining Consistency in Modular Systems, MIT
MS Thesis, MIT/AI/TR-874, November 1985.

[10] G. Steele, The Definition and Implementation of a Computer Programming Language
based on Constraints, MIT PhD Thesis, MIT/AI/TR-595, August 1980.

[11] G.J. Sussman & R.M. Stallman, “Heuristic Techniques in Computer-Aided Circuit
Analysis”, IEEE Transactions on Circuits and Systems, 22(11):857-865, November
1975.

(12] P.H. Winston, Artificial Intelligence, second edition, Addison-Wesley, 1985. (See
Chapter 3.)

[13] Military Standard Ada Programming Language, ANSI/MIL-STD-1815A-1983, U.S.
Government Printing Office, February 1983.

18



Tius blank page was inserted to preserve pagination.




CS-TR Scanning Project ‘
Document Control Form Date: 5/ 5 195

Report# _Aim- 1030

Each of the following should be identified by a checkmark:
Originating Department:

KArtiﬁcial Intellegence Laboratory (Al)
(O Laboratory for Computer Science (LCS)

Document Type:

O Technical Report (TR) %( Technical Memo (TM)
O other:

Document Information = Number of pages: |9 4~ TmacEs)

Not to include DOD forms, printer intstructions, etc... original pages only.

Originals are: Intended to be printed as :
/\& Single-sided or (O Single-sided or
00 Double-sided )ZL Double-sided
Print type:
O Typewriter [J oOffset Press Laser Print
[J iniletPrinter [] Unknown [] other:

Check each if included with document:

,é( DOD Form O Funding Agent Form O cover Page
O spine O Printers Notes O Photo negatives
O oOther:

Page Data:

Blank Pagesey sege numbes:

Photographs/Tonal Material ey page numben:

Other (row descriptontpage numben:
Description : Page Number:

iMAGE AR (1) uN#7£0 TITLE FAGE
(- 1Y ) PAGES H’Ep [~ 18
(30~ 3)) S<anco STRIL, DOD
(32-34) TRSTS (3)

Scanning Agent Signoff: ‘
Date Received: _S /.S /715 Date Scanned: 5 1 /35 Date Retumned: 5 /(! 115

Scanning Agent Signature: M (}/\) : Go‘&u o aros Fom »




REPORT DOCUMENTATION PAGE

Form Approved
OBM No. 0704-0 188

Publmmponmburdonformsm" ion of inf ion is dto 1 hour per

VA 2202-4 andtothe Management and Bu rwork R n Proj

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE

February 1988

g the time for

Washi

thenng and

and g the collection of |n1ovmat|m'3e Send comments regardng this burden estimate or any other aq)ect orf this collemon of information,
ns for reducing this Burdon, to Washmgton Headquaners Services, Dnroctoraée for lr{ormatmn Opemnosg and Ropons, 1215 Jefferson Davis Highway, Suite 1204, Arlington,

3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE
System Validation via Constraint Modeling

6. AUTHOR(S)
Richard C. Waters

5. FUNDING NUMBERS

NSF IRI-8616644,
IBM, NYNEX,
Siemens, ONR
N00014-85-K-0124

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Massachusetts Institute of Technology
Artificial Intelligence Laboratory

545 Technology Square

Cambridge, Massachusetts 02139

8. PERFORMING ORGANIZATION
REPORT NUMBER

AIM 1020

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Office of Naval Research
Information Systems
Arlington, Virginia 22217

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

AD-A193589

11. SUPPLEMENTARY NOTES
None

12a. DISTRIBUTION/AVAILABILITY STATEMENT

DISTRIBUTION UNLIMITED

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Constraint modeling could be a very important system validation method,
because its abilities are complementary to both testing and code
inspection. In particular, even though the ability of constraint

find with testing).

modeling to find errors is limited by the simplifications which are
introduced when making a constraint model, constraint modeling can
locate important classes of errors which are caused by non-local
faults (i.e., are hard to find with code inspection) and manifest
themselves as failures only in unusual situations (i.e., are hard to

14. SUBJECT TERMS

constraints, validation, modeling, testing

15. TgMBER OF PAGES

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

18. SECURITY CLASSIFICATION
OF THIS PAGE

19. SECURITY CLASSIFICATION
OF ABSTRACT

20. LIMITATION OF
ABSTRACT

UNCLASSIFIED

UNCLASSIFIED

UNCLASSIFIED

UNCLASSIFIED

~NSN 7540-01-280-5500

orm V. 2-
Proscribed by ANS| Std. 239-18
208102




Scanning Agent Identification Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the MLLT
Libraries. Technical support for this project was
also provided by the M.LT. Laboratory for
Computer Sciences.

darptrgt.wpw Rev. 9/94



