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1 Introduction.

The benefits of using a quantitative measure in engineering systems are well known.
More specifically, a quantitative measure provides one with a rational basis upon
which one can, without having to rely on experience and intuition alone, analyze,
design, and control the systems as follows:

e one can evaluate the performance of a given system and analyze the system,
by estimating this measure; or

e one can design a system that achieves the performance to a certain degree,
by maximizing (or minimizing) this measure; or

e one can control, in an on-line way, a given system to achieve it, by maximizing
the measure at each moment.

In robotic systems, also, various performance measures have been used to quantity
desired performance features such as obstacle avoidance (Yoshikawa, 1984; Ma-
ciejewski, 1985; Espiau, 1985; Khatib, 1986), torque minimization (Hollerbach,
1985), kinetic energy minimization (Whitney, 1972), and constraining the joint
variables within their physical limits (Liegeois, 1977).

Another desire, in addition to optimizing these performance features, is the
achievement of dexterous manipulation. This performance characteristic, however,
is, in fact, quite ambiguous unless the concept of derterity is made more precise.
One concept of dexterity was specified as the volume of that part of the workspace,
within which the end effector can achieve any orientation (Vijaykumar, Tsai, and
Waldron, 1985): the larger the volume, the more dexterous the manipulator.

Another concept of dexterity, suggested by Yoshikawa (1985a), is the ease of
changing the position and orientation of the end effector. This ease is a function
of the dynamic characteristics of the manipulator. Another concept of dexterity
proposed by Klein (1984, 1987) appeared to mean: (1) the quality of the linear
system of differential relationships, as indicated by either the determinant or con-
dition number of the Jacobian matrix; or (2) the naturalness of the appearance,
as measured by how evenly distributed the joint variables are. Naturalness would
be achieved by minimizing the sum of the squares of the deviation of actuators’
displacements from their midpoints.

According to these definitions, a manipulator would be the least dexterous at
a singular point; for at a singularity the conditioning of the linear system is at
its worst, and creates awkward appearances due to links lining up or folding. In
this sense, therefore, dexterity may be viewed as a measure of the distance from
a singularity. In this paper, the meaning of dexterity is explicitly specified as the
distance from singularity.



1.1 Existing Performance Measures.

To quantitatively represent the distance, several measures have been proposed
(Yoshikawa, 1985a, 1985b; Uchiyama, 1985; Maciejewski, 1985; Salisbury, 1982):
(a) the determinant of the Jacobian matrix, (b) its condition number, and (c) com-
binations of its singular values. It is not surprising that all of these are based on
the Jacobian matrix, because the instantaneous end effector velocity in Cartesian
space is related to the velocities in joint variable space through this matrix.

1.1.1 The Determinant of the Jacobian Matrix.

In linear algebra, the determinant of a matrix is an important measure used to test
the invertibility of the matrix and its distance from singularity. Accordingly, the
determinant of the Jacobian matrix has been tried as a dexterity measure for both
nonredundant and redundant manipulators. For nonredundant manipulators, for
instance, the determinant has been used as a measure of degeneracy for the analysis
of wrist configurations (Paul and Stevenson, 1983). For redundant manipulators,
on the other hand, Yoshikawa (1984) has proposed a measure called manipulability,
defined as the square root of the determinant of J3T. This measure is often viewed
as a generalization of the concept of the determinant, because of the following:

e the manipulability reduces to the regular determinant in the nonredundant
case.

e the manipulability becomes zero when the workspace rank is reduced at a
singularity, just as the regular determinant of a square Jacobian matrix does.

e since the singular values of 3J7 are the squares of the singular values of J, the
determinant of JIJT may be regarded as if it were the square of the regular
determinant of a square Jacobian matrix.

1.1.2 The Condition Number.

Meanwhile, since the condition number of the Jacobian matrix is another impor-
tant measure, whose inverse also indicates how far a matrix is from singularity, it
too has been proposed as a measure of dexterity (Salisbury, 1982). It is notewor-
thy that this measure was initially used to determine the kinematic solution that
minimizes the propagation from joint actuator torque error to end-effector force
error—equivalently, the velocity error propagation from joint space to workspace—
for nonredundant manipulators.



1.1.3 Singular Values and Their Combinations.

The determinant and the condition number of the Jacobian matrix can be expressed
in terms of the singular values of the matrix: the determinant is the product of all
the singular values, while the condition number is the ratio of the largest to the
smallest singular value. Since the smallest singular value becomes zero when the
matrix becomes singular, and roughly controls the behaviour of the two measures
near a singularity, the smallest singular value itself has been suggested as a measure
of distance from singularity (Klein, 1985). In addition to its simple expression, this
measure has a relatively clear physical meaning: 1t may be interpreted in terms of
the minimum responsiveness of the manipulator. That is, the worst ratio of the
magnitude of the end effector velocity to the magnitude of the joint velocity (Klein,
1985), at a particular point in the workspace.

Other combinations of singular values that have been suggested as dexterity
measures are the geometric mean and harmonic mean (Yoshikawa, 1985b). These
may be viewed essentially as variations of the aforementioned measures.

1.1.4 Some Common Features.

The features common to all of these measures are the following:

o They indicate the presence of singularity: when singular, the value of these
measures become zero (except for the condition number, the value of which
becomes infinity).

e Their absolute values (inverse of the absolute value in the case of the condi-
tion number) appear to represent, in one way or another, the distance from
singularity. That is, the larger the value, the farther the manipulator is from
singularity.

In the case of redundant manipulators, however, these measures do not explicitly
indicate the successive changes in the available degrees of freedom as long as the
workspace rank is preserved. For instance, suppose we have a five degree of freedom
manipulator that is to move in a three-dimensional workspace, hence having two
degrees of redundancy. These measures do not necessarily become zero when such
a manipulator has lost one (or even two) degrees of freedom.

Because the degree of redundancy is an important constituent of the distance
from a singularity. there is therefore an obvious shortcoming of these distance mea-
sures. Furthermore, it is also undesirable for a measure to be insensitive to relative
differences in the distance from singularity for a particular degree of redundancy.
Therefore, we feel that a satisfactory dexterity measure should indicate both changes
in the degrees of redundancy, also well as relative differences within a particular
degree of redundancy.



Losing degrees of freedom may not in itself be a serious drawback, as long
as the workspace rank is fully preserved so that the desired location of the end
effector can be achieved by suitable selection of the joint variables. What may be
of more concern are potential problems that can be expected to arise—by analogy
with the nonredundant case—when degrees of freedom are lost. More specifically,
in the nonredundant case, the collection of points where degrees of freedom are
lost——at the singularities—constitutes the boundaries between regions of different
types of joint configuration or aspects (for example, elbow up versus elbow down)
(Uchiyama, 1979).

When such a boundary is crossed, the manipulator switches from one distinct
type of configuration to another. A trajectory control scheme that allows the ma-
nipulator to cross over such boundaries often leads to repeatability problems, since
it will use a different set of joint variables to reach a given point in the work space
depending on the past history of the motion. Besides, near the points on the
trajectory where switching occurs, there are often accompanying discontinuities in
motion, resulting in large joint variable velocities. The same problems are expected
in the redundant case, since in this case too there exist multiple solutions involving
distinct types of configurations (Borrel, 1986).

Now the boundaries between regions corresponding to different types of con-
fizurations are the points where the degrees of freedom are reduced. It appears,
however, that these (nontrivial) problems tend to be veiled because of the fact that,
owing to the redundancy, the switching can happen without causing the more se-
rious (and obvious) problems that occur at true singularities. To our knowledge,
there has not appeared any analysis of these problems for redundant manipulators,
and any performance measures that is designed to prevent them.

2 Preview.

The objectives of this paper are as follows:

e to analyze the aforementioned relative distance ideas for redundant manipu-
lators and to derive a new distance concept;

e to derive from this concept a new performance measure that represents the
dexterity of manipulators including relative distance from singularity;

e to examine whether the new performance measure helps in the task of avoid-
ing the repeatability problems and discontinuous motions due to switching
between different types of configurations.

This performance measure is intended to be used either with on-line kinematic
control methods, or for off-line design purposes.
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In order to better understand the degree of redundancy and the relative distance
differences, we first review in Section 2 the concept of singularity, and some basic
information about the degree of redundancy. Then we will derive a new concept of
the distance from singularity for the kinematically redundant case. This concept
is obtained by observing the structure of the Jacobian matrix of a redundant ma-
nipulator. Then, from this concept, a new performance measure will be developed.
The special properties of this measure will be discussed in Section 3. In addition,
the new performance measure will be qualitatively compared with two existing per-
formance measures: the manipulability measure and the (inverse of the) condition
number. In Section 4, the results of numerical simulations will be shown with re-
dundant manipulators to compare the effectiveness of each measure in achieving
dexterous movements. In the comparison, both the repeatability problems, as well
as the ability to preserve the type of joint configuration are shown. Finally some
concluding remarks will be made in Section 5.

3 New Distance Concept and Performance Mea-
sure.

This subsection presents reviews of two basic concepts, singularity and kinematic
redundancy, to provide a better understanding of the distance from singularity in
redundant manipulators. Then the new distance concept and its corresponding
performance measure will be derived.

3.1 Review of Singularity and Redundancy.

In this subsection we review the concept of kinematic singularity and compare it
with the concept of singularity of a matrix. We then review the concept of kinematic
redundancy and compare and contrast this with the concept of redundancy of a
matrix.

3.1.1 Kinematic Singularity.

Singularities can be easily discovered by examining the differential relationship®,
between changes in the joint variables and changes in the end effector location:

x =30, (1)

where @ is a n-dimensional vector representing the joint variables, while x is a
m-dimensional vector representing the end effector location and J is the Jacobian
matrix of the transformation from joint variables to end effector location.

1Much of the discussion here is based on unpublished notes on singularities by B.K.P. Horn.



For the nonredundant case (n = m), the Jacobian matrix J is square. When the
Jacobian matrix becomes singular, a manipulator is said to be at a singular point.
Hence at a singular point, the determinant of J, that is, det(J) equals zero. This
simple fact, together with the fact that the determinant is a continuous function of
the joint variables, provides some important insights:

1. When det(J) = 0, the rank of J is reduced, and the manipulator loses some
of its degrees of freedom. This is because the rank of the column space is
reduced. The result is an inability to move in a certain direction by any
combination of small changes in the joint variables.

2. Furthermore, as a manipulator comes close to this point, small movements in
some direction requires very large changes in the joint variables.

3. The sign of the determinant changes as one passes through a singular point.
Since the determinant is the ratio of the differential volume in work space
coordinates to the differential volume in joint coordinates, the sign change in
the determinant indicates a change from one type of configuration to another.
In fact, just as a change of sign in a continuous function cannot occur without
passing through zero, so the manipulator cannot change from one type of
configuration to another without passing through a singularity. This property
has also been discussed by Uchiyama (1979).

4. At a singularity, two different kinds of solutions collapse into one; hence, the
number of types of configurations is reduced.

5. Items 3 and 4 can be explained in terms of Riemann sheets: multiple solu-
tions correspond to multiple sheets, each of which represents a mapping from
Cartesian coordinates to joint variables; singular points lie on the folds of
these sheets.

The first two items may explain why keeping far from a singularity is closely related
to dexterity.

From the fact that the determinant becomes zero at a singularity, it functions
in a sense, as an indicator of the presence of a singular point. A geometrical inter-
pretation of the absolute value of the determinant is the volume of a parallelepiped
made of n column vectors (or row vectors) of the Jacobian matrix. This interpre-
tation, together with the fact that at a singularity the parallelepiped collapses and
the volume becomes zero, is in fact the basis of the idea that the determinant is a
measure of distance from singularity.

One disadvantage of using the determinant, however, as an indicator of singu-
larity is that, once the rank of J is reduced, the determinant is zero, and there is
no way to distinguish between two different degress of singularity, even though the
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ranks of the corresponding Jacobian matrices may be different. A more accurate
indicator for this purpose probably is the remaining rank, or degree of freedom,
itself.

For redundant manipulators, the measure equivalent to det(J) is the manipula-

bility measure, namely
v det(JIT).

Yet this measure, as mentioned in Section 1, cannot indicate a change in the degree
of redundancy, something that will be reviewed in the following subsection.

3.1.2 Kinematic Redundancy.
The degree of redundancy r is formally defined as
rT=n-—m, (2)

where n is the number of degrees of freedom, and m the rank of workspace. In terms
of linear algebra (Strang, 1980), the workspace rank corresponds to the dimension
of the row space of the Jacobian matrix, and the number of degrees of freedom to
the dimension of its column space, while the degree of redundancy corresponds to
the dimension of the null space.

In other words, the degree of redundancy is the maximum number of linearly
independent vectors in the null space, e;, defined by the equation

Je,- =0. (3)

But, we find that this definition is not appropriate for describing the concept of
kinematic redundancy.

For instance, consider the following Jacobian matrix, consisting of three two-
dimensional column vectors, J, J?, and J?, representing a three degree of freedom,
planar, redundant manipulator,

J=(JJETP).
If the second and the third links line up, we find that J3 = ¢J* (with ¢ a nonzero

constant), and we know that the redundancy has been eliminated. However, the
null space vector that satisfies (3) is equal to

€ = (0767 “1)Ta

which is a nonzero vector. Thus, according to the above definition, the degree of
redundancy is one, whereas the observation indicates there is no redundancy. This
discrepancy can be resolved if we modify the meaning of n in (2), to be equal to
the available degrees of freedom. But, as mentioned in Section 1, it turns out that
this modified definition is still inadequate to describe the relative differences in the
distance for a given degree of redundancy.
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3.2 New Concept of Distance from Singularity in the Re-
dundant Case.

In this subsection, we will consider some Jacobian matrices of kinematically redun-
dant manipulators, and identify relative differences in the distance from singularity.
On the basis of the observations, we will propose a new definition of the distance
from singularity.

Again, the kinematic equation of a kinematically redundant manipulator 1s gen-
erally given as follows:

x = f(9),

where x € R™, and 8 € ®" with with m < n. Then, the Jacobian matrix for the
transformation from @ to x, namely J € ®™*", may be denoted in general as,

J=(J g gt g,

where J* is the k-th column vector. If m linearly independent vectors are chosen,
without loss of generality, as the first m column vectors of J, then, from linear
algebra, the remaining n — m vectors Jm+1, ... J" are linear combinations of the
first m vectors J1, ..., J™ (Strang, 1980).

Observations indicate that how many of these first m vectors are included in
the linear combination for each of the remaining n —m vectors determines how far
from a singularity the manipulator is.

To illustrate this point, let us select a manipulator with just one degree of
redundancy, i.e., n = m + 1, where

J=(J ' J* ... JmJmh.
Consider the following three cases of linear combinations for J mt1,
1. J = a JY,
2, JH = g J + ayJ?,
3. J"Y =g JV +FapJi o+ anJ™,

where the a’s, (i = 1, 2, ..., m) are arbitrary nonzero constants. What are the
differences between these cases?

According to the formal definition in (2), the degree of redundancy for each of
the three cases is one. Alternatively, if the modified definition is used, then the
manipulator in case 1 has no redundancy, whereas it has one degree of redundancy
in both cases 2 and 3. However, careful observation reveals that there still exists
another difference in the distance from a singularity between cases 2 and 3. The
differences between the three cases may be explained as follows:



1. In case 1, the manipulator gets into a singularity, reducing its rank (to less
than m), if any two of the first m column vectors happen to line up.

[ 8]

. In case 2, a singularity arises if any two, except for J! and J?, of the m column
vectors line up.

3. In case 3, the Jacobian matrix preserves its rank (m), even when any two of
the column vectors happen to line up.

In other words, the chance for the manipulator to get into a singularity decreases
by degrees, as the number of linearly independent vectors to be included in the
combination increases. These differences in the possibility of getting into singularity
determine the relative differences, for systems with the same degrees of redundancy,
in the distance from singularity.

Meanwhile, the number of the J!, J2, ..., J™ that appear in each of the J™*1,

.., J" uniquely determines the number of distinct combinations of m linearly in-
dependent column vectors, or the number of distinct submatrices of rank m in the
Jacobian matrix. Hence, the number of nonsingular square submatrices also repre-
sents the margin from singularity; as the number increases, the system is less likely
to become singular. Of course, this number is reduced as the number of column
vectors that line up increases. While these two measures are equivalent, deter-
mining the number of nonsingular submatrices is easier than selecting redundant
vectors in the set of m vectors. Note, at the same time, that these observations are
not confined to this particular example of a one degree of redundancy case, but are
evidently valid for the general cases, where the degree of redundancy is more than
one.

As an example, consider the following five jointed robot having a three dimen-
sional workspace and thus two degrees of redundancy, where the Jacobian matrix
is given as,

I=(J" TP I,
where the Ji’s are the three dimensional column vectors. If J!, J* and J? are
selected as linearly independent vectors, then J* and J® can, in general, be repre-
sented as
JV= e + e JP + e3lJ3,

JS - (11J1 +d2-]2 +d3J3.

Depending on how many and which of the coeflicients ¢;’s and d;’s are zero, we have
different numbers and combinations of linearly independent vectors appearing in J*
and J®. At the same time, this number and the particular combinations of vectors
determine the number of submatrices of rank 3 in the Jacobian matrix. Table 1
shows the relationship between the number of submatrices and the number (and
the combination) of linearly independent vectors.



Table 1: The relationship between the number of linearly independent
vectors used in representing the remaining vectors, and the number of
nonsingular submatrices in the Jacobian matrix.

¢, ¢ C3 L 00 *|0 00 0
dy dy ds |* * *|o0 * x % k| % x * olo
No. of sub- | 10 9 8 7 6
matrices (sC3)

Notes: A B C D E F
¢, Cy C3 0 0 |0 O 000j0 0 0 00
dy dy ds |0 * *[* 0 AR 1) 0 * 00
No. of sub- | 5 4 4 3 2 1
matrices

Notes: G H I J K L

* represent any nonzero value

Notes:

A All of the ¢;’s and the d;’s are nonzero.

B Only one of the ¢;’s and the d;’s is zero.

C Any two of either the ¢;’s or the d;’s is zero.

D One of the ¢;’s and one of the d;’s are zero, with i # j.

E Two of either the c;’s or the d;’s are zero and one of the other coefficients, d;’s or cj’s,
is zero with 7 £ j.

F One of the ¢;’s and one of the d;’s are zero with i = j.

G Two of either the ¢;’s or the d;’s are zero and one of the other coefficients, d;’s or c;’s,
is zero with 7 = j.

H Two of both the ¢;’s and the d;’s are zero, with one overlapping i = J.
I All of either the ¢;’s or the d;’s are zero.

J One of both the ¢;’s and the d;’s are nonzero, with 7 = j.

K Only one of either the ¢;’s or the d;’s is nonzero.

L All of the ¢;’s and the d;’s are zero.
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It is noteworthy that the number of nonsingular submatrices successively drops
from the maximum, 10, to the minimum, 1, depending on the number and combi-
nation of linearly independent vectors. Again, even within a particular degree of
redundancy, there are differences in the number of nonsingular submatrices. Clearly
the number of nonsingular submatrices gives an indication of the relative distance
from singularity.

In addition, note that the absolute value of the determinant of each submatrix,
called a minor, represents the distance from its own singular or degenerate state.
Therefore, a measure of the overall distance from singularity should take into ac-
count the value of each minor of the Jacobian matrix. In other words, in addition
to the number of submatrices of rank m, one should take into account their deter-
minants. The further each submatriz is from a singularity, as indicated by a larger
absolute value of the minor, the smaller the chance of singularity.

The above observations directly leads to a definition of distance from singularity
as follows:

Definition:

The distance from singularity is represented by the number of distinct
nonsingular submatrices of rank m and the magnitude of the determinant
of each submatrix, that is, the magnitude of each minor of the Jacobian
matrix.

In using the concept of distance from singularity, for example, in finding kinematic
solutions, it is unwieldy to bring this detailed definition to bear in full. What is
needed is a single number that summarizes the salient aspects of the concept above.
This leads us to the new performance measure to be introduced in the next section.

3.3 Derivation of A New Performance Measure.

We will derive a performance measure for the purposes of kinematic control and
manipulator design, based on the distance concept developed above. More specifi-
cally, the following objectives are simultaneously to be met in order to achieve the
desired performance:

o To keep the number of distinct nonsingular submatrices of rank m
as large as possible;

e To make the magnitude of each minor as large as possible.

As an index that explicitly represents these objectives, we propose the following
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measure:
1/p

H= , (4)

P
I A
=1

where the A;’s for i = 1, 2, ..., p, with p = ,C,,, are minors of rank m of the
Jacobian matrix. Clearly, this measure contains in its expression the two elements

of the distance, the number and the magnitude of distinct minors, in such a way
that both objectives are automatically achieved as it increases. To be more specific,
since the measure has nonzero values only if all of the minors are nonzero, keep-
ing it greater than zero guarantees the maximum number of distinct nonsingular
submatrices. At the same time, since the measure cannot have a large value unless
each minor is large, increasing the measure tends to increase the magnitude of each.
Furthermore, since the measure is a product, it becomes smaller if the minors have
uneven values (for a given total value). Therefore, this tends to prevent any minor
from being particularly large at the expense of forcing others to be too small.

In (4), the exponent 1/p is primarily used so that, when n = m, the measure
reduces to the absolute value of the determinant. We find a similar treatment, in
(Yoshikawa, 1984), where the manipulability measure is defined as the square root of
det(JIT). Of course, if exponents are used, then the physical interpretations of the
measure changes. This will be considered in the next section. Also note that the use
of an exponent, when the measure is used in the null space of the resolved motion
method, results in a different time response of convergence toward the optimal
kinematic solution. Except for these differences, the essential characteristics are
not changed by introducing the exponent.

4 Properties of the New Measure and Relation-
ship to other Measures.

In this section we first explore the properties of the new performance measure and
then compare it with the existing performance measures.

4.1 Properties of the New Measure.

Examining the new measure, we find the following important properties:

e When m = n. i.e., for nonredundant manipulators, the measure reduces to
H = !det(J)t ’

which is the same as that proposed by (Paul and Stevenson, 1983). This
measure may be conceptually interpreted as the volume of a parallelepiped in
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m-dimensional space, the edges of which come from the columns (or equiva-
lently, the rows) of the Jacobian matrix, J.

e When n > m, the measure represents the geometric mean of the volumes
of p parallelepipeds made of each of the possible combinations of m column
vectors out of the n.

e The points where A; = 0 are the boundaries between one type of joint con-
figuration and another. These points are also the points where some of the
column vectors in A; are linear combinations of the remaining ones, thereby
causing the corresponding minor to become zero.

Note that the last property may be considered an extension of the nonredundant
case in Section 2 to the redundant case, where the points satisfying det(J) = 0
determine the boundaries. This property, in fact, was used by Borrel and Liegeois
(Borrel, 1986) to determine the boundaries of different types of joint configurations.
These boundaries divide the joint space into subsets, called aspects, each of which
consists of one type of joint configuration.

In addition to determining aspects, we can use this property to force the joint
configuration to stay within a preferred aspect. More specifically, by keeping all
of the A,’s nonzero, we preserve the type of joint configuration of a redundant
manipulator.

Why do we think that it is often useful to force the joint configuration to stay
within a particular aspect? The reasons, already discussed in Section 1, can be
summarized as follows:

o switching between aspects can cause a certain type of repeatability problem,
and

e discontinuities in motion and awkward configurations may accompany the
switching.

(learly, maximizing the new performance measure directly prevents all of the A;’s
from becoming zero, so it immediately addresses these problems. In other words,
by virtue of this property, the new performance measure 1s expected to help solve
these problems.

4.2 Relationship to other Measures.

In this subsection, we investigate the relationship between the proposed measure
and the two others: first the manipulability measure and then the condition number.
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4.2.1 Relationship to the Manipulability Measure.

The new measure and manipulability are loosely related, since both measures rep-
resent the distance from a singularity. But what is the precise relationship between
the two? The following theorem answers this question:

Theorem 1 For any matriz, J € R™*", with m < n,
P
det(JTT) = Y AZ,
=1

where the N;’s, i = 1,2, ..., p, with p = ,Cpn, are the minors of rank m of the
matriz J.

The proof of this theorem is given in Appendix 1. Since the manipulability

measure, Hj, is defined by
H, = y/det(3I7),

it can be expressed in terms of the minors as follows:

Comparing the two measures, we note the following differences:

1. Geometrically, the manipulability measure may be interpreted as the Eu-
clidean norm of the vector representing the present state in the minor coordi-
nate system, with components Ay, Ag, ..., Ap. In contrast, the new measure
is proportional to the radius of a sphere whose volume is equal to that of a
hyper-cube with edges of length Ay, Ay, ..., A,

oo

As mentioned in Section 3, the new measure tends not to have a large value if
the values of the A,’s are uneven; whereas the other measure can still have a
large value as long as some of the dominant minors have large absolute values.
The manipulability measure can have, in the extreme, some zero minors, as
long as the workspace rank is preserved.

Hence the new measure tends to give more balanced minors than the manip-
ulability measure, in addition to preventing minors from becoming equal to
zero, thus directly controlling the switching between aspects. In contrast, the
manipulability measure does not have an immediate effect on the switching
hetween aspects.
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Figure 1: Schematic diagram of a planar redundant manipulator with three links.

3. Note that the manipulability can be also expressed as (Yoshikawa, 1985)
Hl - H Ty
k=1

where oy is the k-th singular value of JJT.

This expression shows that the measure has a similar form to the new measure
in that it is a product; the difference is that the manipulability measure is
the product of the singular values representing the workspace, whereas the
product of minors in the new measure represents the joint space.

This difference implies, in a sense, that the former concentrates on preserving
the workspace rank while the latter concentrates on degrees of freedom of
joint space. Since keeping as many degrees of freedom as possible in joint
space automatically preserves the workspace rank, the latter imposes stricter
constraints.

To illustrate the second difference, let us consider a three degree of freedom, re-
dundant manipulator as shown in Figure 1, which is to locate the end effector at a
certain (z,y) position.

Each end effector location within the workspace can be achieved by an infinite
number of joint variable combinations. Each such kinematic solution is represented
by a distinct Jacobian matrix and thus a distinct set of minors.

It is useful to consider a space where the coordinates are the values of the
minors, Ay, A, and Az. For a given end effector location, the infinite set of
solutions determines a curve in this space, as shown in Figure 2. Particular points

15



0.20 3, + + The New Measure
015 #* % The Manipulability

< 10—

] y| 1
050 -0.40 0. 020 -0.10 0.10 020  0.30-_ 040 050
g -0.05 AN
~N

e N

e %

ol

Cross Plot of Minor Trajectory: J1 vs. J2

04r + + The New Measure
% % The Manipulability

- AN

) N
N
0.2
/I
// \
i 0.1+
" |
1 { L | | I 1 ! L !
0.5 | -0.4 0.3 -0.2 -0.1 0.1 0.2 0.3 0.4 ) 0.5
;
' -0.1F

Cross Plot of Minor Trajectory: J1vs. J3

Figure 2: The locus of the minors J1, J2, and J3, for all possible kinematic
solutions, when the end effector is at the point ¢ = 0.2 m, y = 0 m. The three
dimensional curve is here represented by projection onto the J3 =0 and J2 =0
planes.

16



in this curve will maximize specific performance measures. Applying the inverse
kinematic method presented in (Chang, 1986), for example, when the end effector is
located at = 0.2 m, y = 0 m, we obtain two particular sets of joint values, each of
which maximizes one of the two measures of performance. The corresponding sets
of minors are plotted in the same curve in Figure 2. These plots confirm a feature
predicted above: the new performance measure gives somewhat more balanced
minor values than the manipulability measure. The balance of the magnitudes
of the minors changes with the end effector location; this improvement is more
noticeable as the end effector moves toward the outer or inner workspace limits
(which is where it matters most).

4.3 Relationship to the Condition Number.

The relationship of the new measure with the condition number is not so clear as
that with the manipulability measure, because of the difficulty in deriving such a
pair of simple expressions as (4) and (5). As is well known, the condition number

H, is defined by
Hz — Jmax, (6)

Tmin

where 0., and Fmax are minimum and maximum values of the singular values,
respectively. The singular values correspond to the workspace rank: a nonzero
value of o, guarantees full workspace rank. Therefore, minimizing the condition
number, in effect, results in maximizing oyus. This measure thus tends to weight
preservation of rank without weighting what happens within the redundant degrees
of freedom.

5 Numerical Simulations.

In this section, the new measure is quantitatively compared with the two other
measures. To this end, some numerical experiments were carried out for the case
of a three degrees of freedom planar manipulator. These experiments allow us to
examine:

1. whether the new measure can help achieve the desired performance, namely
avoiding singularities, if used for kinematic control;

S

. whether the measure can preserve the aspect (that is, the type of joint con-
figsurations) and how this alleviates the repeatability problem;

3. what other effects are induced by transitions between different aspects.



To examine the first point (the ability to overcome singularity), two kinds of simu-
lations were performed: (a) where the manipulator is initially in a nearly singular
configuration, and (b) when the end effector touches the base. To examine the
second and third points, the end effector is made to radially reciprocate between
the base and the outer limits of its workspace.

Either the fixed inverse kinematic mapping method (Chang, 1986) or the re-
solved motion method (Liegeois, 1977) can be used for the kinematic control in
these experiments. The fixed inverse kinematic mapping method obtains the joint
variables, 8, by numerically solving the following system of nonlinear equations:

x = f(4),
o Zo ) ™

where the upper equations are the kinematic equations, and the lower equations
the optimizing equations. Here Z is the null space matrix defined by

Z = (Jn—m Jr_nl : _In-rn) ’ (8)
while h is the gradient of the performance measure functions defined by

h :(hl,hZa""hn)Tv
oH . , (9)
h, = 560 t= 1,2,...,n.
The resolved motion method, on the other hand, uses the equation

0=J"%x+a(l-J"J)h, (10)

where a is a gain constant, I the n-dimensional identity matrix, and J* the matrix
known as the Moore-Penrose pseudoinverse defined by

It =3T3 (11)

5.1 Overcoming Singularity.

The two experiments examining the ability of the kinematic solution method to
overcome singularity are made with a manipulator that has three revolute joints
with equal lengths of 0.55 m, as shown in Figure 3.

5.1.1 Escaping from a Nearly Singular Configuration.

In the first experiment, we start from a configuration specified by the joint variables
0 = (—90°,179.5°,0°)T. This configuration is nearly singular. The manipulator 1s
then commanded to use self-motion to escape from this configuration, using each
of the three performance measures in turn.
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Figure 3: Schematic diagram of a planar redundant manipulator with three links
of equal length.

The resolved motion method was used, with @ = 10 in equation (10}, to examine
the change of joint variable configuration. In order to avoid a large value for the
null space term, the condition number was minimized by maximizing its inverse.

The results of the experiments are given in Figures 4, 5, 6, where the change of
the configuration and the time response is given for each performance measure. It
should be clear from these figures that each measure, if included in the null space
term, makes the manipulator escape from the singular configuration, driving joint
values toward the state where the measure has the maximum value for the chosen
end effector location. The effect of including the performance measures is significant
because there is no self-motion without their use. The speed of convergence in the
case of the condition number case is noticeably slower than that in the case of the
other two measures, which are about equally fast.

Whereas the condition number leads to a considerably different steady state
configuration, the new measure and the manipulability measure have steady state
configurations that look surprisingly similar. Yet a close inspection shows that
they are in fact slightly different. The reason for the similarity is as follows: the
optimizing equation, Zh = 0 in (7), for a particular measure is in general quite
different from that for another measure. Even for the manipulator in Figure 3,
with its symmetric geometry, joint solutions for the different measures are typically
different. However, the above optimal conditions for each measure turn out to be
satisfied only at end effector locations (z,y) satisfying «* +y? = I?, with a particular
joint values of #; = 85 = 90° or 8, = 63 = —90°. Here [ is the length of each of the
three links of the given manipulator.
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Figure 4: Illustration of the ability to escape from near a singularity when the
condition number is used: self-motion brings the arm closer to the optimal con-
figuration as time goes on. The link lengths are [} = [, = I3 = 0.55 m.
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5.1.2 Passing the Base.

Whereas the previous experiment examines the ability to escape from near a sin-
gularity, the present one examines the behavior of the manipulator when the tip
touches the base, forming a closed kinematic chain—a triangle. This case is of
interest because we see intuitively that self-motion is not possible, except for rigid
body rotation of the whole triangle with respect to the base. This intuition can
be easily confirmed if the projection matrix, I — J*J, in the homogeneous solution
term of (10), is symbolically derived. To be specific, when the tip is located at the
base, the Jacobian matrix in (1) has the following degenerate form:

J:(O Tz jli‘), (12)
0 722 J23

from which the projection matrix can be derived as,
1 0 0
I-J"'J=10 0 0f. (13)
0 0 0

By looking at the projection matrix, we see that only #, is affected by the gradient
of the performance measure, h, resulting in a rigid body rotation of the triangle
with respect to the base, without making any other changes in the joint variable
configuration.

The question then is, is it impossible for the manipulator to get into and out
of this special configuration? In other words, can we develop an inverse kinematic
solution that resolves the motion when the tip is passing the base? The answer to
this question is that, although the homogeneous term becomes ineffective with the
tip at the base, it is still possible for the manipulator to get into and out of the
point. The reasons for this may be analyzed as follows:

o When the tip is approaching the base, the homogeneous solution term, al-
though diminishing, still exists, continuing the effort to achieve the optimal
configuration, until the tip touches the base.

e When the tip is at the base, the projection matrix is given as in (13). The
homogeneous term does now not contribute to overcoming the closed chain
configuration. Yet, since the rank is still preserved, the pseudoinverse J* is
available, which can be derived from (11) as

0 0
Jr =145 -z} (14)
—J22 +J12
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Since, in this matrix, the second and the third row vectors are linearly inde-
pendent, we may have a differential tip displacement in any direction we like
in the workspace.

e Finally, once the tip has moved away from the base—no matter how small a
distance—the homogeneous term immediately begins to restore its effective-
ness.

To sum up, at the base, where the particular solution term is still well defined, this
term drives the tip away, while the homogeneous term is momentarily ineffective;
in the remaining region of the workspace, both terms are effective. Furthermore,
the transitions between the two regions are smooth, without discontinuities.

One may suspect that the ability to overcome the singularity at the base in the
numerical experiments could have arisen from some small error in tip location—
the tip could be some small distance away from the base—due to the linearization
characteristics of (10). Similarly, it might be thought that an inexact Jacobian
matrix could have made it possible for the tip to get away from the base, which could
perhaps be impossible with the exact Jacobian matrix. But these considerations
do not apply, because both the Jacobian matrix in (12) and the pseudoinverse in
(14) are exact expressions defined at an exact point (the base). Rather, the ability
to escape from the singularity comes from an intrinsic feature of the kinematic
redundancy.

The aforementioned analysis is confirmed by the following experiment: the tip
is made to move along the straight line starting from x = (0.2,0)T to (-0.2,0)T,
passing through the base, (0,0)7 (the measurements are in meters). Together
with the desired end effector motion, the three performance measures are given
to the resolved motion method, which provides the exact equilibrium solution after
a sufficiently large number of iterations (Chang, 1986), thus cancelling out the
effects of possible inaccuracies in both the tip location and the Jacobian matrix.

From the result shown in Figures 7, we see that with any one of the three
measures the manipulator has no difficulty in getting into and out of the special
point at the origin. We may conclude that the use of a redundant manipulator seals
the hole in the workspace at the origin, where, without the kinematic redundancy,
a singularity is unavoidable.

In Figure 7, one may note the smoothness of motion when the new measure
is used, as compared to motions with the other two measures: when the other
measures are used, the motions approaching the base from x = (0.2,0)7 are abrupt
in 8,. The reason for the smoothness when the new measure is used is not entirely
clear at this point; but we may conjecture that keeping the minors balanced prevents
abrupt changes in the joint variables.
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5.2 Preserving the Aspect and its Effect on Repeatability.

In the following experiment, we examine whether the manipulator, with the new
performance measure, can preserve the aspect and compare the behaviour to that
in the case of the other measures. The manipulator to be used for this purpose is a
three degree of freedom planar manipulator with revolute joints, with /; = 0.6 m,
I =0.85 m, and /3 = 0.2 m.

In the experiment, the end effector is made to reciprocate radially between the
base and the outer limit of the workspace, where the manipulator is fully extended.
The radial motion itself is not of primary concern; it is chosen because it is a way of
scanning the workspace to examine the ability to preserve the type of configuration
or aspect. Because of rotational symmetry, a series of configurations corresponding
to the tip reciprocating in one radial direction represent configurations in all of
the other directions, thus covering the whole workspace. The rotational symmetry
comes, of course, from the fact that the new performance measure, as well as the
other measures, depends on #, and 65 only, and is independent of #;—hence, one
optimal configuration for a fixed tip location is symmetrical to any other location
that is the same distance from the base.

Of the two kinematic control methods, the fixed inverse kinematic method is
the more convenient one for obtaining the equilibrium states. Therefore it is used
here with the three measures. When applying the method to solve for successive
joint configurations as the tip moves, the present joint values are used as the initial
guesses for the next tip location. The very first joint variable values, corresponding
to the starting point of the tip, by the way, are determined by obtaining the global
minimum of the performance measure. To do this, we first determine all of the local
minima, by starting from points in a dense sampling of the joint variable space, and
then solving the non-linear equations (7). In parallel with this, all the local maxima
at each tip location are obtained with the proposed method, in order to determine
whether successive generations of joint values are indeed correct. In addition to
the joint configurations, corresponding minor values are obtained to examine the
correlation between joint configurations and minor values.

In Figures 8, 10, 12, the optimal joint configurations based on each of the perfor-
mance measures and the value of each measure are plotted. Corresponding minor
values are plotted in Figures 9, 11, 13.

As shown in the figures, each performance measure has two distinct types of con-
figurations, either one of which, depending on the tip location, can give the global
optimum. Hence, each of the two types of configurations has its own corresponding
performance measure curve: the solid curve corresponds mostly to the “scaffold”-
shaped configuration (configuration A); and the broken curve corresponds mostly
to “N”-shaped configurations (configuration B).
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Note also that the mirror-image sets of configurations A and B with respect to
the z-axis are not included in the figures, since they have the same values of a given
performance measure. Of course, there are still additional sets of configurations—
corresponding to local maxima instead of global maxima—that are not shown in
the figures either. What do we learn from the resulting sets of configurations? Let
us examine the configurations generated by each performance measure in turn.

5.2.1 The Manipulability Measure.

Figure 8 shows the two types of configurations and the corresponding values of the
performance measure using the manipulability measure. As shown in the figure,
depending on the tip location, either one of the two types of configurations may
yield the larger performance measure values. In the region between z = 1.1 m
and z = 1.6 m, however, the two configurations become identical, having the same
values for the performance measure. The question then is, what happens to the
two types of configurations, when the tip is coming out of this region? To answer
this question, we need more careful observations as follows:

In configuration A, the initial type of configuration is preserved in almost the
entire workspace, excluding only the region between the base and x=0.1 m. That
is, except for this region, the type of configuration is independent of the tip location
and the direction of the tip motion—toward or away from the base.

In configuration B, on the other hand, where the tip starts near the base, the
initial type of configuration is preserved only if the tip is located within a cer-
tain distance from the base (about 1 m). Outside of this range, the configuration
shifts to, or merges with, configuration A. And once merged, configurations corre-
sponding to subsequent tip motions stay within configuration A, never returning
to configuration B.

Here, we observe that the manipulator has switched the type of joint configu-
ration or the aspect. Moreover, the type of joint configuration, once switched from
one aspect to another, does not return to the initial type of configuration: this
is the source of the repeatability problem. An important question then is, what
happens to the minors when this switching of aspect occurred? Do they change
their sign, passing through zero values? Figure 9 clearly shows that is the case:
the tip location where two configurations merge is also the place where one of the
minors changes its sign.

5.2.2 The Condition Number.

In the case of the condition number, the situation is even more complicated. In
this case, configuration A consists of successive joint configurations, where the tip
starts from close to the outer limit of the workspace and moves toward the base,
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whereas configuration B represents the movements in the opposite direction from
the base. In distinction to what happens in the case where the manipulability is
used as the measure, here both configurations A and B, merge into the same type
of configuration. Furthermore, the locations where merging occurs are different:
about z = 0.7 m for configuration A; and z = 1.3 m for configuration B. And when
£ < 0.7 m or z > 1.3 m, the two types of configurations are identical, giving the
same value for the performance measure.

Hence, the repeatability problem occurs, between z = 0.7 m and x = 1.3 m, when
the tip reverses its direction after experiencing a merging of types of configurations.
Again, the curve of the minor values in Figure 11 shows that, when the switchings
occur, the signs of the minors change.

5.2.3 The New Measure.

When the new performance measure is used, there still exist two distinct types
of configurations. One thing particularly noticeable, however, is that there is no
switching for either type of configuration. Consequently, there is no repeatabil-
ity problem at all. Since there is no merging of different types of configurations,
the initial types of configurations are preserved, showing also distinct curves for
the performance measures. As expected, the curve of the value of the minors in
Figure 13 clearly shows that there is no sign change at all for the three minors.
We conclude from this an obvious consequence of using a measure that has direct
control over each minor value. In addition, perusal of the results shows that the
new measure leads to smoother motions near the base.

5.3 Discontinuity effects.

As mentioned in Section 4, when merging of different types of configurations or
switching of aspects occurs, discontinuous joint motion can be expected. To test
this prediction, we computed joint velocities for both types of configurations for
each of the performance measures. In this experiment the tip was made to move
with a constant velocity of 0.1 (m/sec). Here, to resolve the velocity, we used the
resolved motion method.

Figures 14, 15, 16 show the resulting velocity curve corresponding to the con-
figurations obtained in the previous subsection. As expected, simulations in which
there is no switching (both in the case of simulations using the new measure and
simulations involving configuration A of the manipulability measure), show quite
smooth joint velocity curves, as plotted in Figures 14 and 16. Simulations where
there is switching, on the other hand, show rugged velocity curves. (The solution
method employed here tended to smooth out the transitions in the graphs shown).
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For the remaining cases, where switching does occur, the velocity trajectory is
generally rugged, confirming our prediction. Yet, the degree of ruggedness of the
curves corresponding to the two different performance measures is different. Care-
ful observation reveals the following: for the manipulability measure, the merging
happens through some intermediate configurations, reducing the degree of discon-
tinuity; whereas, for the condition number measure, the switching happens instan-
taneously with few intermediate states, resulting in much larger values of joint
velocity.

It is not clear at this point why there is this difference. We will probably be
able to get some clue, when the gradients of the two measure are first expressed in
symbolic form and then each term is examined to pinpoint the cause of the abrupt
switching. Determining the symbolic expressions needed for this inspection appears
to be possible, although quite complicated, even for this simple manipulator.

5.4 Conclusions from Experimental Results.

Summing up, we have compared the new measure of distance from singularity with
two existing measures, both qualitatively and quantitatively. Analysis shows that
the qualitative relationship agrees well with the experimental results.

To summarize these results, all the measures showed the ability to overcome
singularity by successfully treating two cases: (a) a location corresponding to a
configuration of the kinematic chain where the links are almost in a straight line
and (b) the situation where the tip is at the base or origin. The essential difference
between the new measure and the other two is its ability to explicitly prevent
the minors from becoming zero. This ability, in effect, prevents the merging of
different types of configurations or switching of aspects, which in turn removes
the repeatability problems and discontinuous motions. In addition, balancing the
values of the minors appears to contribute to noticeably smoother movements near
the base.
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6 Conclusion.

In this paper, we have defined the concept of dexterity as distance from singularity.
Then we reviewed the concepts of singularity and redundancy to enable further
investigation of the distance concept. We have illustrated that there are differ-
ent degrees of distance from singularity within a particular degree of redundancy,
showing that the conventional concept of redundancy is not sufficient to describe
this distance. The new distance concept we derived was the number of nonzero
minors along with the values of the minors. On the basis of the new distance con-
cept, a new performance measure was derived, namely the product of the minors
of the Jacobian matrix. Then we have related the new performance measure to the
manipulability measure and the condition number. Having investigated the quali-
tative relationship, we pointed out that the other measures do not have the ability
to explicitly prevent minors from becoming zero. Through another series of numer-
ical experiments, the advantages of the ability to prevent minors from becoming
zero was clearly confirmed. Whereas the two other measures showed repeatability
problems and discontinuous motions, the new measure consistently did not.
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Appendix 1: Proof of Theorem 1

In this appendix, we provide a proof of Theorem 1. If the Jacobian matrix is
expressed in the form:

jll e jln
J = :
jml e jmn
then ., L
Zz_—_l J1k te Ek:l kI mk
JJjT -
YroiJmkdie 0t LkeyJmk
In general, the determinant of an m X m matrix A can be written explicitly as:
det(A) = Z(a’laa2ﬁ' "a'mu)det'(PG')7 (1)
o
where a;; is the element of A in i-th row and the j-th column, while o = (o, 3, -, v)

is a permutation of the integers from 1 to m, and Pg is the corresponding permuta-
tion matrix (Thus det(Pg) = +1 when o is an even permutation, and det(Pg) = —1
when o is an odd permutation). The sum is to be taken over all m! permutations
of &. Hence, the determinant of JIT is

det(ITT) = S Gudar)(3 Fadse) (3 Gmion) det( Po).
k=1

g k=1 k=1

Expanding this, we have

det(JIT) =Y ( > Gk Jaks J2ks ok "'jmkmjukm) det( Pg). (2)

O \ky,yoikpm=1

Here we make use of the fact that the determinant of the permutation matrix is
zero when o is not a permutation (that is, when the integers are not distinct). As
a result, terms that have non-distinct k;’s are multiplied by zero. For instance, if
ky = ky = 1, then the term in 11741721781 * * JmmJum disappears when a = 1 and
3 = 2. Thus, in Equation 2, summation is effectively applied only to the terms
with distinct k;’s. Note also that the number p of different sets of distinct k;’s is

!

P = nCm~

Changing the order of summation in Equation 2, we have

n

det(JIT) = >’ (Z Tk J2ks * * * Iy det(Pa)) (Jakadrs -+ Juky)
[+

kiyeskm=1
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Here the summation over ky,---,k,, may be rearranged into summation over all
permutations o;, as follows:

n p
Yo =220
kyyoskm—=1 =1 O;
where o; = (ky,ky,-- -, km) is the i-th permutation. Therefore Equation 2 becomes
T P
det(JIT) =D (Z Jock I8k *** Jvkm det(Pa)) Tk J2ky * * * Tk - (3)
=1 O; g

Let us use the notation
A; = Zjakxjﬁkw' “ Jkm det(Pg ).
o

Then we note that Equation 1 shows that A; is the determinant of the transpose
of the submatrix made of &;’s column vectors as

A; = det((J Jh2 o JEm)T),

where J* is the k;-th column vector of the Jacobian matrix. Once a set of k;’s
is chosen, the absolute value of A; is fixed; only its sign changes as k;’s make
permutations. If we let the absolute value be |A;|, then Equation 3 becomes

p
det(JIT) = D (£) A (Ziwduz “ Tmbm det(Pa',)) :

1=1 o,

The fact that the determinant of a square matrix is equal to that of the transpose
of the matrix, and the fact that JJ7 is positive definite imply that

det(JIT) =

I Mv

Q.E.D.
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