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Model-Based Robot Learning

Christopher G. Atkeson, Eric W. Aboaf,
Joseph McIntyre and David J. Reinkensmeyer

1 Introduction

An important component of human motor skill is the abil
ity to improve performance by practicing a task.
Commands are refined on the basis of performance er-
rors. It is often suggested that such learning reduces the
need for an accurate internal model, a model of the me-
chanical plant in the control system (see Arimoto, 1984b;
Wang and Horowitz, 1985; and Harokopos, 1986 for ex-
amples). This is not the case. Internal models play an
important role in generating command corrections from
performance errors. As an internal model is made more
accurate, learning efficiency is improved, as is initial per-
formance,

This paper will show, in a series of examples, how
internal models can be used as learning operators. The
examples are 1) positioning a limb at a visual target, 2)
throwing a ball at a target, and 3) following a defined
trajectory. The essence of the model-based learning algo-
rithms used to improve performance on these tasks is that
internal models are used to transform performance errors
into command corrections.

The type of learning described in this paper - refining
commands on the basis of practice - complements many
other types of adaptive processes. Feedback controller de-
signs can be improved by adaptive control algorithms. In-
ternal models can be incrementally improved using system
identification techniques. Trajectories can be optimized
for particular tasks. Robot plans and programs can be
debugged as errors are discovered during execution. This
paper focuses on improving execution of a given task plan
by refining the commands given to the robot.

Model-Based Learning Algorithm Struc-
ture

The model-based learning algorithms described here all
have the same form. Commands are refined on the basis
of performance errors. A command is applied to the con-
trolled system (Figure 1A). Performance errors may result
from errors in the command. A model of the inverse of
the controlled system is used to estimate the errors in the
command based on the measured performance or output
errors (Figure 1B). If the inverse model of the controlled
system is perfect, the command errors would be correctly
estimated and completely eliminated after one attempt at
performing the task. (Of course, if a perfect model of the
controlled system is available then the initial command
would also have been perfect). Perfect knowledge of the
controlled system is not usually available, and the mode!
of the inverse of the controlled system will be incorrect.
Due to the modeling errors, the command correction will
be incomplete, and learning will be an iterative process of
refining the command.

There are three steps to the learning algorithms: com-
mand initialization, execution, and modification. The ini-
tial command is generated by applying the inverse model
of the controlled system to the desired performance. Dur-
ing execution, a8 command is applied to the system and
the actual performance is monitored. The command cor-
rection is calculated by applying the inverse model to the
performance errors. The refined command is now exe-
cuted. The cycle of command execution and modification
is repeated until desired performance is achieved.



Atkeson 2
Controlled Perf
A Command _— System — erformance
Command Inverse of Performance
B Errors Controlled System Errors

Figure 1: The inverse of the controlled system is

2 A Kinematic Example

The task of positioning the limb at a visual target will be
used to provide a specific example of how model-based
learning works. A robot arm and a target are viewed
by a vision system (Figure 2). The robot arm servos
to a commanded set of joint angles, 8, and the vision
system measures the tip position, x, in vision system
coordinates. The controlled system in this case trans-
forms commanded joint angles into a measured tip posi-
tion (Figure 1A):

x = L(#) 1)

The forward kinematics, L(), is in general a nonlinear
transformation. For the purposes of this example we
will assume there are no singularities or redundancies to
resolve in the field of view of the vision system. For each
desired tip position there is one and only one appropriate
set of joint angles.

A model of the inverse kinematics is used to transform
the desired tip position, X4, into an initial joint angle
command, 6°, in the command initialization stage:

0° = L7'(xy) (2)

A caret (°) is used to indicate a model or an estimate of
a quantity. The initial joint angle command is applied
in the first execution stage, and the corresponding tip
position is measured:

x° = L(0°) (3)

The true system, L(), and its invérse are unknown, and
only imperfect models are available. Due to modeling
errors, the actual tip position, x°, will not match the
desired tip position, xg4.

At this point we must decide how to transform the
measured tip position error into a correction to the set
of commanded joint angles. Performance errors must be
mapped into command corrections. The same model of
the inverse kinematics that was used to generate the ini-
tial command, i'l(), will be used to estimate the com-
mand error (Figure 1B).

The command error, 68, is the difference between
the currently commanded joint angles, 6°, and the (un-
known) correct set of joint angles, which will be indicated
as 8*. The command error can be computed in terms

used to estimate command errors from performance errors.

of the actual and desired performances using the true
system inverse:

56°=0°— 0" = L-'(x°) — L™ (xy) (4)

As we do not have perfect knowledge of the true system
inverse, we must use a mode! of the system inverse to
estimate the command error:

0

0 =L *(x%) — L7*(xq) (5)

The command is updated by simply subtracting the esti-
mate of the command error from the previous command:

=0

0 =0"-% (6)

If the model of the system inverse was perfect the
command error would be estimated correctly and com-
pletely eliminated on the next attempt. However, a
model is rarely perfect, so command correction must be
an iterative process of estimating a command error using
an imperfect model, removing the estimated command
error, applying the refined command, and using the re-
sulting performance error and the model to estimate re-
maining errors in the command. Equations (3), (5), and
(6) can be indexed with i to indicate that they are ap-
plied on each practice attempt, reflecting the iterative
nature of the algorithm:

1. Command initialization:

0° = L7 (x,) (n

2. Command execution:
x' = L(6°) (8)

3. Command error estimation:

—t

56" = L (x') — L7'(x4) (9)
4, Command modification:
oi+1 - 0!' _ 6’3'. (10)

Steps 2, 3, and 4 are repeated until satisfactory
performance is achieved.
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Figure 2: A robot arm and a target are viewed by a
vision system.

Convergence

The quality of the inverse model used as the learning
operator determines how fast model-based learning con-
verges. Fixed point theory can be used to analyze the
general nonlinear case (Wang 1984, Wang and Horowitz
1985). A learning algorithm can be viewed as a map-
ping of commands on the ith attempt to commands on
the next attempt:

6+ = F(0Y) (11)

The previously described algorithm can be put into this
form by substituting equation (8) into (9) and (9) into
(10). The model-based learning algorithm modifies the
1th command by adding a correction based on the per-
formance error transformed by the inverse model:

o= _ (I‘l—l(L(oi)) _ i/_l(xd)) (12)

Note that when the desired performance, x4, is achieved
using the correct command, 8°, then L(0°) = x4 and
equation (12) reduces to the fixed point 8! = 6° = 6°.

We can ask whether this fixed point is stable by
analyzing a linearization of equation (12) at the point
(0,x) = (6°,x4). For a small perturbation 60 from the
fixed point,

L(0" + 60) = x4+ J(0°)60 (13)

where J is the Jacobean matrix of derivatives of L().
Similarly, for a small perturbation §x from the fixed
point,

L (xa+ 6x) = L7 (xa) + T (xg)6x  (14)

where J-! is the Jacobean matrix for the inverse model
L71(). If on the ith trial the command is perturbed
from 8° by 60° so that 0° = 0° + 66', the error in the
next command, 60! = ¢! — 0*, can be computed by
substituting equations (13) and (14) into equation (12):

56+t = (1 — JY(x4)J (0°))66° (15)

If -1 is a correct inverse of J the command error will
be completely corrected after one attempt, in the linear
case. The command error 68 will decrease when all of
the eigenvalues of the matrix (1—J~1J) are less than one
in absolute value, with the rate of decrease determined
by the magnitude of the eigenvalues. If the magnitude of
any eigenvalue is greater than one, the learning process
will be unstable and performance degraded rather than
improved by learning. The magnitude of the eigenvalues
of (1 - J-1J) depend on how accurately J-! inverts J,
and thus the convergence rate of the learning algorithm
depends on how closely the learning operator inverts the
controlled system.

Input vs. output disturbance estimation

Although our performance errors are due to errors in
modeling the controlled system, the model-based learn-
ing algorithm was derived by assuming that an unknown
error was added to the command. In the kinematic tip
positioning example a constant command disturbance
would correspond to constant joint angle offsets added
to the commanded joint angles. The learning algorithm
just described can be viewed as an iterative procedure
to estimate a command disturbance.

An alternative version of the model-based learning al-
gorithm is suggested by assuming that the major source
of errors are output (performance) disturbances rather
than input (command) disturbances. In the kinematic
example just presented, the camera measuring tip posi-
tion could have an unknown offset, A. This offset could
initially be assumed to be zero, and after each position-
ing attempt an estimate of the offset could be refined by
subtracting the tip position error:

A= AT — (x! - xg) (16)

The estimated output offset would be added to the de-
sired tip position when the next joint angle command
was computed:

¢ = L (xq + AY) (17)

Equations (16) and (17) replace equations (9) and (10) in
the input disturbance version of the model-based learn-
ing algorithm to form the output disturbance version.

Representing possible modeling errors as either in-
put or output errors is a modeling decision that depends
on the assumed source of the modeling errors. In the
output disturbance version of the model-based learning
algorithm, as in the input disturbance version, the per-
formance error is mapped through an inverse model of
the controlled system to calculate a command correction.
The output disturbance model-based learning algorithm
has similar convergence properties as the input distur-
bance algorithm.
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3 Learning to Throw

Model-based learning can be used to improve perfor-
mance on a complete task, in addition to improving po-
sitioning. As an example of task leyel learning, a robot
arm was programmed to throw balls at a target. The
robot throwing accuracy improved with practice.

Figure 3 illustrates the apparatus used in the throw-
ing experiments. The target was at the center of a large
metal plate, which was placed approximately 5 meters
from the base of the robot. For this throwing task only
the height of the ball when it hit the target plate was
monitored and improved by a learning algorithm.

The last link of a three joint direct drive arm was
used as a catapult to throw a ball. The robot was po-
sitioned so that the last link of the arm rotated in a
vertical plane. The last joint was servoed to a fifth or-
der polynomial trajectory that began at rest at 225° and
ended at rest at 45°. A 4cm diameter rubber ball was
placed onto a 3.5¢m diameter hole at the end of the last
link. The ball left the hole as the robot arm decelerated
during the throw. No release mechanism was used. The
release position of the ball was assumed to be when the
last link was at 135°. The distance the ball was thrown
was controlled by changing the duration of the throw-
ing movement, which changed the release velocity. A
shorter duration and therefore faster movement threw
the ball higher and further, and a longer duration move-
ment threw the ball lower and closer.

A video camera was used to record where the ball hit
the target plate. The impact of the ball was sensed by

a force sensor on which the target plate was mounted.
This signal was used to choose video frames to be stored
for later analysis. After the throw, the location of the
ball on the target plate was manually measured from the
appropriate video frame.

The initial release velocity command was calculated
by measuring the distance to the target and using a sim-
ple ballistics model, incorporating only gravity, to pre-
dict the required flight trajectory given the assumed re-
lease position and initial direction of ball flight. The cor-
responding trajectory duration was computed and the
calculated trajectory executed. On the first throw the
ball hit the target plate 28cm above the target. The
model-based learning algorithm based on estimating an
output offset (equations (16) and (17)) was used to im-
prove performance on the throwing task. This output
offset learning algorithm corresponds to our intuition
that we should aim lower if we are hitting too high, and
vice versa. The role of the internal model is to calcu-
late how much the aim should be changed. The bal-
listics model used to generate initial performance was
also used to calculate the appropriate release velocity as
the aim was offset by the estimated disturbance amount.
The open squares in Figure 4 show the throwing perfor-
mance during model-based learning. In this particular
experiment the ball hit the target on the eighth throw.

The open triangles in Figure 4 indicate the perfor-
mance of a model-based learning algorithm that improves
the model as well as refining the command. This algo-
rithm will be discussed in a later paper.
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Figure 4: Performance of the model-based learning algo-
rithm on a throwing task.

4 Trajectory Learning

Trajectory execution of a robot can be improved using a
model-based learning algorithm (Atkeson and Mclntyre
1986a, 1986b). A model of the robot inverse dynamics is
used as the learning operator that transforms trajectory
following errors into feedforward command corrections.
This form of learning is useful for refining repetitive mo-
tions, and can also be used to refine groups of similar mo-
tions. Model-based trajectory learning was implemented
on the MIT Serial Link Direct Drive Arm and greatly
reduced trajectory following errors in a small number of
practice movements.

The robot model used as the learmng operator in
the trajectory learning experiments was identified from
movements of the MIT Serial Link Direct Drive Robot
Arm (Atkeson, An, and Hollerbach 1986). The dynamics
of this direct drive robot arm are dominated by rigid
body dynamics, so a Newton-Euler model structure was
used. The Newton-Euler rigid body dynamics equations
for a robot can be written as

r=R"10,0,0)=1(0)-0+06-C(0)-0+g(6) (18)

where 8(t) is the desired trajectory of the joint angles,
7(t) is the vector of required torques to achieve the de-
sired trajectory, I(8) is the inertia matrix of the arm,
C(0) is the Coriolis and centripetal force tensor, and
g(0) is the gravitational force vector (Hollerbach, 1984).
For other types of robots it is argued that additional
sources of dynamics are important (Goor, 1985; Good,
Sweet, and Strobel, 1985). In these cases we can still
model the robot dynamics and invert the model.

As before, there are several stages of the algorithm.
The initial feedforward command is generated by ap-
plying the model of the robot inverse dynamics to the
desired trajectory (a.s in equation (7)):

79,(t) = R7*(84(t), 04(t), 84(t)) (19)

During command execution the applied command is
the sum of the feedforward command, 7y, and the out-
put of the feedback controller, ry:

r(8) = 75, (t) + 7(t) (20)

The total applied command, 7, is used as the basis
for the next feedforward command. As described in the
previous sections, the command error is estimated using
the model of the robot inverse dynamics (as in equation

(9)):

5 (1) = B (0°(0),8'(0),8'(1) — R7(0u(1),04(2), 8a(t))
(21)

and the next feedforward command is the modified total

command (as in equation (10)):

) =) - 57 (1) (22)

Other Approaches to Trajectory Learn-
ing

Recent work in a number of laboratories has focused on
how to refine feedforward commands for repetitive move-
ments on the basis of previous movement errors. Work
on repeated trajectory learning includes (Arimoto et al
1984, 1985; Casalino & Gambardella 1986; Craig 1984;
Furuta & Yamakita 1986; Hara et al 1985; Harokopos
1986; Mita & Kato 1985; Morita 1986; Togai & Yamano
1986; Uchiyama 1978; Wang 1984; Wang & Horowitz
1985). These papers discuss only linear learning oper-
ators and emphasize the stability of the proposed algo-
rithms. There has been little work emphasizing perfor-
mance, i.e. the convergence rate of the algorithm. Simu-
lations of several of these algorithms have revealed very
slow convergence and large sensitivity to disturbances
and sensor and actuator noise (C. G. Atkeson, unpub-
lished results).

An Implementation of the Trajectory
Learning Algorithm

The model-based trajectory learning algorithm has been
implemented on the MIT Serial Link Direct Drive Arm
(Atkeson and McIntyre 1986a, 1986b). This three joint
arm is described in (Atkeson, An, and Hollerbach 1986).
To explore the effectiveness of the model-based trajec-
tory learning algorithm we will present results on learn-
ing a particular trajectory.

The Test Trajectory: All three joints of the Direct
Drive Arm were commanded to follow a fifth order poly-
nomial trajectory with zero initial and final velocities and
accelerations and a 1.5 second duration. Figure 5 shows
the shape of the trajectory for each joint, and Table 1
gives the initial and final joint positions, the peak joint
velocities, and the peak joint accelerations.
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Initial Final Peak Peak

Position { Position Velocity | Acceleration

Joint || radians | radians | radians/s | radians/s?
1 0.5 4.5 5.0 +10.3

2 5.0 1.0 -5.0 +10.3

3 4.0 -0.5 -5.6 +11.5

Table 1: Test trajectory parameters.

The Feedback Controller: An independent digital
feedback controller was implemented for each joint and
was not modified during learning.

Initialization Of The Feedforward Command:
The initial feedforward torques were generated from a
rigid body dynamics model. The model and the estima-
tion of its parameters are described in (Atkeson, An, and
Hollerbach, 1986). The calculated feedforward torques
are shown in Figure 6A.

Initial Trajectory Performance: As an index of
trajectory following performance the velocity errors (the
difference between the actual joint velocity and the de-
sired joint velocity) for the first movement are shown in
Figure 7TA. We have plotted the raw velocity error data
to give an idea of the relative size of the trajectory errors
and sensor noise.

Calculating Acceleration and Filtering: In or-
der to use the rigid body inverse dynamics model to com-
pute joint torques it was necessary to compute the joint
accelerations. Joint positions and velocities were mea-
sured directly. A digital differentiating filter combined
with an 8Hz low pass filter was applied to the velocity
data to estimate accelerations.

To reject noise and non-repeatable disturbances and
to compensate for high frequency unmodelled dynam-
ics it was necessary to filter the trajectory errors and
controller output. In this implementation we applied
low pass digital filters with an 8Hz cutoff to the data

used in the learning process. We filtered the references
used by the learning operator with the same filter used
on the data. It was also necessary to correct for incon-
sistencies between the velocity sensors and the position
measurements, which was done by adjusting the position
reference to the feedback controller until the integrated
velocity error matched the position error.

Final Trajectory Performance: The robot exe-
cuted two additional training movements which are not
shown, and its performance on the fourth attempt of the
test trajectory was assessed. Figure 6B shows the mod-
ified feedforward commands used on the fourth move-
ment, and should be compared with the predicted tor-
ques shown in Figure 6A. Figure 7B shows the velocity
errors for the fourth movement, and should be compared
with the initial movement velocity errors in Figure 7A.
There has been a substantial reduction in trajectory fol-
lowing error after only three practice movements.

5 Issues For Further Research

Some of the questions that warrant further research in-
clude the effect of modeling errors and non-repeatable
disturbances on convergence, and learning of non-repeti-
tive tasks.

As discussed previously, the convergence of model-
based learning algorithms depends on the quality of the
model. Accurate models support efficient learning. Inac-
curate models may cause learning algorithms to degrade
performance rather than improve it.

Reducing or filtering the estimated command correc-
tion will make model-based learning more robust to mod-
eling errors. Convergence will be slowed, however. Fur-
ther research is required into the appropriate tradeoff
between handling modeling errors and fast convergence.
Filtering of the model-based command update also plays
an important role in reducing the effect of non-repeatable
disturbances.

If intermediate sensory signals are available, then
breaking the control system into modules and having
each module learn independently may improve learning
performance. We plan to explore this issue in the throw-
ing task. If measurements are available of when and
where the ball is released, then independent models of
the throwing motion and the ball flight characteristics
can be made. These independent models can be used to
choose an appropriate release velocity separately from
refining the trajectory that attains that release velocity.

It is possible to modify models as well as commands
during learning. In the examples presented in this pa-
per the same models were used repeatedly even after it
became clear during learning that the models had large
errors. We have explored some methods of model refine-
ment during practice. The open triangles of Figure 4
show the faster convergence of a model-based learning
algorithm that improves the model as well as the com-
mand.
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The model-based learning algorithms are ideally suit-
ed to refining repetitive commands for the same tasks.
The learning algorithms can also be applied to refining
commands for different tasks by assuming that similar
command errors will be made on similar tasks. An es-
timate of the command error on one task will be useful
for improving the command for other tasks that share
features with the original task.

6 Conclusion

The main message of this paper is that models play an
important role in learning from practice. Better models
lead to faster correction of command errors. The incor-
poration of learning in a control system is not a license
to do a poor modeling job of the controlled system. The
benefits of accurate modeling are better performance in
all aspects of control, while the risks of inadequate mod-
eling are poor learning performance or even degradation
of performance with practice.

The approach to robot learning presented here is
based on explicit modeling of the robot and the task
being performed. An inverse model of the task is used
as the learning operator that processes the errors. Such
model-based command refinement algorithms usefully
complement other approaches to adaptive control.

Studying model-based learning algorithms serves two
purposes: 1) to improve robot performance, and 2) to
increase our understanding of the role of practice and
internal models in human motor learning.
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