MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

Al Memo 1025 June 1988

A Behavior-Based Arm Controller

Jonathan H. Connell

ABSTRACT: In this paper we describe a working, implemented controller for a
real, physical mobile robot arm. The controller is composed of a collection of
15 independent behaviors which run, in real-time, on a set of eight loosely-
coupled on-board 8-bit microprocessors. We describe how these behaviors
cooperate to actually seek out and retrieve objects using local sensory data. We
also discuss the methodology used to decompose this collection task and the
types of spatial representation and reasoning used by the system.

Acknowledgements: This report describes research done at the Artificial

Intelligence Laboratory of the Massachusetts Institute of Technology. Support
for this research is provided in part by the University Research Initiative
under Office of Naval Research contract N00014-86-K-0685, in part by a grant
from the Systems Development Foundation, and in part by the Advanced
Research Projects Agency under Office of Naval Research contract N00014-85-
K-0124. Mr. Connell is currently supported by a General Motors graduate
fellowship.

@ Massachusetts Institute of Technology 1988

1. Istroduction

The controller described here is for wuse with an arm mounted on 2 mobile
robot, Figure 1 shows the arm o action. The purpose of this mobile robot is to
rosm around our lab ares looking for soda cans [Brooks, Connell, and Ning 871
When it locates one, it picks the can wp and brings it back to 2 home location.
In this paper we will concentrate on the collection aspect rather than on the
locating and navigation issues.

Figure 1. The srm ix meunted oo the top of our mobile robot, Hs purpose is to collect soda
cans from tables and from the floor

A major difference between our approach and that of most other groups is that
our robot is controlled by s collection of small behaviers rather than g
complex cenwralized program. At first sight It is highly schizophrenic in the
sense advosasted by Minsky [Mingky 861, However, just because there a number
of independent, isolated agents there is ne reason why they van not cooperate
to achieve g specific goal. In the following sections we will detall how agents
represent the ponions of ithe world they are interesied in, how they inieract,
and how they coordinate thelr actions,

2, The Behoavioral Mode!

The control systesn for ouwr robot is based on Brooks's subsumption architecture
[Brooks 861 Thiz architecture wuses a vertical decomposition of the control
system. Instead of having one very complete perception system that feeds into

3z comprehensive modeller that in twrn feeds inte 2 sophisticated planmer, we
break the system down into & number of parallel paths from sensors 1o
actuators. Typically each path s concemned with achieving some particular
tagk that the robot needs 1o porform, One wdvantage of this approach is that
conirol systems can be built incrementally. We can start by building a2 wall-
avoider and then debug this behavior until it works well. Afterwards, we can
go on 1o build a door-recopnizer without having to go back and change the
wall-follower. Thiz iz because each behavior has Hyx own separste perception,
modelling, planning, and execution subsystems, Another advamiage of the
subsumption architecture is that each of these puaths can be relmively simple
For example, if the task is avoiding walls then the associated control sysiem
does not meed o know the color of the wall, s texturs, itz decomposition into
generalized ovlinders, ete. Bach behavior only has o be aware of the relevant
indexical-functional aspects [Agre and Chapman 87] The word “aspect” is used
to indicate that thiz is wot a full, structured representation. "Functional” means
things are defined by how one uses them rather than by intrinsic
characteristics, while “indexical” mesns that there are no logical individuals
but only classes of more or less interchangeable instances.

Figure 2. The 15 behaviers which contrel the arm are implomented using eipht &-bit

processors mounted ground the periphery of the yobop

The subsumption srchitecture is more than just 3 mindset; B also specifies a set
of primitives which bhave proved useful for building multi-agent systems,
First, the subsomption architecture declares that each behavior i3 composed of
g small set of information processing modules which are interconnccied by
wirgs that carry messaps packets, Iostde esch medule s a figite state machine
which van perform a number of simple funciions. Most important among

these are: wait for a particular signal, time-out after a certain period, test an
input for a certain condition, and perform limited computation on the input
values to generate an output value. In our system there is a one-to-one
correspondence between modules and behaviors.

Modules interact using 3 special constructs. One module can reset another
module by forcing its internal finite state machine to the initial state. A
module can also inhibit the output of another module, that is, prevent it from
generating outputs for a certain amount of time. Finally, the output of one
module can suppress the output of another. In the case of suppression, the
output from the dominant module overrides the output of the inferior module
for a prespecified amount of time. This is a particularly powerful construct
because it lets more competent behaviors take over from general-purpose
behaviors when the circumstances warrant it. This language has proved very
useful in our own research group and has been successfully used by others as
well [Hywel-Snaith 87].

The circuit-like definition of the subsumption architecture lends itself
naturally to a parallel processor implementation. Shown in Figure 2 are the
eight on-board microprocessors that implement the 15 arm behaviors. Each 8-
bit microprocessor simulates a small number of modules which are then
connected by real, physical wires to other modules [Brooks, Connell, and Flynn
86]. Due to the nature of the parallelism, we can make this system arbitrarily
large without saturating any resource. If we want more behaviors, we simply
add more processors.

a b.
M1 M1
M2 R M2 R
time time
constant constant
—_— —_——
M1 | M1 LL1
M2 L1 1 I 111 M2 11 |] L1
R 11 | | R o (E N 11

Figure 3. Inhibition and suppression. a. The effect of M1 inhibiting M2. b. The effect of
M1 suppressing M2,

While the subsumption architecture specifies the components which can be
used, the programming style is still up to the implementer. In the control
system described here, we have departed somewhat from the standard form .of

the subsumption architecture. Instead of carrying discrete messages, the wires
carry continuous signals. This allows us to remove the time constants from the
suppressor nodes. The dominant module remains in control of the suppressor
node as long as it is sending messages. However, as soon as it stops generating
outputs, control reverts to the inferior module. The new semantics of a
suppressor node are "use it or lose it". This lets us model the suppression
network, the primary mode of interaction between behaviors, as a simple
fixed-priority arbitration system. Note that the hardware we have developed
for the direct implementation of the subsumption architecture can just as
easily run systems written in this new style.

a time b. time
constant constant
M1] M1 PLLiiLitd
M2] M2 11111111
R | R LILITLLIL 1111
M1's __I lﬁ M1's __I I~
task
start done task start done

Figure 4. The bug in the packet model. a. Note that the command from M2 will never be
Dbrocessed. b. The same interaction is successful using the signal model.

The signal model of wires was invented to fix a bug with the previous discrete
message formalism as shown in Figure 4a. In the original version [Brooks 86],
a module would send a single message specifying what the robot should do and
then remain silent as the robot carried out the directive. If the output of this
module (M1) was connected to the dominant input of a suppressor node, it
would commandeer the associated wire for T seconds. Now assume that the
action takes much less than T seconds to complete, and that, after it is finished,
the inferior module (M2) generates a command for the robot. Although the
shared resource (the robot) is free to execute new commands, this command
will never be acted on because it can not pass through the pre-empted
suppressor node. Even after the node times out and returns control to the
inferior module, the module's desires are never heard because it only sends
one packet. In general, dropping a single packet can be catastrophic. In the
signal model (Figure 4b), however, the command is repeated continuously thus
alleviating the problem. Note that the command also does not have to stay the
same; if, after it initiates an action, a module is able to give more accurate
instructions, these will be reflected in the signal and thus can be acted on.

In general, the ability to specify time constants is very useful. Since we are no
longer allowed to put this functionality into the suppressor nodes, we move it
back along the signal chain and into the module which generates the
messages. We do this by introducing a new internal construct for a module
called a monostable. This device essentially stretches the interval during
which a predicate remains true. Suppose we test the input of a module with
some predicate and the predicate returns true. If this is part of a monostable
construct, then the whole construct will also return true. The difference is
that monostable will remain activated for some fixed amount of time after the
predicate is no longer true. Furthermore, if, during this time, another input
arrives and passes the specified test, then the length of time that the construct
returns true is extended. The EXTEND module discussed in section 4 shows one
way to use the monostable construct.

3. Hardware

The arm used in our studies is a planar, 2 degree-of-freedom design. However,
it is structured so that the hand anywhere inside an 18 by 40 inch vertically
oriented workspace (we can rotate the base to provide lateral motion). This
large workspace allows the robot to manipulate objects at both floor and table
top level. The hand is connected to the base through two parallelogram
linkages and hence, no matter where we move the hand, the fingers always
point straight down. The hand itself is a parallel jaw gripper which can open
to approximately 5 inches. All three actuators, shoulder, elbow, and gripper,
are controlled by analog servo-loops. The servos take a velocity command and
integrate it to yield a desired position for a standard position controller. The
arm can lift a payload of up to 1.5 pounds but it is fairly slow -- about 10
seconds from full down to full up at top speed.

The subsumption architecture processors have access to various sorts of
sensory data. The servos report the arm's joint angles and finger separation as
well as the error voltage in each loop (a crude measure of torque). The hand
also has a number of special purpose sensors as shown in Figure 3. Near the
ends of the fingers there is an infrared beam that is broken when something
comes between the fingers (we refer to this as the "finger beam" in later
sections). There are also contact switches on the fingertips which signal when
the fingers hit something (the "tip switches"). The wrist of the manipulator is
also free to rotate slightly and there is a micro-switch which is activated if the
wrist experiences any upward force. When the hand is grasping something
this switch plays the same role as the tip switches for an empty hand, so in
most cases we lump this signal in with that of the tip switches.

One of the most useful sensors is a pair of crossed infrared proximity beams
located at the leading edge of the hand (the "crossed IRs"). These operate in
two modes. In the basic proximity mode they just monitor how much of the
light they are emitting is reflected. We threshold this quantity to determine if
there is something in the beam or not. In the geometric mode we monitor how
much of the light generated by one sensor is reflected to the other one. Once
again this is threshold to yield a single bit of information. Note that since the

beams cross over each other about 2 inches in front of the hand, we can tell
when an object is in this intersection.

Figure 5. The sensors mounted on the hand.

4. Controlling the Arm

The complete set of behaviors and their interconnections is shown in Figure 6.
Each box is a module which implements a specific behavior. All behaviors
interact through suppressor nodes (the circles with an "S" inside). As
mentioned earlier, the semantics of these nodes is that a signal coming into
the side of a node can override the signal passing through the node. In one
case there is a default node (a circle with a "D" inside). This is just like a
suppressor node in which the dominant and inferior inputs have been
reversed. Note that we have broken the collection down into 6 groups: Cradle,
Grip, Path, Park, Skim, and Local, which we refer to as levels of
competence. The idea is that the robot can perform useful actions with just the
lower level implemented but its performance gets progressively better as more
and more levels are added.

force
excess 1
Cradle Level

tips Grip Level

beam

é———)HAND

Path Level

Park Level

Skim Level

tips

surface

tips

Local Level

beam m XIR
XIR (s)Ho ’iL

ARM

Figure 6. The control system for the arm is com

posed of 15 separate behaviors. These can
be grouped into 6 task-specific levels.

Let us start with the Grip level. The most basic behavior in this level is to
unconditionally open the hand. This is accomplished by the OPEN behavior but
is modified using GRAB. The GRAB behavior monitors the finger beam and
directs the hand to close so long as the beam is broken. Thus, anytime
something comes between the fingers, the hand tries to close. Note that the
hand could not care less whether this is a soda can or something else, it just
knows to close in this situation. The GRAB behavior is in turn modified by
DEPOSIT which forces the hand to open if either tip switch or the wrist sensor
is activated. This is how the robot puts things down: by moving the hand down
until a contact between the grasped can and the table causes sufficient force to
activate the wrist sensor. It is also useful in its own right as a general
protective behavior. For instance, the wrist sensor is also activated when the
bottom of the can catches on a protruding obstacle or when the robot has
grabbed a person's hand and they attempt to shake it loose.

The next level, Cradle, contains a single behavior called EXCESS. The purpose
of this behavior is to regulate the force exerted by the gripper. EXCESS
monitors the error in the finger servo-loop and when the force gets above a
set threshold, takes control of the hand and reduces the force to a reasonable
level. This is important because squeezing things too hard tends to damage
them, while trying to open the fingers beyond their limit-stops heats up the
motor. EXCESS also monitors the commanded velocity of the fingers to
determine when to relinquish control. It drops out when it sees that the hand
is being commanded to move in the direction which reduces the force. If we
did not have this feature, the hand would become stuck either open or closed
due to the fixed priority arbitration scheme implicit in the set of suppressor
nodes.

Let us turn our attention now to the behaviors controlling the arm, in
particular the Local level. Much of this level is devoted to interpreting the
data from the crossed IRs. For instance, the EXTEND behavior says that if either
IR has seen something recently, the robot should extend the arm straight
forward in an attempt to locate the sensed object once again. The notion of
"recently” is implemented using the retriggerable monostable construct
discussed earlier. As each IR packet comes in, we test whether either of the IRs
is currently detecting an object. If an object has been spotted, we trigger the
monostable which then directs the hand to go forward. This means the hand
will go forward as long as one of the IRs sees something, and then continue to
go forward for a short time after the signal disappears. This is a reasonable
algorithm, since, in practice, when the hand chases objects it is often capable
of catching them. Unfortunately, the fingers take a long time to close. So, if
the hand keeps moving when the object is in reach, it may actually go beyond
the object before the fingers have closed sufficiently. Therefore, we have
added the STOP behavior to freeze the hand for awhile if the robot detects any
change in the finger beam. This module also uses the monostable construct to
accomplish the "awhile" part. Note that the stop command takes precedent over

any extension commands because the output of STOP suppresses the output of
EXTEND.

Aside from the exploratory behaviors, this level also has two protective
behaviors. EXTEND is constantly trying to drive the arm forward; yet this is not

always a smart thing to do, especially if there is something directly in front of
the hand. One case is when the hand has reached a wall. Here both IRs will see
something and BACK will command the arm to retreat slightly to avoid
collision. If, on the other hand, something is detected at the intersection of the
two beams, the OVER behavior forces the hand to go straight up. Once again
the relative priorities of these behaviors can be determined by -examining the
wiring of the suppressor nodes. When the hand comes up to a can, the
combination of the EXTEND and OVER behaviors causes the hand to rise slightly
above the top of the can and then go forward causing the can to pass between
the fingers. This in turn activates the grasp reflex. Note that, although the
crossed IR detector can obviously determine the location of a can, it does not
communicate this directly to the finger controller. Rather, it sets up the world
such that in the course of the robot's normal actions the grasp reflex will be
triggered.

The next level of competence is the Skim level. This group of behaviors
contains an operational representation of the fact that objects often rest on
surfaces. ENGARDE starts off by moving the hand from the tucked travelling
position up to near the top of its workspace and out towards the inner edge of
the workspace. When the hand reaches the edge of the workspace ENGARDE
shuts down and lets the exploratory behaviors take control. For instance,
EXTEND may have sensed an object and started generating motion commands.
Yet because it has lower priority than ENGARDE (as can be seen from the
suppressor nodes), its commands can not get through until ENGARDE stops
producing outputs. Usually, however, EXTEND has not been activated so instead
the default behavior, DESCEND, simply drives the hand straight down. This
action is modified by the protective behavior BOUNCE which forces the hand to
go back up if one of the tip switches has been activated. When the tip switches
are activated there is a good chance that the hand has come in contact with a
support surface. Therefore, if SURFACE sees that the tip switches have been hit
it directs the hand to go forward and slightly down for awhile. Eventually, if
the surface is more or less flat, this causes the tip switches to be activated
again. In this manner the hand hops along a surface hoping to find a can to
collect.

There is more to collecting cans than just finding and grabbing them. One
must also bring them back closer to the body in order to transport them to
another location. This is the purpose of the HOME module in the Park level.
The evolution of this module is particularly interesting because it was
originally designed as a protective behavior. Occasionally the robot gets into a
situation where it should simply give up. For instance, the arm might reach
the edge of its working envelope or become stuck somewhere. In these
circumstances, a reasonable thing to do is to retract the arm. Observing that in
both cases the arm ceases to move, we trigger the HOME behavior whenever
the hand is stopped at a non-home location. The HOME module then attempts to
bring the hand back to a special parking location, and keep it there for a
certain amount of time. Remember, however, that we also deliberately stop the
hand when the finger beam changes state to allow the fingers time to open or
close. This naturally triggers the HOME behavior which brings the arm back
after the robot has grasped or ungrasped and object. In this case, we did not

10

need a new, separate behavior; we were able to tap into an existing reflex by
generating its local environmental activation pattern.

The final level, Path, modifies the basic retrieval behavior. HOIST is activated
by the same environmental conditions as HOME, but it does not head directly
toward the parking location. Rather, it first lifts the can almost to the top of
the workspace, then brings it straight back to the inner edge. At this point it
drops out and lets HOME take over. This is a better retraction strategy when the
hand grabs an object at a height above that of the parking location. In such a
situation, if the hand tried to go straight it would stand a good chance of
running into whatever surface had been supporting the grasped object. The
up-then-back strategy used by HOIST eliminates this difficulty. The other
behavior in this level, EDGE stops the hand (and hence causes retraction)
when the hand attempts to go beyond the far edge of an inscribed rectangular
workspace. While the hand can actually reach beyond these limits many times,
it can not rise straight up all the way to the top of the rectangular workspace
if it goes any further. EDGE's purpose, therefore, is to make sure the hand does
not go beyond the point where the HOIST strategy will work.

5. Spatial Representation

Note that our arm can collect cans from a variety of surfaces without
requiring any detailed description of what a can is or what the surfaces look
like. Given our multi-processor implementation, there would be no place to put
such a representation anyway. What we have instead is a collection of partial
descriptions spread among various behaviors. Consider what we would do if we
had a complete internal model of the world. We would, in that model, measure
various parameters such as the height of the top of the can and its distance in
front of the hand. So why bother with the model? Why not use the world as its
own model, and simply measure these quantities directly? This is exactly what
we do by carefully arranging the sensors and then monitoring their response
over time. For instance, we can tell when the can is in position to be grasped
because this will cause the finger beam to be broken. We can tell when the
hand is directly above a surface because the tip switches will be activated. We
can determine how high the top of the can is, and hence how high to raise the
hand, by looking for the disappearance of the crossed IR signal. In some cases,
such the door-finder described in [Brooks and Connell 86], we can even use the
effects of the behaviors themselves to pare down our representations.

One often cited reason for maintaining a comprehensive, centralized world
model is that it allows us to do sensor fusion [Giralt, Chatila, and Vaisset 84:
Flynn 85; Shafer, Stentz, and Thorpe 86]. Since we do not have such a model,
our answer is to use behavior fusion. For instance, using a traditional
approach we could use the information from the tip switches, the crossed IR
beams, and the joint encoders to build up a local model of obstacles to avoid.
Instead, we have two separate behaviors, BOUNCE and BACK, which employ
different sets of sensors. BACK takes care of avoiding objects in front of the
hand while BOUNCE prevents the robot from jamming its fingers into the table.
If there is ever a conflict between the two, BOUNCE takes precedent. Note that
we have achieved all that we could hope for if we had fused the data from the
two sensors. We have done it, however, using behaviors that only pay

11

attention to one set of sensors. The advantage of our approach is that it allows
us to avoid the difficult task of trying to calibrate the two sets of sensor
readings against each other.

The kinematic knowledge that we need for the can grabbing task is also very
slight. We certainly do not need to know the x-y position of the hand relative
to the robot. Our actual requirements are shown in Figure 7a. We need to know
the hand's qualitative direction relative to a single point, "park", used by
HOME. Beyond this, we need to know where the hand is relative to the three
edges of the workspace. The outer boundary is used by EDGE, the top boundary
by HOIST and ENGARDE, and the inner boundary by HOIST. This makes a total of
only 7 binary predicates (4 to delimit the "park" location and one for each of
the edges of the workspace) that we either have to calibrate or learn --
certainly not an unmanageable number and much easier than dealing with
the full kinematics of the manipulator.

We have also adopted a minimalist attitude toward effector commands. Just
because the hand can be moved in any direction, it is not necessary to use all
directions. As a matter of fact, we only ever move the arm in one of 8
directions, as shown in Figure 7b. These motions are all in the vertical plane
which is the arm's workspace. Once again, this makes calibration or learning
of the inverse kinematics easier since we only have to solve for these special
cases.

workspace b. over
engarde bounce
home

home

back
hoist
home

extend
home

surface
park home

I] descend home

() () home

Figure 7. The spatial knowledge employed by the system. a. One distinguished place and
the borders of the workspace. b. The 8 local directions of movement.

Finally, note that our use of the subsumption architecture differs from
previous results as to whether different behaviors can share intermediate
level modules. In the system described here, we forgo any overlap at all,
whereas, heretofore, it was quite common for a higher level behavior to tap
off the outputs of certain modules in a lower level. The reason we eschew this
practice is for the sake of modularity. There may be a number of ways to
implement a particular behavior; however, only a small number of these will

12

have the correct internal structure to allow the higher level to operate. Thus,
we may get a viable debugged low-level behavior only to find that we have to
radically restructure it so that the appropriate internal signals are available to
higher levels. This seems to defeat the claim of incremental extensibility. This
is especially irksome when we mix levels of implementation. As we have
shown elsewhere [Connell 87], the subsumption architecture can be compiled
down to the gate level. Unfortunately, when we do this we often have to cut
comers so that the intermediate signals simply do not exist. This obviously
rules out any possibility of higher levels using them.

For these reasons, we have adopted the maxim "let the behavior be the
interface”. That is, do not depend on the internal structure of some behavior,
depend, rather, on this behavior's effect on the world. This way, as long as the
behavior achieves the same task, it does not matter how it happens to be
implemented. However, in many instances behaviors need to communicate
with each other in order to coordinate their actions. If each behavior is a
monolithic entity, the only way remaining is to communicate through the
world. We have already seen one example of this, namely, stopping the arm
triggers the HOIST and HOME behaviors. Remember that the arm may be frozen
by STOP if the finger beam changes state, or by EDGE if the arm tries to extend
itself too far. This is how these two modules communicate their desire to retract
the arm to the behaviors which know how to do this.

The beauty of communication through the world is that we can have infinite
fan-in and fan-out without knowing who is generating the signal and who the
recipients are. Already there are three behaviors which stop the arm and two
behaviors that watch for the arm to be stopped. We could easily add some other
behavior which, say, desired the retraction of the arm if it had been away
from home for too long. It would signal its desire just like the other two
behaviors, by stopping the arm. We could also add a new retraction behavior,
like lifting the arm only a little before retraction if the arm was near the
floor, which also triggered off the same external signal. Compare this to the
case of having an internal desire-to-retract wire. Each new retraction method
and retraction requestor must know where this wire is inside the control
system, once again causing us to rely on a particular internal structure.

We have used a similar setup to coordinate the actions of the base and that of
the arm [Connell 88]. First of all, we do not want the base to move if the arm is
extended. We prevent this by a adding a simple behavior which suppresses all
base motor commands when the arm is not at its home location. So once the
arm is extended, the base must wait for it to complete its cycle before moving
again. We use a corresponding behavior to signal the arm that it is time to
extend. The control system described in section 4 assumed that it was always
alright to move the arm. We now add a new behavior which overrides all arm
commands (we do not care about the hand) if the base has moved recently,
Thus to cause the arm to extend, we park the base at some location for awhile
which signals, through the world, that it is time to extend the arm.

We can go one step beyond this and use the same form of communication for
hand-eye coordination. Instead of figuring out how arm coordinates translate
into image coordinates we can use our knowledge about the composite

13

behavior of the arm controller. The way it is set up, if we can cause an object
to be in the arm's workspace, we are guaranteed that our controller will
retrieve it. Now all we need to do is figure out how the edges of the workspace
map to eye-space. We drive the robot until the image of the object appears
inside the projected image of the workspace of the arm then simply stop the
robot. The arm will do the rest by itself.

This is in stark contrast to conventional approaches. Typically, one would first
correct for any distortions in the camera image, then perform the inverse
optics calculations to find the target's coordinates. After this, one would plan a
path to bring the robot to the desired point, and then perform the inverse
kinematic calculations to find the necessary joint angles for the arm. Not only
does our system achieve the same net effect as this method with substantially
less work, it is also more robust in its performance since it can locally plan
and replan the trajectories of both the robot and the arm.

6. Conclusions

We have described a working behavior-based control system for a mobile
robot's arm. This controller has been successfully implemented on a collection
of small on-board processors. The system described is extensible both in terms
of hardware and in competence. The multi-agent approach has allowed us to
incrementally build and debug progressively more sophisticated control
systems. To use this approach, however, we have had to invent new forms of
spatial representation and new schemes for the coordination of independent
agents. Currently, there seems to be no limit on the potential size of such
systems.

References

[Agre and Chapman 87] Phil Agre and David Chapman, "Pengi: An
Implementation of a Theory of Action", Proceedings of AAAI-87, Seattle WA,
268-272.

[Brooks 86] Rod Brooks, "A Robust Layered Control System for a Mobile
Robot", IEEE Journal Robotics and Automation, RA-2, April, 14-23,

[Brooks and Connell 86] Rod Brooks and Jon Connell, "Asynchronous
Distributed Control System for a Mobile Robot", SPIE Proceedings, Vol. 727,
October, 77-84.

[Brooks, Connell, and Flynn 86] Rod Brooks, Jon Connell, and Anita
Flynn, "A Mobile Robot with On-board Parallel Processor and Large
Workspace Arm", Proceedings of AAAI-86, Philadelphia PA, 1096-1100.

[Brooks, Connell, and Ning 87] Rod Brooks, Jon Connell, and Peter Ning,
"Herbert: A Second Generation Mobile Robot", MIT AI Lab, Cambridge MA,
AIM-1016.

[Connell 87] Jon Connell, "Creature Design with the Subsumption
Architecture", Proceedings of IJCAI-87, Milan Iialy, 1124-1126.

14

[Connell 88] Jon Connell, "Task-Oriented Spatial Representations for
Distributed Systems", MIT Dept. of Elect. Eng. and Comp. Sci., Cambridge MA,
Ph.D. thesis (forthcoming).

[Flynn 85] Anita Flynn, "Redundant Sensors for Mobile Robot Navigation",
MIT AI Lab, Cambridge MA, TR 859.

[Giralt, Chatila, and Vaisset 84] G. Giralt, R. Chatila, and M. Vaisset, "An
Integrated Navigation and Motion Control System for Autonomous
Multisensory Mobile Robots", in Robotics Research: The First International
Symposium, M. Brady and R. Paul (eds.), MIT Press, Cambridge MA, pp. 191 -
214,

[Hywel-Snaith 87] Martin Hywel-Snaith, "A Reductionist Study into the
Behavioural Approach to Autonomous Robots", The Technology
Applications Group, Alnwick UK, TAG discussion paper MHS/ARI.

[Minsky 86] Marvin Minsky, "The Society of Mind", Simon and Schuster.

[Shafer, Stentz, and Thorpe 86] S. Shafer, A. Stentz, and C. Thorpe, "An

Architecture for Sensor Fusion in a Mobile Robot", Proceedings of the IEEE
International Conference on Robotics and Automation, pp. 2002 - 2011.

15

