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1 Introduction

The shapes of naturally occurring objects characteristically involve spatial
events occurring at a multitude of scales. For example, the fish shape in figure
1 appears at a coarse scale simply as an elongated blob; at a medium scale
as a somewhat more well-defined blob with smaller blobs (fins) attached;
and finally, at a fine scale, as a sharply defined Anchovy complete with
pronounced fin contours, pointed tail flukes, and a mouth. Shape details
appearing at finer scales are situated in relation to one another by the spatial
structure emergent at coarser scales. It is important to make explicit the

Figure 1. Important shape features occur at many scales.



multiscale structure of a shape object! in order to effectively perform shape
recognition or to engage in other forms of reasoning about shape because
important distinguishing characteristics or features may occur at any scale.

For this reason one widely cited goal for early visual shape processing is
to construct a description of a shape at a variety of scales [Witkin, 1983;
Mokhtarian and Mackworth, 1986; Asada and Brady, 1986; Pizer et al, 1986;
Koenderink, 1984; Burt and Adelson, 1983; Crowley and Parker, 1984; Crow-
ley and Sanderson, 1984; Sammet and Rosenfeld, 1980]. From these descrip-
tions may be extracted important primitive shape events to be used by later
stages devoted to object recognition or other visual tasks. This paper is con-
cerned with building multiscale shape descriptions of two dimensional binary
(silhouette) shape images in terms of edge and region (blob) shape primitives.

Currently available techniques for multiscale shape analysis are of two
basic types: contour-based smoothing and region-based smoothing. Both of
these approaches are based on the application of a numerical smoothing oper-
ator uniformly to some one-dimensional (contour-based) or two-dimensional
(region-based) array of shape data. The operator is typically characterized
by a size or width parameter indicating the degree of smoothing performed
and hence the scale of the result. Region-based smoothing techniques may
be further subdivided into isotropic smoothing operators, and oriented fil-
ters. As will be shown, at coarse scales both contour-based smoothing and
1sotropic region smoothing approaches fail to capture in a consistent manner
important structure inherent to shape objects. The prospects for oriented
filters are uncertain.

This paper describes a fundamentally different approach to extracting
primitive shape descriptions at multiple scales. The approach is based on
grouping of shape tokens in the style of the Primal Sketch [Marr, 1976]. Each
token may bear more information than just the local magnitude of an image
intensity or local orientation of a contour. The approach may be considered
symbolic because the tokens are, conceptually, discrete entities, and because
the grouping steps actually taken depend necessarily on the shape data itself.
This is in contrast to uniform numeric smoothing algorithms which carry out
the same arithmetic procedure everywhere regardless of the shape content of
the data.

An important tool we introduce for carrying out the grouping operations

1We refer to a figure whose shape we are analyzing as a shape object.



is the Scale-Space Blackboard. Tokens are placed on the Blackboard accord-
ing to their location, orientation, and scale. The Scale-Space Blackboard
facilitates manipulation of shape information because it permits tokens to be
indexed on the basis of location and scale.

The grouping procedures specify situations under which a collection of
tokens should give rise to a new token. Two types of grouping operation
are presented: (1) ¥'ne-to-coarse aggregation of edge primitives generates a
coarser scale edge n.:p from finer scale edge primitives, (2) Pairwise grouping
of symmetrically placed edge primitive tokens supports assertions of curved-
contour, primitive-corner, and bar events, all of which demark partial-regions.
These events are marked by partial-region type tokens placed on the Scale-
Space Blackboard.

The outline of the paper is as follows: The remainder of the Introduction
explores characteristics desired of a multiscale shape representation. Sec-
tions 2.1 and 2.2 briefly illustrate disadvantages of contour-based smoothing
and isotropic region based smoothing approaches to identifying important
coarse scale structure in shape images, while Section 2.3 shows that oriented
edge filters offer some improvement over isotropic region-based smoothing
- operators. Section 3 introduces the Scale-Space Blackboard as a data struc-
ture which allows shapes to be manipulated symbolically, while preserving a
pictorial quality to the organization of spatial information. Section 4 offers
an algorithm for fine-to-coarse aggregation of edge primitives through token
grouping. Section 5 presents rules for grouping edge primitives in order to
identify more complex structures constituting partial-regions.

1.1 Objectives for Multiple Scale Shape Representa-
tion

The motivation for describing shapes at multiple scales is to separate geomet-
ric features and properties of differing size or scale, on the assumption that
they are likely to reflect different parts, processes, or functional properties
of objects encountered in the visual world. For example, the body and stem
of an apple are related to one another by, among other things, a difference
in relative size. If the early stages of visual processing can deliver object de-
scriptions making explicit relative sizes, then later stages of processing, such
as visual recognition, may be assisted in carrying out tasks such as matching



these descriptions to internal models of known objects: An apple consists of
a large blob (body) with a small elongated part (stem) attached.

In evaluating the performance of a multiple scale shape description, it is
important to have established, at the outset, expectations for just what sorts
of geometric structure the computation is intended to segregate according to
size or scale. We proceed from the following notion: size or scale corresponds
to spatial extent in the image of a shape object. Thus, the body of an apple is
considered a larger scale feature than the stem because it has greater spatial
extent.

To be more precise, however, the term, “spatial extent,” may be inter-
preted in either of two ways: as linear distance, or as area. It is clear that the
body of an apple is a large scale feature relative to the stem, both because
its diameter 1s larger than the length of the stem, and because it has greater
area than the stem. But suppose the apple is hanging from a string. (See
figure 2). The string may have a length comparable to the diameter of the
apple, but, because of its narrow width, cover an area more similar to that
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Figure 2. A two-dimensional apple shape (a) retains its fine and coarse scale
structure even when the apple hangs from a string (b) and when the apple
is placed near another large object (¢). d. The large scale figure/ground
boundary formed by the top of the apple remains unchanged under these
circumstances.
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of the stem. So should the string be considered a large or small scale spatial
event?

This example suggests that a multiscale shape representation treat object
boundaries differently from the regions they enclose. Thus, the scale assigned
to a contour boundary, such as the edge of a piece of string, should depend
on its linear extent, while the scale assigned to a local blob or region, such
as the body of the apple or a snippet of string, should depend upon its area.

If the purpose of a multiscale shape description is to segregate features
according to scale, then shape events at different scales should not inter-
fere with one another. For example, the rounded top of an apple forms a
large scale boundary between the body of the apple and the background, as
shown in figure 2d. The presence of the small scale apple stem, or even the
string, does not change this gross feature, and the coarse scale description
of this boundary should not be affected by the presence or absence of the
stem or string. Conversely, the description of smaller scale shape features or
properties should remain unchanged no matter what their proximity to large
features. For example, were the apple placed next to another, much larger
object, the body of the apple would become, in c..mparison, a small scale
object (figure 2c). Nonetheless, the description of the apple body should
remain unaffected; the apple is still a roughly circular blob with dimples on
the top and bottom.

2 Uniform Numerical Smoothing Methods

A two-dimensional region, and the one-dimensional contour enclosing this
region, are complementary ways of describing a two-dimensional shape ob-
ject. Accordingly, two alternative schemes are available for representing a
shape object at the pixel level: as a two-dimensional array indexed by z,y
spatial coordinates, or, as a one dimensional array indexed by distance along
the contour, s. With each type of representation are associated natural ap-
proaches to obtaining descriptions at different scales by applying some form
of numerical smoothing technique uniformly to the data.



2.1 Contour-Based Smoothing

Contour based shape representations organize the description of a shape in
terms of a succession of points along an object’s boundary. Several variations
of contour based shape representation have been used. These include encod-
ing of: (1) successive pixel (z,y) location, eg. [Mokhtarian and Mackworth,
1986], (2) differences in successive pixel locations (Az, Ay), eg. [Freeman,
1974], and (3) local orientation (arctan%}), eg. [Asada and Brady, 1986].
Contour smoothing operations modify the path of the two-dimensional con-
tour curve in space, and sometimes also its length. Here we illustrate contour
based smoothing under the technique of encoding pixel (z,y) location as a
function of arc length, s (measured in terms of pixel count), and smoothing
the z(s) and y(s) functions independently:

()= 3o Gali)e(s —i) 1)

i=—ao

V()= 32 Gu(i)y(s —d), (2)

1=—ac
where G is a Gaussian of width o and the factor, a, effectively truncates
the tail of the Gaussian (a = 3 is a suitable number). Under this scheme a
closed contour is guaranteed to remain closed after smoothing, while this is
not true for representations of orientation versus arc length. Figure 3 shows
the contour of an apple shape under different degrees of contour smoothing
obtained by using Gaussians of various widths.
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Figure 3. Apple shape encoded in terms of pixels along its bounding contour,
r(s) and y(s). Smoothing these one-dimensional arrays yields a smoothed
shape contour. ’
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For some shape objects, contour-based smoothing does a good job of
removing fine scale detail while preserving the larger scale aspects of the
shape. Indeed, the apple is one example of such a case. However, many other
shapes exist for which contour smoothing fails to identify important coarse
scale structure, or else inappropriately suggests the presence of nonexistent
coarse scale structure. Figure 4 illustrates. To the human eye, in figure 4a
two parallel bars are prominent; under contour smoothing one of the bars
remains at a coarse scale, while the other breaks up. In figure 4b, the apple is
shown hanging from a string. Contour smoothing to a coarse scale results in
misleading distortion and absurd implications about the gross shape. These
effects can create hardships for any later processing stages which may seek to
perform part segmentation, match to object models, or otherwise interpret
coarser scale shape descriptions. A related problem arising with contour-
based smoothing occurs in figure 4c. Here, a banana is placed near the apple.
A very small change in shape, resulting from the banana being moved a little
closer to the apple, leads to a very large change in the coarsely smoothed
contour.

As these examples show, contour based representations place undue em-
phasis on the topology of shape boundaries. The resulting descriptive in-
stabilities are likely to introduce insurmountable complications later on. We
conclude that purely contour-based smoothing approaches do not provide an
appropriate basis for constructing multiscale shape descriptions.

2.2 Isotropic Region-Based Smoothing

Region based smoothing techniques start with representations for shape con-
sisting of two-dimensional arrays of numbers. A two-dimensional shape ob-
ject (silhouette) assigns the value, (say) 1, to locations in a two-dimensional
array covered by the object (figure), and 0 to the surrounding space (ground).
In general, filtering a two-dimensional array of binary-valued pixels results
in an array containing real numbers. Each such grey-level value may be
interpreted as the “strength” of the filtering kernel response at that location.

Most popular among region-based smoothing operators is convolution
with the circularly symmetric Gaussian. This operator is spatially isotropic,
and is often followed by a differential operator such as the Gradient Mag-
nitude or Laplacian. The latter is usually incorporated into the Gaussian
smoothing step, yielding the well known V2@, and its approximation, the
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Figure 4. a. Contour smoothing fails to capture the large scale interpretation
that two parallel bars are present. b. Under contour smoothing, a string tied
to the apple grossly distorts the apple’s shape at coarse scales. ¢c. Moving a
banana so that it just touches the apple leads to a large and discontinuous
change in the coarse scale description. Contour-based smoothing methods
place undue emphasis on the topology of bounding contours.
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DOG (Difference of Gaussians). The outputs of these filtering operators typi-
cally feed some sort of thresholding step resulting in edge [Marr and Hildreth,
1980: Canny, 1986] or region/blob [Crowley and Sanderson, 1984; Crowley
and Parker, 1984; Voorhees, 1987] assertions.

Figure 5 shows the result after Gaussian smoothing the binary silhouette
of an apple with filters of various widths. Also shown are edges found by
thresholding and then thinning the gradient magnitude?. Gaussian smooth-
ing yields a field of numbers that may be interpreted as the “density of mat-
ter” at each spatial location, averaged in all directions. The edges found by
taking peaks in the gradient magnitude of this map do a good job of remov-
ing small scale details about the apple’s bounding contour, while preserving
its overall, large scale shape.

Figures 6 and 7, however, show that the isotropic Gaussian blurring oper-
ation may obliterate evidence of extended edges when they occur in proximity
to large yet unrelated regions or when they enclose narrow regions. In figure
6, the string tied to the apple is lost altogether under thresholding following
Gaussian blurring. Because of its narrow width, it dissipates away under
even moderate amounts of blurring.

The converse problem arises in figure 7, in which the apple shape is placed
next to the banana. Now, the results of Gaussian smoothing and coarse scale
edge detection yield an apparent coarse scale contour for the apple shape that
is substantially different from the one obtained in figure 5. What happens is
that, at coarse degrees of smoothing, “matter” from the banana leaks over to
the region of the apple. Evidently, under Gaussian blurring, the coarse scale
description of an object’s shape cannot be trusted to remain stable under the
presence of nearby objects, even when no object occludes any other. Again,
as in the contour smoothing case, this instability effectively undermines the
purpose of multiscale shape analysis.

2This is the foundation of the popular Canny edge detector.

10



‘apnjrudeul juaiped ay) ul
syead Juruuiy) pue Juipjoysaiyy Aq punoj sagpj ‘q (o) SYIPIM ISP JO
SI9]]Y UrIsSSneY) [RUOISUIUIP-0M) Y)im payjjoouls adeys ajdde uy e "¢ aungij




Figure 6. Under Gaussian blurring the string dissipates away even though
it has large spatial extent along its length.
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Figure 7. When the apple is placed near the banana, Gaussian blurring
bleeds them together and distorts evidence of their large scale geometry.
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2.3 Oriented Region-Based Filters

Another class of region based operators for extracting events at multiple
scales are oriented filters, such as the Gabor filters [Daugman, 1985]. Here,
we illustrate the performance of oriented edge masks consisting of a Gaussian
weighting along the length of the edge, and the derivative of a Gaussian across
the edge (figure 8)(see [Zucker and Iverson, 1987], who use the 2nd derivative
of the Gaussian). Orientation tuning is determined by the relative widths
of these profiles. Because oriented filters carry out spatial averaging non-
isotropically, that is, depending upon the orientation and eccentricity of the
mask, they perhaps stand a better chance of achieving smoothing along the
length of a contour, while isolating regions lying on opposite sides of the
contour.

Figure 9 shows the results of oriented edge detection for the apple shape.
The filter mask was convolved with the original binary image at sixteen
different orientations for each scale, and yields sixteen grey-level arrays for
each scale. In order to facilitate presentation, it is convenient to condense this

Figure 8. Oriented two-dimensional edge mask.
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Figure 9. Apple shape under oriented edge filtering. a. Line segments
denote orientations of edges after thinning and thresholding. b. Maximum 15
filter response out of 16 orientations.




large amount of information into two arrays of numbers for each scale. One
(figure 9b) depicts the strength of the maximally responding filter response,
at each spatial location, the other (figure 9a) shows the orientation of the
maximally responding filters for a selected subset of spatial locations, such as,
for example, locations where the filter response is above a certain threshold.

Figure 10 indicates that the performance of oriented filters in identifying
extended edges at coarse scales is improved over isotropic Gaussian smooth-
ing. For example, in the absence of background clutter, the string is detected
at fairly coarse scales when its boundary contour aligns with the orientation
axis of the elongated mask.

However, figure 11 suggests that cases yet exist where oriented edge filters
fail to identify important coarse scale edges. One source of difficulty arises
from the fact that large aspect ratios may be required to detect long edges
bounding an object placed very near to another object. Such greatly elon-
gated filters by and large bring severe orientation tuning, and an inordinate
number of them may be required to cover the visual field at all orientations.
It is not clear to what extent this problem tarnishes the advantages of ori-
ented filters.

Uniform numerical smoothing techniques are conceptually straightfor-
ward and simple to apply, but these in themselves amount to no sound bases
for believing that they should necessarily extract the important shape prop-
erties that later visual processes can most effectively use. It seems possible,
though, that oriented filters may yet offer some promise for finding large scale
structure in shape images. We leave them as a subject for additional study,
and turn next to a very different approach to multiscale shape analysis.
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3 The Scale-Space Blackboard

3.1 Tokens vs. Fields of Numbers

The purpose of a shape representation is to distinguish, identify, and
ch: -acterize—to make explicit—certain shape properties and spatial events
in tne shape image that are likely to have significance either in the exter-
nal world or to the system’s task goals. By highlighting and naming these
events, important information can be more easily manipulated by later pro-
cesses carrying out pattern matching, counting, tracing, perceptual grouping,
and other operations.

Alternative interpretations are available for what it takes to “make infor-
mation explicit.” In the case of typical region-based edge detecting filters,
for example, “edgeness” is made explicit over the entire image in the form
of a field of numbers describing the response strength of a convolution ker-
nel centered at each pixel. On the other hand, edge information may also
be said to have been made explicit in a list of line segments fit to edges in
the image. The former representation may be called iconic, or image-like
[Pylyshyn, 1973, 1981; Anderson, 1978; Kosslyn, et. al. 1979], while the
latter is considered symbolic. Most approaches to later shape interpretation
employ symbolic representations because they offer greater flexibility in as-
signing meaningful interpretations to parts of shape, for example, that “this
edge corresponds to the stem of an apple.”

This work adopts an intermediate representational format preserving the
spatial character of an iconic representation while permitting symbolic tags
to be attached to spatial events occurring in a shape image. The genus
may be called semi-iconic representation. Information is made explicit via
symbolic tokens. Tokens are symbolic in that, unlike pixel values, each token
can maintain lists of properties, pointers, and other items of internal state.
Yet, the pictorial aspect of spatial geometry is preserved by the assignment
to each token of a location on the shape image. Furthermore, as is discussed
in the next section, the tokens may be indexed by spatial location. Not
every point in the image is necessarily covered by a token, however, and
some locations may be associated with more than one token. The use of
tokens in making explicit important image events was introduced by Marr
[1976, 1982] in his proposal of the Primal Sketch as an early visual image
representation, and has been applied to multiscale straight line extraction by
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Figure 12. A sharp corner may be continuously deformed into a flattened
corner. As the flattened edge gradually disappears, at some point a decision
must be made that a corresponding edge token should no longer be asserted.
A priori, no principled grounds exist for defining the decision criteria.

Weiss and Boldt [1986] (see also Boldt and Weiss, [1987]).

The transition from an iconic to a symbolic representation raises an issue
of discretization. Shapes are fundamentally continuous things. Consider the
sharp corner shape shown in figure 12e. This may be continuously deformed
into a flattened corner, figure 12a. An iconic representation has no trouble
describing shapes anywhere along this continuum because every location is
assigned some pixel value. In contrast, a symbolic or a semi-iconic represen-
tation is inherently discrete: properties are asserted only for locations where
a symbol or token has been assigned. Any time a discrete representation is
to be computed from a continuous representation, qualitative decisions must
be made of the form, “Should we put a token here?” Usually this decision in-
volves the use of some threshold value, for example, “put a token everywhere
an edge is present stronger than z”.

It is important that later processes performing operations on discretized
representations not rely upon the presence or absence of tokens that might
or might not have been asserted had a threshold been slightly different. This
is to say, it is desirable for a shape representation to preserve the continuous
qualities that the world of naturally occurring shapes in fact displays. We
attempt to abide by this principle by endowing each token with a strength
parameter’. The strength parameter indicates to roughly what degree the
shape property associated with a token is asserted at that token’s partic-
ular location in the image. Later processes manipulating the information
conveyed by shape tokens are intended to achieve independence from the
instabilities of early quantization steps by modulating their computations

3Alternatively this may be called a response-strength or activity parameter.
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Figure 13. An edge primitive is marked by a token. The edge is viewed
as having spatial extent roughly corresponding to a gaussian ellipsoid. A
primitive edge token is displayed either as an ellipse {(a), or as a line segment
with a circle at the “front” end indicating the figure/ground orientation of
the edge (b).

according to the tokens’ strength parameters. As a given shape property
fades from significance its later implications can have waned before its asso-
ciated token disappears entirely.

The primary token employed in building multiscale shape descriptions
is the edge primitive. In addition to strength, an edge primitive possesses
the attributes of z spatial location, y spatial location, orientation, and scale.
The primitive edge token denotes a boundary between figure and ground
occurring approximately along its length axis, in much the same way as that
measured by the oriented edge filter shown in figure 8. Though its token is
assigned specific (z,y) coordinates, an edge primitive is to be interpreted as
asserting information about some elongated local region as shown in figure
13. The edge assertion is to be considered strongest at the center of the
region, and it diminishes with increasing distance.

3.2 Justification for Scale-Space

Despite their deficiencies in extracting coarse scale structure, contour based
and region based numeric smoothing techniques deliver identical results in
the limit of the finest scales of resolution. For example, were we to distribute
edge-denoting tokens at nearby intervals along a very slightly smoothed ob-
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ject boundary contour, these would agree with tokens located by taking
the maximum gradient magnitude following slight two-dimensional Gaus-
sian smoothing. Although we would properly label these as fine scale edges,
the coarse scale structure of the shape remains implicit in the distribution
of tokens about the image. Our goal is to make this coarser scale structure
explicit, for example by placing appropriate additional tokens on an image.

The approach we offer to computing where such additional tokens might
go is to look directly at patterns of smaller scale tokens already present. The
style of computation corresponds to what is widely known as a “blackboard
architecture” in the Artificial Intelligence literature: maintain a set of current
assertions, as if they were written out on a blackboard. A set of rules or
procedures performs pattern matching on the contents of the blackboard,
and updates these contents by erasing, adding, and modifying assertions. In
the present case, assertions about shape are made by placing shape tokens
into the blackboard.

3.2.1 Indexing Spatial Information in a Blackboard

A number of important design choices are available as to just where and how
various aspects of shape information are to be stored and organized, using a
blackboard architecture. Note that having two-dimensional (as in a physical
blackboard) or n-dimensional spatial arrangement is only an optional com-
ponent to the organization of blackboard architectures as they are classically
viewed.

The most crucial set of issues revolves around the means provided for
indezing into the blackboard, that is, for addressing and accessing the shape
information it contains. The following question arises: To what degree is
information viewed as residing “inside” a token, and to what degree in terms
of the token’s location in some coordinate system defined on the blackboard.
To illustrate, the information borne by each edge token could be written
on a scrap of paper tossed in a heap; one examines symbols written on the
scraps to read off tokens’ location in space, orientation, and other properties.
The blackboard becomes then the heap of paper. Alternatively, a physical
blackboard on a wall may easily be assigned a two-dimensional coordinate
system making explicit horizontal and vertical distance from an origin; a
shape token might correspond to a dot drawn on the blackboard, this token
expressing information only by virtue of its location on the board’s surface.
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Obviously, each scheme has its advantages and disadvantages. The token-
as-scraps-of-paper scheme permits each token to mairtain a large number of
properties about itself, such as location, orientation, strength, time of day
that it was created, and so forth, but this scheme offers no efficient way of
attacking the heap to find a token possessing a given set of properties. Con-
versely, the coordinate-system scheme provides a handy means for indexing
information on the basis of content—is there an edge at location (4,5)?,
just go there and look—but it requires that the blackboard have as many
dimensions as independent pieces of information denoted by each token.

For the present purposes, we adopt an intermediate course: tape scraps
of paper to the blackboard. Tokens are localized on the blackboard in terms
of a coordinate system organizing along a few crucial properties, but each
token possesses internal state maintaining additional useful information. The
interesting design choice arising is, which information is important enough
to merit its own coordinate dimension on the blackboard?

In the world of two-dimensional shape objects, four leading candidates
present themselves. These are, x spatial location, y spatial location, orienta-
tion, and scale. These are the four geometric parameters fixing an edge prim-
itive in the representation: Where is it?, What is its orientation?, and How
big is it? Because shape silhouettes are by definition two-dimensional images,
z,y coordinates are obvious choices for structuring the blackboard. As for
the other two candidates, Walters [1987] has argued in favor of rho-space, in
which a third, p, dimension makes explicit the orientation of features, and
Witkin [1983] suggests creating a scale-space by establishing a separate scale
dimension®.

Scale-space segregates spatial events of different sizes, that is, it provides
a handle for indexing information on the basis of scale. The size of an edge
primitive, for example, is indicated by the placement, along a separate scale
(o) dimension, of a token corresponding to that edge. This organization
simplifies the sequence of operations required to query a shape description
as to whether certain properties are true of the object under observation.
If a pattern matching rule needs to know whether a medium scale edge at
location (5,6) and orientation 32° is present in order to decide that an ob ject

*Witkin’s original presentation of scale-space dealt with the evolution across scales
of zero-crossings of a DOG-filtered one-dimensional signal, as the width of the Gaussian
filter increases. Here, we forbear zero crossings and instead refer only to the use of an
independent dimension denoting size or scale.
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has parallel sides, then under a scale-space organization it may more rapidly
narrow down the set of tokens that must be examined than if it had to check
through tokens representing all scales. Depending upon the degree to which
algorithms for analyzing shape regard scale as an important shape property,
this gain in efficiency may be as significant as that obtained by ruling the
blackboard with z,y spatial coordinates.

Similar gains in efficiency may be obtainable, for some purposes, with
blackboard organizations making explicit a separate orientation dimension.
However, given the stated purpose of identifying the multiscale structure of
shapes, and because of the difficulties in managing high-dimensional spaces,
the present work sacrifices the possibility of indexing shape information di-
rectly on the basis of orientation, and instead employs a Scale-Space Black-
board consisting of two spatial dimensions plus one scale dimension.

3.3 Behavior of Scale-Space

Scale-space possesses a number of useful and interesting properties whose
examination clarifies what it means for a shape event to be “at a certain
scale.” The maintenance of these desirable properties may depend upon the
enforcement of certain definitions and conventions over the computational
operations that act upon the scale-space data structure.

3.3.1 Self-Similarity Across Scales

The principle quality offered by scale-space is self-similarity across scales
[Burt and Adelson, 1983]: it is most convenient that a computation per-
formed on any shape of a given size yields the same results as the same
computation performed on an identical shape that has been uniformly mag-
nified (or reduced) in size. For example, the tests establishing whether four
line segments are arranged as a square—adjacent edges perpendicular, op-
posite edges lie at a distance equal to their lengths, ratio of diagonal to edge
length equals v/2, and so forth—should be the same no matter how large or
small the square is.

The most important implication of the self-similarity principle is that
computations on scale space should be defined so that magnifications in the
spatial dimensions correlate with uniform translations in the scale dimen-
sion. Figure 14 illustrates in the case of a simplified scale-space consisting of
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Figure 14. a. A one-dimensional figure composed of two binary pulses. b.
The same figure magnified in the spatial dimension by a factor, m. Scale-
space images of these shapes are shown above. Each pulse is depicted as a
dot, and the width of the pulse determines the dot’s placement along the
scale (o) dimension. The principle of self-similarity across scales dictates
that when the relative distance of shape features is preserved, their distance
along the scale dimension (Aoc) is also preserved.

a scale dimension and only one spatial dimension. Two shape features pos-
sessing different sizes and spatial locations are represented as tokens placed
at different scales and spatial locations in scale space. Call their proximity
in scale space, (Az, Ao). Now, take the original shapes and simply magnify
the picture by a factor, m. Obviously, the features each grow in size, and the
distance between them increases by this factor, but, their relative distance
(distance relative to size) does not change. Under the self-similarity princi-
ple, the scale space image of this new picture places tokens in proximity to
each other, (mAz, Ao); the shape features’ preserved relative sizes becomes
manifest as a preserved distance along the scale dimension.

In order to enforce this property the scale dimension is graduated on a
logarithmic scale [Witkin, 1983; Schwartz, 1980]. Consider a shape event,
for example, an edge primitive, occurring at some reference scale, o = 0.
The placement along the scale dimension of another edge primitive which is
identical to the first, but uniformly magnified by a factor, m, is given by:

o= Alogm, (3)
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Figure 15. At coarse scales a long smooth edge and a long jagged edge
appear identical. Only at finer scales do edge primitives obtain sufficient
resolution to distinguish smaller scale detail.

where A is a constant.

Another significant consequence of the self-similarity principle is that pre-
cision in the specification of a spatial event’s spatial location depends upon
the scale of that event. Suppose that some tolerance is associated with stat-
ing the exact placement, in = and y, of a token denoting a primitive edge.
This tolerance region may for convenience be considered equivalent to the
region of space described by a shape token (figure 13). Then self-similarity
implies that this tolerance region grows proportionally with the size of the
edge primitive. This is to imply that a large scale edge primitive alone does
not precisely localize the boundary of the shape object that gave rise to it.

Further implications arise concerning the meaning contained by the as-
sertion of a primitive shape event occurring “at scale 0”. As illustrated in
figure 15, a long, well defined edge, and a long jagged edge, appear at coarse
scales as identical in terms of edge primitives. It is only when one examines
medium and finer scale information that descriptive edge primitives obtain
sufficient precision to discriminate between these two shape events. Thus,
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a complete description of even a geometrically simple shape object must in-
volve analysis of information across a wide range of scales. For example, the
description of a long, straight contour boundary, in terms of tokens denoting
edge primitives placed on a Scale-Space Blackboard, will be comprised of a
collection of tokens lying all along the boundary, and at various depths in
the scale dimension.

The Scale-Space Blackboard leaves open the possibility of inventing more
complex types of tokens that integrate shape information occurring over sev-
eral scales.

3.3.2 Scale-Normalized Distance

The measurement of distance plays an integral role in the analysis and in-
terpretation of shape. In order to conform to the principle of self-similarity
across scales, it is necessary that computations involving distance measure-
ments among shape tokens in the Scale-Space Blackboard be able to take into
account the relationship between distance and scale. Just stating that two
edge tokens are parallel and lie at 2cm distance from one another does not
complete the story, for if they are both fine scale tokens then they could have
arisen from opposite ends of an object, while if they are both coarse scale
tokens they must by necessity be asserting virtually the same information
(see figure 16). Relative distance (distance relative to scale) is the important
property, not actual distance.

Figure 16. Whether or not the contours described by two edge primitive
tokens are fact the same contour depends upon the tokens’ scales as well as
their relative distance and orientation.
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For this reason we define scale-normalized distance with the property
that the scale-normalized distance between a pair of tokens remains constant
as the configuration undergoes uniform magnification. By taking this step,
whenever computations take place involving relative distances between shape
tokens, scale is automatically taken into account. Some leeway is afforded
in the selection of the scale-normalized distance measure. We choose the
following:

Definition: The Scale Normalized Distance (sn-distance) between two
tokens occurring at scales o1 and o,, respectively, and separated by a distance
D, is given by

D

an
D = r3 Ty
Hed +e7)

(4)

The justification for this definition is as follows: If a unit distance is
measured at scale o = 0, then this distance is magnified at scale ¢ by a
factor, e (inverse of equation (3)). Sn-distance adjusts for the scale of two
tokens by dividing the spatial distance between them by the average of their
associated magnification factors.

It is instructive to consider the behavior of the sn-distance between two
tokens occurring at different scales. Imagine three tokens, A, B, and C,
positioned colinearly and as shown in figure 17. Their pairwise distances
obey the relationship,

D(4, B) + D(B,C) = D(4,0) (5)

When the tokens all occur at the same scale, their pairwise scale-normalized
distances also obey this relationship:

8D (A4, B) + *D(B, C) = **D(A4, C) (6)

But consider what happens when token B increases in scale. Then, by equa-
tion (4), the sn-distances distances between tokens A and B, and between
tokens B and C decrease, while the sn-distance between tokens A and C
remains unchanged. In general, the laws of Euclidian distances as expressed
by equation (6) do not hold for scale-normalized distance.
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Figure 17. a. When colinear tokens occur at the same scale, then scale-
normalized distances behave according to the law, $*D( 4, B) +32D(B,C) =
'D(A4,C). b. However, when token B is moved to a coarser scale this
relationship no longer holds.

3.3.3 Quantization and Sampling

The z-y-o Scale-Space Blackboard data structure permits algorithms to in-
dex into a shape description on the basis of spatial location and scale. This is
conceptually a continuous space. However, for purposes of implementing the
Scale-Space Blackboard on a computer, it becomes necessary to quantize the
space so that, for example, points in scale-space may be assigned to elements
of an array. As a purely practical matter, how might we go about tesselating
scale-space?

First, note that as long as shape tokens behave as scraps of paper on
which may be written down any information desired, then an appropriate
strategy is to include among this list of properties a token’s pose in scale-
space (spatial location, orientation and scale). Computations involving a
token’s pose should use this information rather than the quantized array
indices specifying the token’s address in the Scale-Space Blackboard. This
tactic ensures that whatever array quantization scheme is used, its effects
may be confined to the efficiency of computation but not the results.

The array quantization issue separates into two: quantization along the
spatial coordinates, and quantization along the scale coordinate. Quantiza-
tion of the scale coordinate will depend in part on how closely spaced along
the scale dimension two different shape tokens, specifying different proper-
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Figure 18. At a given spatial location, the jagged contour can give rise to
edge primitives with different orientations at different scales.

ties, yet occurring at the same spatial location, might be placed. To illustrate
the question more clearly, figure 18 shows a figure whose local orientation
at a coarse scale is quite different from its local orientation measured at a
fine scale. Over how small a distance in the scale dimension might such a
phenomenon occur? We present no theoretical analysis but simply relate
empirical experience suggesting that a magnification of about a factor of two
(one octave) characterizes the rapidity with which the information asserted
at one scale can differ from the information asserted at another scale. Thus,
scale quantization at steps in the neighborhood one octave or slightly less
seem about right.

As for the spatial dimensions, coordinate quantization should accord with
the purposes of the algorithms that consult the Scale-Space Blackboard. One
of the most common operations is likely to be a query of the form, “Is there
a token at pose P?”. The purpose in making this query is of course really to
discover whether the shape object under analysis displays some spatial event
such as an edge at pose P, under the assumption that this spatial event will
be represented by a token (or tokens) in the Scale-Space Blackboard. It would
therefore seem reasonable to choose a tesselation size in the neighborhood
of the range of poses that a token might take in describing a given single
localized spatial event, i.e. choose array bin sizes to cover about the same
spatial extent as the spatial localization tolerance of a shape primitive (figure
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Figure 19. A stack of two-dimensional arrays for implementing the scale-
space blackboard. Each array bin holds a list of tokens falling within its
domain of scale-space. Coarser tesselation at coarser scales gives resemblance
to a pyramid data structure.

13).

Note that individual elements or bins in the array maintaining the con-
tents of the Scale-Space Blackboard may contain not just one but several
tokens. Note also that appropriate spatial quantization changes with scale,
so that many fewer array elements need be provided per unit area at coarse
scales than at fine scales. A suitable picture is of a collection of two-
dimensional arrays stacked at octave distances along the scale dimension,
as shown in figure 19. This data structure closely parallels pyramid style im-
age representations [Sammet and Rosenfeld, 1980; Burt and Adelson, 1983].
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4 Multiscale Description by Fine-to-Coarse Aggrega-
tion

We are now equipped to offer a procedure for building a multiscale shape
description one scale at a time, from fine scales to coarse. A shape is at this
early stage described in terms of edge primitives possessing the attributes
of location, orientation, scale, and strength. A token’s strength attribute
indicates something like “how good” an edge is present at the token’s pose.
The objective for the fine-to-coarse aggregation procedure is to place “good”
edges at successively coarser scales, starting with primitive edge tokens placed
at intervals along the shape object’s boundary contour at some initial (finest)
scale. The aggregation procedure iterates, proceeding from fine scales to
coarse, until a desired coarseness of description is reached.

The design of a fine-to-coarse aggregation procedure is motivated by con-
sidering configurations of edge primitives that give rise to good coarser scale
edges. A sampling of prototypical situations is presented in figure 20.

Figure 20a is the simplest case. A collection of finer scale edges that align
with one another give rise straightforwardly to a coarser scale edge. Note in

a b

d

Figure 20. Configurations of finer scale edge primitives (solid ellipses) sup-
porting assertions of edge primitives one octave coarser in scale (dashed
ellipses).
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this figure that the portion of the image that a given edge token describes
may overlap with that of other edge tokens. The spacing of primitive edge
assertions along a contour is a free parameter of the representation. For
reasons elaborated below, we find it useful for one edge primitive to overlap
the next by about 50% of its length.

Figure 20b shows that a section of curved contour gives rise to edge to-
kens very well aligned with one another at fine scales, but with increasing
orientation difference at coarser scales. We suggest that coarser scale prim-
itive edges associated with curved contours be considered weaker than edge
primitives associated with straight contours, in much the same way that a
coarse scale oriented edge filter would give a weaker response to a curved
contour than to a straight edge.

Figure 20c illustrates that a broken contour appearing at a fine scale as
two aligned yet disparate portions of a shape may nevertheless be described
by a single edge primitive at a coarser scale. This is to say, the pattern
matching methods deciding where coarse scale edges are to be placed must
be able to identify pairs of finer scale edges aligning with one another across
a gap or protrusion.

Finally, 20d shows that, when appropriately configured, a collection of
fine scale edges may individually have very different orientations from the
coarser scale edge that the collection generates. The algorithm described in
this paper omits explicit consideration of this type of situation.

4.1 Fine-to-Coarse Aggregation Procedure

The basic step of the fine to coarse aggregation procedure takes as input a
set of primitive edge tokens occurring at a single scale, o;, in the Scale-Space
Blackboard, and it returns a set of new edge primitives at scale o,. Let us
refer to scale o; as the current “input” scale, and scale o, as the “coarser”
scale. As implemented, the new tokens delivered are one octave coarser in
scale than the input tokens, though the algorithm does not depend upon this
rate of aggregation. The basic step proceeds in four smaller steps:

I. Identify seed poses for new coarser scale tokens.

II. Starting from the seeds, refine the placement of new coarser scale tokens
based on primitive edge tokens occurring at the input scale.
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III. Determine the strengths of these coarser scale tokens.
IV. Prune redundant coarser scale tokens.

These steps are discussed in turn.

4.1.1 Step I. Identify Seed Poses for Coarser Scale Tokens

A seed pose is an initial guess as to where a coarser scale token might be well
placed. Observing figure 20, we introduce seed poses at every primitive edge
token at the input scale, and at locations where two primitive edge tokens
approximately align with one another across an sn-distance (scale-normalized
distance) approximately equal to the twice the length of a token. Call the
latter case, “gap-jumping” seeds. The orientation of a gap-jumping seed is
taken to be the average orientation of the two input tokens that gave rise to
it.

The detection of gap-jumping seeds requires checking of input tokens
pairwise to determine whether or not they fulfill the seeding qualifications, i.e.
proper distance and alignment (and no other token aligned in between). This
operation is assisted enormously by the spatial and scale indexing provided
by the Scale-Space Blackboard, as this data structure greatly facilitates the
inspection of only tokens lying within some spatial neighborhood.

4.1.2 Step II. Refine the Placement of Coarser Scale Tokens

The second step is, for each seed, to determine the best pose for a new coarser
scale token suggested by this seed. Selecting the “best pose” originating from
a given seed involves finding a pose that tends to maximize the strength of
the resulting coarser scale token while tethering the new pose so that it still
“belongs” to the seed.

The general approach of the fine-to-coarse grouping procedure is that a
coarser scale description is to be aggregated from the information contained
in the finer scales. Accordingly, the algorithm computes a coarser scale to-
ken’s pose as a weighted average of pose information over some support set
of input tokens in the neighborhood of the seed (see figure 21). A question
immediately arises as to how each supporting input token associated with
a given new coarser scale token is to be weighted relative to the other sup-
porting tokens. The factors influencing this weighting are: (1) the spatial
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Figure 21. A token at scale o, is placed by taking a weighted average of
information contained in a set of support tokens occurring at scale o;.

relationship between the seed pose and the pose of the supporting input scale
token, (2) the proximity of other nearby, possibly redundant, supporting in-
put scale tokens, and (3) this supporting input scale token’s strength. These
factors are dealt with as follows:

1. Spatial relationship between seed pose and supporting input
scale token. Figure 22a shows several possible configurations among a
seed pose and the pose of an input-scale token that will have some influence
on the placement of a new, coarser scale token initially placed at the seed
pose. How should this influence, or weight, be assigned, say, as a number
between 0 (low influence) and 1 (high influence)? From figure 22 we reason
that influence should: (1) decrease with distance from the seed pose, (2)
decrease with distance faster across the orientation of the seed pose than
along its orientation, (3) decrease as the relative orientation of the seed pose
and the supporting token differ, but (4) less so as their sn-distance decreases.
These factors translate into the following expression for calculating the raw-
influence-weight, W, of a token, T;, occurring at scale o;, on the pose of a

12
token, T;, at the next scale, o, which has been initially placed at its seed
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Figure 22. a. A number of possible spatial relationships between a coarser
scale token placed at its seed pose (larger line segment) and one of its sup-
porting finer scale tokens (shorter line segment). The supporting token’s
influence is considered greater when it is near to and aligned with the seed
pose. b. The distance, D, and angle, ¢, entering into the Gaussian weighting
ellipsoid, G(**D, ¢.,;), shown in c.

pose:
W/ — G(®D, ¢.,;)[1 — min(1, B *®D?)|sin A9, |}, (7)

where **D is the sn-distance between the seed and the supporting input
scale token, ¢.; is the direction from token T, to token T}, Ab,; is their
relative orientation, and G(D, ¢) is an ellipsoidal two-dimensional Gaussian
weighting function with major axis aligned with ¢ = 0 (see figures 22b and c).
B and p are positive constants. The ellipsoidal Gaussian weighting function
has maximum value 1 when G = 0, and it trails off to 0 at infinity. This
ellipsoid’s aspect ratio is a free parameter, for which the value 4 : 1 has been
found to serve acceptably. The term in brackets drops below 1 only when
tokens are relatively distant and have substantially different orientations.
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Figure 23. The two smaller scale support tokens supply redundant pose
information.

2. The proximity of nearby, possibly redundant, supporting input
scale tokens. Figure 23 presents a situation in which two input scale to-
kens are very near to one another, and would contribute similar influence on
the pose of a coarser scale token initiated at the seed pose shown. The in-
formation that these two tokens offer about the underlying finer scale shape
is redundant, and these two tokens should not both share equal weight with
other tokens providing very different information. Some scheme is required
causing the information from input tokens located very near one another to
saturate in their collective influence upon the pose of the coarser scale token
under construction. This effect is achieved by the following procedure:

I. Sort supporting input tokens by decreasing raw-influence-weight, W'.

II. For input token T}, identify the supporting input token, Tj, that: 1.
has greater or equal raw-influence-weight, and 2. is most similar in
pose. Pose similarity, L, may be estimated by the following expression:

L(ﬂa T]) = G(snD’ ¢i,j) COos Aoi,j (8)

ITI. Choose the value of the modified-influence-weight, W/, for token T; in
such a manner that it decreases according to its degree of similarity to
its most similar stronger neighbor, T;:

Wi« W1 - L(T;,T})) (9)

3. Strength of this supporting input scale token. The influence-
weight of a supporting input scale token on the pose of a coarser scale token
should be proportional to the primitive edge strength, S;, of that input token.
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Thus, finally, the influence-weight, W, of an input scale token T} on a given
coarser scale token is expressed by

Wi — S;W} (10)

Once the influence-weights of all of its supporting input scale tokens have
been established, then the pose of each new coarser scale token may be deter-
mined. The new token’s (z,y) location can simply be taken as the weighted
average of the (z,y) locations of supporting tokens, and its orientation as
that providing best alignment with the locations of the supporting tokens, in
the least-squares sense. If desired, it is possible to devise formulas assigning
the coarse scale token’s orientation on the basis of the aggregate orientations
of the supporting tokens as well as their locations.

4.1.3 Step IIl. Determine Coarser Scale Token Strength

Under the Scale-Space Blackboard representation, the qualitative presence
or absence of a descriptive token such as, for example, an edge primitive,
i1s to be modulated with an indication of how strongly the token asserts
that its attribute is actually present, at a corresponding pose, in the shape
object under observation. This is the token’s strength parameter. Every
seed generated in step I leads to the placement of a coarser scale shape
token in step II. However, some of these coarser scale tokens represent better
primitive edges than others. Figure 24 presents a few examples of situations
in which the assertion of a coarser scale edge is more strongly or more weakly
supported by the finer scale edges present. Step III assigns a strength, S,
0 < § <1, to every newly created coarser scale primitive edge token.
Reasoning from the examples in figure 24, a coarser scale edge is strongly
supported when finer scale edges are aligned all along its length. Strength
decreases when: (1) the orientations of supporting finer scale edges deviate
from that of the coarser scale edge, and when (2) supporting tokens fail to
span its entire length. A mathematical expression reflecting these criteria is:

S « min{1, [min(Veum, C) + min(V,ont, C) + min(V,eqr, €)1}, (11)

where C is a positive constant. V,,,, is a sum over all supporting tokens, T},
of each supporting token’s contribution to the strength of the new coarser
scale token.

Veum = 2_Vi (12)
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Figure 24. A coarser scale token is assigned a strength according to whether
finer scale tokens are aligned with it all along its length. The situation in a.
receives greater strength than in b., c., or d.

Vi = WY cos® Af., (13)

where p and ¢ are positive constants, and Af is the difference between the
orientation of the coarse scale token and that of the supporting finer scale
token, T;. The use of the influence-weight, W;, ensures that redundant sup-
porting tokens do not unduly influence the strength computation. The terms,
Vront and Ve, in equation (11), weigh support at the two ends of the coarser
scale edge, as follows:

Vfront - Z ‘/ilsnDprojl (14)
ifront
‘/rear = Z ‘/ilsnDprojI (15)

*D,,,; is the scale-normalized distance between supporting token T; and
the new coarse scale token, projected onto the length axis of the coarse scale
token (see figure 25). Equation (11) is constructed so that in order for a token
to receive a maximum strength of 1, it must receive substantial support along
its entire length.
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Figure 25. D,,,; is the distance from a token to a reference token, projected
onto the reference token’s length axis.

4.1.4 Step IV. Subsample the Coarser Scale Description

By the principle of self-similarity, coarser scale edge primitives describe larger
portions of a shape image than do edge primitives occurring at finer scales.
Also, they are proportionately less precise in specifying absolute spatial lo-
cation. Therefore, the coarse scale description of a shape employs tokens
more sparsely distributed across the shape image than does a fine scale de-
scription. This is analogous to the case in signal processing, in which the
sampling required to reconstruct a signal depends upon its bandwidth.

The procedure for generating coarse scale tokens creates a new token at
every seeded location. When the jump in scale is one octave, approximately
twice as many coarse scale tokens are generated as are necessary. While this
should not be harmful to later computations for any fundamental reasons, it
is wasteful, and it adversely affects the perspicuity of the coarse scale shape
description. For this reason the fourth step in the fine-to-coarse aggregation
procedure is to prune the coarse scale shape description so that tokens overlap
one another by approximately 50% of their length.

The design of a procedure for subsampling the coarser scale description
follows three guidelines: (1) prune tokens of weaker strength first, (2) prune
a token lying very near another token in location and orientation, (3) prune
a token closely sandwiched between and aligned with two other tokens. See
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Figure 26. Tokens are pruned, weakest first, when they: a. lie very near in
pose to another token, or b. are sandwiched between other tokens.

figure 26. A satisfactory algorithm is the following:
I. Sort tokens by decreasing strength, S.

II. In three passes through the sorted list of all tokens, remove tokens
falling under criteria 2. and 3.

The three passes are taken with increasingly stringent bounds on how near
to another token a given token may not be. Taking several increasingly
severe passes has been found helpful in ensuring that weaker tokens which
may perhaps yet describe important nuances in shape are not prematurely
stomped out by stronger tokens.

4.2 Results

Performance of the fine to coarse edge primitive aggregation procedure is
illustrated in figures 27 though 30. As seen in figure 27, the coarse scale
description of the apple survives well even when the contour is interrupted
by the protrusion of a string (figure 27d), and when other large objects are in
proximity (figure 27b). In figure 27c, when the banana moves close enough
to occlude part of the apple’s contour, much of the apple’s boundary in the
vicinity of the banana is nonetheless detected at coarser scales.

Figure 28 helps to illustrate the fact that as scale increases, primitive
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Figure 29. Edge primitives are assigned a strength between 0 and 1. Tokens
stronger than a threshold are displayed at three scales, for threshold values
0.2, 0.5, and 0.9. Tokens aligning with well defined figure/ground boundaries
are stronger.
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edge tokens demark figure/ground boundaries of decreasing spatial resolu-
tion. This figure depicts grey-level images “reconstructed” from the tokens
residing in each of six slices of the Scale-Space Blackboard. For each token,
a lightened region (figure) and a darkened region (ground) were colored into
an 8-bit image on either side of each token. For convenience, the light/dark
colored region for each token takes the form of the oriented filter mask shown
in figure 8. As the pseudo-blurred images show, at coarser scales the prim-
itive edge information describes figure/ground boundaries of greater spatial
extent while smaller details of the object’s boundary are smoothed over.

In order to illustrate the significance of a token’s strength parameter,
figure 29 displays edge tokens at three scales using three different thresholds
on token strength. As may be observed, coarser scale edges that bridge gaps
and cut corners are assigned lesser strength than edges falling along a line of
smaller scale edges.

Figure 30 shows a situation in which the aggregation procedure fails to
identify coarse scale structure. Note that the smooth pear and rippled pear
giverise to nearly identical coarse scale descriptions. However, when the con-
tour texture of the pear is extremely jagged, finer scale edge tokens lie nearly
perpendicular to the large scale figure/ground boundary, and are not success-
fully grouped into coarse scale tokens falling along the boundary. Detection
of this sort of contour may be addressed by the development of additional
grouping rules, or else by some form of numeric smoothing operation.

We have shown that symbolic processes operating on collections tokens
in a Scale-Space Blackboard are able in most cases to construct successively
coarser shape descriptions in terms of a simple vocabulary in which tokens
denote edge primitives. The Scale-Space Blackboard also supports other
interesting grouping operations making explicit more complex shape entities.

5 Pairwise Grouping of Edge Primitives

Symbolic tokens denoting edge primitives are extremely simple, possessing
only the attributes of pose (location, orientation, and scale) and strength.
Let us refer to these as Type 0 tokens. This section introduces another class
of shape token, called Type I tokens, possessing one additional parameter of
internal state. Type 1 tokens are constructed from pairs of Type 0 tokens.
The spatial configurations (Type I configurations) subsumed by this class
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of tokens form a continuum which includes shapes that might be called,
“curved contour segments,” “primitive-corners,” and “bars.” These terms
are elaborated below. In analogy to the fine-to-coarse aggregation procedure,
we construct pattern matching procedures to identify Type 1 configurations
occurring in the Scale-Space Blackboard, and then mark these occurrences
by placing Type 1 tokens appropriately.

5.1 Definition of Type 1 Configurations

Two tokens in scale-space are spatially related to one another by four num-
bers. These numbers must collectively specify the tokens’ relative z and y
location, relative orientation, and relative scale. Type 1 tokens possess one
internal parameter whose range generates a one-dimensional family of con-
figurations, in other words, a one-dimensional constraint-curve in the four-
dimensional space of a pair of Type 0 tokens’ relative configuration (see
[Saund, 1987]). The definition for Type 1 tokens must therefore constrain or
otherwise account for three remaining degrees of freedom.

Type 1 configurations are defined by specifying three constraints on the
relative poses of the two component Type 0 tokens: (1) The Type 0 to-
kens must occur at the same scale, (2) The Type 0 tokens must be sym-
metrically placed, (3) The Type 0 tokens must lie at a fixed, prespecified,
scale-normalized distance from one another.

The first condition, that two Type 0 tokens satisfying a Type 1 configu-
ration must occur at the same scale, is straightforward.

The second requirement states that a Type 1 configuration must be com-
prised of Type 0 tokens that are symmetrically placed. This condition is
illustrated in figure 31; the relative orientations between each token and
the line segment joining them must be equal. This specification of angular
equality lies behind the definition of the Smoothed Local Symmetries shape
representation [Brady and Asada, 1984; Connel, 1985, Fleck, 1985], and has
also been called “co-circularity” by Parent and Zucker [1985).

Strictly speaking the first two conditions allow no tolerance for the tokens
to differ in scale or to deviate from symmetrical placement by even a slight
amount. Obviously, some tolerance is desirable. A potential question arising
is then, how much tolerance is acceptable? We handle this question by
appealing to a token’s strength parameter. The closer to identical scale and
perfectly symmetrical alignment a pair of Type 0 tokens are placed, the closer
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Figure 31. Constraints on the spatial relationship of a pair of Type 0 to-
kens (edge primitives) if they are to satisfy the Type 1 configuration con-
ditions: a. symmetric placement (co-circularity) b. fixed, predetermined
scale-normalized distance. An additional condition is that the Type 0 to-
kens must occur at the same scale.

to 1 can be the strength of the Type 1 token naming the pair. As the Type
0 tokens stray, the Type 1 token strength must drop to 0.

The third condition suggests that two Type 0 tokens satisfying the con-
ditions of a Type 1 configuration must lie at a characteristic predefined sn-
distance, ®**Dyorget, from one another. See figure 31. Now, a pair of Type 0
tokens may certainly lie at virtually any (true) distance from one another, de-
pending upon the geometry of the shape object giving rise to it. By equation
(4), a given true distance (D) corresponds to another given scale-normalized
distance (for example, ®*Dy,,,.:) only at one particular scale. However, the
fine-to-coarse aggregation procedure places Type 0 tokens only at octave in-
tervals in the scale dimension. We cannot guarantee that Type 0 tokens will
have been placed precisely where needed along the scale dimension in order
to satisfy condition 3 of the definition of a Type 1 configuration.

The resolution to this matter is to note that a shape description does not
change rapidly across scales. In other words, the orientation and strength
attributes computed for a primitive edge token at one scale would be almost
identical to those of a primitive edge positioned at a closely nearby scale.
Therefore it is fair to adopt the following tactic: pretend that a Type 0 token
placed at a given scale generates a virtual set of Type 0 tokens possessing
the same (z,y) location and orientation, but placed at all surrounding scales
within, say, a one-half octave range. Then, Type 1 grouping takes place on
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just the pair of virtual tokens required to satisfy condition 3. The resolution
amounts to this: place a Type 1 token in scale-space at a scale coordinate
depending upon the measured sn-distance between the two component Type
0 tokens. Specifically,

sn
oM =0'T0+A10g ‘Sq)—Tl-—, (16)
target
where o1, is the placement of the Type 1 token along the scale dimension,
oro and **Drq are respectively the scale of and scale-normalized distance
between the constituent Type 0 tokens, and **Dy;,g.¢ is the characteristic
sn-distance defined for the Type 1 configuration.

5.2 The Class of Type 1 Configurations

The internal parameter of a Type 1 token makes explicit one remaining degree
of freedom in the spatial configuration of two Type 0 tokens. This degree of
freedom is equivalent to the relative orientation of the Type 0 tokens. Figure
32 illustrates the range of configurations generated as this parameter varies.
Intuitive interpretations of several of these shapes come readily to mind.
When the Type 0 tokens’ orientations are roughly aligned, the parameter
makes explicit the local curvature of a curved-contour segment. When the

curved-contour primitive-corner bar

Figure 32. Members of the class of Type 1 configurations. Each member
defines the open boundary of a partial-region.
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relative orientation is more or less 90°, the parameter describes the vertex
angle of a primitive-corner.® Finally, when the Type 0 tokens are oriented
approximately 180° with respect to one another, the parameter describes the
taper of a bar. Bars, primitive-corners and to a lesser extent, curved-contours
demark local partial-regions, as shown by the shaded areas in figure 32. Note
that the Type 1 parameter may take either positive or negative values. Pa-
rameter values of opposite sign are related by reversal of the figure/ground
relationship.

Computation of Type 1 tokens from Type 0 tokens is quite straightfor-
ward. Pairs of Type 0 tokens satisfying the three criteria are easily found
by virtue of the spatial indexing and scale indexing afforded by the Scale-
Space Blackboard data structure. Wherever a Type 1 configuration is found,
a Type 1 token is placed at some suitable pose on the Blackboard, such as
midway between the constituent Type 0 tokens.

5.3 Results

Figures 33 through 35 present the results of Type 1 token grouping for several
shape objects. Each Type 1 token is displayed as a line segment placed at
the token’s pose in the image, with a small circle at one end indicating its
orientation. In addition, the two Type 0 tokens supporting this Type 1 token
are also drawn. For clarity, those Type 1 tokens are omitted which describe a
gently curved section of contour; only primitive-corners and bars are shown.

Figure 33 shows partial-regions found for a Trout-Perch shape. Note that
Type 1 tokens make explicit salient negative or background partial regions,
such as the fork of the tail, as well as regions forming parts of the figure
itself. These are distinguished by the sign of the Type 1 parameter within
each Type 1 token (although this number is not displayed). Figures 34 and
35 show that large scale partial-region description of the body of an apple is
not fazed by a radical alteration in the bounding contour formed when the
apple is hung from a string, nor by the presence of a nearby object such as
a banana.

Figures 33 through 35 also show that the Type 0 and Type 1 grouping
rules interpret the scale of regions and the scale of contours in a different

5The term, “primitive-corner” is used to emphasize that the Type 1 shape descrip-
tion occurs independently at different scales. The term, “corner” is reserved for future
descriptors of corner shapes integrating information across several scales.
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manner. Type 0 fine-to-coarse aggregation places figure/ground boundaries
at a coarse scale if they are of large linear (one-dimensional) extent. Thus,
the string tied to the apple generates coarse scale Type 0 tokens. In con-
trast, Type 1 partial-region grouping places shape features at a coarse scale
according to their two-dimensional spatial extent, or area. Therefore the
string, which is of locally small area because of its narrow width, appears
only at fine scales in the Type 1 representation.

It is worth noting that one aspect of shape structure not sought by the
Type 1 grouping rules is nonlocal symmetry. This is to say, structure is found
only at distances commensurate with the scale of the tokens being grouped.
In particular, at this early stage no attempt is made to identify configurations
such as shown in figure 36, where fine scale tokens form a symmetrical pair
but are spaced remotely with respect to their scale. This attitude bounds
the complexity of the Type 1 grouping operation because it limits the neigh-
borhood within which to search for other Type 0 tokens forming a Type 1
configuration with any given Type 0 token. The spatial and scale indexing
provided by the Scale-Space Blackboard provides the substrate mechanism
supporting this spatially limited search. Because the neighborhood of a Type

_ N

Figure 36. Type 1 grouping does not attempt to group pairs of edge primi-
tives located remotely with respect to their scale.
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0 token is defined in terms of scale-normalized distance, that is, that it’s ab-
solute size depends upon the scale of the Type 0 token itself, symmetrical
configurations spanning large distances are identified by the Type 1 group-
ing rules, but only when their component Type 0 tokens are themselves of
a large scale. This scale-relative quality of the computation arises naturally
from the property of self-similarity across scales supported by the scale-space
representation.

6 Conclusion

This paper has presented an alternative to numerical smoothing or blur-
ring approaches to building multiscale shape descriptions. By performing
grouping operations on symbolic shape tokens, coarse scale structure is made
explicit based on information present at finer scales of description. Unlike
numerical blurring, however, the symbolic grouping rules afford substantial
control over just what kinds of coarser scale structure is and is not identified.
As a result, the multiscale description of an object’s shape retains stability
under the presence of other nearby objects, such as when an apple is placed
near a banana, and under disruptions of perceptually salient contours, such
as when an apple is hung from a string. We acknowledge the importance
of treating regions and contours as complementary aspects of shape geome-
try, and therefore have designed distinct operations for extracting multiscale
contour and region information.

In the course of developing the symbolic grouping approach to multiscale
shape representation, we have introduced the Scale-Space Blackboard as a
tool for maintaining and accessing spatial information. Shapes are repre-
sented in terms of symbolic tokens placed on the Blackboard. This strategy
serves as a step toward bridging the gulf between the iconic or image-like
representation of a shape implicit in an array of pixels, and later stages of
representation making use of purely symbolic data structures. The tokens
placed on the Scale-Space Blackboard are symbolic in that they may contain
not just a grey-level value, but frame slots, numbers, lists, and pointers, yet
the representation is image-like in that the Scale-Space Blackboard provides
for indexing of tokens based on location and scale. The use of symbolic to-
kens, spatially arranged, was first suggested by Marr [1976] in his discussion
of the Primal Sketch. Although Marr recognized the significance of scale,
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Figure 37. “Spine” axes computed from the Type 1 tokens in figure 33 by a
very simple clustering algorithm.

possibility of interpreting scale as a distinct dimension in addition to the spa-
tial dimensions was not elaborated until some years later by Witkin [1983].
This work unites these two ideas. A similar approach to finding extended
straight lines in grey-level images is adopted by [Weiss and Boldt, 1986] and
[Boldt and Weiss, 1987|.

The stage is now set to construct additional procedures operating over
the contents of the Scale-Space Blackboard in order to identify more complex
and more abstract geometric events and shape properties. These procedures
may write new tokens onto the Blackboard, with token types corresponding
to the properties they identify. For example, one commonly sought shape
description is a listing of an object’s “spines,” or part axes. Figure 37 shows
axes found by performing a very simple clustering operation on the Type
1 tokens of figure 33. These spines are only an illustration that the multi-
scale shape description delivered does indeed support the extraction of more
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complex shape entities; the proper design of a “spine token” making explicit
taper, spine curvature, and so forth is a subject for further work.

Because the Scale-Space Blackboard retains a pictorial quality while the
symbolic tokens it contains may represent extended spatial events, or “chunks”
of shape, it is not unlikely that this approach to shape representation may
also serve as a suitable substrate for elemental visual operations supporting

Visual Routines [Ullman, 1983; Mahoney, 1987].
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