Massachusetts Institute of Technology
Artificial Intelligence Laboratory

A. I. Memo 1050a Revised October, 1989
Original Version September, 1988

What are plans for?

Philip E. Agre
David Chapman

Abstract

What plans are like depends on how they’re used. We contrast two views of plan use.
On the plan-as-program view, plan use is the execution of an effective procedure. On
the plan-as-communication view, plan use is like following natural language instructions.
We have begun work on computational models of plans-as-communications, building on
our previous work on improvised activity and on ideas from sociology.

To appear in Pattie Maes, ed., New Architectures for Autonomous Agents: Task-level De-
composition and Emergent Functionality. MIT Press, Cambridge, Massachusetts, 1990.

This report describes research done at the Artificial Intelligence Laboratory of the Mas-
sachusetts Institute of Technology. Support for the laboratory’s artificial intelligence
research is provided in part by the Advanced Research Projects Agency of the Depart-
ment of Defense under Office of Naval Research contract number N00014-85-K-0124.

Copyright (© 1989 Philip E. Agre and David Chapman.

1 Introduction

What plans are like depends on how they’re used. We contrast two views of plan use.
On the plan-as-program view, plan use is the execution of an effective procedure. On
the plan-as-communication view, plan use is like following natural language instructions.
We have begun work on computational models of plans-as-communications, building on
our previous work on improvised activity and on ideas from sociology.

The plan-as-program view and the plan-as-communication view offer very different
accounts of the role of plans in activity. The Plans-as-programs view gives plans a central
role. Plan use is only a matter of ezecution, performed by a simple, fixed, domain-
independent “interpreter.” Plans-as-programs directly determine their user’s actions.

The plan-as-communication view gives plans a much smaller role. It requires an ac-
count of improvisation. Plans, on this account, do not directly determine their user’s ac-
tivity. Indeed, an agent can engage in sensible, organized, goal-directed activity without
using plans at all. An agent who does use a plan-as-communication does not mechanically
execute it. Instead, the agent uses the plan as one resource among others in continually
redeciding what to do. Using a plan requires figuring out how to make it relevant to the
situation at hand, a process of interpretation which can be arbitrarily complicated and
draw on a wide variety of resources. The plan-as-communication view portrays people
and robots as participating in the world, not as controlling it.

Section 2 of this essay describes the plan-as-program view and some of the difficulties
with it. The difficulties concern the computational complexity of plan construction, the
problem of prediction in a world of uncertainty and change, the necessity of accommodat-
ing the simplicity of executives by specifying plans in impractical detail, and the largely
unaddressed issue of relating plan texts to concrete situations in the world. This paper is
not intended as a thorough survey of the literature on planning; for some useful surveys
see (Chapman 1987), (Swartout 1988), and (Tate 1985).

Section 3 outlines our view that everyday activity is improvisatory in nature. Impro-
visation might involve ideas about the future, but in any event it requires a continual
redecision about what to do now. Supporting this process of continual redecision is a
technical problem that we have addressed in our work. We briefly describe Pengi, a sys-
tem that employs novel kinds of perception and representation in playing a video game
called Pengo.

Section 4 presents the plan-as-communication view and contrasts its views of plan
use, representation, and activity with those of the plans-as-programs view. It further
illustrates the view with an example of plan use in the real world. Our analysis of this
example turns up several ways in which the plan’s maker counted on the understandings
of everyday reality that he shared with the plan’s users.

Section 5 pursues this theme in more detail in relation to an ongoing project. Chap-

1

man is constructing a system, Sonja, which uses instructions given in the course of
video-game playing. We argue that plan use and instruction use are similar, and sketch
some of Sonja’s capabilities.

Section 6 summarizes our principal conclusions and proposes that future inquiry con-
join computational analysis and model-building with principled and detailed observation
of human plan use in natural settings.

Since we wrote the first version of this paper in 1987, several authors have proposed
alternatives to classical planning. An appendix discusses a few of these proposals and
compares them to our own.

2 Plans as programs

The plan-as-program view takes plan use to be like program execution. Almost all
implemented executives have been modeled on programming language interpreters. A
plan language, on this view, is like a programming language. The plans are built from
a set of parameterized primitives (such as PUT-ON(x,y)) using a set of composition
operators (to indicate serial execution, for example). Executing a plan means walking
over it in a “syntactic,” “mechanical” fashion, carrying out its primitive actions and
monitoring conditions specified by the planner, and performing little or no new reasoning
about the activity in which the agent is engaged. The executive is domain-independent:
it applies no domain knowledge except that implicit in the plan and the machinery
that implements its primitive action types. It makes no interpretations of its sensor
inputs except for the monitored conditions and any predicates that might appear in plan
conditionals. Nor does it second-guess the planner by performing any interpolations,
substitutions, or rearrangements that would count as a departure from the plan. If the
executive gets into trouble, it gives up and returns control to the planner.

(The plan-as-program view implies domain-independent plan ezecution, not domain-
independent plan construction. Plan-as-program construction can be domain-indepen-
dent or domain-dependent, algorithmic or case-based, formally correct or heuristic.)

This section discusses four reasons to doubt the plan-as-program view. (1) It poses
computationally intractable problems. (2) It is inadequate for a world characterized by
unpredictable events such as the actions of other agents. (3) It requires that plans be
too detailed. (4) Finally, it fails to address the problem of relating the plan text to the
concrete situation. These problems with the plan-as-program view do not mean that
it is useless. We believe it may lead to practical applications in certain domains. Our
arguments only apply to domains, such as the world of everyday life, that are relatively
large, uncertain, and changing.

(1) The plan-as-program view makes planning into automatic programming with all

its formal undecidabilities. Chapman (1987) has proven several negative complexity
results, both about the manipulations that need to be performed on partially specified
plans and about the spaces through which plan-as-program planners must search. As
formalizations of actions and preconditions become more realistic, these results get worse
quickly. Complexity theory is, unfortunately, not an ideal tool for proving negative
results. The appendix will briefly discuss the possibility that heuristic solutions might
work well enough in practice. It is also possible that certain domains have enough useful
structure to permit the construction of tractable domain-specific planners. Chapman
(1987, page 353) has suggested that plan-construction algorithms at intermediate levels
of specialization might capture varieties of formal structure that might be shared by
classes of domains.

(2) The original planners made plans to achieve goals in well-behaved simulated
worlds. In these imaginary worlds, it was possible to construct a plan which consisted
of a representation of a sequence of primitive actions, which, performed in order, would
provably achieve the goal. Thus it was possible to formulate the “planning problem” in
terms of constructing something that would, when executed, control the robot. It has
been widely recognized in the last few years that in the real world, execution of a plan
brings important risks because unpredictable external processes can change the world
and causally affect the robot.

Plans-as-programs are not very flexible. If the robot’s interactions with its world fail
to work out as the planner expected, the plan itself will fail. If the planner explicitly
anticipates a specific, detectable uncertainty, it can either provide the plan with a con-
ditional branch or it can fashion a strategy that works regardless of how the uncertain
matter turns out. If the planner fails to anticipate an uncertainty, then a new plan will be
required. Reasons to abort or revise a plan can be divided into two classes, contingencies
and opportunities. If you’re about to walk through the kitchen door to fetch a pen, a
closed door is a contingency and a pen on a desk Just outside the kitchen is an opportu-
nity. Not all contingencies can be detected through precondition failures: maybe you can
put your pants on over your shoes without violating any preconditions, but usually it is
not sensible. Opportunities are still harder to test for because they are less obtrusive.
An enormous range of circumstances might count as opportunities in one situation or
another. In short, a new plan is called for whenever it is no longer sensible to continue
following the existing one. This is a grave problem for any executive that does not share
the knowledge and reasoning abilities of its planner.

In recent years, more attention has been given to the process of execution. As a result,
executives have become increasingly complicated. Much of this complexity has resulted
from practical experiences in trying to make plans-as-programs control real robots, ex-
periences that suggest increasing the responsibilities of the executive. In the end, we
believe, arbitrary amounts and varieties of domain knowledge can bear on how a plan

3

should be used. This means that an executive must have access to the full cognitive
resources of the whole agent. If the full cognitive resources of the agent are devoted to
using a plan, there will no longer be a separate executive module whose responsibility
that is. The distinction between planner and executive can be eliminated; the whole
agent is responsible for both plan making and plan use.

(3) It is generally acknowledged that no system could produce completely detailed
plans in domains of realistic complexity. Real activity is too complicated for that. It
follows that an executive has to be expected to fill in some details as it goes along. It also
follows that a planner needs some idea of what details it can rely on its executive to fill
in. A very simple executive will need everything spelled out for it, but if the executive
had more knowledge and reasoning abilities then the planner could paint the desired
actions with a broader brush. Ideally, a planner would only have to deal with issues that
the executive itself cannot. Its plans would not be laden with redundant details. Nor
would they prejudge decisions better left to the executive, which after all can base its
judgments on the world as it actually turns out, not on models of projected worlds.

The plan-as-program view offers us one account of how a plan can be operational
without spelling out every detail. If plans are like programs, then we can make compact
plans using a hierarchy of subplans. The planner has a library of subplans, each of
which has a contract. These contracts establish a partition between the issues that must
concern the planner and the issues that subplans can deal with themselves. They enable
the planner to live in a simple, abstract world, reasoning with the preconditions and
effects of the top-level subplans.

This subplan-hierarchy view of plans has a number of shortcomings. First, the execu-
tive still cannot depart from the plan other than to return control to the planner. Second,
it is unclear what sorts of domains permit hierarchical abstraction. The library subplans
have to satisfy their contracts regardless of the specific circumstances; this makes them
very difficult to construct. In complex real-world domains, where enormous numbers
of concrete contingencies can bear on abstract goal ordering issues, truly hierarchical
decomposition may not be possible. Lozano-Pérez and Brooks (1985) discuss the case
of a robot manipulation task: the choice of the initial grasp, the motions of the hand
required to position the part, the existence of a path to the destination, and the angles
at which compliant forces will be applied are all tightly interconstraining. Moreover, the
inevitable sensing and motion errors will propagate from one to another non-locally.

(4) An executive has to establish a causal connection between the text of the plan
it is executing and the materials in the concrete situation in front of it. The ontologies
of most existing plan languages posit a world made up of individuals, some of which
correspond to constant symbols in the agent’s axiom set. Thus, for example, the truth of
a typical blocks-world proposition like ON(A,B) is determined by a relation corresponding

4

to ON applied to individuals corresponding to A and B. A plan might achieve the goal
ON(A,B) by executing an action like PUT-ON(A,B). This requires that the executive be
able to determine automatically which individuals in its world correspond to the constant
symbols A and B. If every object has a bar-code affixed to it then it’s easy enough. But
blocks on tables and luggage in airports and cars in parking lots and turns on highways
very often take work to distinguish. Arbitrary domain knowledge can, and regularly does,
enter into determining which object is the one you want.

The practice of allowing primitive actions to traffic in constant symbols hides not only
this problem, but a deeper one as well. Much of the work of using a plan is in determining
its relevance to the concrete situations that occur during the activity it helps to organize.
By hiding this work, an executive that can automatically relate symbols to objects, we
feel, falsifies the nature of plan use. Using a plan requires domain-specific skills that a
programming language interpreter does not possess and situation-specific improvisations
that a programming language interpreter cannot perform.

The difficulties with the plan-as-program view reflect what we feel is a mistaken notion
of what plans are for; that is, of what activity is like and of what role plans can play
in it. The plan-as-program view understands activity as a matter of problem solving
and control. The world presents an agent with a series of formally defined problems
that require solutions. A planner produces solutions to these problems. The executive
implements these solutions by trying to make the world conform to them.

The world of everyday life, however, is not a problem or series of problems. Acting in
the world is an ongoing process conducted in an evolving web of opportunities to engage
in various activities and contingencies that arise in the course of doing so. Most of what
you do you already know how to do, and most of the rest you work out as you go along.
The futility of trying to control the world is, we think, reflected in the growing complexity
of plan executives. Perhaps it is better to view an agent as participating in the flow of
events. An embodied agent must lead a life, not solve problems.

We suspect that part of the appeal of the plan-as-program view derives from the word
“execution.” To execute a command or instruction is to carry it into effect; to execute an
action or operation is to perform it. The word is little used except in legal and adminis-
trative senses and by football coaches, but even its broader use suggests an activity that
takes place in a narrowly specified institutional context, with articulated constraints and
strict criteria, and with negligible room and need for variation, interpretation, improvisa-
tion, or any other deviation on the part of the person doing the executing. To “execute”
a plan isn’t just to “follow” it, it’s to follow it “to the letter” and “by the book.” In
short, the word “execution” suggests thinking of a plan as a pretty-well-thorough repre-
sentation of a sequence of actions, so that execution is a simple process. Perhaps that is
why it has seemed so natural to assimilate plan execution to running a program on an
programming language interpreter.

3 Participation

What might an alternative to plans-as-programs look like? Let us start by retiring the
prejudicial term “execution” and instead speak more neutrally of people (or robots) as
“using” plans. This simple terminological change makes some hard questions seem more
urgent. First, what can one do with a plan besides executing it? Second, how do plans
and plan-making change if plan users can be counted on to use plans sensibly rather than
mechanically executing them?

We don’t know if these questions must have the same answers for robots as they do
for people. But so long as alternatives to the plan-as-program view are in short supply,
evidence from human plan use can bring some perspective. Most of what is known
has been discovered by social scientists such as Gladwin (1970), Hutchins (1987), Scher
(1984), Suchman (1986, 1987), Scribner’s group (Scribner 1984, Beach 1986), and the
Soviet activity theorists (Vygotsky 1962, Wertsch 1985). Our own analysis draws on this
material, though a detailed discussion of it would take us too far afield here.

The plan-as-program view gives plans a central role in determining activity. In par-
ticular, it claims that an agent acts as it does because it has a certain plan. We do
not believe this claim. According to the plan-as-communication view, a plan does not
directly determine an agent’s actions. Instead, a plan is a resource that an agent can use
in deciding what to do. What, then, does determine an agent’s actions? Answering this
question is the job of a theory of activity. After briefly summarizing our understanding
of activity in this section, we will return to the question of the role of plans in activity.

Our theory of activity has two interconstraining parts: a theory of cognitive machinery
and a theory of the dynamics or regularly occurring patterns of activity. In studying
people we ask (i) how is ordinary human activity organized and (ii) what does this imply
for the organization of human cognitive machinery? In studying machines we ask (i)
what forms might an agent’s activity take and (ii) what sorts of cognitive machinery are
compatible with what sorts of activity?

Our answers to these questions are informed by the central theme of participation in
ongoing activity whose determination is shared with other processes and agents. Every-
day routine activity, we believe, has an orderliness and coherence that is independent of
any plan or other representation of it. See (Chapman and Agre 1986) for some of this
story and (Agre 1988) for some of the rest. We have found, in the case studies that we
have conducted, that participating in the flow of the environment, rather than attempt-
ing to control it, can simplify the machinery required to account for the organization of
activity.

We built the Pengi system (Agre and Chapman 1987) to illustrate some of what
we have learned. (For details about Pengi’s workings see Agre 1988.) Though Pengi
engages in complex patterns of activity, its machinery is extremely simple: a visual
system based on psychophysically motivated ideas from Ullman’s visual routines theory

6

(1982), a simple motor system, and a central system made entirely of combinational
logic. (For some related projects, see Brooks 1986, Drummond 1989, Kaelbling 1986,
Maes 1989, Nilsson 1989, Rosenschein and Kaelbling 1986, and Schoppers 1987.)

Pengi does not follow any plans, but neither is it pushed around by its world. The
Pengo games Pengi plays move fast, so Pengi constantly uses the contingencies and
opportunities of its environment to help it improvise ways to pursue its projects. Im-
provisation differs from planning-as-programming in that each moment’s action results,
effectively, from a fresh reasoning-through of that moment’s situation. Yet improvisation,
like planning, involves ideas about what might happen in the future.

One of Pengi’s contributions is a new participatory theory of representation we call
indezical-functional, or deictic representation (Agre 1988). Whereas traditional repre-
sentations posit a “semantic” correspondence between symbols in an agent’s head and
objectively individuated objects in the world, our theory describes a causal relationship
between the agent and indezically and Junctionally individuated entities in the world.
For example, one of the entities Pengi works with is the-bee-I-am-chasing. This entity
is individuated indexically in that it is defined in terms of its relationship to the agent
(“I”). It is also individuated functionally in that it is defined in terms of one of the agent’s
ongoing projects (chasing a bee). Whereas in a traditional representation, the symbols
BEE-34 and BEE-35 would always refer to the same two bees, different bees might be the-
bee-I-am-chasing at different times. Pengi uses its visual routines—patterns of directed
visual activity—to register aspects of various entities, for example the-bee-I-am-chasing-
is-running-away. The participatory nature of deictic representation means that Pengi
deals with its environment through a constant interaction with it rather than through
the construction and manipulation of models.

Let us consider a relatively complicated example, starting from the situation illus-
trated schematically in Figure 1. In this situation, the penguin (played by Pengi) wants
to kill the enemy bee by kicking an ice cube at it. Ice cubes, when kicked, slide across
the two-dimensional game board in a vertical or horizontal direction. Thus, to kill a
bee, an ice cube must be aligned with it in one of the two Cartesian dimensions. In this
situation, no ice cube is aligned with the bee. However, if the penguin first goes over
to the ice cube labeled the-projectile-cube and kicks it right, it will collide with the ice
cube labeled the-stop-cube and come to a halt. (Energy is not conserved in this game.)
The-projectile-cube will then be aligned with the bee, and can be kicked at it.

A planning system might approach this situation by constructing a four-step plan:
go to left side of the-projectile-cube; kick the-projectile-cube; go to top of the-projectile-
cube; kick the-projectile-cube. The executive that is given this plan must verify the plan’s
continued applicability by checking a long list of conditions that might have arisen to
invalidate it: the bee might wander away, or another bee might draw close and need
to be dealt with, or another bee might kick some ice cubes and thereby disturb the
configuration in a way that makes carrying out the plan impossible.

U S
the-projectile-cube the-stop-cube

v)

the-enemy-bee
the-penguin

Figure 1. A Pengo situation that requires looking ahead.

Pengi constructs no plans and no models of hypothetical future worlds. It does,
however, take probable future circumstances into account; in place of simulation Pengi
uses visualization. Pengi looks to see what might happen next. It engages in visual
routines which find particular spatial configurations that predict courses of events and so
suggest actions. For example, when Pengi sees that an ice cube adjacent to the penguin
is aligned with a bee, and there are no intervening ice cubes, it kicks it, making it likely
to strike and kill the bee. When it sees such an ice cube that is only near, rather than
adjacent to, the penguin, it moves the penguin in the direction of the ice cube, because
once it gets there the bee might still be aligned. If no ice cubes are aligned but the complex
configuration of Figure 1 obtains, Pengi sends the penguin over to the-projectile-cube in
order to kick it at the-stop-cube.

Put in the situation of Figure 1, Pengi may well engage in the same course of activity
a planning system would, but for quite different reasons. Consider, for example, why
each system would take the fourth and final action, kicking the-projectile-cube at the bee.
The executive would take this action because the value of its program counter is four.
Pengi takes the action because, by visualizing, it can see that by doing so it is likely to
kill the bee. Once it has gotten to that point, it has no use for the idea that kicking that
ice cube is part of a larger pattern of activity.

Even though Pengi’s network is only partially implemented, it still plays a pretty
decent game of Pengo. We started designing the network by envisioning a series of
scenarios, which we call routines, of the common patterns of interaction between the
player and the game. In practice, Pengi often exhibits these routines. It is relatively
unusual, though, for Pengi to carry off one of our envisioned routines without a hitch.
Pengi regularly aborts a routine when a contingency arises, tries some action repeatedly
until it works or until it notices a more promising option, embarks on a new routine
when an opportunity arises, interleaves different routines, and combines its repertoire
of activities in useful ways we didn’t anticipate. (It also regularly does silly things in
situations for which we haven’t yet wired it.) Pengi exhibits this flexibility precisely
because we did not convert our envisioned scenarios into a repertoire of plans for Pengi
to execute. Instead, we analyzed what reasoning should lead Pengi to take what actions
in what kinds of situations. When it was possible for these lines of reasoning to conflict,
we implemented a simple arbitration scheme that takes various aspects of context into
account in deciding which of the various plausible actions to take on each next moment.
Pengi thus effectively makes fresh decisions on every cycle of its clock about the nature
of its current predicament, what goals it should adopt to deal with that predicament,
and what actions it should take to further those goals.

The plan-as-program view may make it a little difficult to grasp the sense in which
Pengi creatively improvises. It may seem that, since Pengi will always do just what
it’s wired up to do, it is completely uncreative; no more than a wind-up toy. This is,
however, equally true of a planner: it too does just what it was programmed to. The

9

apparent difference lies in the fact that a planner explicitly considers and rejects many
alternative actions. This seems to give it an infinitely generative combinatorial power
that Pengi lacks. Pengi, however, has its own kind of generativity, an infinity of dynamic
possibilities rather than an infinity of structural combinations. Like Simon’s Ant (Simon
1970), Pengi enters into forms of interaction with its environment which exhibit a great
deal of complexity, but for reasons which do not lie in either Pengi or its world alone.
Like a planner, Pengi is “given” something and complexity arises from the combinatorial
possibilities that arise when that something is put into action. With a planner, these
combinatorial possibilities are explored mentally. With Pengi, they are encountered in
the course of the activity. We did not design a device that could simulate a certain
complex way of life; we designed a device that could live that life.

It is sometimes said that we should measure a system’s achievement by comparing
how much it is “given” as compared to how much it “does for itself.” By this criterion,
though, it is not obvious whether we should prefer Pengi or a conventional planner. Pengi
has an invariant part of its architecture (the visual system and the general central system
design) and a part varies with the domain (the wiring of the central system). A planner,
similarly, has an invariant structure (the plan-space search algorithm) and a part that
varies with the domain (at a minimum this includes a set of operators, an axiomatization
of the domain, and a set of primitive sensors; to be efficient, it will probably also require
a set of domain-specific inference mechanisms and search strategies). It is hard to say
which kind of system has the better ratio of “given” to “done-for-itself.” Since a real
autonomous agent should be able to learn new domains for itself, a real comparison will
depend on which is easier to learn; and in the absence of well-worked-out theories of
learning for either alternative this is as yet impossible.

The circuitry in Pengi’s central system, of course, has a fixed structure. Designing
this circuitry is as hard as any other sort of complex programming; we do not believe
that such circuitry could arise through general-purpose automatic synthesis. Instead,
we believe that this circuitry arises in the course of the agent’s interactions with its
environment, through a long process of incremental evolution. In earlier work on running
arguments, Agre (1985, 1988) investigated some of the forms this process might take. He
built a fairly general-purpose rule system, a streamlined version of Amord (de Kleer et
al. 1977), which maintains dependencies on its reasoning. As it runs, it accumulates a
large dependency network that can be regarded as a combinational circuit connecting
perception and memory elements to primitive actions. Though not entirely realistic, this
scheme provides some sense of the form that incremental learning through modification
of central-system circuitry might take.

The running argument system’s dependency network grows in the course of its inter-
actions with the concrete situations in which it must decide what to do. Faced with any
situation at all, the system behaves as though it has forward-chained all of its rules to

10

exhaustion. It does not achieve this behavior, though, by continually undertaking the
very expensive process of actually running all those rules. Instead, most of the work is
actually done by the previously conducted lines of reasoning stored in the dependency
network. The system only runs the new rules that the dependency network does not
record, so the amount of actual rule-firing effort that a new situation requires is propor-
tional to how novel it is. Once the running argument system has encountered the normal
run of situations that occur in its environment, it needs to run very few rules at all. Since
“situations” are counted in terms of their significance for the agent’s current understand-
ings and goals and not in terms of an exhaustive enumeration of true propositions, the
system’s recorded lines of reasoning will apply to a wide variety of future circumstances.

In forms of activity which are generally routine, such a system will be able to engage
in rapid, flexible forms of interaction without a prohibitive computational overhead. The
principal shortcoming of the particular system described in (Agre 1985, 1988) is that it
is incompatible with a representation scheme based on constant symbols; this was one of
the motivations behind the development of deictic representation. The general strategy
of learning through particular occasions of situated reasoning about action is similar
in spirit with the notion of case-based planning (Hammond 1989), whose conception of
memory structure is much more elaborated.

Pengi illustrates some ideas, but Pengo-playing differs from other human activities in
many ways. Most activities are less hectic, have more complex goal structures, require
more remembering, involve additional kinds of representation such as visual imagery and
internal language, and so forth. Our experience with Pengi has focused the issues for a
new round of study of dynamics and machinery.

Pengi, as we have mentioned, neither makes nor uses plans. Pengi engages in a
continual, participatory interaction with its environment. Yet its activity is directed
toward particular concrete goals: killing certain bees, staying clear of others, becoming
adjacent to ice cubes it might usefully kick, and ultimately winning the game. Does
this mean that plans are useless? Not at all. Pengi is a study of a certain subset of
the dynamics of improvisatory activity. A creature that can participate in this set of
dynamics can play Pengo.

Many other activities do require plans. If Pengo got harder, for example, Pengi might
sometimes have to refer to a plan. The plan might explain how to deal with some tricky
situation, or perhaps what strategic issues bear on the matter of which bees to attack
when. But what would be involved in using plans like these? What role can plans play
in an improvisatory theory of activity? This is the subject of the remainder of the paper.

11

4 Plans as communication

In place of the plan-as-program view, we would like to propose a different account of
what plans are for which we will call the plan-as-communication view. The two views
differ as to the nature of plan use, the way in which plans are representations, and the
nature of activity.

Nature of plan use. For the plan-as-program view, a plan decomposes into primi-
tive actions which can be simply “emitted” by the executive, a simple, fixed, domain-
independent device. For the plan-as-communication view, figuring out what activity a
plan suggests requires a continual interpretive effort. It can take a lot of work to deter-
mine what in the situation the plan is talking about. A plan is operational if a sensible
and suitably acculturated agent can use it, somehow, to engage in the activity it de-
scribes. A plan is a resource you can draw on in deciding what to do, on an equal basis
with other resources such as the arrangement of your equipment, external memory de-
vices like scratch paper, and help from your friends (Suchman 1987). Unlike executives,
people using plans know more or less what they are doing and why. Thus a plan is often
well thought of as a mnemonic device. (For another computational interpretation of the
idea of plans as resources that, unlike our own notion, maintains a notion of a complete
world model, see Payton 1989.)

Nature of representation. A plan-as-program “represents” a course of action in a very
simple sense, insofar as programming languages have roughly compositional semantics.
Each primitive of a programming language always occasions the same action, regardless
of the context. For the plan-as-communication view, a plan “represents” a course of
action in a much more complex sense, insofar as a linguistic entity’s meaning depends on
the context of its use in a hundred different ways. In particular, a program represents its
actions “exhaustively” where a linguistic entity cannot and need not.

On the plan-as-program view, plans are abstract mathematical entities. On the plan-
as-communication view, plans are social constructions (Hutchins 1987, Wertsch 1985).
Children learn collaboration before they make plans for themselves. Our ability to make
and use plans is built on our ability to use language during activities we share with others.
Many plans are physical objects such as wall charts, instruction sheets, blueprints, and
bound business plans. Others are spoken utterances, as might be produced in response
to the question “So, what’s your plan for the afternoon?” The nature and use of these
externally represented plans are relatively easy to study. People also make and use plans
that are represented only internally. We’ll suggest later that these are similar to external
ones in important respects. In any case, external plans seem like a good place to start
study.

Plans-as-communications, unlike plans-as-programs, do not constitute a unified phe-
nomenon. A lot of disparate sorts of things, used quite differently, can count as plans-as-
communications. Plans-as-communications shade off into a variety of other phenomena,

12

such as mnemonics and conversation and visual imagery and written lists and sched-
ules and workspace arrangement. While you might be able to implement an agent
that could use plans-as-communications, the agent’s design would not contain a plan-
as-communication-using module, since the whole agent must be brought to the task.

Nature of activity. In the plan-as-program view, the only situation given thorough
consideration is the “initial situation” passed in to the planner. During the course of
execution, the circumstances that arise can only determine conditional branches or cause
control to be returned to the planner if something goes obviously wrong.

The plan-as-communication view is part of a theory of “situated activity” (Suchman
1987, Lave 1988). Situated activity is not some special variety of activity. The phrase
emphasizes that a central feature of all activity is that it takes place in some specific,
ongoing situation. The plan-as-communication view suggests that the world’s indepen-
dence of your control is not an obstacle to be overcome but a resource to be made use
of (cf. Suchman 1986). If your activity is not rigidly controlled by a plan, contingencies
need not be disruptive; instead they can occasion creative improvisation.

In choosing the plan-as-communication view over the plan-as-program view, we im-
plicitly promise to explain the role of plans-as-communications in a broader theory of
situated activity. This is a big project. The remainder of this essay sketches some
starting points.

Let us consider a typical example of human plan use. The route from my (Agre’s)
flat in Boston to the subway station, a distance of about three blocks, is hard to describe
without drawing maps. (See Figure 2.) Nonetheless, we found that three experimental
subjects unfamiliar with the area had no difficulty traversing the route using as a plan
only the written instructions “left out the door, down to the end of the street, cross
straight over Essex then left up the hill, take the first right and it’ll be on your left,”
which is nothing compared to the actual complexity of the trip.

Consider how much these directions leave out. “The door” is presumably the front
door of the building. There’s no need to tell you to walk down the street in the direction
that “left out the door” will leave you headed; when you’re on a path you don’t need a
plan. No need to label “down to the end” a figure of speech rather than an instruction
to descend somewhere. No mention, either, of the fact that Essex Street is not marked
as such anywhere near its intersection with Edinboro Street. There’s no need to mention
it, since it’ll be clear which street is meant once you get there. (Our subjects reported
being bothered by the lack of a sign but all of them proceeded correctly anyway.) “Left
up the hill” will manage to refer to the Avenue de Lafayette rather than to Essex Street
because it’s the only hill you can see when you’re standing at that intersection looking
that way. Getting to the Avenue will require a brief rightward detour to get around a
fence. No need to mention either this detour or the necessity of crossing the Avenue.

13

subway
entrance
i}

Chauncy Street

''''' |
] psing |
3
— B
33 ! Ming'’s | &
[| g
Edinboro Street 3
\

Figure 2. The route from 33 Edinboro Street to the Washington Street subway station,
early 1986. (Not to scale.)

When I walk this route myself I typically cut through a parking lot that precedes the
“first right.” The directions leave out the parking lot altogether; presumably you will
have the sense to see the first right coming and cut the corner; and it doesn’t matter
if you don’t. You'll also need the sense not to interpret a driveway or the parking lot
itself as that first right. Everyone relies heavily on these sorts of things, usually without
specifically knowing it, when giving directions. Some people are better at it than others.
For example, experienced urban direction-givers know that alleys can confuse people
who’ve been directed to count lefts or rights.

When you’re using a plan, your surroundings are available as a resource for interpret-
ing it. A plan that refers to “the hill” counts (roughly speaking) on there only being one
hill apparent to someone who has gotten that far in the plan. A plan that instructs you
to “take the first right” counts on it being clear which street is indicated. “Counting”
and “clarity” are defined reflexively, almost circularly, as that which a given person will
be able to figure out in a given situation.

The plan also relies on your experience and skill. The instruction to “walk down to
the end of the street” assumes you have the sense to disobey it when the street is full of
slush or garbage or dangerous-looking people, as it often is. The plan omits things you
already know, like how to cross a street, how to use street signs, how to detect another
street coming up, and where it’s safe and legal to walk. It also omits things you can

14

be trusted to figure out for yourself, like how to recognize the subway station, how to
wind your way past the trash strewn outside Ming’s grocery, and how to get some new
directions if you get lost.

In short, this plan exploits a long list of ways in which its maker and its user share
an understanding of the world. We would like to suggest that this lesson generalizes
in several ways: that the list of shared understandings is actually innumerably long;
that all plans depend on shared understandings in this way; that action in the real
world is sufficiently difficult to specify that plans must depend on innumerable shared
understandings to be expressible at all; and that all of these points apply regardless of
whether the plan’s maker and user are the same agent or different agents.

The plan-as-program complexity analysis does not apply to plans-as-communications
because they are guides to activity, not solutions to problems. This does not, of course,
mean that making plans-as-communications will be easy. One important factor that
ought to simplify the process, though, is the knowledge that the plan’s user will use it
intelligently rather than executing it like a computer program.

5 Sonja

Reducing plan use to natural language comprehension might not sound very helpful. We
certainly don’t want to trivialize the role that natural language plays in situated activity;
it’s a big topic (see for example Heritage 1984, Stucky 1987). We have simplified the
problem of plan use by studying situated instruction use, the use of instructions given in
the course of on-going activity. Situated instruction use is analogous to plan use, with
three principal differences: that instructions are given at appropriate times, whereas a
plan user must keep track of where it is in the plan; that situated instructions are typically
simpler syntactically than are full-fledged plans; and that instructions are provided by
an external agent, whereas plans may be made by the same agent that uses them. The
first two of these differences are straightforward simplifications; the third requires some
comment.

External plans you’ve made for yourself, such as written-down lists of things to do, are
perhaps more obviously similar to those made by someone else. The principal difference is
that in making a plan for yourself, you can leave out still more detail and be idiosyncratic
about abbreviations and conventions. The plan you make for yourself will function more
as a mnemonic device than, say, a recipe in a new cookbook. Nonetheless, the same
issues of keeping track of the plan’s relationship to the concrete circumstances will come
up.

We take instructions in internal language (that is, silent speech conducted in ordi-
nary natural languages) as prototypical of internal plans-as-communications. We take
literally the phrase “telling yourself what to do.” We believe that the ability to instruct

15

yourself in this way is based on your ability to give instructions to others and to follow
instructions given to you. This stance has been explored by the psychologist Vygotsky
(1962), who explains the similarities between internal and external language and also
how internal language becomes abbreviated and idiosyncratic. In (Chapman and Agre
1986) we suggested that this internalization process works by part of your brain coming
to simulate the external world, thereby “fooling” other parts of your brain into thinking
that they are actually engaging in activity when you are actually just thinking; a sim-
ilar account appears in (Rumelhart et al. 1986). In this case, the necessary hardware
simulates the process of hearing what you are saying out loud, forming a sort of “null
modem?” that lets you hear what you are thinking.

Situated instruction use differs from logical advice-taking (McCarthy 1958) in that the
agent interprets the instructions in relation to its specific ongoing situation. Instructions
are understood in terms of the agent’s existing ability to understand what is at stake in
the situation and to act autonomously to pursue its projects. The instructions thus play
only a management role.

Chapman (forthcoming) is now constructing a system called Sonja' which, like Pengi,
can engage in complex activity without use of plans, but which can also use instructions
when given them. Sonja is based in part upon an empirical study of video tapes of human
video game players who are given advice by a kibitzer, or by another player when two
are playing cooperatively. The players in these tapes are already good at video games
and at the coordination required for cooperative play; in many cases they are expert
at the particular game they are playing. As a result, their activity is largely routine.
Moreover, the players see the same screen and have much the same understanding of the
game, so they can depend on their shared understanding to achieve most coordination.
Thus they need say very little. With rare exceptions, their talk serves only to repair
minute differences in understanding. One player might simply say “No!” because there
are only two activities the other might plausibly undertake in the current situation. The
utterance exploits their commonality of understanding to interpret the listener’s moves
as constituting a certain activity, judge that activity to be the wrong one, and suggest
that he desist from that activity and instead join the speaker in the other one.

To take another example, very often on our tapes one player will say to the other
“Turn left!” Most often, the other player does not immediately turn left. Yet this is
not an error, nor is the advice erroneous, nor does the speaker consider that she has
been disobeyed. In fact, a viewer will generally agree that the instruction was carried
out. Activity other than immediately turning left can count as fulfilling the instruction
in many domain-specific ways.

¢ In some cases, the doorway through which it will be possible to turn has not yet

1Sonja is pronounced with an English j, “Sahn-djuh,” not a Continental one, “Sewn-ya,” because it
is named after a comicbook character.

16

been reached, so that turning left would run you into a wall. In these cases, turning
left is deferred.

e When the point at which a turn is possible is reached, there may also be a doorway
on the right, and there may be an monster hiding behind the door. If the monster
will shoot her in the back when she turns left, the player will turn right and kill
the monster before turning back around and proceeding.

* In one case in our collection, the player passes the turn to pick up a valuable energy
pod and then returns to comply with the instruction.

e Again, it may be that there is no left turn available, but there is an obviously
correct right turn; in this case, the player may well figure that her interlocutor has
simply said “left” for “right” in the heat of the moment, and turn right without
comment.

The player is only likely to say “huh?” when completely unable to make sense of the
instruction.

Not only can instructions be deferred; often they can be enacted with actions that,
taken literally, violate them. For example, during a game of Gauntlet one player said
“Don’t go below that line,” pointing at an imaginary line on the screen. Monsters in
Gauntlet always head straight for you. Thus it is often important not to pass below the
edge of a wall; if you do, monsters will stream around the corner and attack you. How-
ever, everyone eventually did go below that line without the instruction being explicitly
rescinded; they mutually understood that it was now time to go after that particular set
of monsters.

Videogame instruction can be so compact because their possible import is heavily
constrained by indezicality, projection, and reflezivity.

Indezicality. We interpret communications with regard to the present circumstances.
“No” offers advice about some ongoing activity whose manifestations are visible to both
players through the motions of one of the figures on the screen. “Turn left” picks out
a certain corridor in the maze, one which is specified in terms of the listener’s current
location and heading. “Don’t go below that line” picks out a certain tmaginary line that
the speaker can point at because both parties know to visualize it. In each case, the
players are not making reference to objectively available “features” of the video screen
but to shared interpretations of the commeonly-visible whirl of colored lights.

Understanding indexical instructions involves complex perceptual processing, which
is carried out using Sonja’s visual system. (This visual system is similar to, but more
sophisticated than, that of Pengi.) This processing often results in a new take on the
situation. For example, if Sonja hears “Use the knife!” and it hasn’t yet noticed any
knives in the scene, it uses a visual routine to find one. Once it can see the knife, it
notices properties of it, for example that it is easily accessible, and acts on them.

17

Projection. Each of us knows what might be expected to happen next. An imperative
like “No,” “Turn left,” or “Don’t go below that line” will typically invoke a projection of
the specified course of events and another projection of the “or else” that might result if
the listener disobeys. Skilled players will generally be able to perform both projections
since they are familiar with the ways of the game. Visualization is Sonja’s principal
means of projection.

Reflezivity. Both the player and her advisor understand that they share an under-
standing of the situation; since the other person’s understanding is part of the situation,
this applies recursively. The kibitzer can only expect “No” to communicate if the player
understands herself to be engaged in the particular activity “No” recommends against;
the player can only make sense of the instruction if she imagines that the kibitzer con-
siders her to be engaged in that activity; the kibitzer must further be able to count on
the player imagining this; and so on. Likewise, both players must reflexively understand
that “Turn left” picks out a certain corridor and that “Don’t go below that line” picks
out a certain imaginary line.

In our empirical studies, the players assume to an amazing extent that they both see
the evolving game the same way, despite its large number of continually shifting issues.
The players must make this assumption. If they didn’t then they could never finish
specifying everything that would be necessary to relate their advice to the evolving game
situation. Indeed, we doubt if the players could list their shared understandings if they
had to. Communication doesn’t pick up a “meaning” from my head and set it down in
yours. Instead, communication is part of the work of maintaining a common reality. The
players share a common reality because they are competent players and because they use
language to keep their shared reality in good repair.

Sonja illustrates certain themes in natural language pragmatics. It makes no attempt
to implement a realistic theory of syntax or semantics. However, (Chapman forthcoming)
will sketch a theory of syntax which does not require the creation of parse trees or
other datastructures, and which may be implementable in a Pengi-like architecture. This
theory, based on linguistic routines, might support plan making and might be amenable to
internalization. It might, therefore, be the basis of an account of plan-as-communication
making and use; but this is all still highly speculative.

6 Conclusion

We have outlined and contrasted two views of the nature of plans and plan use, the plan-
as-program view and the plan-as-communication view. We have offered some reasons to
doubt the plan-as-program view and speculated briefly about the nature of plans viewed
as communications about situated activity. Specifically, we argued that

18

1. Plan use is not necessary for sensible action. When a plan is used, it does not
directly determine its user’s activity.

2. Plans represent the activity they describe in the way a recipe represents the activ-
ity it describes, rather than in the way a program represents the computation it
describes.

3. Figuring out how a plan relates to your current situation requires a continual in-
terpretive effort. This interpretation is often difficult and can require arbitrary
domain knowledge and reasoning abilities. It can also require concrete actions such
as looking around, asking for help, and manipulating the materials at hand to see
how they relate to the ones mentioned by the plan.

4. The ability to make and use plans arises from, and is continuous with, one’s expe-
rience with cooperative language use in the context of ongoing concrete activity.

5. Plan use relies on an unbounded set of assumptions that the plan’s maker and user
share concerning activity in the world generally and the evolving concrete situation
in particular.

6. Using one’s own plans is much like using plans communicated by someone else.

Many of the technical questions raised by the plan-as-communication view are as
yet ill-defined, and certainly unanswered. Our initial ideas are only starting points.
We do suggest, however, that research into the dynamics of plan making and plan use
requires a worked-out view of the nature of everyday activity. Finally, we suggest that
a critical and never-ending prerequisite to such an understanding is continual, detailed,
sociologically informed observation of the ordinary everyday situated activity of the only
truly successful plan makers we know of, namely human beings.

19

A Some other alternatives

Since we wrote the first version of this paper in 1987, several other papers have appeared
reporting projects which address the difficulties that have come up with traditional plan-
ning ideas. We cannot conduct a comprehensive review here. Instead we will briefly
discuss some of the work that goes by the names of interleaved planning, behavioral
modules, heuristic planning, reactive planning, and plan-as-constraints. These proposals
avoid many of the problems we have ascribed to the plan-as-program view, but some of
the other problems remain for further research.

Recent interest in mobile robotics has focused attention on embodied activity in
various ways. The first and most common response to the difficulties planner-based
architectures face in actually acting has been interleaved or incremental planning (Chien
and Weissman 1975, Giralt et al. 1984, McDermott 1978, Tate 1984, Wilensky 1983,
Wilkins 1985 and 1988). In interleaved planning the planner makes its plan as always.
When the executive gets into trouble, it passes control back to the planner, which assesses
the situation and makes a new plan.

In order to implement interleaving, an executive needs some notion of when it is in
trouble. In a perfect world, the executive would always be able to determine whether
continuing with the current plan is the best thing to be doing. In reality, though, an
executive has little or no access to the reasoning behind a plan, much less to the courses
of action that the planner decided not to undertake. Instead, the executive will typi-
cally monitor a set of conditions that need to hold at various points during the plan,
particularly the preconditions of the various plan steps. Such a system encounters two
difficulties. The first is that it does not detect trouble until it has become relatively
obvious. It is as if, when driving a car, one did not change direction until one has hit
something. The second is that it does not provide a way of registering unexpected oppor-
tunities. The triangle table approach of Strips does allow the system to take advantage
of opportunities that render planned actions redundant, but it does not help in detecting
conditions that would have led the planner to construct a very different plan. This is why
we argue that it is best to have as much as possible of the agent’s reasoning power on-line,
a conclusion that leads us to propose erasing the distinction between plan construction
and plan execution and ultimately to a different notion of plans.

Interleaved planning and improvisation differ in their understanding of trouble. In the
world of interleaved planning, one assumes that the normal state of affairs is for things
to go according to plan. Trouble is, so to speak, a marginal phenomenon. In the world of
improvisation, one assumes that things are not likely to go according to plan. Quite the
contrary, one expects to have to continually redecide what to do. This is not to say that
the resulting activity is chaotic in nature. It is, however, to say that the orderly nature
of the activity, on whatever scale, does not arise from its having been mapped out ahead
of time through the construction of a plan. Instead, the orderly nature of the activity

20

arises through the interaction of an improvising agent and that agent’s familiar world.

We think of this distinction between interleaved planning and improvisation in terms
of the theme of control. A system that operates by constructing and executing plans lives,
to speak metaphorically, in a sort of fantasy world, the one it projects when it reasons
about its future actions. In this way, the system believes that it has a kind of control
over its world that, at least in many domains, is not realistic. When things do not work
out as projected, the system is surprised. An improvising agent, by contrast, does not
live its life through an alternation between fantasy and surprise. It does not believe that
it has complete control over its world. Instead, through a continual give-and-take with
its environment, creatively making use of opportunities and contingencies, it participates
in the forms of activity that its world affords. On account of this contrast, we feel that
the word “reactive” would be much better applied to interleaved planning systems than
to improvising systems.

Proposed interleaved planners have all used standard planning techniques. As a
result, interleaving the construction and execution of plans does not help with many of
the shortcomings of the plan-as-program view. If plan construction is a computationally
intractable process at the beginning of a task, it is also going to be an intractable process
when trouble arises and a new plan is required.

Some current projects are trying to make plans-as-programs more accommodating
of environmental variation using primitive actions, or in Malcolm and Smithers’ terms
“behavioral modules,” that interact in complex but well-understood ways with the physics
of the domain to effect specified conditions (Malcolm and Smithers 1989, Erdmann and
Mason 1988). In both cases the actions slide objects of uncertain locations into specified
positions without extensive use of sensors, but the point ought to generalize (see Miller
1989). This idea is closely related to the schemes through which the ethologically inspired
robots built by Brooks and his group gain simplicity by relying on regularities in the
physics of its interactions with their environment (Brooks 1989, Connell 1987). In each
case, as in Pengi and Sonja, simplicity of machinery results from close attention to the
dynamics of recurrent forms of activity.

Another approach to alleviating the shortcomings of classical planning is heuristic
planning. This term actually could mean either of two things: it could refer to heuris-
tics that would help search the space of plans, or it could refer a planner that is only
heuristically correct (i.e., sometimes produces incorrect plans).

In order to produce correct plans in a reasonable amount of time, a system must
have some way of controlling its search through plan-space. The necessary techniques
might be domain-independent or they might be domain-specific. We do not know of any
powerful domain-independent heuristics for searching plan spaces. We suspect that none
exist, in part because of the results which show domain-independent plan-construction

21

to be as computationally complex as computation in general.

We have more hope for research into plan construction in particular domains or classes
of domains. No doubt many domains have structure which the plan construction process
can exploit. This might take the form of heuristics that can recognize which plans are
most promising before the planner has elaborated them very far (Hayes 1987), or of
a plan representation which makes the search space inherently small, perhaps because
of locality considerations (Lansky 1987). Such techniques might work well in certain
factory automation tasks, for example, since they take place in a highly structured and
constrained environment. Our own concern is with the design of agents that can carry
on autonomously in worlds that have the very different kind of structure and constraint
that characterizes everyday life. In these worlds, the case for plan-construction search
heuristics remains to be made.

Another attractive possibility is a planner that does not always produce correct plans.
This approach might circumvent the negative complexity results by posing the planner
a less difficult problem. It also addresses the observation that getting along in the world
does not require that you do the “right” thing all the time, just that you do well enough.
Research on such systems must find a criterion of adequacy other than simple formal
correctness. A natural criterion would be probabilistic correctness: the system might
be good enough if provably most of its plans were correct. If this fraction is very high,
the incorrect plans can be neglected. On the other hand, this seems like a very difficult
criterion. People often set out to do something that turns out later not to make sense; at
some point they figure out that they are doing the wrong thing and recover. This suggests
an alternative criterion of adequacy, that the executive be reliably able to detect incorrect
plans in time and to recover, on its own or by getting the planner to produce a new,
provably correct plan. This would demand a lot of the executive. As with interleaved
planning, a better approach would be to avoid the modularity of planning and execution,
so that as much as possible of the system’s reasoning power is available as a plan is used.
That way, the agent is much less likely to keep executing a plan that’s no longer sensible.

Another recent approach to activity is reactive planning (Firby 1987, Fox and Smith
1984, Georgeff and Lansky 1986 and 1987). The systems that have gone by this name
have consisted of a conventional executive together with an externally generated plan
library. Their aim is to act flexibly by having a repertoire of plans available and choosing
among them as circumstances evolve. What these systems amount to in practice depends
on how big the individual plans are. If the plans are very small, then it is hardly worth
calling them plans; the selection mechanism itself is doing all the work that needs to be
explained. If the plans are not very small, and especially if they are relatively large, it
seems that all of the difficulties with the execution of plans-as-programs will apply to
them as well. This ambivalence is already present in the phrase “reactive planning,”
which seems like a contradiction in terms. A theory of action must explain how action

22

can both have long-term purposes and take account of short-term conditions. Reactive
planning systems seem not to resolve this tension: they can only take account of short-
term conditions by pursuing the equally short-term goals of their individual plans.

In general, a great deal of dispute has surrounded the term “reactive.” Pengi, for
example, is often said to be a reactive system. We, however, never use the term ourselves
because we feel that it enters into a mistaken opposition. The verb “to plan” takes
on two different meanings in AL The first, more general meaning relates to reasoning
about action, and especially about how actions lead to goals, regardless of what form this
reasoning takes or how it connects to whatever actions the agent eventually performs.
The second, more specific meaning relates to the process of constructing plans in order
to execute them. These meanings are distinct because constructing and executing plans
might not be the only way of organizing purposive activity. Pengi, for example, reasons
about actions but does not construct or execute plans. The word “reactive” usually seems
to be opposed to planning in the first sense; under this usage, Pengi is not reactive.
On the other hand, if “reactive” means neither constructing nor executing plans (the
second sense), Pengi is in fact reactive. Notice, though, that the second, weaker sense
of “reactive” is compatible with all of the phenomena that “planning” is supposed to
explain, in particular the pursuit of goals, anticipation of the future, and the complex
organization of activity in general. The question is one of what kinds of explanations of
these phenomena are possible.

This paper seeks to introduce new terminology to clarify the distinctions that are
being created as new ideas are introduced into research on activity. The noun “plan”
was once quite well defined in Al; it meant a program, especially one that had been
automatically synthesized, that was intended to be executed by a robot. We would like
to retain this crisp and useful meaning for discussion, so we refer to it as plan-as-program.
We have now proposed another meaning of “plan;” to avoid confusion, we refer to it as
plan-as-communication.

We can understand the notion of reactivity in terms of loci of control. The plan-
as-program view identifies a locus of control for activity in the planner. A chain of
command descends from the planner to the executive to the world. We might speculate
that “reactivity” means displacing the locus of control from the planner into the executive.
Objections to reactivity, though, might rest on the fear that it actually means displacing
the locus of control outside of the agent entirely and locating it in the world, leaving the
agent to be shoved helplessly around by outside forces. Qur solution to this puzzle is to
abandon the notion that activity has a particular locus of control at all. Activity arises
through interaction, not through control. This transforms our problem from “how do we
get this system to control the robot?” to “how do we build this agent to interact with
the world in the ways we want?” To answer this question, we need to study the world
and we need to find out what sorts of agents can enter into what sorts of interactions
with it. In fact, because the agent, the world, and the interactions are interconstraining,

23

we need to design the agent incrementally, tacking back and forth between deepening our
understanding of the world, finding new sorts of interactions with it that might occur, and
making our agent more sophisticated so that it participate in these sorts of interactions.
We designed Pengi this way. Pengi can’t control its world and doesn’t try. It is, instead,
always ready to participate in various sorts of interactions with bees and ice cubes.

It may be difficult to understand our claim that Pengi uses no plans. In particular,
it may seem that Pengi’s arbitration network is really a plan; or that the whole central
system is; or that whatever state elements Pengi has are plans; or that visualization is
really planning. Analogies with some common devices that clearly do not use plans may
be helpful.

Some toasters, for example, have photocells that sense when the bread is dark enough.
These anticipate the future in the same way Pengi does: they are wired up to act ap-
propriately based on currently perceptible conditions that predict future events. A soda
machine, like Pengi, has state elements (forming a coin counter) which are updated based
on sensory conditions and their current state, and which determine how the system will
behave in the future. An electromechanical elevator controller, like Pengi, engages in
complex activity, interacting with other agents whose actions can not be predicted, main-
taining state, and using sensors. A well-designed elevator controller, like Pengi, manifests
complex, useful dynamics which emerge from its interactions with its environment, rather
than being programmed. Yet, we presume, no one would argue that toasters, soda ma-
chines, or elevator controllers use plans.

Finally, it is worth mentioning that there is at least one use of the word “plan” current
that clearly conforms to neither the plan-as-program view nor the plan-as-communication
view. This view, found in some recent work on natural language discourse and on rational
action (Grosz and Sidner 1988, Konolige and Pollack 1989), might be called “plans-as-
constraints.” On this view, plans are sets of beliefs and “intentions,” which are constraints
on possible futures; the view does not specify how these constraints affect action, but
rather how they are used to interpret other agents’ actions. (Chapman forthcoming) will
discuss the relationship between this view and the other two.

Acknowledgments

In working out these ideas about plans and planning, we were greatly aided by conver-
sations with and comments on drafts from John Batali, Rod Brooks, Gary Drescher,
Barbara Grosz, Pattie Maes, Drew McDermott, Tomas Lozano-Pérez, Beth Preston, Jeff
Shrager, Penni Sibun, Orca Starbuck, Dan Weld, and Ramin Zabih. Lucy Suchman
has greatly influenced our thinking by introducing us to ethnomethodology (Garfinkel
1967, Heritage 1984). This essay itself descends from position papers we prepared for

24

the DARPA Planning Workshop in Santa Cruz, California in October 1987, and for the
COST-13 Workshop On Representation and Learning in an Autonomous Agent in Lagos,
Portugal in November 1988. Thanks to Ted Linden and Drew McDermott for organizing
the panels where they were presented at Santa Cruz and to Pattie Maes for organizing the
Lagos workshop. And finally thanks to Mike Brady, Rod Brooks, and Stan Rosenschein
for various sorts of support.

References

Philip E. Agre, Routines, Al Memo 828, MIT Artificial Intelligence Laboratory, 1985.

Philip E. Agre, The dynamic structure of everyday life, PhD Thesis, MIT Department
of Electrical Engineering and Computer Science, 1988.

Philip E. Agre and David Chapman, Pengi: An implementation of a theory of activity,
Proceedings of AAAI-87.

Philip E. Agre and David Chapman, Indexicality and the binding problem, Proceedings
of the AAAI Symposium on Parallel Models, 1988.

King Beach, The role of external mnemonic symbols in acquiring an occupation, in
M. M. Gruneberg, P. E. Morris, and R. N. Sykes, eds., Practical Aspects of Memory:
Current Research and Issues, Volume I, John Wiley and Sons, Chichester, 1988.

Rodney A. Brooks, A robust layered control system for a mobile robot, IEEE Journal of
Robotics and Automation 2(1), April 1986, pages 14-23.

Rodney A. Brooks, A robot that walks: Emergent behaviors from a carefully evolved
network, Al Memo 1091, MIT Artificial Intelligence Laboratory, 1989.

David Chapman, Planning for conjunctive goals, Artificial Intelligence 32(3), 1987, pages
333-377.

David Chapman, Instruction use in situated activity, MIT Computer Science Department
PhD Thesis, forthcoming.

David Chapman and Philip E. Agre 1986, Abstract reasoning as emergent from concrete
activity, in M. P. Georgeff and A. L. Lansky (editors), Reasoning about Actions and
Plans, Proceedings of the 1986 Workshop at Timberline, Oregon, pages 411-424, Morgan
Kaufmann, Los Altos CA (1987).

R. T. Chien and S. Weissman, Planning and execution in incompletely specified envi-
ronments, Advance Papers of the Fourth International Joint Conference on Artificial
Intelligence, 1975, pages 169-174.

25

Jonathan H. Connell, Creature design with the subsumption architecture, Proceedings of
the Tenth International Joint Conference on Artificial Intelligence, Milan, 1987, pages
1124-1126.

Johan de Kleer, Jon Doyle, Guy L. Steele, Jr., and Gerald Jay Sussman, Explicit control
of reasoning, Proceedings of the ACM Symposium on Artificial Intelligence and Program-
ming Languages, Rochester, New York, 1977.

Mark Drummond, Situated control rules, Proceedings from the Rochester Planning Work-
shop: From Formal Systems to Practical Systems, University of Rochester, New York,
1989.

R. James Firby, An investigation into reactive planning in complex domains, Proceedings
of AAAI-8T.

Mark S. Fox and Stephen Smith, The role of intelligent reactive processing in production
management, in 13th Meeting and Technical Conference, CAM-I, November 1984.

Harold Garfinkel, Studies in Ethnomethodology, Polity Press, Oxford, 1984. Originally
published in 1967.

Michael Georgeff and Amy Lansky, Procedural knowledge, Proceedings of the IEEE,
Special Issue on Knowledge Representation, pages 1383-1398, October 1986.

Michael Georgeff and Amy Lansky, Reactive reasoning and planning, Proceedings of
AAAI-87, pages 677-682.

Georges Giralt, Raja Chatila, and Marc Vaisset, An integrated navigation and motion
control system for autonomous multisensory mobile robots, Proceedings of the First
Symposium on Robotics Research, MIT Press, 1984, pages 191-214.

Thomas Gladwin, East is a Big Bird, Harvard University Press, 1970.

Barbara J. Grosz and Candace L. Sidner, Plans for discourse, in P. Cohen, J. Morgan, and

M. Pollack, eds., Intentions in Communication, MIT Press, Cambridge Massachussets,
1988.

Kristian J. Hammond, Case-Based Planning: Viewing Planning as a Memory Task, Aca-
demic Press, 1989.

Caroline Hayes, Using goal interactions to guide planning, Proceedings of AAAI-87, pages
224-228.

Edwin Hutchins, Learning to navigate in context. Manuscript prepared for the Workshop
on Context, Cognition, and Activity, Stenengsund, Sweden, August 6-9, 1987. Institute
for Cognitive Science, University of California, San Diego, La Jolla, California.

26

John Heritage, Garfinkel and Ethnomethodology, Polity Press, Cambridge, England, 1984.

Kurt Konolige and Martha E. Pollack, Ascribing plans to agents, Proceedings of the
- Eleventh International Joint Conference on Artificial Intelligence, Detroit, 1989, pages
991-997.

Leslie Pack Kaelbling, An architecture for intelligent reactive systems, in Michael P. Georgeff
and Amy L. Lansky, eds, Reasoning about Actions and Plans, Proceedings of the 1986
Workshop, Timberline, Oregon, 1986, pages 395-410.

Amy L. Lansky and David S. Fogelsong, Localized representation and planning methods
for parallel domains, Proceedings of AAAI-87, pages 240-245.

Jean Lave, Cognition in Practice: Mind, Mathematics, and Culture in Everyday Life,
Cambridge University Press, 1988.

Tomés Lozano-Pérez and Rodney A. Brooks, An approach to automatic robot program-
ming, Al Memo 842, MIT Artificial Intelligence Laboratory, 1985.

Pattie Maes, The dynamics of action selection, Proceedings of the Eleventh International
Joint Conference on Artificial Intelligence, Detroit, 1989, pages 991-997.

Chris Malcolm and Tim Smithers, Symbol grounding via a hybrid architecture in an
autonomous assembly system, in Pattie Maes, ed., New Architectures for Autonomous
Agents: Task-level Decomposition and Emergent Functionality. MIT Press, Cambridge,
Massachusetts, 1990.

Michael A. Erdmann and Matthew T. Mason, An exploration of sensorless manipulation,
IEEE Journal Robotics and Automation 4(4), pages 369-379, 1988.

John McCarthy, The advice taker, reprinted in Marvin Minsky, ed., Semantic Information
Processing, MIT Press, 1968. Originally published 1958.

Drew McDermott, Planning and Acting, Cognitive Science 2(2), 71-109, 1978.

David P. Miller, Execution monitoring for a mobile robot system, Proceedings of the SPIE
1989 Conference on Intelligent Control and Adaptive Systems, Philadelphia, 1989.

George A. Miller, Eugene Galanter, and Karl H. Pribram, Plans and the Structure of
Behavior, Henry Holt and Company, 1960.

Nils J. Nilsson, Action networks, Proceedings from the Rochester Planning Workshop:
From Formal Systems to Practical Systems, University of Rochester, New York, 1989.

David W. Payton, Internalized Plans: a representation for action resources, in Pattie
Maes, ed., New Architectures for Autonomous Agents: Task-level Decomposition and
Emergent Functionality. MIT Press, Cambridge, Massachusetts, 1990.

27

Stanley J. Rosenschein and Leslie Pack Kaelbling, The synthesis of digital machines with
provable epistemic properties, in Joseph Halpern, ed, Proceedings of the Conference on
Theoretical Aspects of Reasoning About Knowledge, Monterey, California, 1986, pages
83-98.

David E. Rumelhart, Paul Smolensky, James L. McClelland, and Geoffrey E. Hinton,
Schemata and sequential thought processes in PDP models, Chapter 14 in James L. Mc-
Clelland, David E. Rumelhart, and the PDP Research Group, Parallel Distributed Pro-
cessing: Ezplorations in the Microstructure of Cognition, MIT Press, Cambridge, Mas-
sachussets, 1986.

Bob Scher, The Fear of Cooking, Houghton-Mifflin, 1984.

Mazcel J. Schoppers, Universal plans for reactive robots in unpredictable environments,
Proceedings of the Tenth International Joint Conference on Artificial Intelligence, Milan,
1987, pages 1039-1046.

Sylvia Scribner, Studying working intelligence, in B. Rogoff and J. Lave, eds, Everyday
Cognition: Its Development in Social Context, Harvard University Press, 1984.

Herbert A. Simon, The Sciences of the Artificial, MIT Press, 1970.

Susan U. Stucky, The situated processing of situated language, CSLI Report 87-80, March
1987.

Lucy Suchman, What is a plan?, ISL Technical Note, Xerox Palo Alto Research Center,
1986.

Lucy Suchman, Plans and Situated Action, Cambridge University Press, 1987.

William Swartout, ed, DARPA Santa Cruz Workshop on Planning, Al Magazine, Sum-
mer 1988, pages 115-131.

Austin Tate, Planning and Condition Monitoring in a FMS, International Conference on
Flexible Manufacturing Systems, London, UK, July 1984.

Austin Tate, A review of knowledge-based planning techniques, The Knowledge Engi-
neering Review 1(3), June 1985, pages 4-17.

Shimon Ullman, Visual routines, Cognition 18, 1984, pages 97-159.
Lev S. Vygotsky, Thought and Language, MIT Press, Cambridge Massachussets, 1962.

James W. Wertsch, Vygotsky and the Social Formation of Mind, Harvard University
Press, Cambridge MA, 1985.

Robert Wilensky, Planning and Understanding: A Computational Approach to Human

28

Reasoning, Addison-Wesley, Reading MA, 1983.
David E. Wilkins, Recovering from execution errors in SIPE, SRI Tech Report 346, 1985.

David E. Wilkins, Practical Planning: Eztending the Classical AI Planning Paradigm,
Morgan Kaufmann Publishers, Los Altos CA, 1988.

29

