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81 Introduction

Salient structures can often be perceived in an image at a glance. They appear
to attract our attention without the need to scan the entire image in a systematic
manner, and without prior expectations regarding their shape. The processes involved
in the perception of salient structures appear to play a useful role in segmentation and
recognition, since they allow us to immediately concentrate on objects of interest in the
image.

Consider the images in figures 1, 2 and 3. Certain objects in each image somehow
attract our attention in a manner often described as ‘preattentive’. For instance, the
large blobs in Fig. la and 1b are prominent, although locally the blobs’ contours are
indistinguishable from background contours on the basis of local orientation, curvature,
contrast, etc. It seems as if one must somehow capture most of the curve bounding a blob
in order to perceive it as a prominent structure. The circle in Fig. 2 is immediately
perceived although its contour is fragmented, implying that gaps do not hinder the
immediate perception of such objects. In this case one must group together several
line segments of the circle to distinguish it from the background. These examples also
demonstrate that these prominent objects need not be recognized in order for them to be
distinguished. The image in Fig. 3 is an edge image of a car in a cluttered background.
Our attention is drawn immediately to the region of interest in the image. It seems that
the car need not be recognized to attract our attention. When the image is inverted
and presented for short periods, recognition becomes considerably more difficult, yet
the same region remains salient.

The goal of this paper is to suggest what makes structures such as those in Fig.
1 — 3 salient, and to propose a mechanism for detecting salient locations in an image. A
locally connected network is proposed that can process images such as the figures above
to construct a “saliency map”, which is a representation of the image emphasizing salient
locations. The computations of the net are devised to meet the following requirements:
(1) the time it takes to detect a prominent structure does not depend on the complexity
of background curves, (ii) curves may have any number of gaps, and (iii) the number of
computations are restricted to the order of dozens or, at most, about a hundred steps
in order to meet the time constraint involved in immediate perception.

Issues related to this problem include segmentation, perceptual organization, and
figure/ground separation. Segmentation schemes have been investigated extensively in
the field of computer vision and many algorithms have been suggested. They will not
be reviewed here, since they are only marginally related to the problem at hand. Many
of the segmentation processes that have been proposed were more ambitious than what
is required, or what is possible, to achieve in the early stages where prominent areas
are located. For example, they attempt to segment the entire image instead of just an
area of interest. Our proposal is related to the suggestion made by Ullman (1986) that
segmentation should be conducted on an area of interest rather than applied to the



Figure 1a. Three prominent blobs are perceived immediately and with little effort. Locally, the
blobs are similar to the background contours. (adopted from Mahoney (1986)

Figure 1b. Intersections were added to illustrate that the blobs are not distinguished by virtue
of their intersections with the background curves.

Figure 2. A circle in a background of 200 randomly placed and oriented segments The circle is
still perceived immediately although its contour is fragmented.

Figure 3. An edge image of a car in a cluttered background. Our attention is drawn immediately
to the region of interest. It seems that the car need not be recognized to attract our
attention. The car also remains salient when parallel lines and small blobs are removed,
and when the less textured region surrounding parts of the car is filled in with more

texture.



entire image, implying that some preattentive process is required to detect prominent
locations from which an area of interest is defined, prior to the act of segmentation.

Lowe’s (1985) treatment of perceptual organization is more closely related to the
problem addressed in this paper. The processes proposed by Lowe detect instances
of collinearity, co-termination and parallelism among straight lines, and will not be
effective in cases (e.g. Fig. 1) where these conditions do not play a major role. Most past
approaches to segmentation also do not meet the requirements set above. In particular,
they do not meet the time constraint and they depend critically on the complexity of
the background curves.

1.1 Local and Global Saliency

The phenomena related to the perception of salient structures can be roughly di-
vided into two classes. The first, referred to as local saliency, occurs when an element
becomes conspicuous by having a simple distinguishing local property such as color,
contrast, orientation, etc. For example, a red item placed among green ones immedi-
ately attracts attention by virtue of its unique color (Triesman and Galade 1980; Julesz
1981). The second case, referred to as structural saliency, occurs when the structure is
perceived in a more global manner. That is, the local elements of the structure are not
salient as in the former case but instead the arrangement of the elements is what makes
the structure unique and salient.

We focus below on the saliency of curves, based on properties measured along
them (the curves may be continuous or with any number of gaps). Not all phenomena
of global immediate perception are necessarily accounted for by measuring properties of
curves. For instance, one could measure the compactness of a structure, the degree of
symmetry it contains and other measures that are region-based rather than curve-based.
Nevertheless, properties of curves are often sufficient in order to separate objects from
their background.

The fact that structural saliency requires measures that have a global extent in-
troduces a severe complexity problem. The number of possible groupings of local line
segments into curves, where the curves are allowed to have any number of gaps, explodes
exponentially. The complexity issue becomes acute when considering the fact that a
salient curve of a given length is not necessarily composed of salient sub-parts. Thus,
contemporary pyramid techniques (see Rosenfeld 1986 for a review) would not be ap-
propriate for detecting structural saliency, because they contain an implicit assumption
that a salient curve is composed of salient sub-parts.



§2 Measuring Saliency as an Optimization Problem

Our goal is to construct a saliency map which is a representation of the image
emphasizing salient locations. We seek to associate, therefore, a measure of saliency
denoted by the function ®(-) to each location in the image. A property that seems to
play a role in structural saliency is the combination of length and smoothness measured
at a particular scale. That is, a measure of saliency that would account for the type of
images above is one that favors long smooth curves, where the smoothness of a curve
is related to its curvature or its curvature variation. We therefore face the following
problems:

(1) Defining an appropriate measure ® that, when applied to a point along a given
curve, will increase when the curve increases in length and smoothness.

(2) A selection problem. The measure ®(P) depends on the curve passing through
P. Since the curves we are considering are either continuous or separated by
any number of gaps, there will usually be many possible curves to consider. Our
approach to this problem will be to select the curve that maximizes ®(P) over
all curves passing through P.

We defer the exact formulation of ® until we have examined the manner by which it
is computed. The reason is that the general method of computing & (using a simple local
network) places strong constraints on the possible definition of ®. In the next sections
we describe the mechanism by which @ is computed, and then derive an explicit formula
for &.

2.1 The Basic Elements

We assume that @ is computed by a locally connected network of processing el-
ements. Our specific model is that at the level of computing saliency the image is
represented by a network of n x n grid points, where each point represents a specific
z,y location in the image. At each point P there are k orientation elements coming
into P from neighboring points, and the same number of orientation elements leaving P
to nearby points. Each orientation element p; responds to an input image by signalling
the presence of the corresponding line segment in the image, so that those elements
that do not have an underlying line segment are associated with an empty area or gap
in the image. We refer to a connected sequence of orientation elements p;, ..., pi+n,
each element representing a line-segment or a gap, as a curve of length N (note that
curves may be continuous or with any number of gaps). The optimization problem is
formulated as maximizing ® 5 over all curves of length NV starting from p;:

max BN (Piy oo, Die N
(Pig1s - Pi4N)ESN (pi) (p1 » Pi+ )

where 67V (p;) is the set of all possible curves of length N starting from p;.



A naive approach to this problem would involve an exhaustive enumeration of all
combinations of p;y1, ..., pi+ N Which would require an exponential search space of size
kN for each element in the network. In what follows, we will show that for a certain
class of measures ® (“extensible” measures), the computation becomes linear in N. We
will then define a saliency measure @ that measures length and smoothness, and at the
same time is extensible and can be computed efficiently.

2.2 Multistage Optimization Approach

For a certain class of measures ®(-), the computation of @ can be obtained by
iterating a simple local computation. To illustrate, let us consider first curves that are
only three elements long. The problem in this case is:

(i ey T2 (P Pi D Pit2)
That is, for a given element p;, determine p;4; (one of p;’s k neighbors) and pi;2 (a
neighbor of p;y;) such that ®,(p;, pi+1,pi+2) Will be maximal. A naive approach will
again require examining the k? different curves. Assume, however, that ®, satisfies the
condition:

max D2(pi, pi+1, Pi+2) = max &1 (p;, max ®1(pi+1, pi+2))
§2(pi) Pit1 Pi+2

In this case maximizing ®; can be achieved by repeating the application of ®; over
shorter curves. The general approach is formulated in a similar manner:

max ®n(pi,..., pi = max @,(p;, max ®y_1(pit+1,---,Pi 2.1
8N (pi) n(p Pi+N) Pit+1€6(p:i) 1(p SN=1(pis1) N-1(Pi+1 Pi+N)) (2.1)

where §(p;) stands for §'(p;). In this manner we reduce the search space needed for
each curve of length N starting from p; to the size of kN instead of £V that is needed
for the naive approach. The principle in (2.1) is related to the principle of optimality
underlying all multistage decision processes, and in particular it is a special case of
Dynamic Programming. We refer to the family of functions that obey the principle in
(2.1) as extensible functions. We next derive an extensible function that prefers long
curves that have low total curvature.

2.3 Deriving an extensible Function for Measuring Saliency

We next derive an expression for the saliency of an element p; on a curve vy =
Di,---DPi+N- 7y is a curve of length N, terminating at p;. (For a non-end element, the
saliency is the sum of the contributions of the two sides.) Note that the saliency measure
is associated with each element, not with the entire curve. Two elements along the same
curve may have different saliency measures, depending on their position.



The saliency measure at p; developed below has the general form }_; w;, jo;, where
j ranges over all the elements lying on 4. That is, the saliency at p; is a weighted sum
of the contributions from all the elements lying on the same curve.

Two factors play a role in the measure of saliency. The first factor is related to the
length of the curve, and the second factor is related to its shape. The length of a curve
is determined by the number of elements on the curve that have an actual curve (rather
than a gap) passing through them. These elements are referred to as active elements,
whereas the elements that are associated with gaps are referred to as virtual elements.
To each element p; we associate its local saliency o;. If p; is an active element, then o;
is set to be a positive value, which for the present is set to 1, and for a virtual element
o0; is set to 0. The measure related to the length of the curve p;, ..., piyn is:

i+N

Z o; (2.2)

The measure above is a sum of the local saliency values of the active elements along
the curve. ) o; is in the range of 0 to N + 1 depending on the number of active
elements, implying that a continuous curve scores higher than a fragmented one of the
same length. It is also possible to ‘penalize’ the existence of gaps, especially large
ones, in order to attenuate the measure given to the curve when it is too fragmented.
Penalizing the existence of gaps is obtained by associating an attenuation factor p; with
each element p;. The value of p; determines how quickly the contribution to the saliency
from neighboring elements along the curve decays with distance. It is reasonable to use
only to values for p;, depending on whether p; is an active or virtual element. If p; is
active then p; is set to a value smaller or equal 1 (for the present it is set to 1). If p;
is virtual, then p; = p < 1. We then define an attenuation function associated with the
curve p;, ..., p; as follows:

J
pii= 1] ex
k=i+1
where p; ; = 1. The measure in (2.2) is modified by the attenuation factors:
i+N

Z Pi,j0; (23)
j=i

The measure in (2.3) is a weighted contribution of the local saliency values o; along the
curve, where the weights are inversely related to the number of virtual elements along
Diy..y Dy

In order to measure the shape of the curve we use a measure that is inversely
related to 2the total curvature of the curve. The total curvature of a curve v is defined
as f,y (%) ds, where 6(s) is the slope along the curve, and %g at point P is known as
the local curvature at that point (the inverse of R, the radius of curvature). We would
like to use the total curvature to obtain a measure that is bounded, and is inversely



related to the total curvature. The following measure meets these requirements:
d8\2
AC R (2.4)

which is confined to values between 0 and 1. A straight line receives the value 1, and a
meandering curve will approach the limit 0 as its total curvature grows to infinity. To
obtain a discrete approximation to the measure in (2.4) we denote by «; the orientation
difference between the k’th element and its successor, and by As the length of an
orientation element. The local curvature 71? to the curve tangent to these elements (see
Fig. 4) is:
2 tan Sk
As
The arc’s length is ax R, and therefore the total curvature square is approximated by:
20y tan Sk
As
The discrete approximation to the total curvature measure along p;,...p; is therefore
obtained by:

j=1
Cii =[] frersr
k=i

where
2ap tan 2
frptr =€ & (2.5)

C;,; plays the role of a weight given to each local saliency value o; along the curve. A
measure that gives a high score to long curves with low total curvature is now defined

as:
i+N

Z C,',jp,',jO’j (26)
j=i

The measure in (2.6) is a weighted contribution of the local saliency values o; along the
curve. Each weight is a product of two factors. The first factor is inversely related to
the number of virtual elements along p;, ..., pj, and the second factor is inversely related
to the total curvature of the curve. Curves that will receive a high measure on (2.6)
are long curves that are as straight as possible and have the least number of gaps. The
measure in (2.6) is also extensible according to the definition in (2.1) This can be shown
by induction on the length of the curve, and the proof will not be detailed here.

Other functions for measuring the optimality of curves, using multistage optimiza-
tion, were suggested by Ballard and Sklansky (1976), Martelli (1976) and Montanari
(1971). The optimal curve in these cases is one that maximizes the sum of gray levels
or edge magnitude along the curve, while minimizing the sum of orientation difference.
In our terminology, the optimization function is:

i+ N i+ N

E O'j - E CVj
j=t =1



This measure, however, is insensitive to the distribution of orientation difference along
the curve and in general does not satisfy the requirement to prefer long and as-straight-
as-possible curves.

Figure 4. A discrete approximation to the curvature. R approximates the radius
of curvature, a is the orientation difference, As is the length of both
elements.

83 The Saliency Network

In this section we summarize the computation performed by the network and its
relation to the saliency measure defined above. The orientation elements constitute the
basic computing elements of the net. Each element p; is associated with a processor
that can perform some computation based on its state and the state of its k£ neighboring
processors. This defines a uniform network containing kn? processing units, with local
communication. In the current implementation k is equal to 16, providing a reasonable
angular resolution.

3.1 Computation of Elements in the Network

With each element p; is associated a state variable denoted by E,, and a set of
three attributes that includes its local saliency o;, its orientation 6; and its attenuation



factor p;. Each element p; updates its state variable E,, iteratively through a local
computation. (We use here the notation E,, to indicate explicitly that the variable
is associated with the element p — ¢ in the network.) At the end of iteration N, E,,
contains the measure of saliency derived in (2.6) which will be maximal over all possible
curves of length N starting at p;, where these curves are either continuous or with any
number of gaps.

E,, is updated by the following computation:
B~
EMD = g, 4 p; EMf 3.1
i gi + pi pjlgﬁa();;) o fig (3.1)
where p; is one of k possible neighbors of p;, and fi; are the “coupling constants”
defined in (2.5). To unravel the recurrence formula above, we isolate a specified curve
represented by 6;, ..., 6;+ N where each element along the curve has only a single neigh-
boring element to communicate with. The following proposition relates the value of the
state variable of p; with the measure in (2.6).
Proposition 1:
i+N
E{Y =) Cijpijo
J=i
The proof is by induction on the length of the curve and will not be detailed here.
The proposition above together with the fact that the measure is extensible implies that
among all possible curves ¥; of length N starting from p;, either continuous or with any
number of gaps, E,, will be computed along that curve which is maximal with respect
to the measure in (2.6), namely

EV = H}I@XZ Ci,ipi,ioj
i

taken over all ;. It is worth noting that the fact that the measure @ is extensible, does
not imply that the optimal contour through P simply extends itself as the iterations
proceed. In fact, the optimal curve at stage N + 1 can be different from the optimal
curve at stage N

The state values of elements in the network form a new representation of the image
which is a ‘biased’ view of the visual environment, emphasizing interesting or conspicu-
ous locations. We denote this representation as the saliency map. The term of saliency
map was used by Koch and Ullman (1986) for representing (using our terms) local
saliency.

3.2 Additional Properties of the Network
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Convergence of the State Values

The concept of an iterative computation raises the issue of convergence when the
number of iterations goes to infinity. This issue is important in the context of the
saliency network because an element p; might be influenced by its own state in a feedback
loop if it lies on a closed curve. The following proposition considers a closed curve and
evaluates the state of an element of the curve after an infinite number of iterations.

Proposition 2:

Consider p;, ..., pi+nN a closed curve where p; = pi+n+1. The state of p; converges to
the following value:

(N)
B —

k—oo 1 — C,"H.N

The proof is by induction on the length of the curve. The main point to notice is
that a closed curve (even if it is fragmented) will increase its value when the number of
iterations exceeds the curve’s perimeter. If we consider a continuous circle of radius r,
for example, then C; ;4N = e~ % which is always less than 1. In practice, the increase
is considerably smaller than the limiting value because we perform a restricted number
of iterations.

Tracing the Curve Starting From a Given Element

The computation performed by each element includes a local preference between
neighboring elements. That is, at each iteration each element p; selects the neighbor p;
that contributes the most to its state. The information regarding local preference can
be used to trace a linked curve starting from p; in a recursive manner, namely, p; is the
second element in the curve, p;’s preferred neighbor is the third element, etc. Given
a conspicuous element as a starting point, we could extract the curve that is optimal
according to (2.6). Examples of these curves are given in section 4.

Filling Gaps by the Saliency Network

The ability to cope with gaps is important for the applicability of the saliency
network to real images. Edge maps obtained from real images are often corrupted
by multiple gaps, and what seems as a smooth salient curve often turns out to be
fragmented after edge detection has been applied.

A virtual element (that lies in a gap) participates in the computation of (3.1) in a
similar manner to active elements. Consider for instance a gap starting from p;4; and
ending at p;y . That is, p; is an active element, but pji1,..., pj+& are virtual elements.
An element will update its state provided that it has at least one neighbor with a state
value different from 0. It will take at most k iterations for pjir to update its state.
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The network will fill-in a curve 4; that will maximize the value of pl%1C; j;x. That is,
the preference is for filled-in curves having low total curvature Cj j &, while minimizing
their overall length |v;|. The relative weight of the two factors is controlled by setting
the values of p. In the current implementation p was set to 0.7, which was found
experimentally to give results that are generally in agreement with our own perception.
The curves generated in this manner are similar (for orientation difference less than %)
to several other methods for completing gaps in contours and for modelling subjective
contours in human perception (Rutkowski 1979; Ullman 1976; Webb and Pervin 1984).

3.3 Additional Computations Performed by the Network

Measure of Saliency Based on Low Curvature Variation

The computation of the network summarized in (3.1) produce a saliency map based
on the measure in (2.6). This does not rule out the possibility of additional properties
that mediate structural saliency. For instance, the blobs in Fig. 1 seem to be prominent
on the basis of low curvature variation rather than low overall curvature. A second
saliency measure was therefore formulated that prefers long curves with low total cur-
vature variation. Details of this second measure can be found in (Sha’ashua 1988). As
a result, the saliency network constructs two saliency maps, one for each property, from
which salient locations can be detected.

Smoothing the Measured Curves

The input to the saliency network is an edge map that determines which of the
network’s elements are active. The edges in the edge map are often noisy, due to sensor
noise, quantization effects, and various effects of the edge detection process. Reducing
noise is important because what appears to be a smooth curve to our visual system may
turn out to be rather serrated at the edge map level. Smoothing can be obtained in
part by analyzing the same image at different resolutions. It turns out, however, that
some smoothing is often desired within a given scale of analysis.

A naive approach would be to extract all curves, replace them by a smooth approx-
imation and then apply the saliency network to the smoothed curves. However, such
an approach will encounter the same complexity issue regarding the number of possible
curves discussed in section 1.1. We handle the problem of smoothing curves as a local
computation that is performed within the saliency network itself, as an integral part
of computing the saliency measure. In a nutshell, the coordinates associated with each
orientation element are modified in an iterative manner, to smooth the curve passing
through that element. The approach underlying the computation is to associate an en-
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ergy level to each curve so that the smooth approximation is of minimum energy. The
energy functional is given by:

N 1 [ [(d?6\?
B = Y (@ -+ s -07) + 5 [ () @
j=i

where (z;,y;) j =14,...,4 + N are the coordinates of the smooth approximation to the
curve (xg, yg) j =1,..,i+ N. A curve of minimum energy is one that minimizes its
total curvature variation while being as close as possible to the original curve. The
parameter A controls the relative weight between the two terms (for a similar energy
functional see Poggio et al. (1985)). The energy is lowered at each iteration in a process
that involves only local computations. These local computations are combined with
those in (3.1), resulting a network which measures saliency of curves while smoothing

them simultaneously. The details can be found in (Sha’ashua 1988).

§4 Examples of the Saliency Network at Work

The main issues illustrated by the examples are (i) the saliency map, and (ii) the
by-product creation of linked curves, which is a by-product of the saliency computation.

Prominent locations in the image are represented as elements having a high measure
of saliency as computed by the network. For illustration purposes the saliency map will
be displayed as a gray-level image in which an element p; is displayed as a bar of width
w; and intensity value 7;, given by:

E,, Ti
i = | ————255 i = | —=—4
i [maxp,. E,, j © [255 ]

In other words, increased saliency measure corresponds to an increase in brightness and
in width of the element in the display. The most salient element is displayed as a white
bar of width four, and the least salient element is displayed as a black segment.

The first example is a synthetic image (not produced by edge detection) shown
in Fig. 2. It is constructed from a fragmented circle placed among a background of
randomly placed and oriented elements. The number of background elements is 200
and the circle consists of 60 elements. The circle is immediately perceived by our visual
system. The saliency network is applied to this image for ten iterations. Fig. 5 presents
the saliency map after that period, and Fig. 6 presents the selected curve starting from
the most salient element. The result is in agreement with the perception of the circle
by our visual system. The saliency measure of each element of the circle is significantly
higher than the measure given to the background elements. In this regard, the circle
virtually ‘pops-out’ from the saliency map.

The second point to notice is that a complete object is separated from the back-
ground although it is initially fragmented. This agrees with the observation that per-
ception is not severely affected by the presence of gaps. The final point to notice is
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that although the length of the salient curve is 60 elements, the number of iterations
required for distinguishing the circle from its background is considerably smaller. This
happens because although each element of the circle is not salient by itself, groups of
ten elements already become sufficiently salient. Outside the circle, the probability of
having a low curvature chain of length ten is low. In fact, the probability remains small
even when the number of background elements increases considerably. To illustrate,
we doubled the number of background elements as shown in Fig. 7. We applied again
ten iterations to produce the saliency map in Fig. 8. Starting from the most salient
element, the curve extracted by the network is identical with the one in Fig. 6.

The next example is the image in Fig. 3. Fig. 9 shows the saliency map after
30 iterations. Only the region surrounding the car is displayed. The saliency measure
given to most of the elements of the car is significantly higher than that given to the
background elements. Fig. 10 displays the five most salient curves obtained by tracing
the most salient elements. Note that the traced curves have been smoothed, and that
the gaps have been filled in. The results suggest that the saliency computation is useful
for distinguishing significant structures in the image.

The final example is the image in Fig. 1la. The input to the network was obtained
by edge detection from the original hand-drawn image. We show the results for a part
of the image containing one of the blobs. Fig. 11 displays the saliency map for low
curvature variation after 160 iterations, which is twice the number of elements on the
perimeter of the blob. The elements of the blob become stronger than the background
elements after 70 iterations, in agreement with the observation that one must capture
almost the entire blob in order to perceive it as prominent. Interestingly, the results of
the low curvature map are similar, but about 100 iterations are required for the blob to
become prominent. Fig. 12 displays the curve starting from the most salient element.
In this case also the curve is smoothed by the network while measuring its saliency.

§5 Summary

5.1 Brief Summary of the Scheme

A measure of saliency S(P) is defined for the edge elements in the image. The
saliency measure is used for detecting globally salient structures in the image. As a by-
product, the process fills-in smoothly gaps in fragmented contours, and provides linking
information between edge segments.

Saliency of a Single Curve

Let v be a curve and P an end element of the curve. The saliency of P given +,
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S,(P) is defined as:
57(P) = Z W0y

where o; is the local saliency of the i’th edge element along <, and wj; is the weight of
the element’s contribution.

The weight w; is a product of two factors. The first factor is
e
where ¢; is the total curvature of the curve up to the i’th element. The second factor

penalizes the existence of gaps, and is defined as:
i
11 o
k=0

where p; is the attenuation factor of the k’th element along the curve. One value is
used for real edges, another for gaps in the contour.

The Saliency Measure

The measure in section 1 depends on a particular curve 4. The saliency at P is
given by:
S(P) = maxS5,(P)
¥

A maximum is reached over all possible curves terminating at P. In practice, the
definition is limited to curves of length N:
Sn(P) = max S, (P)
N

Note: the maximum is taken over all possible curves, including fragmented ones. As a
by-product, curves are being filled-in.

Operation of the Network

Ei(o) =0
E™Y =0, + p; max EM S

8(7) are all the neighbors of element ¢. The quantities p; and f; ; (“couplings”) are
constants of the network. The initial input at step 0 are the local saliencies ;. At the
(n+1) iteration, each element simply adds the maximal contribution from its neighbors
to its own local saliency. After NV iterations the computation defined above computes

the saliency measure Sy(P) for each element P.

5.2 General Summary

It is proposed that immediate perception includes processes for detecting salient
structures in the image on which subsequent processes such as segmentation and recog-
nition can focus. The saliency of a structure is divided into two sources, local saliency,
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and structural saliency. Of the two, structural saliency is more problematic from a
computational point of view since it requires the efficient computation of certain global
properties.

A locally connected network was devised to produce a saliency map, which is a
representation of the image emphasizing salient locations. The network exhibits the
following properties: (i) the computations are local and simple, (ii) the number of
computations are in the order of dozens or up to about a hundred, (iii) there is little
dependence on the complexity of the image, (iv) gaps in curves are filled in the course
of the computation, (v) contours are smoothed in the course of producing a saliency
map, (vi) the network produces linking information so that curve tracing across junc-
tions, branches and gaps is possible, and (vii) the network is robust in the sense that
malfunction of some processing units does not affect seriously the performance of the
network.

Acknowledgement: We thank E. Grimson for his comments.



Figure 5. Saliency map of the image in Fig. 2 obtained by the network after 10 iterations.
The saliency measure of each element of the circle is significantly higher than of the

background elements.

Figure 6. The curve starting from the strongest element in figure 5. Virtual elements are

displayed as dotted lines.

Figure 7. The same circle as in figure 2 but with 400 background segments.

Figure 8. Saliency map of the image in Fig. 7 obtained by the network after 10 iterations.
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Figure 9. Saliency map of the image in Fig. 3 obtained by the network after 30 iterations. The
region of interest virtually ‘pops-out’ from the display.

Figure 10. The five most salient curves obtained by tracing the most salient elements of figure
9. The curves have been smoothed and gaps have been filled in.

Figure 11. Saliency map for low curvature variation of the image in Fig. 1

Figure 12. The curve starting from the strongest element in figure 11 is traced. The curve is
smoothed by the network while measuring its saliency.
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