Massachusetts Institute Of Technology
Artificial Intelligence Laboratory

A.I.Memo No. 1070 , May, 1988

AN OPERATING ENVIRONMENT FOR THE JELLYBEAN
MACHINE

Brian K. Totty

ABSTRACT

The Jellybean Machine is a scalable MIMD concurrent processor consisting of special-purpose RISC pro-
cessors loosely coupled into a low latency network. The problem with such a machine is to find a way to
efficiently coordinate the collective power of the distributed processing elements. A foundation of efficient,
powerful services is required to support this system.

To provide this supportive operating environment, I developed an operating system kernel that serves
many of the initial needs of our machine. This Jellybean Operating System Software provides an object-
based storage model, where typed contiguous blocks act as the basic metric of storage. This memory model
is complemented by a global virtual naming scheme that can reference objects residing on any node of the
network. Migration mechanisms allow object relocation among different nodes, and permit local caching of
code. A low cost process control system based on fast-allocated contexts allows parallelism at a significantly
fine grain (on the order of 30 instructions per task).

The system services are developed in detail, and may be of interest to other designers of fine grain,
distributed memory processing networks. The initial performance estimates are satisfactory. Optimizations
will require more insight into how the machine will perform under real-world conditions.

Submitted to the Department of Electrical Engineering and Computer Science on May 6, 1988 in partial
fulfillment of the requirements for the Degree of Bachelor of Science in Computer Science.

Thesis Supervisor: William J. Dally
Title: Assistant Professor of Electrical Engineering and Computer Science

Keywords: Operating Systems, Jellybean Machine, Parallel Processing, Distributed Systems, Networks,
Virtual Memory, Ensemble Machines

This report describes research done at the Artificial Intelligence Laboratory of the Massachusetts
Institute of Technology. The research described in this paper was supported in part by the Defense
Advance Research Projects Agency of the Department of Defense under contracts N00014-80-C-0622
and N00014-85-K-0124 and in part by a National Science Foundation Presidential Young Investigator
Award with matching funds from General Electric Corporation and IBM Corporation.

This empty page was substituted for a
blank page in the original document.

Acknowledgements

Now that [am polishjng up my thesis, I want to take the time out to thank a few of the people
who helped me complete this task.

Thanks to my thesis advisor, Bill Dally, for providing a wealth of knowledge and the obligatory
prodding that was necessary for timely completion of my thesis. Thanks for spending the time
to repeat ideas hundreds of thousands of times until I caught on. Thanks for the help, advice
and support. Mainly, thanks for the opportunity of working in your group. It was by far the
most rewarding academic experience I had at M.I.T. My newfound enthusiasm will have significant
effects on my future plans. Good luck with the project.

Thanks to all the members of the Concurrent VLSI Architecture Group for sharing your insight
~ and time with me. Thanks, Andrew Chien, for your leadership, interest and advice, and your
Jellybeans. Thanks to Stuart Fiske for taking the time to think through things with me and for
helping me back onto the track when I get confused. Thanks for your advice, your sense of humor,
and for being an all around great guy. However, I won’t mind too much if you quit the singing.
And “gobs” of thanks to Soha for all the support and advice and assistance and most of all for
being a great friend. Thanks for the ideas, suggestions, and for inciting heated political discussions.
Unfortunately, you call my car a “toy”, so I won’t acknowledge you any more. Thanks to Waldemar
Horwat for his ideas and advice. Thanks for providing the only readable documentation when I
entered the group and for the simulator which my system was tested on. Thanks to Jerry Larivee
for providing the technical support, for his thoughts on garbage collection, and for being a funny
guy. Thanks to Paul Song for sharing his knowledge of networks, for participating in four hour
discussions on twentieth century Middle Eastern history, and for being a “yogurthead”. Go home
to your family, will you! And thanks to Scott Wills, for providing the intellectual diversity and
organization to the group. Thanks for your interest and your advice. Finally, thanks to Anant
Agarwal for sharing his expertise, his humor, his knowledge of Indian history, and his advice. And
thanks, of course, for splot.

Scott Heeschen deserves thanks, for suggesting I approach Bill Dally for a UROP. Let me thank
my history professor Hasan Kayali in advance for letting me turn my history paper in late in order
to complete my thesis. Thanks also for providing my most interesting class this term. Thanks to
all of the members of the LAND-OF-THE-BIZARRE@OZ mailing list for the consistant stream of
mentally deranged mail, that helped to keep my spirits high, as well as the size of my mail files.

Thank you to_my relatives, who were so proud to see me go to M.I.T., and who made my holiday
gift buying much easier with their insatiable desire for M.I.T. insignia. And finally, thank you to
my parents, who put up with the financial and emotion burden of sending me to college. Thank
you for instilling in me the respect of education and the desire for understanding. Thank you for
your care and support and advice, even if I sometimes don’t seem to appreciate.

To my friends and family, best wiéhes, and take care.

This empty page was substituted for a
blank page in the original document.

Contents

Introduction :

1.1 Scopeof Thesiso i i e
1.2 Highlights of Contributions
1.3 A Closer Look At The Jellybean Machine
14 Background e e e e
1.5 Organization e e e e e e e

The Execution Model of the Jellybean Machine

2.1 TheProcessingNode e,
2.1.1 MachineCode,
212 System Calls e e
213 FaultHandlers
2.1.4 The Basic Node of Computation

2.2 The Concurrent Processor Model
2.2.1 Methods and the CALL Message
2.2.2 SENDing Selectorsto Objects

2.3 High Level Language Model
2.3.1 IntermediateCode
232 UserLanguagest i ittt

Memory Management and Addressing System

3.1 “Freetop” Contiguous Heap Allocation

3.2 CompactionisFast i

3.3 Physical Base/Length Addressing

3.4 Virtual Addressing Extension
3.4.1 Creating NewObjects,
3.42 Virtual Memory System Calls
3.43 Translation Buffer
3.4.4 Automatic Retranslation. 000 0oL,

3.5 SUmMMATY o i e e e e e e e e e e e e e e e e e e

4 Distributed System Support
4l Theldea. o
42 ChainingofHints 7
4.3 Calculating Likely Nodes From Ob JjectIDs,
4.4 Virtual To Physical Translations In The Migrant Object World
4.5 Bouncing Objects.
4.6 Details About Object Migration
47 Summary ...

5 A Virtually Addressed Code Execution Model
5.1 Taking Advantage of Object Storage
5.2 An Overview of the CALL Message.
5-3 Caching Method Copies "
54 Comtexts.
5.4.1 Why Do We Need Them?
5.42 How Do We Make Them? "
5.4.3 How Do We Make Them ... Quickly!?
544 Restartinga Context.

5-5 The Resource Wait Table ' ‘

5.6 Removing Method Caching Bottlenecks with Distribution Trees

6 System Support of a Type-Dispatched Calling Model
6.1 Message-Passing and Object-Oriented Languages
6.2 Late-Binding Send Execution Support
6.3 Loading Class/Selector Methods into the System
6.4 Returning Values "
6.5 Summary

7 Storage Reclamation in the Jellybean Machine
71 Intreduction............
7.2 Automatic Collection is Desirable
7.3 Choosing a Collection Approach
7.3.1 Memory Organization
7.3.2 Addressing System and Network Topology
7.3.3 Garbage Collection Character
7.4 A Pointer Chasing Garbage Collector
741 The Generalldea
742 Problems
7.5 Summary e e e e

8 Support for Concurrent Programming Languages
8.1 High-Level Languages
811 CST ... o
82 SENDandREPLY
83 Fatures
8.3.1 Conforming to Data Dependencies
832 The Check’sinthe Mail
833 Advanmtages
834 Disadvantages.,
8.4 Distributed Objects,
84.1 A Distributed IDFormat
8.4.2 Dealing out the Constituent Objects

8.4.3 Choosing a Constituent Object "

9 Issues From a Prototype System

9.1 Sizingthe BRAT 0. ..

9.11 Memory Limitation

912 BRAT UseScenariosouvn.. ..

9.1.3 A Prototype Sizing Based On Average Object Size
9.2 Running Out of Binding Space
9.3 Scarcity of IDS
9.4 The Shortage of Memory
95 QueueSize
9.6 Suspension and Processor State
9.7 Summary

10 Performance Evaluation
10.1 The Virtual Binding Tables
10.1.1 Imstruction Counts
10.1.2 Effectiveness of Linear Probing
10.2 Object Allocation

10. 4 Boot Code and Messa.ge Handlers
105 ROM Sizeo
106 Summary

11 Conclusions
111 Summaryot e e e
11.2 Suggestions for Further Study
11.3 Hopes

A Operating System Equates

73
73
73
74
75
75
75
76
77
78
78
79
82

83
84

85
86
87
89
90
90
90

92
92
93
94
99
99
102
102
103

105
105
106
107

108

List of Figures

2.1

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2
4.3
4.4

3.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9

6.1
6.2
6.3
6.4
6.5

7.1

8.1
8.2

Layering of Jellybean System 15
Schematic Model of the Memory System 23
“Freetop” Heap Allocation, Deletion, Compaction. 25
A Physical Address Word Format 25
The Structure of an Object 27
A Virtual Address Word (ID) Format 28
Format of the Translation Buffer e e 29
An Exampleof Hints 32
Chainsof Hints 33
Flowchart for the ID. TONODE algorithm 35
Step-by-step Object Migration 39
Format of the CALL Message v v v i nennn.. 41
Flowchart of the CALL Message Handler 43
Structure of a Typical Context 45
The Free Context List 47
The Resource Wait Table 49
The Resource Wait Overflow List 50
A Parallel Resource Request Bottleneck in a 3 x 3 Network 51
A Distribution Tree Bureaucracy To Balance Load in a 3 x 3 Network . .. 53
Example Distribution Trees for Several Machine Configuration 55
Format of the SEND Message e e e e e e e 59
Flowchart of the SEND Message Handler 61
Class/Selector Word Format 62
A Coarse View of the Compiler/Machine Interface 62
Format of the NEW_METHOD Message e e 63
Object ID Travellingin Network 70
Distributed ID Format, 79
Distribution of Constituent Objects 80

This empty page was substituted for a
blank page in the original document.

Chapter 1

Introduction

I am the people — the mob — the crowd — the mass
Do you know that all the great work of the world is done through me?

— CARL SANDBURG, in I Am the People, the Mob (1916)

Power is the great aphrodisiac.

— in The New York Times (January 19, 1971)

Concurrent processing is becoming a progressively more popular field in computer
science. The vision of harnessing previously undreamt of computational power at a reason-
able cost is leading the drive. By connecting many moderately powerful microprocesors in a
communications medium, system designers hope to be able to take advantage of the collec-

tive power of the architecture to solve tasks that were previously time or cost-prohibitive.

Unfortunately, the eager concurrent system designer soon finds that many issues
are still unresolved. Though people have a fairly good grasp of ways to build successful
sequential machines, it is less clear how to build optimal, or even acceptable concurrent
systems. The designer is soon faced by a barrage of questions that are difficult to answer.

“What grain of parallelism should be supported?” “What level of functionality should the

CHAPTER 1. INTRODUCTION 9

processors provide?” “How should the processors communicate?” “How tightly coupled
should the processors be?” “How should memory be managed?” “How should the load be
distributed?”. Many research groups are attempting to answer these questions at this very

moment.

Some insight into concurrent architectures has been gained over the years, and
the current directions of research reflects the knowledge gained. Multicomputer networks
(sometimes called “ensemble machines”) are one direction that concurrent systems research
has taken. This genre of machine connects relatively conventional microprocessors via an
automatically routed network. The design is advantageous because it takes advantage of well
understood sequential processor technology for the processing nodes, and the performance of

the system can grow proportionately with the number of processors!, providing scalability.

For the past two years, the Concurrent VLSI Architecture Group at M.L.T. has been
designing a concurrent processing network, christened the Jellybean Machine, under the
direction of Professor William Dally [Dal86c]. The goal of the Jellybean Machine project is
to design a scalable concurrent processor out of low-priced (jellybean) parts, that efficiently
supports an object-oriented execution model. The processor is targeted at both symbolic
and numeric applications, and will be programmed in high-level, object-oriented languages.
It hopefully will serve as a succesful example and a test bed for advan;:ed concurrent systems

research.

1.1 Scope of Thesis

This thesis report describes the design and implementation of an operating system prototype
for the J-Machine. The operating system was required to support a global namespace across

the distributed processors, allocate memory in an object-based storage model, support

'at least up to some point.

CHAPTER 1. INTRODUCTION 10

inter-processor communication, provide system services to control code execution, object

migration, and an object-oriented calling model. It also provided a perch from which more

advanced issues in system design could be studied.

1.2

Highlights of Contributions

In the course of the design of the J-Machine operating system, several ideas were developed

that may be of special interest to the designer of multicomputer networks.

In section 3.4, I describe a virtual addressing system that resolves objects names
across distributed nodes by a mechanism known as hometown addressing. This scheme
delegates to object birthnodes the responsibility for knowing current object residences,
permitting object migration. An accompanying mechanism of “hints” is provided to
improve performance.

To simplify the hardware with minimal cost in flexibility, we have developed an ex-
plicit, one time virtual translation scheme via the XLATE machine instruction, that
converts a virtual address to a physical one. Retranslation is provided for automati-
cally by fault handlers.

Chapter 5 describes a low overhead code execution model that supports inexpensive
remote procedure calls, local caching of code, and convenient suspension and resump-
tion of processes.

Section 5.4 describes a system for fast context creation that involves the re-use of old
context objects. This is an important optimization based on the short life and rapid
freqency of context allocation.

Section 5.6 outlines a simple and fast, resource distribution mechanism that limits
bottlenecks and cross network traffic by dynamically creating a type distribution tree
for the resource.

CHAPTER 1. INTRODUCTION 11

1.3 A Closer Look At The Jellybean Machine

The J-Machine is composed of many custom RISC microprocessors called Message-Driven
Processors or MDPs. These processing elements have small, local memories and are con-
nected in a loosely coupled network. Inter-node communication is provided via message
sends that are automatically routed to the proper destination nodes. A virtual object-
based memory abstraction is built over the distributed nodes providing a uniform global
namespace. Various levels of low-cost execution control provide a reasonably fine grain
of concurrency (on the level of 30 instruction procedures). An ob Jject-oriented execution
model is built upon this fine-grain execution model. The rest of the system implements

miscellaneous system services and mechanisms to improve performance.

CHAPTER 1. INTRODUCTION 12

1.4 Background

Concurrent architecture design has been seriously studied for at least the past fifteen years,
but there is still much to be learned. The various visions of machines, operating systems,

and target applications are so diverse, that few definitive statements can be made.

We see SIMD parallelism, promoted by vector operations as seen in the Cray. More
complicated architectures like the Connection Machine (Hil85], and systolic array processors
like the Warp [Kun82] are alternative approaches, providing fine-grain concurrency with
Tepetitive processing while permitting reconfiguration. MIMD architectures are just as
diverse. There are extremely fine-grain dataflow machines like the Manchester Machine,
Sigma-1, and the MIT Tagged-Token dataflow Machine [Aea80], bus-based shared memory
architectures like the IBM RP3, Inmos Transputer, and C.mmp [WLHS81], multicomputer
networks like the Cosmic ¢ :be [Sei85] and Cm* [05580] and distributed systems like System
R* [Lin80].

The Jellybean Machine, while borrowing ideas from successful research endeavors,
has goals unique enough to gain a somewhat different character from other machines of
its genre. It communicates via message passing and addresses only local memory, as in
the Cosmic Cube [Sei85] and the Medusa system [0SS80]. On the other hand, these two
systems control execution by a system of pipes and locks, where processes wait for data to
arrive via messages. The J-Machine, instead, uses message sends to schedule processes, and
not to provide socket-to-socket communication. State manipulation doesn’t involve explicit
connections between running processes. Instead, return values are propagated around to

slots in contexts and code is executed when results arrive in a more “functional” manner.

Many systems also have virtual memory and some systems use an object or segment
based storage model [WLHS81] as does the J -Machine, but the emphasis is slightly different

in our design. Where most systems use a virtually addressed, multi-level memory system

CHAPTER 1. INTRODUCTION 13

to expand primary memory and provide relative address mapping, the J-Machine uses a
virtual addressing system to provide a global namespace across all nodes and to provide
convenient access to objects as the primitive memory metric. This is more similar to large,
complexsdistributed systems such as IBM’s distributed database, System R* [Lin80] than

conventional parallel processors.

Finally, the J-Machine targets itself to a high-level programming environment. The
RISC processing node, called the Message-Driven Processor [HT88), provides a fast, power-
ful substrate for the execution of high-level languages, such as Smalltalk. There are several
architectures designed for the efficient execution of high-level language applications, such
as the Symbolics Lisp Machine and the SOAR Smalltalk processor [Ung87], but very little

work has been done targeting concurrent processors to high-level languages.

1.5 Organization

The rest of this report will discuss the structure of the J ellybean system. Chapter 2 provides
a high level layering of the Jellybean system — from single processing node hardware to the
‘high level programming of the entire concurrent processing network. Chapter 3 describes
the memory management and addressing system. Chapter 4 discusses the machine as a
distributed system supporting object migration to balance load. Chapter 5 explains code
execution on the method level, and 6 details the ob Ject-oriented calling extensions. Storage
reclamation issues will be introduced in chapter 7. Chapter 8 discusses some of the services
provided to support high-level language constructs and to control code execution. Chapter
9 describes the prototype operating system implementation noting its successful as well as
not-so-successful features, and discussing some of the difficulties and quirks faced by the
system designer. The report concludes with a performance evaluation and summary in

chapters 10 and 11.

Chapter 2

The Execution Model of the

Jellybean Machine

These unhappy times call for the building of plans ...
that build from the bottom up and not from the top down

— FRANKLIN DELANO ROOSEVELT, in his April 17, 1932 Radio Address

The Jellybean Operating System Software (JOSS) is built in a layered manner where
each layer provides a different model of functionality to the machine. Figure 2.1 attenipts to

describe this layering, and what new functionality each layer provides to the entire system.

At the bottom of the figure lies the base processor and boot code. At this stage,
the processing node can be initialized, and can run independently as a limited micropro-
cessor. The addition of system call and fault handlers provide a level of system services
and robustness to the microprocessor, allowing it to allocate meﬁory in an object-based,
virtually addressed manner, and to handle various types of exceptional conditions at run

time. These first two levels of the Jellybean system build up the abstract processing node

14

CHAPTER 2. THE EXECUTION MODEL OF THE JELLYBEAN MACHINE 15

Execu»&ron Model

High Level Languages

Intermediate Code

SEND Message Handler

CALL Message Handler

Primitive Message Support

System Calls
and
Fault Handlers

Machine Code

Functionality
User programming language
Simple machine independent target language

Class/Selector calling model

Remote Method Calls

Communication
Distributed Namespace
Concurrent computing

Object-based memory allocation
Optimistic code generation
Virtual Namespace

Assorted System Services

Simple instruction set, tagged, local memory
Fast priority switches

Figure 2.1: Layering of Jellybean System

CHAPTER 2. THE EXECUTION MODEL OF THE JELLYBEAN MACHINE 16

capable of executing machine code and performing a set of system services.

Concurrency is provided as the next level of functionality by the introduction of
- primitive message handlers. Each processing node has the ability to send messages to any
other node, where a message is simply a physical address to start running on a foreign node,
followed by routine-specific data. Thus, a Jellybean primitive message is actually just a way
of changing a program counter of a remote node. A set of common operations can be placed
in identical physical memory locations on each node, so that an operation can be run on any
node by mailing that routine’s address to the node. The operating system provides a small
set of primitive message handlers to perform common operations which reside in the same
locations on each node. With this small set of locked-down routines, the machine gains the
ability to compute concurrently, to use a global addressing abstraction over the physically
distributed memories, and to perform some amount of ob ject migration and other control

of resources.

Two special primitive message handlers are special, in that other system services are
built on top of them. The CALL message handler provides a mechanism for starting code
contained in virtually-addressed relocatable objects, rather than just code that resides at
locked-down physical addresses. This provides a convenient way of packaging objects and
supporting remote procedure calls. The SEND message takes the code execution mechanism
to an even higher level, and provides for a dispatch-on-type calling model as used in object-

oriented systems like Flavors or Smalltalk.

The final two layers of the system are the interfaces for the programming models.
The Jellybean Machine under this highest level of abstraction appears to the user a system

to run high-level languages like Smalltalk.

The rest of this chapter will go into the abstractions in more detail, describing what
functionality each level of the machine provides. It may be helpful to refer back to figure

2.1 as you read the following sections.

CHAPTER 2. THE EXECUTION MODEL OF THE JELLYBEAN MACHINE 17
2.1 The Processing Node

Each node of the Jellybean multiprocessor (a Message-Driven Processor) is a tagged-
architecture microprocessor with a small on-chip memory with separate register sets for

operating at two priority levels.

2.1.1 Machine Code

The machine code interpreted by a Message-Driven Processor (MDP) is a simple 3 operand
instruction set [HT88]. Code is executed sequentially, and changes in control are provided
by simple conditional and unconditional branches. The instruction stream is accessed via
two registers, one that points at the base of the code block (A0), and one that indicates

the current offset into this block (IP).

2.1.2 System Calls

The processor also has a small fixed length stack, and a mechanism to make system calls.
This provides us with the ability to change control to common subroutines, and easily restore
execution upon return. The addition of the system call machinery gives us the ability to
provide several extensions to the processor in terms of system services written in machine
code. Heap management, and an object-based memory allocation model are provided with

system calls, as are the mechanisms to address these ob Jects with relocatable, virtual IDs.

2.1.3 Fault Handlers

Similar to system calls, the MDP also contains a fault handler table providing software
routines to run when instructions fault because of various exception conditions (tag mis-
matches, addressing past segment, integer overflow, translation buffer lookup miss, etc.).

When a fault occurs, the IP is pushed onto the stack, and the appropriate fault routine

CHAPTER 2. THE EXECUTION MODEL OF THE JELLYBEAN MACHINE 18

(found in the exception vectors table) is run. An address of each fault handlers is placed
in the exception vector table by software initialization. The.addition of the fault handlers
gives us several advantages in our quest of an object-oriented concurrent processor. We can
use tag checking to support optimistic code generation and a type of “generic operation”
approach on the machine code level. The fault handlers also provide us the ability to effi-
ciently implement virtual ID lookup via the XLATE instruction. The fault handlers will be

described in more detail later when the entire system has been more thoroughly explained.

Since both the system calls and fault handlers are supported by a software initialized
vector table, the processor can be “reshaped” into a different type of machine by replacing
the ROM code that sets up this table. Only the instruction set is fixed, allowing the MDP
processing node to be used as a basis for various alternative concurrent processing system

paradigms.

2.1.4 The Basic Node of Computation

With what we have described so far, our processor is a sequential machine, able to be
executing in one of two priorities. It refers to its instruction stream using physical memory
base and offset registers. The addition of the system calls provides an interface to OS
services, such as those to allocate memory, generate virtual ob ject IDs and to manage object
ID to physical address translation. The fault handlers permit us to develop “optimistic”
code, where a normal, error-free execution will proceed rapidly, and we only pé,y the price of
software execution if an error condition occurs. The fault handlers are also used to support

a fast virtual namespace, where translation can be as fast as the XLATE instruction.

The sum is a flexible, object-based microprocessor that will serve as our basic node

of computation as we venture into the realm of concurrency.

CHAPTER 2. THE EXECUTION MODEL OF THE JELLYBEAN MACHINE 19
2.2 The Concurrent Processor Model

By providing mechanisms for node-to-node communication, our machine becomes a mul-
tiprocessor, called the Jellybean Machine. Many MDP processing nodes (as well as other
potential nodes such as floating point processors and memory nodes) are connected together
in a network. Communication between the nodes is provided by the MDP SEND instruction
which injects messages into the network. The messages are routed by routing hardware to

the message queues on the destination node.

Messages received by an MDP processing node consists of two parts, a message
header which contains the address of the primitive message handler to run, and a sequence
of message specific data words. The header of the message acts in effect like a process
descriptor for providing efficient message execution. When a message arrives at the specified
node, it lands in the destination node’s queue. The queue acts as a FIFO scheduler of
primitive message processes. When the message moves to the head of the queue, the MDP
executes the message by setting the instruction pointer register to point to the primitive

message handler whose address is in the header of the message.

Several useful system services are written as primitive message handlers. Examples
of primitive message handlers include those to make a new ob ject on a node (NEW.MSG)

and to request a copy of a method from a node (METHOD REQUEST.MSG).

With the addition of primitive messages, we have the ability to process concurrently,
and to support a distributed namespace. We can noQ extend our virtual memory system
to support naming of objects, not just in the local memory, but on any node in the entire
network. With a distributed namespace, we gain flexibility of resources. We can migrate

objects as we need them to balance load and to free up memory. .

CHAPTER 2. THE EXECUTION MODEL OF THE JELLYBEAN MACHINE 20

2.2.1 Methods and the CALL Message

Up to this point, we have only been able to run foreign code that resides at fixed physical
locations. We desire a more flexible mechanism for dealing with blocks of code, such as those
that will be output by compilers. Since we already have an object based storage model,
it would be very convenient to store code routines in objects and provide a mechanism for
their execution. We call code\routines stored in virtually addressed, relocatable ob jects
methods to differentiate them from physical locked down code sequences. We provide a
mechanism to start these methods executing by writing a primitive message handler called
the CALL message handler. When a CALL_MSG starts executing on a node, it runs the
method indicated in the message argument. This allows us to have a flexible system of

remote procedure calls.

2.2.2 SENDing Selectors to Objects

The final operating system layer in our quest for an object-oriented execution model is
the SEND _MSG message handler. A SEND_MSG consists of a selected generic operation,
represented by a unique symbol called a selector, followed by the object(s) that the selector
acts upon. If we wanted to send the DRAW selector to an object (say a triangle), we
would SEND a SEND_MSG message to the node the triangle object resides on, passing the
selector DRAW, and the virtual address of the triangle object receiving the selector (called
the receiver). When the SEND_MSG handler gets executed, it determines the appropriate
method to run, and then remotely calls the procedure by sending a CALL_.MSG message

to this method which then draws the triangle.

In order for this system to work it is necessary to maintain certain system tables
that map pairs of selectors and ob Ject classes with the virtual IDs of methods to perform
the desired information. It is also necessary to insure that semantically indentical selector

operations get the same selector symbol. In other words, all PLUS operations must get the

CHAPTER 2. THE EXECUTION MODEL OF THE JELLYBEAN MACHINE 21

same symbol representing +. The exact mechanisms of the class/selector system will be

described in more detail in chapter 6.

2.3 High Level Language Model

For the final part of our tour of the Jellybean Machine, let us step back once more, and
view the machine from the perspective of the programming languages that will be used to

write user programs.

2.3.1 Intermediate Code

To provide a uniform target language for compilers, we have specified an intermediate
language called i-code. This language has a simple set of operations, and a simple manner of
referencing operands. By passing the send code through a code generator and a linker/loader
we can store actual MDP machine code on nodes. The i-code level of the system provides a
convenient entry point for various compilers that necessitates no knowledge of the underlying
layers. All interaction is via the protected subsystem of the i-code interface. This interface,
in effect, provides an abstract i-code machine that can be of use in many different machine
configurations. Implementations of this interface on different machine architectures would

provide a convenient way to reuse compilation tools and compare system performance.

2.3.2 User Languages

The user language model is what would be seen by the user of the Jellybean Machine. He/she
would be faced with the language interaction shell and would see none of the internal layers
that compose the system. The currently supported user language is a prefix notation form
of concurrent Smalltalk [DC]. Other languages, such as a Lisp with flavors should also be

possible.

Chapter 3

Memory Management and

Addressing System

Work without hope draws nectar in a sieve
And hope without an object cannot live

— SAMUEL TAYLOR COLERIDGE, in Work Without Hope

Oh call it by some better name
For friendship sounds too cold.

— THOMAS MOORE in Ballads and Songs: Oh Call It by Some Better Name

The Jellybean Machine, targeted for object-oriented applications, needs to have an
object-based storage model. This chapter sketches the machinery that interact to provide
this model. The mechanisms basically consist of two parts, (1) the services to allocate and
deallocate contiguous blocks of physical memory, and (2) the virtual addressing abstractions
that make objects the basic unit of storage. This virtual address allows object relocation
and provides a way to reference storage on foreign nodes. Virtual naming and physical

allocation systems combine to form an object based programming system.

22

CHAPTER 3. MEMORY MANAGEMENT AND ADDRESSING SYSTEM 23

NEW
OBJECT
TRANSLATION GENERATE ALLOCATE
TABLE VIRTUAL PHYSICAL
ROUTINES ADDRESS MEMORY
Translation Virtual
Table iD
(BRAT) Pool

Figure 3.1: Schematic Model of the Memory System

At the heart of the object based system is the NEW system call, which creates a

new object. This routine utilizes the 3 ob Ject system subsystems, the translation manager,

the name manager, and the memory manager. This interaction of the various systems is

shown in figure 3.1.

CHAPTER 3. MEMORY MANAGEMENT AND ADDRESSING SYSTEM 24

3.1 “Freetop” Contiguous Heap Allocation

Each node of a Jellybean Machine has its own local memory that can be accessed very
rapidly. Part of this local memory is reserved as a heap to allocate blocks of memory from.
Heap allocation is done in a straightforward “freetop-next” manner. Memory is allocated
starting from the current top of free memory, and the freetop pointer is moved past the

block allocated. The ALLOC system call handles the allocation requests.

3.2 Compaction is Fast

Deletion of objects fragments the heap leaving unused “holes” in the heap. We reclaim this
storage by sweeping objects down toward the base of the heap, to fill up the blank space,
with the freetop following accordingly. Since each local memory is small and fast, and
each processor can sweep in parallel, compaction takes very little time. Figure 3.2 shows a

process of heap allocation, deletion, and compaction.

3.3 Physical Base/Length Addressing

Blocks of memory are described by physical base/length values supported by the processor’s
primitive ADDR data type. The base is the starting address of the block of memory, and the
length is used for access bounds checking. The format of an ADDR tagged value is shown
in figure 3.3. The tag of the physical address word is a unique number ADDR representing
a physical address value. The R bit is used to specify that an address value points to a
relocatable object. The I bit specifies that the address is now invalid. Both of these bits

are used for the implementation of virtual addressing.

CHAPTER 3. MEMORY MANAGEMENT AND ADDRESSING § YSTEM

N
N

Object B

Object B Object D

Empty Heap Allocate Object Compact
Figure 3.2: “Freetop” Heap Allocation, Deletion, Compaction
20 bits 10 bits
A A
N)
TAG |[R{I PHYSICAL ADDRESS LENGTH

Figure 3.3: A Physical Address Word Format

CHAPTER 3. MEMORY MANAGEMENT AND ADDRESSING SYSTEM , 28

8-Bits 16-Bits 8-Bits
A A A
¢ g hld)
NUMBER
OF HOMETOWN-NODE SERIAL
TAG | consTITUENT (“ROOT") NUMBER
OBJECTS

Figure 3.5: A Virtual Address Word (ID) Format

format of this virtual ID is shown in figure 3.5. There are also several utility routines used
to manage the virtual — physical translation table (called the Birth/Residence Address
Table, or BRAT). These routines add, lookup, and remove bindings from the translation
table. They are implemented by the extended system calls BRAT_ENTER, BRAT XLATE,
and BRAT _PURGE respectively. Finally, we provide the NEW system call to allocate and
install a new object. This service allocates physical memory, generates a virtual ID, installs
the virtual — physical binding in the BRAT, and returns both the ID and the address. The
NEW system call is to the virtual addressing model as ALLOC is to the physical addressing

model.

3.4.3 Translation Buffer

To speed up translation, each processing node has a 2-way set-associative translation buffer,
and the achmpa,nying ENTER, XLATE, and PURGE machine instructions. The XLATE
instruction will fault if no binding is found in the cache, and a software exception handler

will be run to resolve the name.

CHAPTER 3. MEMORY MANAGEMENT AND ADDRESSING SYSTEM 27

Tag ;g §| Class Length
Object ID

? N words of object data
W\ANW

Figure 3.4: The Structure of an Object

CHAPTER 3. MEMORY MANAGEMEN T AND ADDRESSING SYSTEM , 28

8-Bits 16-Bits 8-Bits
A
. 4
NUMBER
TAG OF HOMETOWN-NODE SERIAL
AG | CONSTITUENT ("ROOT") NUMBER
OBJECTS

Figure 3.5: A Virtual Address Word (ID) Format

format of this virtual ID is shown in figure 3.5. There are also several utility routines used
to manage the virtual — physical translation table (called the Birth/Residence Address
Table, or BRAT). These routines add, lookup, and remove bindings from the translation
table. They are implemented by the extended system calls BRAT_ENTER, BRAT XLATE,
and BRAT PURGE respectively. Finally, we provide the NEW system call to allocate and
install a new object. This service allocates physical memory, generates a virtual ID, installs
the virtual — physical binding in the BRAT, and returns both the ID and the address. The
NEW system call is to the virtual addressing model as ALLOC is to the physical addressing

model.

3.4.3 Translation Buffer

To speed up translation, each Processing node has a 2-way set-associative translation buffer,
and the accompanymg ENTER, XLATE, and PURGE machine instructions. The XLATE
instruction will fault if no binding is found in \the cache, and a software exception handler

will be run to resolve the name.

CHAPTER 3. MEMORY MANAGEMENT AND ADDRESSING SYSTEM

29

Virtual ID

direct
map

Keyl Datal Key 2

Figure 3.6: Format of the Translation Buffer

SMOY 91

CHAPTER 3. MEMORY MANAGEMENT AND ADDRESSING SYSTEM 30

3.4.4 Automatic Retranslation

To support maximum efficiency in normal case situations, the processing node provides an
“invalid” bit in each address (A) register. If this bit is set, it signifies that the ID and A
register have values that are no longer consistant. Any access of an invalid A register will
cause a fault handler to be run which will retranslate the ID register into the A register

and continue. This way we can be “lazy” and retranslate invalid bindings only if needed.

3.5 Summary

Physical block allocation is used to reserve segments of memory. Virtual IDs are associ-
ated with these blocks of memory, and bindings are formed, to provide an “object-based”
allocation model. This object allocation model provides the following benefits

* An abstract memory model, where “objects” are the primitive metric of storgae rather
than physical addresses.

o A location independent memory model with indirection through a translation table,
allowing ease of relocation.

¢ The ability to represent the data types of ob jects.

e The introduction of a global namespace where we can refer to ob jects residing on any
node of the network.

This empty page was substituted for a
blank page in the original document.

Chapter 4

Distributed System Support

I pity the man who can travel from Dan
to Beersheba and cry, 'Tis all barren!

— LAWRENCE STERNE, in A Sentimental Journey (1768)

In the previous chapter we developed a object based allocation model and a global
naming system. With this functionality, we gain much greater flexibility. We take this
system one step further in this chapter, as we describe a mechanism to migrate objects
from node to node. This added ability requires a few extensions to the virtual naming

model presented in the previous chapter.

4.1 The Idea

In the previous naming model, virtual IDs were bound to physical addresses. Since objects
were not allowed to migrate, they were forced to always reside on their birthnode. Now that
objects are allowed to emigrate to different nodes, we need to expand our name resolution
system. In addition to virtual — physical bindings we add a virtual — node-number

binding semantically representing a “hint” that the object in question now resides on a

31

CHAPTER 4. DISTRIBUTED SYSTEM SUPPORT 32

node #1 node #2
ID1-dnode #2 -+ D1 ¥
N Obj1
\
4

Figure 4.1: An Example of Hints

different node number. Figure 4.1 shows that node #1 has a hint that an ob ject is on node

#2.

4.2 Chaining of Hints

These node number “hints” indicate another node to look on for the ob ject in question. The
current implementation allows chaining of hints (although cycles will never form). If we ever
follow a ;;;th of hints and find no binding for the object ID, we then query the birthnode
which is required to have a path to the object in question. Figure 4.2 is a snapshot of a

system where a chain of hints has formed to an object.

A question then arises as to how long to let these chains of hints be. Some distributed

systems, such as System R* [Lin80], only allow paths of length 1, i.e. one hint. If the

CHAPTER 4. DISTRIBUTED SYSTEM SUPPORT

33

-

node #1 node #2

ID1-pnode #2 [~ ID1-¥ node #5 N

node #4

Figure 4.2: Chains of Hints

N

node #3
ID1-» node #2|

\

node #6

CHAPTER 4. DISTRIBUTED SYSTEM SUPPORT 34

object is not one hint transition away, the system then defaults 4o the birthnode where
the location of the object is found, and the previous incorrect hint is updated. However,
in our system we choose to have multiple hints because objects may migrate quite a bit,
and this would increase the number of birthnode accesses. Performance could significantly
degrade if a popular object moved quite a bit (as we would expect popular objects to do).
If we notice in later performance experiements, that chains of hints become commonplace,
adding latency and unnecessary network traffic, we can adopt one of 2 solutions, (1) only

allow one hint or (2) collect and update old hints periodically.

4.3 Calculating Likely Nodes From Object IDs

The operating system provides a system call for >ﬁnding a likely node that an object resides
on. This ID.TONODE call takes the virtual ID of the ob ject and returns a node number.
It does so by the algorithm charted in figure 4.3. It works in the following way. The virtual
ID is looked up in the translation table. If it is not there, we have no idea where the object
is, so we check the birthnode. If there is a binding, but the binding is to a hint (an integer
value), we return this hint as the probable residence node. Finally, if the binding is to a

physical address, the object is local, and the local node number is returned.

4.4 Virtual To Physical Translations In The Migrant Ob-
ject World

Now that objects are allowed to wander aimlessly across the nodes of the Jellybean Machine,
virtual to physical address translations are necessarily slightly more sophisticated. Three
conditions can occur when we attempt to translate a virtual ID into a physical address.

1. We find a physical address value for the binding
2. We find a hint to where the object currently resides

CHAPTER 4. DISTRIBUTED SYSTEM SUPPORT

35

ID TO NODE

Is word tagged
ID? s

Pick a random node to
perform the primitive
data operation on

XLATE ID locally (this
does an XLATE and a
BRAT lookup and
returns NIL if not found)

YES
NO

Check tag of result to
determine if object is
local or a hint

tag = ADDR?
YES

We have no idea where
the object is, so use
the birthnode

Return this INT value
as a hint to where the
T object might be

The object is local to this
node, 30 return the local
‘'node number

Figure 4.3: Flowchart for the ID.TO NODE algorithm

CHAPTER 4. DISTRIBUTED SYSTEM SUPPORT 36

3. We find no binding for the object

Case 1 is the normal situation. The physical address associated with the ob ject ID is
returned. Case 2 implies that the object is rumored to be on a foreign node. We then
send a request to this node asking that the object be shipped here for processing, and we
suspend our process onto a wait list. Case 3 occurs when a node has no idea where an
object resides. In this case, we send a request to the birthnode asking for the object. If the
birthnode doesn’t know where an object is, it loops, mailing messages to itself, assuming

the object is in a state of transition somewhere.

4.5 Bouncing Objects

Note that this method of finding data objects may cause them to bounce around from node
to node, as different processors wish to compute on them. This is the direct result of several
design decisions: (1) each processor executes only one task at a time, (2) memory is not
shared among processors, (3) mutable data objects are not cached, and (4) an object’s data
lies entirely on one node. The first and second decisions are fundamental to the design of
our machine. We chose the grain size and memory model to provided a moderately fine
grain, highly scalable processor. We chose not to do object caching because it is expensive
to do in software, and is difficult on a network based memory model. It may be possible to
provide coherent caching in the future however. The final restriction, that an ob ject’s state
is contained on one node only is for simplicity’s sake, and can be at least partially lifted by

the introduction of “distributed objects” described in a later section.

So, with these characteristics in mind, it becomes important for us to try to prevent
unnecessary “pinging” of objects from node to node. One way this is done is by “sending
work to the object” rather than “sending the object to the work”. Unfortunately, this is

difficult to do in the general case due to problems with transferring processor state. As a

CHAPTER 4. DISTRIBUTED SYSTEM SUPPORT 37

compromise, we set the following policy.

1. If we were sending a selector to an ob ject, and the object is not local, we forward the
selector to the location of the object!.

2. If we were accessing a non-local, immutable ob ject, we halt, saving our process state,
request a copy of the object, and restart execution when the COpy arrives.

3. If we were accessing a non-local, mutable object, we halt, saving our process state,

move the object here, and restart when it arrives.

This policy reduces the severity of the “pinging” problem, because work tends to accumulate

at the object, while at the same time, allowing the object to move if it has to.

4.6 Details About Object Migration

This section formalizes the mechanisms provided to migrate objects. When we try to access
a non-local object, we mail away to request a copy of the object or to move the object
(depending on whether the object is immutable or mutable, respectively)?. When we wish
to request a non-local object, the following steps are taken:

1. The processor state is saved in a context ob ject, and the context is marked waiting
for the ID of the object being requested.

2. The context is placed in a resource wait table that indicates processes waiting on
objects.

3. A MIGRATE_OBJECT message is sent to the best guess residence of the object,
asking it to be migrated to the requesting node, and the process suspends, able to
execute the next message in the queue.

4. This MIGRATE_OBJECT message is forwarded down the chain of hints. If it lands on
a node with no binding for the ID in question, the search continues at the birthnode.
Finally this message arrives at the node the ob ject resides on, and the message handler
is run.

5. If the object in question is marked unmovable, then the message is sent back to
the start of the queue, otherwise the message handler decides whether the object is
mutable or not, and acts depending.

e If it is mutable, the bindings are removed from this node, the object is mailed in
an IMMIGRATE_OBJ EC’% message back to the requesting node, and the object
is deleted.

' The class/selector late-binding activation model is discussed in detail in chapter 6.
*Since a process cannot be interrupted by a same priority message, it does not suffer from livelock and

can always make headway.

CHAPTER 4. DISTRIBUTED SYSTEM SUPPORT 38

o If'the object is read-only, the data is mailed in an IMMIGRATE_.COPY message
back to the requesting node.

6. These messages eventually arrive back at the requesting node.

o When a IMMIGRATE_OBJECT message arrives, the message handler (1) allo-
cates the object, (2) marks the object unmovable (until it can update the birthn-
ode, to prevent a race condition where hint updates may occur out of sequence),
(3) copies the data into the object, (4) mails a NOW_RESIDING_AT message to
the previous node of residence, and (5) calls the RESOURCE_ARRIVED system
call, which will queue the restart of the waiting contexts.

e When a IMMIGRATE_COPY message arrives, the handler (1) allocates the ob-
ject, (2) marks the object header as a copy, (3) binds the old ID to this new ob-
ject, (4) copies the data into the object, and (5) calls the RESOURCE_ARRIVED
system call, which will queue the restart of the waiting contexts (copies can be
collected when storage runs low).

7. The NOW _RESIDING_AT message makes a hint from the current node to the new
node, and mails a UPDATE _BIRTHNODE message to the birthnode of the object,
telling it of the object’s new location.

8. The UPDATE _BIRTHNODE message makes a hint to the new location and mails an
OBJECT_MOVABLE message to the location of the new ob ject, passing its ID.

9. The OBJECT .MOVABLE message marks the object movable. Now the ob ject is free
to move again.

Figure 4.4 shows an example of this process.

4.7 Summary

The addition of a mechanism for object migration adds much more flexibility to the J elly-
bean system. Without imposing policy, the migration and copying system provides the
basic mechanism for resource sharing. To alleviate name resolution bottlenecks at object
birthnode, I designed a system of cycle-free hints to indicate where ob jects currently lie. It
is not clear how long to allow these chains of hints to be. Long chains of hints would cause
unnecessary network traffic and increase latency. Having single hints would increase the
number of birthnode accesses and require mechanisms for removing old links. The system

currently supports chains of hints.

CHAPTER 4. DISTRIBUTED SYSTEM SUPPORT 39

MigrateObject ID1, 2

} UpdateBirthnode ID1], 1

ID1-5 #! Rode #1 [D1=bnodes ID1 = nodts
movable = “deleted | % /
8 a
objt|| 2 /] 'obj1)| @)
s (LL==] 3} ;
node #2 ;_g. node #32 % D1 node #2 D1 node #32 g
‘E = unmovable unmovable :g.
. . o
g Objl Objl
Step-4 Step-6 Step-7 Step-8 Step-9

Figure 4.4: Step-by-step Object Migration

This empty page was substituted for a
blank page in the original document.

Chapter 5

A Virtually Addressed Code

Execution Model

They shall mount up with wings as eagles;
they shall run, and not be weary, and
they shall walk, and not faint

-— The Holy Bible, Isaiah, {0:31

At the most primitive level, we could execute physically addressed blocks of machine
code by directly setting the registers, or by sending primitive messages. Unfortunately,
we have no mechanism to allocate or relocate these blocks of code, they are physically
addressed and sedentary. This chapter presents the system mechanisms that interact to
provide a 1;10re flexible, but low overhead model for code execution by taking advantage of

the virtually-addressed, object-based storage model we developed in the last 2 chapters.

[will present (1) the advantages of an object-based code model, (2) the mechanisms
for executing object-based code, (3) local caching of methods, (4) contexts, suspension,
and waiting for resources, and (5) efficient ways of distributing code models across a large

network.

40

CHAPTER 5. A VIRTUALLY ADDRESSED CODE EXECUTION MODEL 41

CALL Method | Optional

Routine
Address ID Args

Figure 5.1: Format of the CALL Message

5.1 Taking Advantage of Object Storage

By taking advantage of the object storage and naming system we developed, we are able
to wrap threads of code inside objects and gain all of the benefits of this more powerful
object-based abstraction, of which a few are: (1) dynamic allocation, (2) relocation, even
across nodes, and (3) convenient naming and name resolution. This view of code blocks as
objects (or methods, which is what we call code blocks that are wrapped in objects) allows
us to consider more advanced calling models, such as the ability to conveniently support
remote procedure calls (RPCs) and the flexibility to “send the work to the data” rather

than just the typical mechanism of “bringing the data to the work”.

5.2 An Overview of the CALL Message

Ignoring for the moment the question of initially creating methods, let’s concentrate on the
mechanisms needed to execute them. The operating system provides a primitive message
handler for a CALL message. To start a method running, we mail a CALL message to the

node the method resides on!, passing as arguments the virtual ID of the method to execute,

!Since we build this on top of the virtual, distributed namespace model, we can use hints to make our

best guess where method resides.

CHAPTER 5. A VIRTUALLY ADDRESSED CODE EXECUTION MODEL 42

and any data the method expects as parameters. The format of the CALL mesage is shown
in figure 5.1. When the CALL message arrives at the node it first checks if the method is
here. If so, the code is started. If not, rather than forward the message to the birthnode,

we note that

1. Methods are immutable, and therefore can be copied
2. Certain methods might tend to be called often from many nodes

and adopt a policy of copying the method to this node. This way we provide local copies
on many nodes (these can be periodically purged by some appropriate stategy to free up

memory).

Once the method is on the node where the CALL message arrived, the message can
start up the method. It does that by

o Translating the ID of the method into its physical address

¢ Placing this physical address of the code block in A0?
¢ Placing a 2 in the IP register

These steps will start the processor executing instructions from the method, starting at the
third word. We skip the first two words of the method, because these hold object header
information. The steps of the CALL message are schematically charted in figure 5.2. If
the method somehow relocates on us while we were executing®, the process yhat relocated
the object will invalidate the AO register. When our process starts again, it will fetch
an instruction through A0 and cause an invalid address fault. This will run an exception
handler to retranslate the method ID (in IDO) into the physical address (putting it in AQ

again), a.n& we will continue as if nothing had happened.

?A0 always points the the base of the code currently executed, unless the processor is in absolute modet
where this value is treated always as 0, regardless what it holds. The IP register holds the relative offset o

the program counter within this code block starting at A0. (If we are in absolute mode, the IP register acts
in effect like an absolute address rather than a relative address, because absolute mode makes the processor

pretend the value of A0 is 0.)
3This could be caused by heap compaction, or the method being migrated to another node to free up

space, among other reasons

CHAPTER 5. A VIRTUALLY ADDRESSED CODE EXECUTION MODEL 43

‘ CALL ’

Get method ID from
message. XLATE ID
into AO (in method mode)

y

Set IP to an offset of
2 into the method object
pointed to by AO.

Figure 5.2: Flowchart of the CALL Message Handler

CHAPTER 5. A VIRTUALLY ADDRESSED CODE EXECUTION MODEL 44

5.3 Caching Method Copies

Since method code is immutable, we can cache methods, Just as we can cache other read-only
data. To request a copy of a method we:

1. Allocate a context object to hold our processor state, so we can restart later
2. Copy the processor state into the context

3. Place the context in the resource wait table indicating that our context is waiting on
this requested method

4. Mail off, requesting a copy of the method
5. When the method arrives, it is placed on our node and our context is restarted

These cached copies will have the copy bit set in the object header so that the storage
reclaimer will know that this cached object is a duplicate, and can be purged if space is
tight. Let’s now look in a bit more detail at contexts and this resource wait table, two

crucial mechanisms for supporting high level execution control.

5.4 Contexts

5.4.1 Why Do We Need Them?

Contexts are just objects that hold the important state of the processor, so the current task
cab be halted and later restarted where it left off. In addition, contexts can provide space

for local variables used in the task’s computation.

5.4.2 How Do We Make Them?

Contexts are allocated by the NEW_CONTEXT system call. The call takes as an argument,
the number of additional variables needed, and it returns a context big enough to hold the

minimum necessary processor state plus the additional variables. When a process is done

CHAPTER 5. A VIRTUALLY ADDRESSED CODE EXECUTION MODEL 45

Context Address w
Context Header
Context ID
= Processor State Offset > 5 Word Context Front
Next Context
Resource Needed
Temporary Space

NN
NN NN

.
» iDO
ID1
ID2
ID3
RO ? Processor State
R1

R2
R3

IP)

Figure 5.3: Structure of a Typical Context

N Words of Temp Space

J\ Y_/k

CHAPTER 5. A VIRTUALLY ADDRESSED CODE EXECUTION MODEL 46

with a context, it should explicitly deallocate it with the FREE_.CONTEXT system call.

Figure 5.3 shows the format of a typical context.

As with all objects, the first two words are used by the object manager. The next
three words are used to hold an offset to the processor state part of the context (for faster
restarts), a pointer to the next context in a list of contexts, and a value indicating that the
context is waiting on a particular resource. The context then contains some amount of user
reserved space follwed by nine words of processor state. The minimal size of a context, with

no user space is 14 words.

5.4.3 How Do We Make Them ... Quickly!?

Since we expect contexts to be used very often, and since we want method startup costs to
be small and methods to be short, we don’t want a majority of our execution time to be
spent a.lloca.tingbcontexts. To accomodate these constraints, we reuse old contexts rather
than allocating new ones each time. When a context is deallocated, it is placed back on a
free contezt list. The next time a context is requested, we try to re-use one from the free

list, since this will take only a few instructions.

However, contexts vary in size, and we wouldn’t want to have to walk the list each
time to see if we have a context big enough to meet our request. So, we only save contexts
that meet a common size. This way, any time we request a context of this “common” size,
we can yank the first one off of the free list and use it. The format of the free context list

is shown in_figure 5.4.

The first context in the free context list is pointed to by the CONTEXT_FREE.-
LIST operating system variable. If no contexts are in the free list, the OS variable is set
to NIL. Each context in the free list points to the next context in the list by the context’s
NEXT.CONTEXT slot as shown previously in figure 5.3. The final context in the free list
has its NEXT_.CONTEXT slot set to NIL.

Operating System Variables

CHAPTER 5. A VIRTUALLY ADDRESSED CODE EXECUTION MODEL

N~

Freetop

BRAT Base

BRAT Length

BRAT Hash Mask

ROM Start

Next ID

Last ID

Resource Wait Base

Resource Wait Len

Overflow List /

Context Free List‘

LN TN TN

47

Cony Conty<

Cony

Figure 5.4: The Free Context List

Context

nil

CHAPTER 5. A VIRTUALLY ADDRESSED CODE EXECUTION MODEL 48
5.4.4 Restarting a Context

The operating system provides one primitive message (RESTART .CONTEXT) and two
system calls (XFERID and XF ER_ADDR) to restart a context. The system calls take
either an ID or a physical address of a context, and restarts it, copying the processor state
from the context to the processor registers. The restart context message takes a context [D

and transfers control to it by calling the XFER._ID system call on the context ID.

5.5 The Resource Wait Table

The resource wast table is a system data structure that indicates which contexts are waiting
for which services. It consists of two parts. The first part of the wait table is a fixed size
associative table that binds resource IDs to waiting contexts. Figure 5.5 shows a portion of
a hypothetical table. We see several contexts waiting for ID1, one context waiting for ID2,
and the rest of the slots are empty. Empty slots are set to NIL. When a resource arrives,

the wait table is searched, and the contexts in the list bound to the ID are restarted.

Searching this table is fast, but unfortunately, we can not bound the number of
entries that try to occupy the table. At some time, we may run out of room. When this
happens, we resort to a slower form of data structure and link the contexts waiting on
resources in a list called the resource overflow list. If we don’t find a binding in the table,
we begin searching the list of contexts. Since each context has a RESOURCENEEDED
slot, we can always tell what resource the context s waiting for. This provides us a way to
continue if the table becomes full. By sizing the table appropriately, it may be possible to

limit use of the overflow list to a minimum.

CHAPTER 5. A VIRTUALLY ADDRESSED CODE EXECUTION MODEL

49

ID1

nil

W con
-

ID2

(— con;oxt/
nil
Q\{

RN ;

context

nil

nil

Figure 5.5: The Resource Wait Table

context

CHAPTER 5. A VIRTUALLY ADDRESSED CODE EXECUTION MODEL

50

Operating System Variables

R e

Freetop

BRAT Base

BRAT Length

BRAT Hash Mask

ROM Start

Next ID

Last ID

Resource Wait Base

Resource Wait Len/

Overflow List

Context Free List

Contcxt/’ ' Context

Need: ID2

N

Figure 5.6: The Resource Wait Overflow List

nil

Need: ID9

CHAPTER 5. A VIRTUALLY ADDRESSED CODE EXECUTION MODEL 51

SN}
\\\

N\ \
7 8§ N |9 N

Figure 5.7: A Parallel Resource Request Bottleneck in a 3 x 3 Network

5.6 Removing Method Caching Bottlenecks with Distribu-

tion Trees

The current scheme for method caching implies that in many cases, nodes wanting methods
will have t; ask the birthnode of the method (or at least the residence node) for a copy.
If many nodes simultaneously need the same method (as will likely happen with highly
parallel execution), then the birthnode will be deluged with method requests which it can
only handle sequentially. These bottlenecks could degrade performance considerably. For

example, figure 5.7 shows a network of 9 processing nodes. Suppose nodes 2 - 9 all requested

CHAPTER 5. A VIRTUALLY ADDRESSED CODE EXECUTION MODEL 52

a method copy from node 1. Node 1 would receive a barrage of 8 requests for the method

which would eliminate all parallelism, since it could consider each request only sequentially.

One way to reduce the threat of performance degrading bottlenecks is to set up a
distribution hierarchy, so that each node requests resources from its local djstﬁbﬁtion center
(the distribution hierarchies are different for different resources). Each of these local centers
would make requests to its superior, all the way up to the master resource center. We can
use this type of distribution graph to help in requesting method copies (or copies of any

type of immutable data for that matter).

Take again the 3 x 3 node network example, where 8 nodes request a method from
node 1, but this time impose a distributio’n bureaucracy like that shown in the tree in figure
5.8. This time, node 1 only has to handle 3 messages, from nodes 2, 4 and 5. Each of these
nodes serve as local distribution centers for the remaining nodes. Node 2 services nodes 3
and 6, node 4 services nodes 7 and 8, and node 5 services node 9. In this manner we have
permitted more parallelism to continue, as well as limiting the burden on node 1 (which
could cause queue overflow, network blocking, and other conditions where performance

degrades considerably).

Let’s now discuss some ways that a distribution tree method caching scheme can be
implemented in the Jellybean Machine system software. First, what are the contraints we
are working under?

o The distribution tree edges must be easily computable

¢ We need to make reasonable choices for branching factor versus tree depth. Too high a
branching factor might create bottlenecks, but too low a branching factor would tend
to cache unnecessary copies, and suffer long latency as the birthnode was many edges
away from the requesting node.

o We would like to have significantly different trees for different resources. Different
methods should have different distribution hierarchies, again to decrease bottlenecks,
and to distribute resources more thoroughly.

One fairly simple first attempt at a distribution tree formula might be to go to the

distribution center that is halfway between the current node and the birthnode in terms

CHAPTER 5. A VIRTUALLY ADDRESSED CODE EXECUTION MODEL 53

ilfiilalak

Figure 5.8: A Distribution Tree Bureaucracy To Balance Load in a 3 x 3 Network

CHAPTER 5. A VIRTUALLY ADDRESSED CODE EXECUTION MODEL 54

of hops. In ether words, to find the next regional distribution center, given the birthnode
coordinates (z, %) and our current coordinates at (%¢, Y), we would calculate the halfway
coordinates (a:%, y;z_) by:

Ih — T,
AZrea =

2
-y
AVreal = —5—
Az [Zreal] if SgNT o1 > 0
[zrealll if SgNZ aa] < 0
Ay [Yreall if sgnyreq) 2 0

“yrea,l” if S€0Yrea] < 0
zZy = [z.+ Az]

[y + Ay]

<
lp-‘
]

This is in fact the algorithm used to create the distribution tree in figure 5.8. Figure 5.9
shows several distribution trees created by this algorithm for networks of various sizes and
various birthnodes. This method creates trees with depth at most log, m + 1 for a network
with a maximum dimension of m nodes. So, for a reasonable sized machine of 4096 nodes
(64 x 64) we would at most have to traverse log, 64 + 1 or 7 edges of the distribution tree.

For enormous systems, say 1K nodes on a side, the tree depth will be only 11.

CHAPTER 5. 4 VIRTUALLY ADDRESSED CODE EXECUTION MODEL

1 2 3 4
5 6l|7 8
9 fj10] |11] J12
O
131 [14] [15] |16
1 2 3 4
5 6l {7 8
9 | |0} [11] [12
1_031 14] [15] [16

55
11
 — i
12 10 14 6 8 7 15 16
:: 3 9 13 1 2 3 4
13
9 10 14
: 5 6 7 15 11
1 2 3 14 12 16 8

Figure 5.9; Example Distribution Trees for Several Machine Configuration

Chapter 6

System Support of a
Type-Dispatched Calling Model

We never sent a messenger save with
the language of his folk, that he
might make the message clear for them

-~ The Koran, 13:11

One of the most important aims of the Jellybean Machine is to provide a concurrent
processor that efficiently supports object-oriented, late-binding procedure activations. This
chapter introduces the idea of message-passing and late-binding programming methodolo-
gies, and discusses the system services in the Jellybean Machine operating system that

support this manner of programming.

6.1 Message-Passing and Object-Oriented Languages

There has been much interest during the past few years in “object-oriented” programming.

Though this term is not particularly precise, it does describe a fairly cohesive set of languages

56

CHAPTER 6. SYSTEM SUPPORT OF A TYPE-DISPATCHED CALLING MODEL 57

exhibiting behavior markedly different from the typical Algol-like programming style. There
are two characteristics in particular that languages typically categorized as object-oriented

share,

First of all, operations tend not to be thought of as functions applied to data objects,

as they are in Algol derivatives. Instead, data objects are “personified” as “actors” that
receive requests made of them. These requests are made by “sending a message” to an
object called the receiver of the message. The operation that was requested of the ob ject
is typically called the selector, since it selects the object to be performed. So, where a

standard language Algol-like language might calculate the determinant of a matrix m by

determinant (m) ;

and object oriented implementation might look something like

(send m ’determinant)

We call this concept of performing operations by sending selectors to objects the message-

passing paradigm. This paradigm turns out to be a very convenient model of computation.

The second characteristic of obj Ject-oriented languages that make them appealing is
the fact that the operations on different data-types can have the same names. This allows
us, for example, to have an 'area selector for circle data types, as well as an ’area selector for
polygon data types. In many other languages this would cause a naming conflict, requiring
us to set up an explicit naming convention, such as calling circle_area() and polygon_area()

routines on objects of the proper type.

But, more importantly than Just saving us the hassle of naming conflicts, object-
oriented languages actually decide which procedure to run for a certain data type. In other
words, when an ’area selector arrived at an ob ject, the system would decide whether this
object is a circle or a polygon and automatically run the correct procedure. In addition,

if the receiver of the 'area selector was not a data type that supported the area operation

CHAPTER 6. SYSTEM SUPPORT OF A TYPE-DISPATCHED CALLING MODEL 38

(such as an integer), then an error would be reported by the system. In Algol-like languages,
it is the burden of the programmer to know the type of the object he is dealing with, so he
can call the proper operation. This is crucial in many symbolic languages with loose type-
checking, like Lisp, where we can have lists of many different types of objects!. This is called
a late-binding activation since we don’t decide what routine will be run at compile-time,

but instead wait until later, when the message send is actually done.

Operations with the same name and semantically similar meaning supported by
various data types are called generic operations since these operations represent the generic
behavior the programmer wants to accomplish (add things, draw things, calculate areas of
things). The specific behavior is calculated at run-time once we know the data type of the
object (called the class of the ob ject), and the selected operation, by a process known as

class-selector lookup.

So, ob ject-oriented languages have two main components

1. Procedures are activated by the message-passing paradigm rather than a more ap-
plicative model of programming.

2. Each data type has its own set of supported operations, where names can be the same
as in other data types, and may represent generic operations over varied data types.
Activations are caused by late-binding sends which lookup the specific operation to run
based on the class of the object receiving the message (the receiver) and the selected
operation (the selector).

Our goal now is to provide a system substrate that will efficiently and conveniently support

these aims.

'A good example of this is an object oriented drawing program, where we have a list of many different.
types ol objects that are in the current picture, A convenient way to refresh the screen in an object-oriented
system is to_send a 'draw message to each object in the list. Based on the data type of each object at

run-time, the appropriate routine (circle draw, rectangle draw, text draw, etc.) is activated

CHAPTER 6. SYSTEM SUPPORT OF 4 TYPE-DISPATCHED CALLING MODEL 59

Figure 6.1: Format of the SEND Message

6.2 Late-Binding, Send Execution Support

The next task of the operating system is to provide a mechanism to simulate the message-
passing paradigm. We already have network communication hardware that allows data to
be sent between nodes. We also have a global object hamespace provided by the virtual
memory extensions. Together, we can use these components to implement the message-

passing execution model.

To do this, we implement one Inore primitive message, the SEND message handler
(not to be confused with the SEND machine instruction). This primitive message handler
acts in the object-oriented manner we showed earlier. Figure 6.1 shows the significance of
the different words of the meésa.ge. The first word is the address of the SEND message
handler, the second word is the selector, the third word s the receiver. The rest of the

words are arguments, and information about where to reply to.

When the SEND Inessage arrives on the node that the receiver resides on (we for-
ward this SEND message to wherever the receiver resides) the primitive message handler is
started. Figﬁre 6.2 shows a flow chart that describes how the SEND message handler works.
It first picks the class our of the receiver object (so we know what data type the receiver is).
We then merge the class and selector together into a class/selector word (shown in figure

6.3). Now that we have the class and selector, we try to see if there is a class/selector —

CHAPTER 6. SYSTEM SUPPORT OF A TYPE-DISPATCHED CALLING MODEL 60

method ID binding in the cache. If so, we start the method with the CALL message as

discussed in the previous chapter. If not, we need to lookup the binding.

At the current time, we do not have enough insight into the characteristics of ma-
chine behavior, to feel comfortable locking down the class/selector lookup algorithm. For
this reason, we provide the lookup routine in a method. We insist that this method is allo-
cated before any others so it always has the same method ID. This LookupMethod method
takes the class and selector, and consults some distributed system table to find the method

ID corresponding to this class and selector.

6.3 Loading Class/Selector Methods into the System

Let’s now briefly look at how the class/selector method information is loaded into the Jelly-
bean system. Figure 6.4 shows the schema for how the compiler and run-time environment
will interact with the Jellybean Machine processing network. The compiler is responsible
for generating class and selector numbers and for compiling the source language into MDP
machine code. A certain node of the network is picked for the method to reside on by some
distribution policy. The method data as well as the class and selector that this method
Tepresents are sent to this chosen node by the NEW_METHOD message. The format of a
NEWMETHOD message is shown in figure 6.5.

When a NEW_ METHOD message arrives at a node, the NEW_METHOD message
handler begins executing. It makes an object to hold the method, and copies the code from
the messag; into the object. The NEW_METHOD handler then calls the InstallMethod
method which takes the class, selector, and method ID and makes the bindings in the

class/selector — method ID data structures.

Specification of the class/selector — method ID data structures has been ignored

without attempts at subtlety. We do not have enough insight to definitely specify the best

CHAPTER 6. SYSTEM SUPPORT OF A TYPE-DISPATCHED CALLING MODEL 61

‘ SEND)

y

XLATE receiver ID
into physical address
in local mode (returns

NIL if not bound)

| The object is not here,

80 pick birthnode number
and prepare to forward
SEND message there

We have a hint to the
receiver, so prepare to
forward SEND message

there
{\

Save processor state in a_l
l context, save message in

Pick class out of header of
receiver. Concatenate the
class with the selector and
tag it with a C/S tag

Forward SEND message
to specified node

an object and call the

l_LookupMothod handler (Fault)

-

'

A

I(chly and

XLATE the C/S word in
XLATE-METHOD mode.
The ID of the method is

* Restart Context)

r;lace method 1—6 in the —I /

returned

lapprc»priate destination V
location and return
L - — — _

Use the ID-TO-NODE
system call to determine
the residence of the
method & send a CALL
msg there with the args

Figure 6.2: Flowchart of the SEND Message Handler

CHAPTER 6. SYSTEM SUPPORT OF A TYPE-DISPATCHED CALLING MODEL 62

18 bits 16 bits
L A
(M)
TAG CLASS SELECTOR

Figure 6.3: Class/Selector Word Format

N

Compiler | —» | 1-Code

Compiler
Front
End
Disk Loader | —» | Jellybean-Machine

Figure 6.4: A Coarse View of the Compiler/ Machine Interface

CHAPTER 6. SYSTEM SUPPORT OF A TYPE-DISPATCHED CALLING MODEL 63

Figure 6.5: Format of the N EWMETHOD Message
format for these tables. We can talk a bit about the issues involved. (1) We should be

able to take a class/selector word and efficiently find the corresponding method ID. (2) The

table should be distributed around the network in a way to minimize bottlenecks.

A reasonable way of doing this would be to apply some “bit-twiddling” function
to the class/selector words to decide what node is responsible for knowing their bindings.
The actual data structures could be hashed, or perhaps each class would have an object
that holds the method IDs for every selector. One annoying problem with any approach
is the boot-strapping problem. We need to know how we can get to the data. Because of
the added indirection through the LookupMethod and InstallMethod handlers we have the

flexibility to try several approaches and test their performance in the future.

6.4 Returning Values

Return values can be sent with the REPLY message. This message takes the context ID
to reply to, the slot number of the context to fill, and one word of reply data. The reply
data is passed by value if it is a primitive data word, or by reference if an ob ject is to be

returned.

CHAPTER 6. SYSTEM SUPPORT OF A TYPE-DISPATCHED CALLING MODEL 64

6.5 Summary

The class/selector calling model is a convenient mechanism for invoking tasks. By imple-
menting it efficiently in the operating system kernel, we can guarantee an efficient implemen-
tation. To provided extensibility, we provide hooks to the LookupMethod and InsertMethod

handlers, so these routines can be reconfigured independently of the rest of the kernel.

This empty page was substituted for a
blank page in the original document.

Chapter 7

Storage Reclamation in the

Jellybean Machine

But virtue, as it never will be moved,

Though lewdness court it in a shape of heaven,
So lust, though to a radiant angel linked,

Will sate itself in a celestial bed,

And prey on garbage

— SHAKESPEARE, in Hamlet I V. 53

7.1 Introduction

The successful performance of our machine relies on the fact that sufficient parallelism
exists on the grain of methods. In order for this to happen, it is important that data-
dependencies to shared objects are mjnimiz'ed, by adopting a more functional approach,
where methods interact by value rather than by reference, as much as possible. This situa-

tion promotes a large number of small, short-lived ob Jects. Because of the minute amount

of memory per each processing node, an efficient storage reclamation mechanism becomes

CHAPTER 7. STORAGE RECLAMATION IN THE JELLYBEAN MACHINE 66

an important facet. The characteristics of our system, however, cause many straightfor-
ward methods of storage management to break down. In this discussion we will examine
some of the important properties of the Jellybean Machine, and the ways these properties
influence reclamation. The rest of this chapter provides a discussion of the issues pertaining
to reclamation on the Jellybean Machine, and a possible first-cut at a garbage collection

algorithm.

7.2 Automatic Collection is Desirable

Because the system is object oriented, and because we have a small memory with frequent
allocations, object reclamation is important. Because ob jects can be shared in complex
ways, and because of the high level programming model we wish to support, we wish most
object deallocations to be handled automatically by a “garbage collector” that searches for
objects that are no longer in use (i.e. there are no pointers to the object anywhere) and

deallocates them when necessary.

7.3 Choosing a Collection Approach

Several characteristics of the Jellybean Machine will guide us in the choice of garbage

collection. Let’s remind ourselves of the character of the machine.

7.3.1 Memory Organization

The memory in a Jellybean processor is small, and it is local to that processor. Memory
allocation is done in a simple contiguous manner. Compaction can be done in parallel
very quickly. Memory objects are segment-based and are given unique object id’s. In

addition, these object id’s are concatenated with a birth node number to provide a global

CHAPTER 7. STORAGE RECLAMATION IN THE JELLYBEAN MACHINE 67

virtual address. The virtual to physical translation mechanism uses caching to improve
name resolution, but this relies on locality. Random access to many addresses could be

very expensive.

7.3.2 Addressing System and Network Topology

The Jellybean Machine uses a distributed memory to provide “site autonomy” {LS80] in
order to perform local operations very fast, and avoid memory conflicts. But, the tradeoff is
that foreign accesses will be very costly, involving a message send mechanism that is at least
an order of magnitude slower. In addition, distributed memory can require synchronization,
and the delays of network communication may make certain synchronization conditions
impossible. The network may cause bottlenecks to occur if too many messages are sent to

one place, and may hold data in transit. The network latency may also be a factor.

7.3.3 Garbage Collection Character

Garbage collectors take on various different characters. The common approach of reference
counting collection doesn’t appear to be feasable in the Jellybean Machine because (1)
it cannot collect cyclic data structures, (2) every pointer change will require a (possibly
remote) object access, and (3) we are not always aware when “dead” pointers get changed.
For these reasons, we decided to attempt some variant of a pointer chasing garbage collection
mechanism. The next section describes the implementation of a pointer chasing garbage

collector for our machine in some detail.

7.4 A Pointer Chasing Garbage Collector

There are several properties that we would like our garbage collector to have.

CHAPTER 7. STORAGE RECLAMATION IN THE JELLYBEAN MACHINE 68

¢ The collector should be efficient in terms of time and message sends. We do not want
the queues of all nodes to overflow with collection messages.

e The collector should run in the background or incrementally, for two reasons. First,
we wish to take advantage of Processor idle time so that we can s ueeze as much
computation out of our processor as possible. Secondly, we would like to avoid the
situation where our machine runs for a while and then “hangs up” for an hour while
garbage collection occurs.

7.4.1 The General Idea

Most of the work of pointer chasing garbage collection algorithms to date are targeted at
sequential or shared-memory machines with large virtual memories. The standard algo-
rithm is based on the copying collector proposed by Baker. This has been expanded into
incremental collectors and has been tuned to various ob Ject lifespans, with a good degree
of success. Still, these approaches are targeted at a genre of machine of a radically differ-
ent character that the J-Machine, With an admitted scarcity of knowledge in distributed
collection, the rest of this chapter serves only to sketch a simple vision of such a collector

(Tot88], and some of the problems that are faced.

A simple collector would jnvolve recursive marking by message sends, and would
compact the heap rather than by scavenging or copying, due to the small amount of memory
per chip. The phases of this simple collector would be:

Desire The desire phase occurs when some node or nodes has a desire to garbage collect.
Perhaps a node or a certain number of nodes have run out of memory. Perhaps this
occurs on a time count.

Init The initialization phase is where ob jects are marked unreferenced initially, as well as
setting any necessary variables.

Marking The marking phase does a recursive descent of the reference tree starting at the root
set, marking reachable objects with the reachable tag.

Sweeping When marking is done, the memory can be compacted by “sweeping” the good ob jects
back toward the bottom of the heap, and changing their virtuaf — physical bindings.

CHAPTER 7. STORAGE RECLAMATION IN THE JELLYBEAN MACHINE 69

7.4.2 Problems
Synchronization and “Travelling References”

A major problem in garbage collection across a communication medjum is lack of synchro-
nized, instantaneous transmission. This shows itself in garbage collection in a few ways.
One of the more annoying problems is how to be sure that the last pointer to an object
isn’t in transit when the garbage collector comes along. The garbage collector doesn’t see
any pointers in the network, so an ob ject may be deleted because a pointer was “travelling”
between nodes where it can’t be noticed. We can refer to this as the travelling reference
problem. Figure 7.1 shows a portion of a network of processors, where an ID of an object

is in the network when the collector is run.

An obvious way to resolve this situation is to prevent all upcoming message sends
during collection, so that no other pointers are mailed into the network, and then to wait
until all messages in transit have landed in a queue. We can tell when all messages have
landed by either waiting a length of time we know to be longer than the maximum latency
from the most distant nodes, or by sending “scout” or “bulldozer” messages down the
network dimensions. When all these “bulldozer” messages arrive, they will have pushed all

other messages out of the way, and the network will be empty.

Problems With Disabling Sends

In order to prevent the travelling reference problem, we have to

e Disable sends so no new references enter the network.
o Wait for all messages in the message in the network to land.

But, we have no explicit mechanism in the MDP processing node to disable sends!. If we

did, we could allow the processors to run until they tried to execute one of these disabled

'Or more preferably - a mechanism that would disable any sends that would cause a reference to be

mailed into the network - all other messages could continue

CHAPTER 7. STORAGE RECLAMATION IN THE JELLYBEAN MACHINE 70

]

|

|

node-yk1

I

|

—IDi ="

node-%2

|

Il

~[0ob;1

I

——
v—————
———

]

||

Figure 7.1: Ob ject ID Travelling in Network

CHAPTER 7. STORAGE RECLAMATION IN THE JELLYBEAN MACHINE 71

instructions. When this happened, a fault could occur and some manner of process halting

could occur (such as saving a context for the Process for later re-starting?).

A possible way to resolve this problem at first might be to place guards in certain
high-level execution handlers such as SEND and CALL. These handlers are run when a
SEND or CALL message (two messages that ask a node to start executing a method)
arrives. Inside these handlers we could have a guard that would defer the execution of
the method until collection finishes. This goes a long way toward resolving the problem of
travelling references if most the code that mails IDs around is code that is executed with

CALL and SEND?

Another way to shut down the machine might be to disable the queue execution.
This would cause messages to back-up in the queues. Certain messages that we would want
to execute could be done by having the processor “walking” the queue by hand looking for
certain types of messages (such as garbage collection messages). It could also pull items

out of the queue and into the heap to prevent queue overflow.

Problems With Background Execution

Since, at the start of garbage collection, we stop message sends by various possible mech-
anisms, our concurrent machine is effectively shut down. This violates our desire for the

collector to run in the background, in parallel with method execution.

*This, however, could lead to the difficult to resolve problem of insufficient memory for a context alloca-

tion. This might be likely since we are in the middle of collection. When there is not enough local memory,

the standard mechanism is to do the allocation on a {orei’fn.node. But this requires mailing references in the
network, which is exactly what we are trying to avoid. This underscores the difficulty present in providing

efficient, convenient methods of prevent travelling references

3And this is likely to be true. Apart from CALL and SEND messages, all other messages are primitive
system messages (where the system may have to be responsible for avoiding ID mailing during collection),
and various other messages to create NEW objects and handle function returns. [f we think of a CALL
or a SEND as being a function call, then this guard method will eventually stop the machine, with every
processor being idle or waiting to execute a function. This implementation has at least 2 requirements that

we must always be aware of. (1) We must insure that all non-CALL and non-SEND messages must not
violate the rules and mail references during garbage collection time. (2) Catastrophe can occur when we run

out of memory trying to make contexts to hold the deferred execution requests.

CHAPTER 7. STORAGE RECLAMATION IN THE JELLYBEAN MACHINE 72

In addition, the lack of a register set for background mode pPrevents any way for the
Message Driven Processor to take advantage of idle time in a reasonable way. Since any
message would take priority over background mode, the register set will be trashed. Any
computation done in background mode must shut off interrupts, which instead of taking
advantage of idle time, takes advantage of application execution time! Some compromises
can be made, such as having background mode start up small units of computation by send-
ing priority 0 messages, or by queuing up contexts of waiting-to-run background processes
that are begun by a context startup message send when the background loop is entered.

Again, various improvements should be examined.

7.5 Summary

The characteristics of the Jellybean machine necessitate a heap collector to reclaim storage.
This collector may have to run often (since our nodes have such a small amount of memory).
A reference counting approach seems to be out since there is a large overhead in changing
the object reference counts (and it is difficult to know when a reference is written over
and thus deleted) as well as the fact that it cannot handle cyclic structures (if we insist
that cyclic structures are illegal that results in a big loss in terms of flexibility. If we don't
collect structures, we will rapidly run out of memory). A pointer chasing collector has
problems with travelling references (where the marker will not see the final reference to
an object because it is in a network - and thus delete the object), but seems to be the
most viable approach. It would be desirable to have the collector run in the background
without shutting the machine down, but the travelling reference problem seems to make

this difficult.

Chapter 8

Support for Concurrent

Programming Languages

I get by with a little help from my friends.

— JouN LENNON AND Paur MCCARTNEY, in “A Little Help From My Friends” (1967)

The Jellybean Machine Operating System Software provides several noteworthy
services to support concurrent programming languages, both for functional and efficiency
reasons. These include (1) the SEND and REPLY message handlers, (2) futures, (3) dis-

tributed objects, and (4) the interaction interface.

8.1 High-Level Languages
8.1.1 CST

Currently, the high-level language being used in the Jellybean Machine project is a Smalltalk-
80 based language called CST (Concurrent SmallTalk) [DC]. CST uses a Lisp-like pre-

73

CHAPTER 8. SUPPORT FOR CONCURREN T PROGRAMMING LANGUA GES 74

fix syntax, and codes sends implicitly in a function application metaphor. CST allows
asynchronous messages to exploit concurrency, and fully utilizes the late-binding execution
model. Locks are provided for explicit synchronization, and a “distributed object” data
type exists to scatter object state over a large area. This CST code will be compiled to
intermediate code which will is Passed through a back end that converts the i-code to MDP
machine code and loads it into the system. The compilation and loading mechanism is was

previously sketched in figure 6.4.

The rest of this chapter describes several operating system services that support the

execution of the object-oriented model of computation.

8.2 SEND and REPLY

As discussed in earlier chapters, the SEND message handler provides the machinery to run
a method based on the class of a receiving object and the selector symbol “sent” to the
object. In the current system, the SEND message may also describe one ob ject to return a
value to. This return-siot is specified by passing the ID of the ob ject to hold the returned
value (the returned value must be one word, either a primitive value such as an integer or
a symbol, or the ID pointer to the object), the slot (index into the ob ject) number, and the

node the object is on.

The REPLY handler actually performs the return of the value. The REPLY message
mails the target object ID, the target variable number, and the one word return value to the
node number specified in the SEND message. When a REPLY message arrives at a node,
the returned value is stored in the indicated slot of the target object, and any processes

waiting for a variable to be filled by a reply are restarted.

CHAPTER 8. SUPPORT FOR CON CURRENT PROGRAMMING LANG UAGES 75

8.3 Futures

8.3.1 Conforming to Data Dependencies

Data dependencies impose an order on executjon. If a computation result is used in a
calculation, the result must be available before the calculation can occur. In a sequential
processor, there is no problem. The instructions are ordered in such a way to insure that
Previous results are available in certain Places before those values are needed. In a dis-
tributed processor, on the other hand, a computation may take an indeterminate amount
of time to complete on a remote node. Because of this, we may get to a point where a value
is needed before the calculation of the value has completed. It is necessary to wait until

this result returns before continuing the calculation.

8.3.2 The Check’s in the Mail

This section details a mechanism used prominently by the Jellybean Machine to impose data
dependency orderings conveniently. The mecha.m'gm is quite simple. Whenever a calculation
is spawned off in parallel, the destination location where the value of the calculation is to
be stored is filled with a specially tagged value, called a contezt future, indicating that the
value will arrive to the context in the future. When the calculation replies with the value,

the future is overwritten with the real value of the computation.

When an access is made to a location in a context, using the value located there,
there is the possibility that the value hasn’t replied yet. We can tell if the value hasn’t
returned yet, because it will be filled with a contezt future (c-future) if it hasn’t. Any read
of a location containing a c-future will cause the processor to fault, (1) saving the processor
state in the context object and (2) marking the context as waiting for a ¢-future. When a
reply arrives to a context, the context is checked to see if it is waiting on a c-future. If so,

it is queued to be restarted.

CHAPTER 8. SUPPORT FOR CONCURRENT PROGRAMMING LANGUAGES 76

Advantages Disadvantages
Simple Large Inertia
Transparent Parallelism Wasted
Minimal Synchronization | False Restarts

Table 8.1: Pros and Cons of Dependency Enforcement by Futures

Let’s examine this context-future mechanism in a bit more detail to see what it
really provides us and what deficiencies it faces. Table 8.1 itemizes some of the advantages

and disadvantages of the future mechanism.

8.3.3 Advantages

As we said earlier, the most desirable characteristics of the ¢-future approach is that it is
simple to implement and understand. It fits well into the existing system, being “opti-
mistic” — taking advantage of the fault mechanism and the tagged architecture and using

contexts.

Being transparent to the programmer/compiler writer is desirable as well. No
burden is placed on the code generator to explicitly keep track of non-completed tasks.
No extra instructions need to be placed in-line to check for the presence of values, or to

manipulate semaphores.

Finally, the future approach only pays the price of synchronization if it is neces-
sary. If a value returns before it is needed, or if an arm of a conditional is never executed,

we will not need to pay the synchronization pricel.

'Though we do require all replies to be in before we deallocate a context, so we can re-use context IDs.

CHAPTER 8. SUPPORT FOR CONCURRENT PROGRAMMING LANGUAGES 717

8.3.4 Disadvantages

On the other hand there are several disadvantages to this approach. The system is subject
to high inertia. The total cost of halting and saving a context and restarting it when
the return value arrives is relatively high. The worst case occurs when we have many
dependencies following one after another. Here, we would keep halting and restarting,
making very little progress. It can be difficult to gain any momentum, because of the time
spent saving and restarting contexts. This case isn’t quite so bad if we have other tasks
queued up that can take advantage of the free time, and if the replies take a while to
arrive (which is likely to be the normal case). The real question is one of balance between

computation time and system overhead time.

By controlling execution on the grain size of methods, whenever a sequential exe-
cution encounters a c-future value, the entire method will be suspended. Thus once we hit
a c-future value, other possibly executable code in the method is not run. This is directly
the result of basing the grain of parallelism on the unit of methods, and it has the effect or

wasting parallelism as opposed to a more fine-grain execution model.

C-futures also can lead to a problem of false restarts where a reply for a different
slot would restart the context, which would immediately halt on the same c-future again.
If we were waiting on variable A to return and a reply to fill variable B arrives, the context
would be restarted falsely, and when we read A we will hit the same future and halt again.
This is rectified in the prototype implementation, by using the RESOURCE_NEEDED slot
of the context to hold the slot number the context need to be filled. When a REPLY arrives,

the context is only restarted if it was waiting on the slot the REPLY came to fill.

CHAPTER 8. SUPPORT FOR CONCURRENT PROGRAMMING LANGUAGES 78

8.4 Distributed Objects

A final system characteristic designed to support efficient high-level language execution is
the introduction of distributed objects. A distributed object is one where its state is broken
up into segments called constituent objects, and scatterred across the processing network.

Its purpose is to allow parallel access to different parts of an object.

A single object can only be directly accessed by the node it resides on, and the node
it resides on can only run one task, implying that an object can only be computed on by
one task at a time. In the absence of coherent caching strategies, this one-object—one-task

constraint can potentially severely limit parallelism.

By distributing parts of the object over several nodes we can provide some extra
(albeit limited) concurrency. The hope is that this increase of concurrency along with the
fact that an object-oriented programming model should provide access to many distinct
objects being computed on at once will prevent object bottlenecks from becoming a serious

performance hindrance.

The system supports distributed objects by providing (1) allocation and (2) con-
stituent lookup services. When a distributed object is allocated, the system creates con-
stituent objects and scatters them in a reasonable way around the network. Each constituent
object has a normal object ID number which is unique for each CO, and a distributed ID or
DID which is the same for all constituents of a distributed object. This DID contains the

information necessary to locate any constituent object.

8.4.1 A Distributed ID Format

Figure 8.1 shows a possible format for a distributed ID. The DID knows the number of
constituent objects, the hometown node of the first object, and a node-unique serial num-

ber. This prototype DID format places a limit of 256 COs per distributed object and 256

CHAPTER 8. SUPPORT FOR CONCURRENT PROGRAMMING LANGUAGES 79

8-Bits 16-Bits 8-Bits
A A
(Y 4 A
NUMBER
OF HOMETOWN-NODE SERIAL
TAG | CONSTITUENT (“ROOT") NUMBER
OBJECTS

Figure 8.1: Distributed ID Format

distributed objects per node.

8.4.2 Dealing out the Constituent Objects

When a distributed object is allocated, we want to have a function that maps each con-
stituent object to a node number. This function should have several properties. It should

be (1) easy to compute, it should (2) scatter objects in an acceptable manner.

The goal of distribution is to provide concurrency, so with this aim as the measure of
success, any distribution scheme would be equivalent. But, we need to take into account how
the processor load is distributed around the network as well. There are two dichotomous
goals of constituent distribution, (1) to scatter the objects uniformly across the network so
there are no hotspots and (2) to scatter the objects locally to prevent long distance network
traffic.

Dispersion or Locality?

These seemingly contradictory aims argue against each other. If we scatter objects uni-
formly, especially if there are very few objects, the data may lie very far away from the
majority of the computation. Even though some of the computation will migrate near the

data and spawn from there, there still many be a great deal of network traffic caused by

CHAPTER 8. SUPPORT FOR CONCURRENT PROGRAMMING LANGUAGES 80

, l nodes J
stride = :
‘ constituents
node, = (birthnode+ n x stride) mod nodes

Figure 8.2: Distribution of Constituent Ob jects

the processes still proceeding from the root of the computation. In time, migration of work

may balance the load appropriately, but we still have worries about uniform distribution.

On the other hand, if we clump the constituent ob Jects close together, the computa-
tion will cluster around the data, and not hinder the performance of the rest of the network
via long distance traffic, but this local hotspot may overwhelm the computational resources

of this local area of processors.

A Simple Dispersal Approach

The first design of the distributed ob Ject system leaves this question for further study,
and adopts a simple, relatively disperse manner of dealing our constituent ob jects. We
adopt a simple uniform distribution strategy hoping that the load balancing mechanisms
incorporated into the system will work effectively. To insure the efficiency of the calculation
of the function, we .use the simple distribution algorithm shown in figure 8.2. The node
numbers we describe are a finite interval of numbers {n € N:0 < n < nodes} we might call
ordinal node numbers and not the system network address node numbers which encodes the
total addressing space of the network. The conversion between the two formats is simple.
Figure 8.3 shows some sample distributions for various sized networks, birthnodes, and

constituent object counts.

3 by 3 Network

4 by 4 Network

CHAPTER 8. SUPPORT FOR CONCURRENT PROGRAMMIN G LANGUAGES 81

Legend
@ Constituent Object

QO Constituent Root
Object (Birthnode)

O

O o
o o
® o
3 CO’s 4 CO’s
Birthnode = 1 Birthnode = 3
O ® @
® o
® Ql.
o[|[e
3 CO’s 4 CO’s
Birthnode = 0 Birthnode = 10

5 CO’s
Birthnode = 13

Figure 8.3: Constituent Object Distribution Examples

CHAPTER 8. SUPPORT FOR CONCURRENT PROGRAMMING LANGUAGES 82

| = l____,a__currentngiig-girthnodej x stride 4+ birthnode

_ | currentnode-birthnode+stride . :
r= l—_s_ﬁiae_—i—'J X stride 4+ birthnode

if | < birthnode then ! = I-nodes mod constituents
if r < birthnode then r = r—~nodes mod constituents

n = min(hops(currentnode,/), hops(currentnode,r))

Figure 8.4: Equations for Choosing a Nearby Constituent Object

8.4.3 Choosing a Constituent Object

We now have a first attempt mechanism to assign node numbers to each constituent object.
Given a constituent object, we can find the node of its residence. For simplicity, we prevent
constituent objects from being migrated. Now, we want to provide an algorithm to choose a
constituent object given a DID. We could do this randomly, but in order to take advantage
of locality, we want to choose a constituent object that is reasonably close to the current
node. We do this by finding the ordinal node numbers of the constituent ob jects on either
side of the current node number (and r for left and right) and choose the one (n) with the
minimum distance in x-y hops. We have to be careful about “wraparound”. The algorithm

is described in figure 8.4.

Chapter 9

Issues From a Prototype System

Keep thy heart with all diligence;
for out of it are the issues of life

— The Holy Bible, Proverbs 4:23

This chapter discusses in some detail, relevant issues that occurred in the design and
implementation of a prototype operating system. The following topics will be discussed

o The sizing of the BRAT

How to handle a full translation table
The scarcity of virtual names

o Out of memory problems
¢ Queue size
¢ Queues, stacks, and saving processor state

These situations are troubling enough to require discussion. The actual prototype imple-
mentation can be found in an appendix at the end of the thesis. Specifications of the system

calls and message handlers can also be found in the appendices.

83

CHAPTER 9. ISSUES FROM A PROTOTYPE SYSTEM 84

9.1 Sizing the BRAT

To support the global virtual namespace, we use the Birth/Residence Address Table to
hold the necessary translation bindings. This serves a purpose similar to a page table in
a multi-level paged memory system, or a segment table in a segment addressable memory
system. The BRAT needs to hold at least

1. virtual — physical mappings for objects residing on this node

2. virtual — node number links for objects that were born on this node, but now reside
elsewhere

9.1.1 Memory Limitation

But, due to the small amount of memory on each chip, we face a severe restriction on
the number of bindings that can be stored. Reserving room for system data structures,
operating system variables, and the heap, we are left with a paltry amount of memory for
the BRAT. This will directly limit the amount of objects creatable on a node. We must
make a careful compromise between heap size and translation table entries. We must also be
able to purge entries from the table when objects are deleted, stressing an efficient storage

reclamation strategy.

9.1.2 BRAT Use Scenarios

Let’s take a look at a few possible scenarios that can occur with ob ject management.

1. There is room left in the heap and the BRAT for more ob jects to be allocated.
2. There is room left in the BRAT but no more room left in the heap.

3. The heap contains many small objects that don’t take up much room, but fill the
BRAT, so that no more objects can be created.

4. The heap can be nearly empty, but no more objects can be allocated because the
BRAT is full of entries of migrated objects.

CHAPTER 9. ISSUES FROM A PROTOTYPE SYSTEM 85

The first case is the most desirable one, we wish we could have this happen all the time.
The second case is undesirable, but will probably happen reasonably often due to the small
memory space. This can be rectified by exporting objects to other nodes to free up heap
space. The third and fourth scenarios, however, occur because of lack of translation table
space due to the presence of large amounts of resident and/or migrated objects. It is these

two cases that we would like to minimize.

The prototype system that was developed assumed 1K of RAM per node. Of this
memory, 424 words were reserved for processor and OS data structures. Thus each processor
is left with only 600 words to be shared between the heap and the translation table. The

question that appears, is how to partition the BRAT and the heap in a reasnable manner.

9.1.3 A Prototype Sizing Based On Average Object Size

We have no measures as to object size in our system, but we might be able to suggest a
reasonable approximation of, say, 10 words per object!. With 2 words of header for each
object, this would leave 8 words of ob ject space. So, each object would take up 10 words
of heap space and 2 words of BRAT space, allowing % = 60 objects. But, we also need to
reserve room for bindings of objects born on this node, but now residing elsewhere. Let’s
assume that we pick a limit for this, such as the total number of average-size objects that
could fit in the heap. This would allow us to migrate every object and STILL fill the heap

with average sized objects. This leaves us with the following equations.

heapsize + bratsize = freememory

residentobjects = @_{osuzg

migratedobjects = residentob jects

bratsize = 2 (residentobjects + migratedob jects)

'Though of course this will depend greatly on the type of program being run.

CHAPTER 9. ISSUES FROM A PROTOTYPE SYSTEM 86

=> heapsize = £ x freememory

= bratsize = £ x freememory
With 600 words of free space, this leaves the following parameters.

heapsize = 428

bratsize = 172
In a 4K RAM node, we might expect the following configuration as a reasonable one.

heapsize = 2552

bratsize = 1020

In the prototype operating system, the BRAT size has been set at 128 words, rather that

172, for ease of implementation.

9.2 Running Out of Binding Space

Soomer or later, with even our best efforts at insightful sizing of the BRAT, we will run
out of room to make any bindings. There are several conceivable ways of resolving this

situation.
1. Throw up your hands and quit.
Forward your allocation request to another node.
Make the BRAT bigger.
“Delegate” some of the bindings in the BRAT to another node.

Change the hometown nodes of some virtual addresses to make other nodes responsible
for their bindings.

Nk W

The current operating system implements choice 1 for the most part. There is also some

code to support choice number 2, but this is complicated by the fact that we might not be

CHAPTER 9. ISSUES FROM A PROTOTYPE SYSTEM 87

able to allocate a context (as discussed in an upcoming section). If this mechanism could
be made to work, it might be acceptable enough, realizing that any system will break when
the nodes begin to run out of memory. The investment in a proper load-balancing policy
may alleviate this problem. The operating system also supports the resizing of the BRAT,
but because of the hashing mechanism currently used (described in an upcoming section)

arbitrary resizing of the BRAT is difficult to do.

The delegation of IDs is possible, but requires some thought. We need a way to
specify which IDs are delegated to which nodes, and this should take significanly less storage
than would be required to actually store the bindings. We could delegate ranges of IDs to
a node, but this node must have room for the range, and when this new node runs out of
room, it must also be able to delegate. This is a possibility for the future. The fifth item
in the list, changing the birthnodes of virtual addresses would be very expensive requiring
some synchronization, and a large broadcast of messages. But, perhaps this could be done
during the garbage collection phase, or offline, or at the end of the day as a background job

(given a suitably large machine).

9.3 Scarcity of IDs

As a related issue, given the virtual ID format of 16 bits of birthnode and 16 bits of serial
number, each node can only generate 65536 IDs. In the current system, it is likely that
many applications would run through this ID space in a fantastically short amount of time.
Of course, The time is dependent on the applications that are run, but we can sketch a rough

estimate for how long we can run before running out of IDs on a node.

The following calculations assume a 10MHz processing node where the average in-
struction length is 1.5 cycles long. We assume that the queue is always full of work to be

done. We assume that each message-spawned task work will be 200 instructions long (far

CHAPTER 9. ISSUES FROM A PROTOTYPE SYSTEM 88

above the likely amount). We finally assume that only 10% of the tasks that come in will

involve an allocation of an object.

107cycles 1 instruction 1 task allocations allocations
X - - X . = 6667 ————
second 1.5 cycles 200 instructions task second

At this rate, a node would run out of IDs in 18 seconds. Though these numbers are
questionable at best in the absence of actual measurements, it is quite clear that the ID
space is compeletely inadequate. We have to have a larger virtual ID, say by having 68 bit
words rather than 36 bit words, but in the meantime it might suffice to (1) borrow bits from
the node number field or (2) attempting to re-use certain IDs. Borrowing bits would be a
short time solution, by limiting our prototype machine to a 1K machine, we could get a 64
fold increase in serial numbers, allowing a node to run for 20 minutes with the assumptions
made above. But, for simplicity’s sake, the current implementation has not adopted this
format. It would be a good idea to do this in the future until we build a machine with

larger words.

The second idea is a more interesting research issue. We already reuse context
IDs by requiring contexts to have received all replies before they are put on the free list.
This way, the amount of IDs reserved for contexts (probably the most frequently allocated
object) is significantly cut. There may also be ways of reusing normal object IDs, but a
space efficient way of noting these reused IDs may be difficult. Here are a few possible ideas

on how to reuse IDs.

1. Keep a fixed size table of free IDs. When an object is freed, the ID will be placed in
the table. When an ID is needed, this free table will first be checked. The biggest
problem with this aﬁproach, is that when the table fills, IDs will not be placed in the
table and they will be “lost” forever.

2. Provide a separate routine for allocating “short-lived” objects. These objects would
take their IDs from a common, fixed-size pool of consecutive IDs whose freeness could
be signified by a single bit for each ID. For example, we might reserve 256 “short-
lived” IDs per node. The short-lived IDs’ serial numbers might range from 0 to 255
and the pool could be represented by 8 32 bit words si nifying an array of 256 bits,
where a 0 indicates the ID is in use, and a 1 indicating that it is free. If these ob jects
are truly short-lived, and they represent the bulk of ID requests, then this approach
might greatly extend the lifetime by conserving regular IDs.

CHAPTER 9. ISSUES FROM A PROTOTYPE SYSTEM 89

3. Every now and then, perform an ID “garbage collection and compaction” where all
IDs are renamed to consecutive IDs in effect compacting the ID space. This involves
similar issues to the mechanism of changing an ID’s hometown node number. It seems
to be very expensive, but it may be possible to interleave this with the normal garbage
collection.

The currently implemented mechanism only reuses context IDs (a fixed amount). No at-

tempt is currently made to reuse other object’s IDs.

9.4 The Shortage of Memory

Of course, the scarcity of memory per node will also prove to be a problem. The goal
is to take advantage of the large collective memory provided by the system (a 4096 node
J-Machine with 4K memory per node would have 16 megabytes of primary memory). Load
balancing can be used not only in choosing processors to perform work, but also in choosing
nodes to allocate memory from. Simple gradient plane approaches [RF87] can be used
to cool down memory “hot spots”. Garbage collection, expanded memory nodes, and the
sweeping of “dusty” objects to offline storage are all possible solutions to the memory

shortage problem.

The current prototype operating system kernel takes two approaches to memory.
If a message arrives to allocate an object, and there is not enough memory available, the
message is forwarded to another node. However, if a process has been running for a while
and the node runs out of memory, the calling message cannot simply be forwarded, since
some work has already taken place. Instead, the process must have its state saved in a
context, and room must be made on this node by evicting certain objects. Unfortunately,
there might not be enough memory to allocate a context. A solution out of this trap is to
require that there always be one minimal sized context object available for each priority
level. A check could be made in the CALL and SEND handlers (and any other message

handlers that could fall into these circumstances) for a free context.

CHAPTER 9. ISSUES FROM A PROTOTYPE SYSTEM 90
9.5 Queue Size

Queue sizing also proves to be a problem in the system. Since we want to be able to migrate
objects by message sends, an empty queue must always be big enough to hold every object.
This means that the queue must be as big as every heap. This is far too costly in terms
of memory in the 1K node prototype, and we have not attempted to make a fix. It would
always be possible, though admittedly tedious, to send messages in “chunks” that would be

able to fit in the queues.

9.6 Suspension and Processor State

Whenever a process suspends and plan on restarting later, it must be able to save its
processor state. This normally means its register set, but we must not forget about two
other forms of processor state, queues and stacks. When we suspend and there is a message
we want to save in the queue, we copy it out into a heap object and set the message pointer
to point to the object instead of the queue. Stacks are more of a difficulty to save and
restore, and we have decided to explicitly prohibit the saving of stack frames. So, the
operating system is given the task of insuring it will never have to suspend and restart
with information on the stacks. This was a source of much personal misery during the
implementation of the QS (though certainly less than there would have been without the

existance of stacks).

9.7 Summary

This chapter has touched on just a few of the difficulties in the design of the Jellybean
Operating System Software. Some are due to inadequacies in hardware or scale, some are

due to lack of behavioral measurements, and some due to lack of insight. These will most

This empty page was substituted for a
blank page in the original document.

Chapter 10

Performance Evaluation

Never promise more than you can perform.

— “Publilius Syrus”, Mazim 528

This chapter provides a quantitative performance evaluation of several important
system services. Though the prototype implementation is certainly not optimal in any way,
it should be a reasonable approximation of an actual working operating system kernel, and
as such, the numbers presented in the chapter should be useful for the design and tuning
of the rest of the Jellybean system. In addition, we should be able to see what parts of the

system need fixing, before the machine is fabricated.

10.1 The Virtual Binding Tables

The virtual name manager is composed of five system routines nested in the hierarchy
shown in figure 10.1. The BRAT itself is composed of a 128 word binding table of 64 2-
word bindings. Words are entered by a linear probing [Sed83] scheme where a hash function

determines the first choice for the location of the binding, and a linear search is performed

92

CHAPTER 10. PERFORMANCE EVALUATION 93

BRAT_ENTER BRAT_ENTER_NEW BRAT_XLATE BRAT_PURGE
BRAT_PEEK

Figure 10.1: The Hierarchy of the Virtual N ame Manager

from there. This linear search can take a significant amount of time (at least on the scale
of average task size), so we need (1) an efficient algorithm and (2) a successful hashing
scheme. The remainder of this section examines the execution time of each BRAT routine

and presents some very preliminary hashing measurements.

10.1.1 Instruction Counts

The BRAT PEEK system call is the core to all of the virtual name services. It takes a

key to hash and a data word to match (not necessarily the same, since you might want to

CHAPTER 10. PERFORMANCE EVALUATION 94

look for the first NIL slot where a certain key could be placed, as is done when adding new
entries). The key is hashed, providing the index into the table, and a linear search with
wraparound proceeds from here. The cost of this call is between 22 and 540 instructions,
based on how far the search has to progress. A reasonable cost approximation, Cpeek» for

a search that finds the data in the nth slot is 22 + 8 x (n ~ 1) steps.

The rest of the BRAT calls utilize this BRAT _PEEK routine.

e BRAT XLATE looks up a binding in the BRAT and takes 27 + Cpeek steps to com-
plete.

¢ BRAT PURGE searches the BRAT until it finds the first binding of the specified
word, and removes it from the table. This takes 30 + Cpeek steps to complete.

* BRAT_ ENTERNEW adds a new entry to the BRAT without first removing any
previous bindings. It accomplishes its task in 32 + Cpeek steps. :

* The most expensive routine, potentially, is the BRAT_ENTER routine. This is

like BRAT_ENTER_NEW, but it first removes a previous binding, requiring another
BRAT search. This can take as much as 32 + 2 x Cpeek steps.

10.1.2 Effectiveness of Linear Probing

Evidently, the crucial factor in the effectiveness of the BRAT routines is the cost of peeking
through the BRAT, Cpeek’ which is a linear function of how far away from the expected hash
spot the value resides. What the average distance in hash steps will be for a typical machine,
depends greatly on (1) the application that is being run, (2) how storage reclamation is
handled, (3) and what is done when the BRAT overflows — all issues needing further
study. Nonetheless, I would like to proceed with an informal, ad hoc analysis, based on
reasonable estimates and educated guesswork. The rationale is to see if the linear probing
strategy seems to generally work — by that, meaning that the average number of steps is

small until the entry is found?.

Tt is not obvious that this will so. In fact, it is quite easy to be concerned that this linear rehashing
approach might actually work itself into a steady state where entries were always very far away from where

they were supposed to be.

CHAPTER 10. PERFORMANCE EVALUATION 95

The following data was generated by a simulation program called bratsim that takes
an input pattern of references and simulates their effect on the BRAT. The size and max-
imum fullness of the BRAT is specifiable. The simulator takes each reference and looks it
up in the BRAT.

o If the reference is in the BRAT, it records the number of steps away from where it
should be.

o If the reference is not in the BRAT, it is entered as soon as possible after its hashed
spot.

¢ When names get entered, some may be arbitrarily deleted to maintain a maximum
full percentage.

o If the BRAT fills, a random slot will be emptied.

The reference pattern generator is also based on initial approximations, generating patterns
possibly likely in applications we envision running. It is currently configured with the
following parameters: 10% new IDs, 20% context IDs, 35% recent IDs to simulate locality,
20% less local IDs, and 15% very random IDs to simulate class/selector bindings, method
IDs and other references following less of a pattern. [would expect this estimate to be

conservative,

Based on these estimates, and the reclamation model presented above, we can chart
how many steps away from the hashed slot particular IDs land when they are entered. For a
64 word table, this is graphed in figure 10.2. We see an asymptotic function relating BRAT
space used and the locality of entries to their intended slots. For the 64 row example, the

system begins to be unmanageable after the BRAT becomes more than 60 — 70% full.

Figure 10.3 shows the effect of doubling the BRAT size. The trend is still rapidly
increasing, but the gains we get in terms of ob ject storage may outweigh the extra steps
involved in lookup. The flatness of the middle portion, from 40 - 60% hints at a desirable

operating region.

So, now I would like to suggest educated guesses to the answers to the following two

questions.

CHAPTER 10. PERFORMANCE EVALUATION

96

Average ENTER Distance From Hashed Siot

60 |-
55
50 |
451
40 1
351
30 -
25 -
20 -
15+
10 -

0 s =T 1 | 1 | | | |
O 10 20 30 40 50 60 70 80 90 100
Maximum Percentage of BRAT Space Used (64 Rows)

Figure 10.2: 64 Row BRAT Enter Distances from Hashed Slot

CHAPTER 10. PERFORMANCE EVALUATION

97

Average ENTER Distance From Hashed Slot
0
o
!

0 10 20 30 40 50 60 70 80 90 100
Maximum Percentage of BRAT Space Used (128 Rows)

" Figure 10.3: 128 Rew BRAT Enter Distances from Hashed Slot

CHAPTER 10. PERFORMANCE EVALUATION 98

1. How full should we allow the BRAT to get?

2. How large should the BRAT be?

In the last few paragraphs, I indicated the severity of the BRAT filling problem. After 70%
capacity, the BRAT's performance becomes intolerable. For this reason, I suggest that 70%
capacity should be an absolute maximum for BRAT size, and the normal operating size

should not usually exceed 50%. I propose this as the answer for question 1.

Question number 2 can be answered by adapting the analysis presented in the last

chapter. The new constraint equations become.

heapsize + totalbratsize = freememory

residentobjects = hﬁlfosw

migratedobjects = residentob jects
bratspaceused = 2 (residentobjects + migratedobjects)
bratspaceused = .7 X totalbratsize
== totalbratsize = 1% X freememory

e — T
= heapsize = ;7 X freememory

With 600 words of free space, this reserves 218 words for the BRAT and 382 words for the
heap. This will hopefully be a more accurate value, though it is not a power of 2, which

will complicate the hashing slightly.

The efficient manipulation of the BRAT is crucial to the success of the Jellybean
system. Future study is needed to evaluate hashing functions, and perhaps a form of linear
re-hashing is desired, where the first hash is followed by a subsequent number of other
hashes instead of a linear search. In addition, once real applications are run, we can get a
better idea how the system will behave. Likewise, the translation buffer performance needs

analysis, as this will indicate how often BRAT lookup occurs.

CHAPTER 10. PERFORMANCE EVALUATION 99

10.2 Object Allocation

A common task of the Jellyban Operating System Software is to allocate ob jects from the

heap. This section will examine how costly this operation can be.

Figure 10.4 describes the nesting of services required to perform the NEW system
call. The ALLOC routine takes 24 instructions, it takes 19 instructions to generate a new
ID and it takes 32 + Cpeek instructions to enter a new ID into the BRAT. With 20 cycles
for inter-module glue, the NEW system call takes 95 + Cpeek instructions. According to
the BRAT analysis results, if we operate at less than 70% full, we will have to take less
than 10 steps to enter a new ID, this would indicate that C peek = 94 steps and therefore,
NEW should take 95 + 94 = 189 instructions. At best, with 0 steps to search, the NEW
call would take 117 steps.

10.3 Context Allocation

Another commonly executed routine is the N EW_CONTEXT system call. As described in
chapter 5, this service was expected to be expensive enough to merit special treatment. The
context free list was developed to provide a pool of pre-allocated contexts for fast context
allocation. The flowchart in figure 10.5 shows the steps taken by routine. Note that if the
requested context is of an abnormal size, or if there are no pre-allocated contexts on the
free list, the NEW routine is called to allocate a new object. Requesting an abnormally
sized context takes 25 + Cpew instructions, allocating a context when node are on the free
list takes 27 + Cpew instructions, but allocating a context off the free list takes only 20. If

we can keep contexts in the pool, we will do well.

Freeing contexts is also fast, taking only 25 instructions. This is only about 10%

of the time it used to take to perform this operation, when we were required to purge the

CHAPTER 10. PERFORMANCE EVALUATION

100

NEW
ALLOC GENID BRAT_ENTER_NEW
BRAT_PEEK

Figure 10.4: Nesting of Services for the NEW System Call

CHAPTER 10. PERFORMANCE EVALUATION 101

NEW
CONTEXT

y

Look at requested
sise of the context.

Bigger than
normal sise?

YES

Allocate new context and

Translate this context ID
return address

into a physical address,
set the free list to the cdr
an return the address

m

Figure 10.5: Flowchart for the NEW_CONTEXT System Call

CHAPTER 10. PERFORMANCE EVALUATION 102

old context ID, generate a new one, and place the new ID in the context and BRAT. By

preventing late replies to contexts, we have prevented this performance loss.

10.4 Boot Code and Message Handlers

Let’s conclude the chapter with a brief discussion of the complexity of the Bootstrap code
and several message handlers. The boot (code is run when each processor is powered up,
and places the processor in a runnable state. All together, it takes 5005 steps to boot the
processor. This is made up of 4103 steps to erase the memory, 481 steps to initialize the
context free list with 3 contexts, 247 steps to fill the exception vector table, 86 steps to fill

the extended call table and 72 steps to set up the stacks, queues and other values.

The WRITE message handler takes 8+ 7 x | + 3 steps to send ! words of data. The
READ message handler takes 8 steps to read an empty message, or 7+ 5 x (I — 1) steps to
read a block of data of length /.

The CALL message handler can exhibit several possible times. If the method being
CALLed is local, it only takes 6 instructions to start it executing. If the method is local,
but not in the cache, it takes 64 + Cpeek steps, because the XLATE exception handler
takes 58 + Cpeek steps to complete. If the method is not local, message sends are involved

making it more difficult to analyze.

10.5 ROM Size

Out of the 1024 words reserved for ROM, the operating system prototype uses 760.

CHAPTER 10. PERFORMANCE EVALUATION 103

10.6 Summary

This

section presented a brief performance evaluation of several important parts of the

Jellybean system. In addition to analyzing the cost of routines, several more fundamental

issues were noticed. These are itemized below.

The BRAT needs to be searched efficiently. The linear probing method used can take
a significantly long time if values get placed far from their intended position.

Based on preliminary simulation, the performance becomes unacceptable when the
BRAT gets to 60 to 70 percent full. We can choose a maximum fullness, and derive
the BRAT and heap sizes based on the fullness value and the expected size of objects.

We note that even with an insightful configuration of the BRAT, a translation cache
is required. The configuration of the cache is left to further study.

Creating a new object is more expensive than we would like (a minimum of 117 instruc-
tions). This could be optimized with clever coding, but not much more performance
could be gained by this manner. The problem is more fundamental resting on the
performance of the cache and the BRAT lookup.

The caching of free contexts seems to work well. Creating a new context requires
only 20 instructions if there is a context on the free list (and assuming we don’t get
a translation fault). This is compared to a minimum of 144 instructions without a
context on the free list. Freeing a context is also fast, only 25 instructions.

Calling a local method takes only 6 instructions if the method is local and its trans-
lation is in the cache! If it is not in the cache, performance again suffers, requiring a
minimum of 86 instructions.

Table 10.1 summarizes some of the more important performance statistics presented in this

chapter.

CHAPTER 10. PERFORMAN CE EVALUATION

104

Routine Instruction Count Notes

BRAT_PEEK Cpeek =22+8x(n-1) | n = slots to search

BRAT XLATE 27 + Cpeek

BRAT PURGE 30 + Cpeek

BRAT ENTERNEW | 32 + Cpeek

BRAT_ENTER 32+ 2 x% Cpeek maximum

ALLOC 24

GENID 19

NEW 95 + Cpeek

NEW_CONTEXT 20 with context on free list
27+ Cpeek no context on free list

FREE_.CONTEXT 25 _

CALLMSG 6 with method ID in cache
64 + Cpeek method ID not in cache

Table 10.1: Timings for Common System Services

This empty page was substituted for a
blank page in the original document.

Chapter 11

Conclusions

All’s well that ends well

— SHAKESPEARE, in All’s Well That Ends Well IV

There is a time for many words,
and there is also a time for sleep.

— HOMER, in The Iliad, XI

11.1 Summary

The Jellybean Operating System Software is a prototype operating system kernel for the
Jellybean Machine. Its duties include object-based storage allocation, virtual distributed
naming, object migration, process definition and control, local and remote process execu-

tion, and the support of an object-orient calling model.

This thesis described the JOSS in some detail, its successes and weaknesses. The
report also talks about issues in the future Jellybean operating system that were not imple-
mented in the prototype because of lack of support, study and time. These include storage

reclamation, resource distribution bureacracies, and distributed ob jects. These will most

105

CHAPTER 11. CONCLUSIONS ’ 106

likely become important parts of the Jellybean operating environment in the future.

Several deficiencies may exist in the current system. Performance-wise, searching
the translation table may well be too slow. Several solutions can be proposed including (1)
increasing the size of the BRAT and decreasing the fullness, (2) experimenting with various
hashing functions and (3) providing an effective translation buffer. Memory shortages may
provided a significant problem, and this will place an extra burden on reclamation attempts,

which are already made difficult because of the problem of travelling references.

On the other hand, if the cache works well, and if the BRAT is not very full, the
whole system seems to perform admirally. Method invocations are powerful but fast. The
context free list allows rapid creation and reuse of contexts. The global naming system and

migration provides a high degree of flexibility.

11.2 Suggestions for Further Study

This thesis scratched the surface of many interesting research issues, many of which I for

one would be eager to investigate.

In the area of performance evaluation, the configuration and simulation the transla-
tion buffer and BRAT in a real life environment is important to the success of the Jellybean
Machine. Also of practical as well as theoretical interest would be the study and evaluation

of distribution hierarchies and the various manifestations of how to handle virtual hints.

Reclamation is an important potential area of research. An efficient mechanism to
collect garbage over a distributed network would be of general interest as well, especially if
some incremental form of collection can be developed. Policies for handling out of memory

conditions on processing nodes is also attractive, involving selective migration of objects.

Finally, load and resource balancing policies need to be investigated, especially since

each processor can quickly become overwhelmed (being limited in power and memory ca-

CHAPTER 11. CONCLUSIONS | 107

pacity). Simple gradient plane approaches might be attempted where load spreads to where

it is lower. Network analysis will also be an important factor.

11.3 Hopes

The Jellybean Machine has the potential of being an important step in the development of
multicomputer networks. It is my hope that further study will be encouraged so that the
difficulties of machines of this genre can be resolved (memory shortages, expensive name
translation, no caching of mutable objects, need for resource balancing, etc.) and they can

show their benefits as scalable, programmable processors.

This empty page was substituted for a
blank page in the original document.

&

&.‘

: ﬁ?mw& *N!Nh @M‘i‘ -

58
b g 24
288
(224
32
sz
%3
s
2
25X
"
1 231
ssx

Designed and implemented by the members of the Concurrent
VLSI Architecture Group at the Massachusetts Institute of

Technology.

Copyrtght (C) 1986, 1987 Massachusetts Institute of Technology

ALL RIGHTS RESERVED

No copy of this source code may be made by any means,

electronic or ot

herwise,

without prior permission of

the Massachusetts Institute of Technology.

This file contains operating system labels & stuff

LABEL

LABEL

LABEL

SEEEBEIRESAAEREEARER

Useful system values
IXALEELAESLIZESEEERL

SYS_LEN_BITS
SY$_LEN_MASK
SYS_ID_NODE_BITS
SYS_1D_1D_BITS
SYS_ID_ID_MASK
SYS_ID_NODE_MASK
SYS_CLASS_MASK
SYS_CLASS_BITS
SYS_SELECTOR_MASK
SYS_SELECTOR_BITS
SYS_OPO_BITS
SYS_OP1_BITS
SYS_OP2_BITS
SYS_OPO_MASK
SYS_UNCHECKED
SYS_UNC
SYS_AOSHADOW
SYS_ABS
SYS_INVADR
SYS_MARK_MASK
SYS_COPY_MASK
SYS_REL_MASK
SYS_UNMOVABLE _MASK

(222232232 ¢

XLATE Modes
SSSESEBANRE

XLATE_0BJ
XLATE_ID_TO_NODE
XLATE_METHOD
XLATE_LOCAL

REXTERETESXTSIRRNZS

Temporary locations
SEITSRTTRIXERSRBELE

TEMPO
TEMP1
TEMP2
TEMP3
TEMPA
TEMPS
TEMPS

LR 2EE2 2%

Memory Map
333833888

0S_PO_TEMPS_BASE
0S_PO_TEMPS_LENGTH
OS_P1_TEMPS_BASE

OS_P1_TEMPS_LENGTH

OS_P1_STACK_LENGTH

lglgl
:

ﬁzﬁgéa
29
)
13

10
1111111111
]

16

ESARARRERARARRRAR!
EAARRRRRRARERRARA]
X111 111911111111

EIRRARARAARARARAR]
18

7
2

2

21111111
(1<¢31)
SYS_UNCHECKED
(14<8)
SYS_AOSHADOW
(1¢330)
(1¢<31)
(1¢<30)
(1¢<31)
(1<<29)

W o

DALV 4O

ll‘tll"‘lllltlll‘“t'It‘t‘lltlltll"'!lt“ﬂ“‘!ll'l“lllt‘llll"““"tttl

xs
L2 2]
8
sz
(23
(13}
(234
s
L2124
1244
L2 2 4
E2 2]
122}

SEERXEEEEREEERLL R LIRSS ERRE LR EAEEEERECLLRINEELRRNEEIESXEILETELRTLRSRT

0S

QUEUE1_MASK
BASE

73737

:
:

oS
[«

b2 22222 22222222322 02222

Locations of OS Variables
SESESESRIREERASLRERESSESS

VAR_FREETOP
VAR_SRAT _BASE
VAR_BRAT_LENGTH

VAR_BRAT_HASH_MASK

VAR_ROM_START
VAR_NEXT_ID
VAR_LAST_ID
VAR_MCACHE_BASE

VAR_MCACHE _LENGTH
VAR_MCACHE _OVERFLOW_L 1ST

VAR_CFREE_LIST
VAR_HEAP_BASE
VAR_NET_WIDTH
VAR_NET_HEIGHT
ssEs8sREns

Tag Values
[IEEITL L]

TAG_SY™

TAG_C

Exception Vector Locations
IEREETETELLILRLSASEERRERALS

EVECTORBASE

FAULT_BKGD
FAULT_DBLFAULT
FAULT_ILGINST
FAULT_TLGAORMD

< FAULT_ACCESS

FAULT_EARLY
FAULT_LIMIT
FAULT_INVAOR
FAULT_MSG
FAULT_QUEUE
FAULT_SEND
FAULT_XLATE
FAULT_RANGE
FAULT_PUSH
FAULT_POP
FAULT_OVERFLOW
FAULT_TYPE
FAULT_IA
FAULT_IB
FAULT_IC
FAULT_ID
FAULT_IE
FAULT_IF

1§22 24

_Classes

222222

CLASS_CONTEXT

lglal
2%
)

LOCKED_LENGTH
INITIAL_BRAT_LENGTH
OS_INITIAL_BRAT_MASK

128

lata
11

114

;
&

L 20 R BB K JE BE 3R IR 2K 2R IR RN

i

i3
&

OCONDIPSWN=O

A
B.B"°
mo

TAG_F

OS_EVECTORS_BASE

EVECTORBASE
EVECTORBASE + 1
EVECTORBASE + 2
EVECTORBASE + 3
EVECTORBASE + 4
EVECTORBASE + §
EVECTORBASE + 6
EVECTORBASE + 7
EVECTORPASE + 8
EVECTORBASE + 9
EVECTORBASE + 10
EVECTORBASE + 11
EVECTORBASE + 12
EVECTORBASE + 13
EVECTORBASE + 14
EVECTORBASE + 16
EVECTORBASE + 17
EVECTORBASE + 18
EVECTORBASE + 19
EVECTOREASE + 20
EVECTORBASE + 21
EVECTCRBASE + 22

LABEL
LABEL
LABEL

LABEL
LABEL
LABEL
LABEL
LABEL
LABEL
LABEL

LABEL
LABEL
LABEL
LABEL

LABEL
LABEL

LABEL
LABEL
LABEL
LABEL
LABEL

LABEL

. vs -

LABEL
LABEL

CLASS_METHOO
CLASS_MESSAGE
CLASS_INT

ZETSRESEREEREBERES

System Call Values
SEEBEBELLAREESITES

TRAP_NEW_CONTEXT
TRAP_FREE_CONTEXT
TRAP_XFER_ID
TRAP_XFER_ADOR
TRAP_ID_TO_NODE
TRAP_NEW

TRAP_MALLOC
TRAP_GENID
TRAP_VERSION
TRAP_BRAT_PEEK
TRAP_SWEEP
TRAP_FREE_SPECIFIED_CONTEXT

TRAP_XCALL
TRAP_DIE

SESIRTEILIRSLENELLES

Extended Call Values
ESEIAESBIELLETRAEILS

XCALL_BRAT_ENTER
XCALL_BRAT_XLATE
XCALL_BRAT_PURGE
XCALL_MIGRATE_OBJECT
XCALL_BRAT_ENTER_NEW

Object Field Offsets
S3ISTTBZTIESRLLILLRES

OBJECT_HDR
OBJECT 1D

CONT_PSTATE_OFFSET
CONT_NEXT_CONTEXT
CONT_RESOURCE

CONT_NORMAL_SIZE

PSTATE_IDO
PSTATE_ID1
PSTATE_1D2
PSTATE_ID3
PSTATE_RO
PSTATE_R1
PSTATE R2
PSTATE_R3
PSTATE_IP

CONT_PSTATE_SIZE
122222332371

Handler IDs
X222 23282 F3

HANDLER_INSTALL_METHOD
HANDLER_LOOKUP_METHOD

3
512

L2 OO RPAS NN« O
- O

- R W = p sy
[3

"N

-
w

©w NP r WO

TAG_08JID: 0
TAG_0BJUID: 1

CyEs fegs jcég%.‘§ “ks‘l' FraEs

112

3 e
| SR

N

AL R

{pnsag? ¥

S8

g heanl

H
i

'ltllllll‘l“""'l""“"‘l‘l8"t‘ll‘ll!lllll!‘t,l“""l.““l!“tlltlll

2z £ 2 24
(1% (313
(3T] Designed and tmplemented by the members of the Concurrent (31}
[$1] VLSI Architecture Group at the Massachusetts Institute of (331
= Technology. 58
18 ' 38
s3s Copyright (C) 1986, 1987 Massachusetts Institute of Technology ss=
sxz ALL RIGHTS RESERVED (37
28 38
553 No copy of this source code may be made by any means, sz
(114 electronic or otherwise, without prior permission of 33
s the Massachusetts Institute of Technology. :::

253
ttttllltttltltllllll!tlllltltlttt!tllllltlllllltttl‘lllll.ll.tl‘llllllllttt

This file contatns system kernel routines for the MDP ROM
Edit History (started 6/23/87)

who Date what

Brt 8/23/87 Added STAT x labsls. Added ROM_SIZE
calculations. Changed temporary use to
avoid bashing in conjunction with dependency
graph, and larger temporary space. Fault
handlers now use FTEMPs instead of TEMPs.
New trashing specification to make variable
use clearer,

Bri 6/24/87 More work on method mode of XLATE_EXC.

Bri 6/26/87 Stack testing code & boot 1nitialization.
Started converting trap routines from TEMP
to stack conventions.

Br1 6/29/87 Continued converting to stack conventions
Bri 8/30/87 Removed stack conventions
Bri 7/06/87 Inserted stack conventions
8ri 7/09/87 Started conversions to V8, including the
new register instructions
Br1 7/10/87 Continued conversions
8ri 7/13/87 Put some initial garbage collection attempts in
8r1 1/17/87 Put 1n BRAT manipulation traps. We nesd more

trap vectors for system calls. So, add a
sSystem call location to use another table

sometime.
8r9 7/28/87 Switched to version 9.
Bri 8/05/87 Upgraded XLATE_EXC
Bri 8/10/87 Finished code for XLATE_EXC & method caching,

but haven’t tested it yet. Fixed some bugs
in the BRAT mantpulators.
Br1 8/11/87 Tested XLATE_EXC & method caching code.
Thers is a bug after the METHOD_REQUEST_REPLY
that causes a MSG fault. I think that the
METHOD_REQUEST_REPLY message has a Tength that
1s maybe 1 too small, so when the
RESTART_CONTEXT message arrives, the last
word of the previous message is used as the
message header??? Also updated os.mdp file.
Bri 8/12/87 Fixed the method caching length-of -message
problem. Made XFER restors data registers
and ID registers, and not try to reXLATE
A0 1? 1t°s 1D register 1s nil.

Bri 2/05/68 Mod1f1ed context format to move processor
state to the end. Updated OS.MOP.

8ri 2/10/88 Added FREE_CONTEXT_TRP & FREE_CONTEXT_MSG.
Fixed 0S.MOP that has OS vars in wrong place

Bri1 2/16/88 Added NEW_METHOD_MSG, ID_TO_NODE_TRP

placed local XLATE in XLATE_EXC Tfor'xo_ro_uooe

as well as other simple uses of XLATE), wrote

SEND_MSG.
Bri 2/19/88 Made XFER free contexts. Fixed up SWEEP_TRP.
Bri 2/22/88 Finished & tested heap compactor.
Brt 3704788 Changed ID_TO_NOOE_TRP, Removed XLATE_RCVR

mode - replaced with XLATE_LOCAL and in-)ine
code within SEND_MSG. Added XLATE_ID_TO_NODE
mode to XLATE.

B8ri 3/08/88 Added locked down region to memory map. Made
LOCKHEAP equivalent to PUSH I,MOVE TRUE,I and

UNLOCKHEAP to POP I.

Bri 3/16/88 Added method cache overflow 1ist support.
Added extebded system call mechanism.
Bri 3/18/88 Added “"copy* bit to method headers. Cached

methods are now distinguished by this copy
bit rather than using the method directory
also for this purpose. Started INVADR_EXC
handier.

cwe me we we We we me ws

. %o b we

81 s/03/88

Nou'{ Soth Main code & exception cods ued

e TRPs. P e

/that they Gen"t Dash sbch other!it!}
- ASM 'oi.-u' .

MONE
one 1024

800T coODE

TYTT P PTLeY RY seest

o . . L B P

; BOOT -- This routine contains the cold boot MOP code

BOOT:
; Find how much RAM we have
oc 1024 ; This 13 a hack to r11)
3 RO with the amount of RAM
; Clear memory
MOVE RO,R1 ; Copy amount of RAM to R1
MOVE RO,R2 ; Also copy to R2
NIL,RO
BOOT_CLR:
82 R1,“_BOOT_CLRDONE 3 If loop done, brsak out
su8 R1,1,R1 ; Decrement R1
MOVE RO,[R1,A0] 3 Stick NIL in address
BR ~_BOOT_CLR ; Loop
BOOT_CLRDONE :
; Save the RAM size in the OS vartable, now that RAM is clear
[» o VAR_ROM_START i RO <- Offset to ROM_START var
MOVE R2,[RO,A0] ; VAR_ROM_START (- 13t ROM loc
; Set up exception vectors & xcall vectors
BOOT_EXCV:
DC ADOR: (EXC_VECTORS<<SYS_LEN_BITS)|0S_EVECTORS_LENGTH
MOVE RO,A1
oc ADDR (OS_EVECTORS_BASE<CSYS_LEN_BITS)|0S_EVECTORS _LENGTH
MOVE 0,A2
oc OS_EVECTORS_LENGTH
_BOOT_EXCV_LOOP:
82 RO,”_BOOT_XCALLV
sus RO, 1,R0
MOVE [RO,AY],R1
MOVE R1,[{R0,A2]
BR “~_BOOT_EXCV_LOOP
_BOOT_XCALLV:
oC AgDR: (XCALL_VECTORSCCSYS_LEN_BITS)| OS_XVECTORS_LENGTH
MOVE RO,A1
oc ADDR: (OS_XVECTORS _BASECCSYS_LEN_BITS)|OS_XVECTORS_LENGTM
MOVE RO, A2
oc OS _XVECTORS_LENGTH
~BOOT_XCALLV_LOOP:
8z RO,~_BOOTSTACKS
sue RO, 1RO
MOVE [RO,A1],R?
MOVE R1,(RO,A2)
BR “~_BOOT_XCALLV_LOOP
; Set up stacks
_BOOTSTACKS :
2,94 0 s ROC-0
WRITER RO,SP
WRITER RO,SP*
i Invalidate Queue registers
_B00T1:
oc ADDR: SYS_INVADR | (OS_QUEUEO_BASEC<SYS _LEN_BITS) | 0S_QUEUEO_MASK
WRITER RO,Q8M
2.+ ADm (OS_QUEUEO_BASEC(SYS_LEN |_BITS)
WRITER RO,QHL
SgITER :ooa SYS INVADR | (0S_QUEUEY ~BASECCSYS_LEN_BITS)|0S_QUEUE1 MASK
oc ADOR: (@ QUEUET_BASEC(SYS_LEN_BITS)
WRITER RO,QML®
; Set up XLATE cache
_BooTS:
ADDR: (OS_CACHE_BASECCSYS_LEN .BITS) |OS_CACHE_MASK
WRITER RO, TBM
; Initialize OS variadbles
[of OS_LOCKED_BASE+OS_LOCKED_LENGTH ; RO <- Initial heap base
MOVE RO, R2 ; Copy to R2
oc VAR_HEAP_BASE 3 RO <- Offset to HEAP_BASE var
MOVE R2,[RO, AD) ; Store 1n VAR_HEAP_BASE
oC VA& _FREETOP ; RO <- Offset to FREETOP var.
MOVE Rz.[Ro,AOJ ; Store in VAR_FREETOP

oC
MOVE
oc .
MOVE
sue
0C
MOVE

MOVE

8

BOOT_CFREE_INIT:

i3

PUSH

VAR_ROM_START
[RO,A0J,R?
OS_INITIAL_BRAT_LENGTH
RO, R2

R1,R0,R1

VAR_BRAT _BASE
R1,[R0,AD]
VAR_BRAT_LENGTH
R2,[R0,AD]
OS_INITIAL_BRAT_MASK
ROR2
VAR_BRAT_HASH_MASK
Rz,[R0,A0)

VAR_NEXT_ID

RO,R2

0,R0

RO,(R2,A0)
VAR_LAST_iD
RO,R2
SYS_ID_ID_MASK

RO,(R2,A0]

VAR_MCACHE_BASE
RO, R1

OS_MCACHE_BASE

RO, (R1,A0]
VAR_MCACHE_LENGTH

RO, R

OS_MCACHE_LENGTH
RO,(RY,A07
VAR_MCACHE_OVERFLOW_LIST
NIL,R1

R1,{R0,A03

; F111 Context free 1ist with a

3,R3
NIL,RO
RO

BOOY_CFREE_INIT_LOOP:
oc

CALL
MOVE

POP
PUSH
MOVE
SUB
BNZ
oC
POP
MOVE

s of
READR

CONT_NORMAL_SIZE
TRAP_NEW_CONTEXT
(OBJECT_ID,A1],R1
R2

R1
R2,[CONT_NEXT_CONTEXT,A1]

R3,1,R3
R3,"800T_CFREE_INIT_LOOP

VAR_CFREE_LIST
R1

R1,[R0,A0]

RO ¢- offset to ROM_START var
R1 <- First ROM location

RO <~ Inftia) S1Ze of BRAT
Copy length to R2

R1 ¢- Base of BRAT
RO - Offset to BRAT_BASE var
Store 1n VAR_BRAT_BASE
RO <- Offset to BRAT_LEN var
Store len in VAR_BRAT_LENGTH
RO <~ Initial BRAT hash mask
Move to R2
RO <~ Offset to hash mask
Put initia) hash mask in var
RO <~ Offset to NEXT_ID var
Copy to R2 for safe keeping
RO <- 0
VAR_NEXT_ID <¢- 0
RO <- Offset to LAST_ID var
Copy to R2 for safs keeping
RO <- ID field mask

(same as last ID)
Put last ID i1n VAR_LAST_ID

WO NS WE B Wl WE BE NS Ns W we we we e ®b we we we mo o we we

RO <- Offset to mcache var
Swap to R1

RO <- Initial base value
Set MCACHE_BASE variable
RO <- Offset to mcachs length
Swap to R1

RO <~ Initial length value
Set MCACHE_LENGTH variable
RO <- Addr of oflow 1ist
R1 <~ NIL

Set oflow 1ist to NIL

e s s we e we m wr e we ws

few contexts

R2 (- Number of ctxts to make
RO <- NIL
Push NIL on the stack

RO <~ S1ze of normal context

A1 <- New context address

R1 <- Context ID

R2 <- 01d cfres 1ist

Push new cfree 11ist

Next context = Old cfree list
Decrement ctxts left to make

Loop

RO <~ Offset to cfres l1ist
R1 <- Cfree 11ist

Set up Cfree 1ist variable

®s we ws Be we we b wo ws we we

; Enable message reception by masking off disable bits
BOOT_ENABLE_QUEUES:

~SYS_INVADR

Q8M, R1
R1,R0,R1
R1,Q08M
QBM*,R1
R1,R0,R1
R1,Q8M*
FALSE,RO
RO,1
“BKGD_EXC

5 RO <~ A11 bits BUT the
s 1nvalid address bit

; Mask off disable bit

; Mask off disable bit

H lllllllllllllllllllll!lllltlll.tlllt't'll.“‘tl'Ulllll‘lll.llll!llllll'ltllll

BACKGROUND

LOOPS

H
H llltllll‘lll_lllllllllll‘lllllll..‘lll‘lll!.llllllllllll'lllll.llllllllllllll'

DIE_TRP:

BR
EMPTY_FAULT:

8
EMPTY_TRAP:

B8R
EMPTY_XCALL:

B8R
PUSH_EXC:

B8R
POP_EXC:

B8R
BKGD_EXC:

~DIE_TRP
~EMPTY_FAULT
“EMPTY_TRAP
“EMPTY_XCALL
“PUSH_EXC
“POP_EXC

;tllll!lllll‘lll'lllll'lll’ll!lllllllltllttllllllllltll‘l“llll‘llllllllttllll

PRIMITIVE

MESSAGES

;ttlltllltlllll"l"".lll'llllllllltllllillltlllltlllllllllll‘lllltllltltllll

WRITE_MSG:
MOVE
MOVE
oc
MOVE
WTAG
AND
MOVE

MOVE
_WRITE_MSG1:
GE
BT
MOVE
MOVE
ADD
ADO

_WRITE ﬁSG LEXIT:
SuSPEND
WRITE_MSG_END:

WRITE (destination-address) (data)s

[1,Ag],R0
SYS_LEN_MASK
0,A3],R2

R2, TAG_INT,R2
RO.R2,R2

2,R0

0,R1

RO,R2,R3

R3,” URITE JMSG_EXIT
[RO A3],R

R2,[R1,A2]

R0,1.R0

R1,1,RY

~ HRITE MSG1

e v mt ws me wa wa e

WRITE_MSG -- Messnoo routine to write a block of data to consecutive
locations.

RO <- Destination address
Move to A2

RO - Mask to keep len bits
R2 <- message heeder

Cast header into an INT

R2 <- message length

RO <- Src offset into queue
RY <- Dest offset into A2

Are we at the end of massage?
If so, exit

Get a "hunk o’ data"

Toss 1t into the destination

oc

AND

BNZ

SENDE

SUSPEND
_READ_MSGO:

sus

MOVE

SEND
_READ_MSG1:
EQUAL

SUSPEND
READ_MSG_END:

[1,A3),R1
R1,A2

{2,A37
SYS_LEN_MASK
R1,R0,RT
R1,~_READ_MSGO
[3,A3]

R1,1,R1
0,R2
(3,43}

R1,R2,R0
RO, ~_READ_MSG2
(R2,A2]

e e we we ws we we

s s wive wr we we e

READ (source-address) (reply-node) (reply-header)

R1 <- address/len of source
Copy to A2

Send reply node number

RO <~ Mask to keep length
R1 <- length

If Yength !'= 0, continue

If no length, just mail hdr

Convert length to offset
Initialize index
Send reply header

Is index = final index?
If so, use SENDE instead
Send a word of data
Increment source index
Loop again

Send final word

READ_MSG -- Message routine to read a block of data to consecutive
locations.

CALL_MSG:
MOVE {1,A3],R2
XLATE R2,R0,XLATE_METHOO
CHECK RO, TAG_INT,R1
DC IP:2
PUSH RO
poP IP

CALL_MSG_END:

R2 <- Method-id

RO <~ Method address

Is this a hint?

IP <- Offset of 2 into method

: SEND_MSG -- Message routine to take an object 1d, and send the object

referenced by the ID the selector “selector-symbol®,
If the object 1s on another node,

’

H ts local, the method 1s run.
H we forward the message to the node.
?

SEND (selector-symbol) (object-1d) (args)s

~SEND_MSG_START
SEND_MSG_FORWARD_TO_HOME :

LSH R1,-SYS_ID_ID_BITS,R1

AND R1,5YS_ID_NODE_MASK,R0
SEND_MSG_FORWARD_TO_HINT:

SEND RO

sus R3,1,R3

MOVE 0,R
SEND_MSG_FORWARD_LOOP:

€QUAL RO,R3,R2

8T R2, “SEND_MSG_FORWARD_EXIT

. SEND [R0,A3)

ADD RO,1,R0

B8R ~SEND_MSG_FORWARD_LOOP
SEND_MSG_FORWARD_EXIT:

SENDE [RO,A3]

SUSPEND
SEND_MSG_START:

MOVE [0,A33,R0

AND RO, SYS_LEN_MASK,R3

MOVE [2,A3],R%

XLATE R1,R0,XLATE_LOCAL

BNIL RO,~SEND_MSG_FORWARD_TO_HOME

CHECK RO, TAG_INT,RZ

8T R2,~SEND_MSG_FORWARD_TO_HINT

5UB R3,3,R3

MOVE RO,A2

MOVE [OBJECT_HOR,A2),R1

LSH R1,-SYS_LEN_BITS,R1

AND R1,SYS_CLASS_MASK,R1

oc SYS_SELECTOR_BITS

LSH R1,R0,R1

OR R1,(1,A31,R1

WTAG R1,TAG_CS,R1

XLATE R1,R2, XLATE_METHOD

0c MSG: (CALL_MSGC<SYS_LEN_BITS)

ADO R3,2,R3

OR RO,R1,R0

MOVE R2,RY

CALL TRAP_ID_TO_NODE

SEND2 R1,R0

SuB R3,2,R3

82 R3,~SEND_MSG_SEND_LAST

SEND R2

MOVE 3,R0
SEND_MSG_LOOP:

MOVE [RO,A3],R2

ADD RO, T;R0

sue R3,1,R3

82 R3,~SEND_MSG_SEND_LAST

SEND R2

8R ~SEND_MSG_LOOP
SEND_MSG_SEND_LAST:

SENDE~ R2

SUSPEND

SEND_MSG_END:

.. e - v we

e we v v

WS %4 ms e ML We Be e we Be we T4 Ve We Ve We We Ws Wp s BE B Wo Vo Ve Wi We

s ve wr we e we

If the object

Jump to main code

Shift Birthnode number down
Just keep node number field

Send dest. node number
R3 <- Index to last in queue
RO <- 0

Are we at last ftem?
If so, send with SENDE
Send 1tem from queue
Increment RO

RO <- Message header

R3 <~ Length of message

R1 <~ Object ID

RO <- Bound value of obj ID
If revr not hers, forward msg
Is value & hint?

If so, forward msg to object
R3 <~ Length of args

Copy address to A2

R1 <~ Header of object

Shift class down

R1 <- Class

RO <- Bits of selector field
Shify Class field up

Merge with selector

Tag as a class/selector

R2 <- Method I

RO <- Msg Header w/o length
R1 <- Length of CALL message
Merge with message length
Copy Method-ID to R1

R1 <- Node(Method-1D)

Send node, header

R3 <~ Length of args

If no args, just send meth-ID
Send Methoo-ID

RO (- Offset to args

R2 <- Argument from queue
Increment arg offset
Decrement length

If last arg, send & end
Send argument

Loop

Send R2 and end

; NEW_METHOD -- Message handler to allocate and fill a method for a given
H class/selector pair. This routine calls the InstallMethod handler
H to make the class/selector/ID bindings, but this routine suspends
s arter calling InstaliMethod, without waiting for it to complete.

NEW_METHOD (class) (selector) (size-of-code) {code)s

NEW_METHOD_MSG:
MOVE [3,A3],R0
ADD RO, 2,R0
MOVE CLASS_METHOD,R1
CALL TRAP_NEW
XLATE RO,AZ,XLATE_O0BJ
MOVE 4,R1
MOVE 2,R2
MOVE [3,A3),RO
NEW_METHOD_MSG_LOOP:
82 RO, “NEW_METHOD_MSG_INSTALL
MOVE (R1,A3],R3
MOVE R3,[R2,A2)
sus R0,1,R0
ADD R1,1,R1
ADD RZ,1,R2

RO <- Size of code

Add in 2 header words
R1 - "Method* class
Allocate an object

A2 (- Address of object
R1 <~ Source offset

R2 <- Dest offset

RO <- Size of code

e s ws we me we we we

If no size left then fnstall
R3 <- Data word

Put data word in object
Decrement size

Increment source

Increment destination

SEND [1,A3)

SEND [2,A3]

SENDE [OBJECT_ID,A2)

SUSPEND
NEW_METHOD_MSG_END:

Send class
Send selector
Send method ID & end

B8R “NEW_METHOD_MSG_L O0P Loop
NEW_METHOD_MSG_INSTALL:

MOVE NNR,R1 ; R1 <- This node number

[] MSG: (CALL_MSGC<SYS_LEN_BITS)|4 ; RO <- header

SEND2 R1,RO ; Send node,header

DC HANDLER_INSTALL _METHOD ; RO <- ID of InstallMethod

SEND RO ; Send InstallMethod 1D

’

MOVE

MOVE
_NEW_MSG1:
8z
sue
MOVE
MOVE
ADD
ADD

BR
NEW_MSGEXIT:
MOVE

oC

LSH

SEND

s

SEND

SEND

SEND

SENDE

SUSPEND
NEW_MSG_END:

NEW_MSG -- Message routine to creat
mail back the ID.

(1,A3],R0
[2,A3],RY
TRAP_NEW

RO,AZ, XLATE_OBU

; %38 Copy Optional Data sss

SYS_LEN_MASK
[0,A33,R1

R1, TAG_INT,R1
RO,R1,R0
RO,S,RO

5,R1
2,R2

RO,~_NEW_MSGEXIT
RO, 1,R0
[R1,A3],R3
R3,(R2,A2]
R1,1,R1

R2,1,R2
~_NEW_MSG1

£3,A3],R?
INT:-SYS_ID_ID_BITS
R1,R0,R0

RO

MSG: (SEND_MSGCCSYS_LEN_BITS)|4
RO
[3,A3]

[4,A3]
01.42]

s we we we we we we we ws

-

9o s e me ws we we we v

e a new instance of a certain class and

NEW (size-of-object) (class) (reply-id) (reply-selector) (opttional-data)s

RO <- tength of object
R1 <~ class

Make a new object

A2 <~ Address of object

RO <- Yow 10 bit mask

R1 <- Message header

Cast into an INT

RO <- length of message

Ignore first 5 arguments,
leaving optional data
length in RO

R1 <- offset into queus

R2 <- offset into object

If no data left, exit
Decrement count

R3 <- data from msg. stream
Stors data in object
Increment offsets

Loop

R1 <~ reply id

RO ¢~ # of bits of ID

Shift node # down & put in RO
Send destination node

RO <- SEND message header
Mail out the header

Send the target id

Send the selector

Send new obj ID as final arg

METHOD_REQUEST (method-ID) (raply-node)

Runs under: AQ Absolute mode, Unchecked

METHOD_REQUEST_MSG:

METHOD_REQUEST_MSG -- Look up a method and mail the ENTIRE method
including headers to the requester in a METHOD_REQUEST_REPLY wrapper.

3 R1 <- Method ID

; R2 <- Requester node ¢

; A2 <- Address of method

;3 RO ¢~ Mask to keep len field

; R3 (- Length of method

; R3 <- Length of method

; ¢+ 2 words for msg & 10,
ylelding message length

MSG: (METHOD_REQUEST_REPLY, MSG((SYS LEN _BITS){SYS_UNC

MOVE (1,A3],R1

MOVE (2,A3],R2

XLATE R1,A2,XLATE_METHOD

oc SYS_LEN_MASK

AND RO,A2,R3

ADD R3,2,R3

oc

OR RO,R3,R0

SEND2 R2,R0

SEND R1

sue R3,2,R3

MOVE 0,R0
_METHOD_REQUEST_LOOP:

sus R3,1,R3

82 R3, _nsmoo REQUEST_SEND_LAST

SEND [RO,A2)

ADD RO,1,R0

B8R

~ FETHOO _REQUEST_LOOP
LAST:

_METHOD_REQUEST_SEND_LAS

SENDE
PEND

“[RO.A2]

METHOD RENEST MSG_END:

; RO << Message header

; Send dest node# & msg header
; Send method-I0

3 R3 <~ Method length

; Current index = 0

; Decrement length

i If length = 0, send last word
; Mat1l out method word

3 Increment tndex

; Loop

; Send final method word

METHOD_REQUEST_REPLY_MSG -- Store the method in

walt 1ist.

an object and restart the

METHOD_REQUEST_REPLY (method-1D) (method-data)s

Runs under: A0 absolute mode, Unchecked

METHOD_| REOUEST REPLY_MSG:

M

M

z.. ...

B8R
M_R_R_FOUND_MC_ID:

AND
PUSH
SuB
MOVE
CALL
XLATE
o
OR
MOVE

POP
sus
MOVE

MOVE
_R_R_FILL_0BJ:

_R_R_COPIED:

MOVE
MOVE
ENTER
MOVE
CALL

833°3°

SYS_LEN_MASK
R0,[0.A3],R0
RO

R0,2,R0
CLASS_METHOD, R1
TRAP_NEW

R0,AZ, XLATE_0BJ
SYS_COPY_MASK

RO, [OBJECT_HDR,A2],R0
R0, [OBJECT_HOR, A2]

RO
RO,4,R0
4,R2
2,R1

RO,"M_R_R_COPIED
[R2,A3],R3
R3,[R1,A2]
R1,1,R1

R2,1,R2

R0, 1,R0
~M_R_R_FILL_0BY

[1,A3],R0

A2,R1

RO,R1
XCALL_BRAT_ENTER_NEW,R3
TRAP_XCALL

R2,R3,R2

Search the Method Cache directory.

I_R_R_SEARCH_MC_
sue

sus
EQ

8T
BNZ

MOVE
MOVE
ADD

MOVE
MOVE

10:
R2,2,R2

R3,2.R3

R1.[R2,A0),R0
RO,*M_R_R _FOUND_MC_ID
R3,"M_R_R_SEARCH_MC_ID
~M_R_R_NOT_IN_MCACHE

NIL,RO
RO.[RZ.AO]
R2,1,R2
[R2,A0],R3
RO,[R2,A0]

M_R_R_RESTART_CTXT_FROM_MCACHE :

M_

x.. v v . we

BNIL
READR
SEND
oC
SEND
SENDE

XLATE
MOVE

8R
R_R_EXIT:
SUSPEND

If not in MCACHE directory, search overflow 1ist.
the previcus context ID, and R3 the current context 10.

R3,"™M_R_R_EXIT
NNR RZ
R2

RO <- Mask to keep length
RO <- Length of message
Save RO on stack

Ignore message header & ID
Rt ¢- Class of a method
Make a method object

A2 (- Address of object

RO <- Copy bit

RO <- Hdr marked as a copy
Mark object as a copy

e ms ws ws we ws e we we we

Restore RO (length of msg)
RO <- Len of method w/o hdrs
R2 <- Source index

R1 (- Destination index

If no more length, exit loop
R3 <- vord from message

Put word 1n method object
Increment source index
Increment destination tndex
Decrement length left

Loop

et wt ms we we we we

RO <-
R1 <-

Original method-10
Method copy address
Enter in XLATE cache

R3 <- BRAT EnterNew Xcall ¢
Enter in BRAT

.. me ve we we

; R2 <- Offset to method cache
R3 <-
R1 <-
R2 ¢-

vWord size of cache
Method ID from message
Offset past mcache

Decrement offset

Qecrement length

Is this the 1d wa want?

If so, branch t

If length != 0, loop

If not in MC, check oflow list

we ws ws we ws we

RO <- NIL '

Set ID To NIL

Point offset to wait list
R3 <- (car wait-l1st)

Set watt 1ist to NIL

s . we ws we

If context ID 1s nil, extt
R2 <- This NNR

Send a mossaqo to this node

.o -

MSG: (RESTART_CONTEXT_MSG(CSYS LEN _BITS)|12|SYS_UNC
RO

R3

R3,A2,XLATE_OBJ

(CDNT NEXT_CONTEXT,A21,R3
“M_R_R_RESTART _CTXT_FROM_MCACHE

; Send message header

; Send ID to restart

; Get address of context

3 R3 <- next ctxt ID 1n list

Use R2 to hola
Use these

pointers to delink 1tems from the overflow list.
I_R_R_NOT_IN_MCACHE :

MOVE™
0c
MOVE

NIL.R2
VAR_MCACHE_OVERFLOW_LIST
[RO,A0],R3

M_R_R_LOOP_THRU_OVERFLOW_LIST:

BNIL
XLATE
EQ
BY

R3,“M_R_R_EXIT

R3,A2, XLATE_OBJ

R1 [CONT RESOURCE,, A2], RO
RO,"M_R_R_UNLINK_CTXT

; No previous ID
; RO <~ Addr of oflow list
; R3 <- Car of overflow list

; When 1ist NIL, exit

; A2 <~ Context Addr

; Watting for this method?

; If so, cut ctxt out of 1ist

MOVE
MOVE

8R
M_R_R_UNLINK_CTXT:

BNNIL

M_R_R_UNLINK_FIRST_CONTI

MOVE
0C

MOVE
MOVE
MOVE

8R
M_R_R_LILYPAD:

B8R n
M_R_R_UNLINK_MIDOLE

MOVE
MOVE
MOVE
MOVE
XLATE

R3,R2
[CONT_NEXT_CONTEXT,A2],R3
AN_R_R_LOOP_THRU_OVERFLOV_LIST

R2,"M_R_R_UNLINK_MIDOLE_CONTEXT
EXT:
[CONT_NEXT_CONTEXT,A2],R3
VAR_MCACHE_OVERFLOW_LIST
R3,[R0,A0)
Rz,[CONT_NEXT_CONTEXV.AZJ
[0BJECT_ID,A2],R0
“M_R_R_RESTART_CTXT_FROM_LIST

“M_R_R_LOOP_THRU_OVERFLOW_LIST
_CONTEXT:
[CONT_NEXT_CONTEXT,A2],R3
NIL,RO

RO, [CONT_NEXT_CONTEXT,A2]
(0BJECT_10,A27, R0

R2,A2, XLATE_08.

R3, [CONT_NEXT_CONTEXT,A2]

MOVE
M_R_R_RESTART_CTXT_FROM_LIST:
PUSH ~ RO

READR
SEND

DC
SEND
POP
SENDE

B8R
METHOD_REQUEST_REPLY_END:

NNR, RO

RO
NSG:(RESTART_CONYEXT_NSG((SYS_LE
R

“M_R_R

LILYPAD

; Prev ID <- Current ID
; R3 <- next ctxt ID in list

i If prev !'s n11, 1ink to next

; R3 <- Next context

i RO <- Addr of oflow 1ist

i Overflow 11st <- Next ctxt

; Next context ptr <- NIL

; RO <~ Ctxt ID

; Queue up context for execution

i Hop to where we want to be

; R3 - Next context

7 RO <~ NIL

i Next context <- NIL

i RO <- ID to clipped-out ctxt

i A2 <- Prev context addr

; Prev o--> Next {skipping curr)

; Save context 1D
i RO <- This NNR
; Send a message to this node

N_BITS)|2|SYS_UNC

; Send message header
Restore context ID

Send ID to restart

Go to next element in 1ist

. e v

uus& T e gl “‘"2:3‘ ts‘wﬁ

S a e

T
wm.,& o W"" o
w&n:: 53 bRAn mﬁi
g3 sﬁmﬁ Sk
g

MIGRATE_OBJUECT (object-1d) (node-number)

Runs under: A0 Absoluta mode

MIGRATE_OBJECT_MSG:

MOVE
MOVE
MOVE
CALL

SUSPEND

[1,A31,R0
(2.A31,R1
XCALL_MIGRATE_OBJECT,R3
TRAP_XCALL

MIGRATE_OBJECT_MSG_END:

,

MIGRATE_OBJECT_MSG -- Move an object to a new node

RO ¢- Object ID
R1 <- Dest node number

Migrate the object

i IMMIGRATE_OBJECT_MSG -- Let this abject reside on this node

; IMMIGRATE_OBJECT (object-1d) (previous-residence) (object-data)s

; Runs under: A0 Absolute mode, unchecked

IMMIGRATE _OBJUECT_MSG:
. PUSH 1

MOVE
MOVE
MOVE
AND
PUSH
SuB
MOVE
LSH
AND
CALL
MOVE
oc
OR
MOVE
MOVE
MOVE

TRUE,R3
R3,I

[0,A3],R0

RO, SYS_LEN_MASK,RO
RO

RO,3,R0

3,A3],R1

R1, -5YS_LEN_BITS,R1
R1,$YS_CLASS_MASK, R1

TRAP_MALLOC
[3,A3],R2
SYS_UNMOVABLE_MASK
R2,R0,R2
R2,(0,A2]
[1,A3],R0
AzZ,R1

ENTER RO,R1

MOVE XCALL_BRAT_ENTER_NEW,R3

CALL TRAP_RKCALL™

MOVE RO,(T,A2]

poP RO

sua RO, 1,R1

SUB RO, 4, RO
IMMIGRATE_OBUECT _LOOP:

EQUAL R1,4,R2

8T R2, “IMMIGRATE_OBJECT_EXIT

MOVE (R1,A3],R2

MOVE R2,(R0,A2]

sus RO.1,R0

sus R1,1,R9

"IMIGRATE _OBJUECT_LOOP

IMIGRATE OBJECT_EXIT:
POP

oc
SEND2
MOVE

I

W B0 e W B We e e we e We we we Be we ws we wo We W s we we ws

e e W ve .5 we -

Save 1interrupt status

R3 ¢- True

Disable interrupts

RO - Message header

RO <- Message length

Save message length

RO <- Object length

R1 <- Object header

Shift class down

R1 <- Class of object
Mallocate me some memory

R2 <- Object header

RO <- Unmovable bit

Set unmovable bit 1n header
Set header of new object

RO <- Object 1D

R1 <- Address of block
Enter ID/ADOR in XLATE table
R3 <- BRAT EnterNew Xcall ¢
Enter in BRAT

Fi1l 2nd slot with ID

RO <- Message length

R1 <- Offset to last msg word
RO <- Offset to end of dest

At first data word?

If so, done

R2 <(- dats word

Put data word in object
Decrement RO

Decrement RY

Loop

: Pop int. disable flag

MSG:SYS_UNC! (NOW_RESIDING_AT MSG((SYS _LEN_BITS)|3

(2,A3),R0
NNR, RO

SEND2E [1,A3],R0

SUSPEND

IMMIGRATE _OBJECT _MSG_END:

e s m es e ws e

NOV_RESIDING_AT (object-1d) (residence-node)

Runs under: A0 Absclute mode, unchecked

NOW_RESIDING_AT_MSG:
MOVE

MOVE
MOVE
ENTER
MOVE
CALL
MOVE
LSH
WTAG
DC
SEND2
SEND
SEND
MOVE

RO, R0

[1,A3),R0

[2,A3],Rt

RO,RY
XCALL_BRAT_ENTER,R3
TRAP_XCALL

{1,A3],R1
R1,-SYS_ID_ID_BITS,R1
R1,TAG_INT,R1

MSG: SYS, U'CI(UPDATE BIRTHNODE,
R1,RO

[1,A3]

(2,A3]

NNR, RO

H
H

. ee we we wr ws ws v we

H
’
’

»

Send previous node #, header
RO <- This node number
Send obj ID and this node #

NOP to prevent EARLY Fault
RO <- Object ID

R1 <~ Residence Node ¢
Cache RO -> R

R3 <- BRAT_ENTER Xcall ¢
Bind in BRAT

R1 <- Object ID

Shift Birthnode number down
Set tag to INT

MSGCC(SYS_LEN_BITS)|4

Send header to birthnode
Send object I0

Send new restdence node
RO <- This node ¢

SENDE RO i Send # as previous residence
SUSPEND
NOW_RESIDING_AT_MSG_END:

UPDATE_BIRTHNODE_MSG -- Notify the birthnode of the new residence, and
mark the object movable

UPDATE_BIRTHNODE (object-id) (residence-node) (previous-node)

Runs under: A0 Absolute mode, unchecked

UPDATE_BIRTHNODE_MSG:
MOVE NNR,R2
MOVE [1,A3],R0
MOVE [2,A3].R1
MOVE [3,A3],R3
EQUAL R3,R2,R2

R2 <- This node #

RO <- Object 1D

R1 <- Residence Node ¢
R3 <- Previous node ¢
Was guy previously here?

L O

-1 R2, “UPDATE_BIRTHNODE_MOVABLE If so, don’t rebind again
ENTER RO,R% Cache RO -> Rt

MOVE XCALL_BRAT_ENTER,R3 R3 <- BRAT_ENTER Xcall ¢
CALL TRAP_XCALL Bind 1n BRAT

UPDATE_BIRTHNODE _MOVABLE:

v o4 MSG:SYS_UNC](06JECT_MOVABLE,MSG<(SYS_LEN_BITs)IZ

SEND2 R1,RO ; Send header to restidence
SENDE [1,A3] ; Send object ID

; OBJECT_MOVABLE_MSG -- Mark the object movable
i OBJECT_MOVABLE (object-1d)

; Runs under: A0 Absoclute mode, unchecked

OBUECT_MOVABLE_MSG:
MOVE ~ RO,R0
MOVE [1,A31,R0
XLATE RO,A2, XLATE_0BJ
MOVE [0,A23,R1
o¢ ~SYS_UNMOVABLE_MASK
AND R1,R0,R1
MOVE R1,[0,A2]
SUSPEND
OBJECT_MOVABLE_MSG_END:

NOP to prevent EARLY fault
RO <- Object ID

A2 <- Object address

R1 <- Object header

RO <- Al1 but unmovable bit
R1 <~ Movable object header
Put header back in object

.. e ve we e we wa

H llllltllll‘l"‘""l‘ll‘lllllltlll!lltl"lllllttlll‘ttttttllllll‘ltll.‘xl..l

: SYSTEM CALL TRAPS
illlilllllll'lll.l"llllll‘llllllll‘l‘.l“‘.‘tltllltlllllll""‘.l‘.‘l'lllll‘

E-XCALL_TRP -- Call an extended system call

N

: Runs under: A0 absolute mode, unchecked

; Inputs: R3
: Trashes: R3
XCALL_TRP:
PUSH RO Save RO
oC OS_XVECTORS_BASE RO <- Base of xvectors

R3 (- Xvectors + xcall ¢
R3 <~ Xca)) routine IP
Restore RO

Go to XCALL routine

ADD RO,R3,R3
MOVE (R3,A0],R3
POP RO

. e e ve - v

MOVE R3,IP
XCALL_TRP_END:

; SWEEP_TRP -- Sweep all non-marked objects in the heap down
H towards the basse.
; Runs under: A0 shadow

SWEEP_TRP:

BR “SWEEP_TRP_START ; Go to main code
_SWEEP_EXIT: -

2. VAR_FREETOP 3 RO <- &FREETOP

MOVE R1,[R0,AQ] + FREETOP <~ New destination

POP I

POP R3

POP R2

POP R1

POP RO

POP IP
SWEEP_TRP_START:

PUSH RO

PUSH RY

PUSH R2

PUSH R3

oC VAR_HEAP_BASE i RO <- Address of HEAP_BASE

MOVE {RO,A0],R2 ; R2 <- Initial source

MOVE R2,R1 i R1 <- Inf1tial destination
_SWEEP_LOOP:

PUSH 1

MOVE TRUE, RO ; RO <~ True

MOVE RO,I ; Prevent 1interrupts

[» o4 VAR_FREETOP 3 RO <- &FREETOP

MOVE {RO,A0],RO i RO <- End of heap

GE R2,R0,R0 i At or past the end of heap?

BT RO,~_SWEEP_EXIT ; If so, then exit
SWEEP_CONTINUE:

2.0 SYS_MARK_MASK RO <- Delation flag mask

AND RO,[R2,A0],R0 RO <- Only deletion bit

8z RO,”~_SWEEP_COPY If not deleted, copy object

ADD R2,1,R2

MOVE [R2,A0],R0

PURGE RO

MOVE XCALL_BRAT_PURGE,R3
CALL TRAP_XCALL

sus R2,1,R2

MOVE [R2,A0],R0

AND RO,SYS_LEN_MASK, RO

R2 <- Offset to object ID
RO <- Object ID

Remove object ID from cache
R3 <- BRAT Purge Xcall ¢
Remove object ID from BRAT
Make R2 be offset to object
RO <- Header of object

RO <- Length of cbject

WO MO ve me ws v we s we we we we

ADD R2,R0,R2 Point src to next object
_SWEEP_ITERATE:

B8R ~_SWEEP_LoOP ; Go to next tteration
_SWEEP_COPY:

MOVE [R2,40],R0

AND RO, SYS_LEN_MASK,RO

ADD R2,R0,R2

ADD R1,R0,R1

EQUAL R1,R2,R3

8T R3,~_SWEEP_ITERATE
_SWEEP_COPY_LOOP:

8NZ RO,”_SWEEP_COPY_LOOP2
LSH R1,SYS_LEN_BITS,R3
MOVE (R1,A07,RO
AND RO,SYS_LEN_MASK, RO
OR RO,R3,R0
OR RO,SYS_REL_MASK, RO
WTAG RO, TAG_ADDR,RO
PUSH R1

RO <- Header of object
RO <- Length of object
R2 <- End of src

R1 <- End of dest

Does sr¢ = dest?

If 30, go to next object

e e et e wa

If RO != 0 continye copying
R3 <- dest_addr << len_bits
RO <- Header of object

RO <- Length of object

RO <- base | len

Mark RO as relocatable

Tag as an address

Save R1

e we s we b we we we

5
3
N :
3.

%
1
f
i
3
:

H

NEW_CONTEXT_TRP -- Create a context for a process

This trap creates a context object when given the size of args
and locals in RO. The context created looks 11ke:

—_—
start + 0: | Header___|
start + 1: | _Context-ID_|

filled 1n with the offset from the

of context.,

free 11st 1f possible.

Runs under:
Inputs:
Outputs:

A1,101,A2,102
Trashes: RO

THSTSS Wr vl el er m0 uh ek et ve v we me vl el e e e s

NEW_CONTEXT_TRP:

A0 absolute mode, unchecked
RO

The address of the block is returned in At & A2.
ID registers (ID1 & ID2) are filled with the context ID. The
HEADER & CONTEXT-ID ffelds are f1lied in by this routine. The
NEXT-CONTEXT slot fs filled with NIL.
te f111 in the 100-3, RO-3, and IP slots since these values may be
corrupted while in the system TRAP code.

header of the context.

can be used to esase the building of a pointer to the pstate portion

B start + 2: IPstateOffset| (Offset from Header to pstats)
H start + 3: |Next-Context |

H start + 4: |_Resource__|

H start + 5: | Space [

H NNININAING |

H | Length of space in RO
H AYAVAYAVAVAV A R

H pstate + 1: | ID0 | (Method ID)

; pstate + 2: | m |

H pstate + 3: | D2 |

H pstate + 4: | ID3 |

B pstate + §: | RO |

H pstate + 6: | R1 |

H pstate + 7: __R2___ |

H pstate + 8: | R3 !

H pstate + 9: 1P |

The accompanying

It 1s up to application code

The PSTATE-OFFSET field 1a
This field

If the space needed is <e the normal context size (defined
by CONT_NORMAL_SIZE), then a fast context is allocated off of the

PUSH R1 Save Rt

PUSH R2 Save R2

PUSH RO Save RO

oC VAR_CFREE_LIST RO <- Base of Cfres list
MOVE RO,R2 Swap to R2

POP RO Restore RO with user size

GT RO, CONT_NORMAL_SIZE,R1 Is stze > normal size?

8T R1,“NEW_CONTEXT TRP_ALLOC If so, allocate a new context
MOVE (R2,A0],R1 R1 ¢- 1st ctxt in free 1ist
BNIL R1,“NEW_CONTEXT_TRP_ALLOC If no more normal, then alloc

BE Ve WL L Bl e ve ve s wr w we we wi we we we we we

XLATE R1,A1,XLATE_OBJ Al <- Context Addr
XLATE R1,A2,XLATE_OBJ A2 <- Context Addr
MOVE [CONT_NEXT_CONTEXT,A1],R0 RO <- Next Context
MOVE RO,(R2,A0] Point cfree 11st to next ctxt
MOVE NIL,RO RO <- NIL
MOVE RO,[CONT_NEXT_CONTEXT,MJ Erase next ctxt ptr (for ge)
POP R2 Restore R2
POP R1 Restore Rt
Return

POP P
NEW_CONTEXT_TRP_ALLOC:

ADD R0,5,R0

PUSH RO

ADD RO, CONT_PSTATE_SIZE,R0

RO <- Offset to pstate
Save pstate offset
RO <- Tota) context ob}j size

MOVE CLASS_CONTEXT,R1 3 R1 <~ "context® class value
CALL TRAP_NEW ; Make a new object

XLATE RO,A2,XLATE_OBJ i A2 <- Address of object
XLATE RO,A1,XLATE_OBJ ; Copy to At

POP RO — ; Restore pstate offset

POP R2 ; Restore R2

POP R1 ; Restore R1

MOVE Ro.[ooNT_PSTATE_OFFSET,Az] 3 F111 PSTATE-OFFSET ctxt field
MOVE NIL,RO 7 RO <- NIL

MOVE ; No next context

RO, [CONT_NEXT_CONTEXT,A2]
POP P
NEW_CONTEXT_TRP_END:

Runs under: A0 Absolute mode, Unchecked
Inputs: RO, R1
Qutputs: RO
Trashes: R1
NEW_TRP:
PUSH I
PUSH A2
PUSH R3
MOVE TRUE,R3
MOVE R3, 1
CALL TRAP_MALLOC
LSH R1,SYS_LEN_BITS,R1
OR R1,R0,R1
WTAG R1, TAG_OBJHEAD,R1
MOVE R1,{0,A2]
CALL TRAP_GENID
MOVE A2,R1
ENTER RO,R?
MOVE XCALL_BRAT_ENTER_NEW,R3
CALL TRAP_XCALL
MOVE RO,[1,A2]
POP R3
POP A2
POP I
1P

POP
NEW_TRP_END:

NEW_TRP -- Trap to generate a new object

returned in RO.

class/length field is filled in.
newly generated ID for this object.

& BRAT are updated.

Takes the stze of the object in RO and the class in R1 and allocates a block
of memory for the object and assigns it a unique ID.
The header is tagged as an object header, and the
The ID slot is filled with the

In adaition, the XLATE cache

The ID is

Push 1nt. disable flag

Save A2

Save R3

R3 <~ True

Disable interrupts

Mallocate me some memory
Shift class past len bits
Merge class & length

Tag class/length as objheader
F111 1st slot with class/len
Generate an id into RO

R1 <- Address of block

Enter ID/ADDR 1n XLATE table
R3 <- BRAT EnterNew Xcall ¢
Enter in BRAT

F111 2nd slot with ID
Restore R3

Restore A2

Pop tnt. disable flag

Return

ID_TO_NODE_TRP -- Trap to find the best node
find an object on.
and exit with the node number in R1.

Runs under:

A0 Absolute mode
R1

Enter with the

. .. . e v

Inputs:
Outputs: R1
ID_TO_NODE_TRP:
PUSH R2
XLATE R1,R1,XLATE_ID_TO_NODE
CHECK R1, TAG_ADDR, R2
BF R2,“1D_TO_NODE_EXIT
I0_TO_NODE_LOCAL :
MOVE NNR,R1
ID_TO_NOOE_EXIT:
POP R2
POP IP
MALLOC_TRP - Primitive memory allocator

’
; Takes length of block to allocate in RO
B The address of th
H If the block couldn’t be allocated
’

size in

be called with interrupts off or a

; Runs under: A0
R

Input:
: Output:

MALLOC_TRP:

R U LT

_MALLOC_BAD:
CALL
MALLOC_TRP_END:

memary .

shadow, unchecked
0

A2

VAR_FREETOP
[RO,A0],R2
R2,R1,R3
VAR_BRAT_BASE
(RO,A0],Ro
R3,R0,R0
RO,~_MALLOC_BAD
R2,SYS_LEN_BITS, R0
RO,R1,R0

RO, SYS_REL_MASK,R0
RO, TAG_ADDR, R0

RO, A2

VAR_FREETOP
R3,{R0,A0]

R3

TH VYN %l et we e we we Mo %0 we e e e

number to hope to
ID of the object in R1

XLATE locally, nil ¢ untound
Does tag « ADDR?

If not, we are done

R1 ¢- This node number
Restore R2

Return

and aliocates a region this
e block is returned in A2.

s A2 is set invalid.
heap_lock flag set.

Should

Copy length to RY

RO <- Offset to VAR_FREETOP
R2 <~ VAR_FREETOP

R3 (- address ¢ Tength

RO <- Offset to VAR_BRAT_BASE
RO <- Base of BRAT

Would new block be too big?
If 30, treat it as an error
Shift freetop base up

Merge 1n the length field
Mark address as relocatable
Cast into an ADDR

Copy to A2

RO <- VAR_FREETOP

Update new frestop

Die for now

If the size of the context equals the norma) fast context size, then
we place the context back onto the free 1ist after allocating a
new 1D for 1t (1n case of late arriving context replies). Otherwise,
the context 13 marked for deletion.

; Runs under: A0 Absclute Mode
3 Input: D1
: Trashes: .
FREE_CONTEXT_TRP:
PUSH RO
PUSH R
MOVE ID1,RO
CALL TRAP_FREE_SPECIFIED_CONTEXT
POP R1
POP RO

POP IP
FREE_CONTEXT_TRP_END:

i If the size of the context equals the normal fast context size, then

new ID for it (1n case of late arriving context replies), Otherwise,

the context 1s marked for deletton.

H
H
H we place the context back onto the free list after allocating a
:
H

; Runs under: A0 Absolute Mode
i Input: RO
3 Trashes: RO,R1

FREE-SPECIFIED_CONTEXT_TRP:
PUSH A2

XLATE RO,A2, XLATE_ORJ
MOVE [OBJUECT_HOR,A2],R1
AND R1,SYS_TEN_MASK.R1
sus R1,4,RT
sus R1,CONT_PSTATE_SIZE,R1
EQUAL R1,CONT_NORMAL_SIZE.R1
8T R1,“FREE_CONTEXT_TRP_KEEP_WIM

MOVE [OBJECT_HOR,A2],R1

OR R1,SYS_MARK_MASK, R

MOVE R1,[0BJECT_HOR,A2)

B8R ~FREE_CONTEXT_TRP_EXIT
FREE_CONTEXT_TRP_KEEP HIM:

Save A2

A2 <~ Addr of context

R1 <- Header of context

R1 <« Length of context
Subtract 4 first words

R1 <- User space size

Is user space = normal size?
If so, add him to the 11s¢
R1 <- Header of context
Set deletion bit

Move hdr back to object

22 No longer need to generate new ID sss

; PURGE RO

; PUSH I

; PUSH R3

; MOVE TRUE,R3

; MOVE R3,I

; MOVE XCALL_BRAT_PURGE,R3
; CALL TRAP_XCALL

; CALL TRAP_GENID

; MOVE RO,[DBJECT_ID,A2]

; MOVE A2.R9

; ENTER RO.R!

; MOVE A2,Ri

; MOVE XCALL_BRAT_ENTER,R3
; CALL TRAP_RCALL

; POP R3

; POP 1

; oc VAR_CFREE_LIST

MOVE [RO,A07,R?
MOVE R1,(CONT_NEXT_CONTEXT,A2)

MOVE EOGJECT_Ig.AZJ.Ri

POP IP
FREE_SPECIFIED_CONTEXT_THP_END:

-

R i I

e we ve .

Remove ID RO from cache

Save R3

R3 <~ True

Disable fnterrupts

R3 <- Purge Xcall ¢
Remove ID from BRAT

Make 2 new ID

Patch new ID 1nto context
R1 ¢~ Context ADOR

Make new cache bBinding

R1 ¢- Context Address

R3 <- Enter Xcal) #
Enter binding in BRAT
Restors R3

Restore Interrupts

RO <- Offset to CFREE 1ist

R1 <- CFREE base

Put CFREE 113t as next ctxt
R1 <- Object ID

CFREE 1ist <- Context ID

Restors A2
Return

i,

i

LSy

A

TR AT B8l

VERSION_TRP -- Return the version number

Returns the version number 1n RQ.
where the high 16 Dits hold the major version number
bits hold the minor version number.

The version number 1s an INT tagged value
and the low 16

Runs under: A0 Absolute Mode
Qutput: RO
Trashes: Internally: RO
Totalty: RO
VERSION_TRP:
oC ROM_VERSION
MOVE [RO,A0),RO
POP P
VERSION_TRP_END:

i XFERx_TRP -- Transfer exscution to a context

; The routines XFER_ID_TRP and XFER_ADDR_TRP both transfer control to a context
either referenced by virtual or physical pointers. To transfer by ID
enter with ID in RG. To transfer by address, enter with address in A1.

H The context is FREEJ afterwards.

i Runs under: A0 Absolute Mode

; XFER_ID_TRP

; Input: RO

i Trashes: Locally: RO, A0, A1

H Totally: R0O,A0,A1

’

; XFER_ADDR_TRP

; Input: Al

; Trashes: Locally: RO,AQ

H Totally: RO,AQ

i Never returns.

XFER_ID_TRP:
XLATE RO,A1,XLATE_0BJ i Get context addr in A1

XFER_ADDOR_TRP:
PUSH I
MOVE TRUE,RO ; RO ¢~ True
MOVE RO,I ; Disable interrupts
MOVE (OBUECT_1ID,A1],R0 ; RO <- Context ID
MOVE RO, ID1 3 Set ID' to context ID
MOVE RO,[7,A0] i Store in current context ID
MOVE A1,R0 i RO <- Pointer to context
LSH RO, -SYS_LEN_BITS,RO ; Shift addr field down
ADD RO,[CONT_PSTATE_OFFSET,A1J.Ro i Add in offset to pstate
LSH RO,SYS_LEN_BITS,RO ; Shift addr field up
ADD Ro.[CONT_PSTATE‘OFFSET.A1],Ro 3 Add 1n pstate length - 1
ADD RO,1,R0 ; RO <- ADOR:(ps_addr)(ps_len)

MOVE
XFER_ADDR_CLR_STACK:
MOVE

RO,A1

A1 <- Pointer to pstate

0,R0 ; ROC-0
WRITER RO,SP ; Flush stack preparing
3 for context resume
MOVE [PSTATE_IP,A11,R0 i RO <- 01d IP from context
PUSH RO 3 Push IP on stack
MOVE [PSTATE_10D0,A1],R0
WRITER RO, IDO
MOVE [PSTATE_ID2,A1],R0
WRITER RO,ID2
MOVE [PSTATE_1D3,A1],R0
WRITER RO, ID3
MOVE [PSTATE_R0,A1],R0
MOVE [PSTATE_R1,A1],R1
MOVE (PSTATE_R2,A1],R2
MOVE [PSTATE_R3,A1],R3
PUSH RO ; Save RO
PUSH R1 ; Save R1
MOVE {OBJECT_ID,A1],R0 ; RO <- Context ID
CALL TRAP_FREE_CONTEXT ; Free context
POP R1 ; Restore R1
POP RO ; Restore RO
INVAL ; Invalidate address regs

MOVE 100,R0 i RO <- Method-ID from context

BNIL RO, “XFER_ADOR_CLR_STACK i If IDO slot ni1), don’t XLATE
POP I

XLATE RO,A0, XLATE_METHOD i A0 <- Address of method

PoP IP ; Transfer execution to context

XFER_ADOR_TRP_END:
XFER_ID_TRP_END:

Runs under: AC Absolute Mode, Unchecked
Inputs: RO,R1, A2
Output: RO

The ID to hash to give first offset to start searching from 1s in
RO. R1 holds the actual ID to search for. A2 holds a pointer to
the base of the BRAT table. RO and R1 are sometimes different.
A time when they would be different would be if you were
searching for the slot to put a new value in. Here RO would be the
new ID since we would want it to be 1n a proper place. R1, would
hold NIL however, because we are actually looking for an empty slot.
when the conditions are mat, the offset from the start of the BRAT
18 returned in RO. This will always be even.

If the ID is not in the brat, NIL ts returned in RO.

D L L N

BRAT_PEEK_TRP:
PUSH R2
PUSH R3
i Convert the ID into an in1t1al offset key into the BRAT

WTAG RO, TAG_INT,RO
LSH RO,-8,R2

XOR RO,R2,R3

LSH R2,-8,R2 R2 - I

XOR RO,R2,R3 R3 <~ RO xor (ID > 18)

; Cast RO 1nto an INT
; 8
H
H
LSH R2,-8.R2 :R2 <- ID >> 24
H
H

R2 <- 10 »
R3 <- ID xor (ID »> 8)
D > 18

XOR RO,R2,R3 R3 <~ RO xor (ID > 24)
LSH R3,1,R3 i R3I <~ key = 2 = offset

2 of VAR_BRAT_MASH_MASK RO <- Offset to hash mask
MOVE {RO,A0],R0 RO <¢- mask

AND R3,R0,R3 Now R3 holds key 1nto BRAT

3 Fing the table length

oc SYS_LEN_MASK
AND RO,A2,R2 i R2 <- BRAT length

; Search for the ID starting at offset

-BRAT_PEEK_LOOP:
8z R2,~_BRAT_PEEK_FAIL ; If no more length, fail!
H

EQ R1,[R3,A27,R0 Have we found the target?
8T RO, ~_BRAT_PEEK_GOT_HIM
BRAT_PEEK_NEXT:
sus R2,2,R2 ; Dacrement length left
Sus R3,2,R3 ;i Decrement current offset
LT R3,0,R0 ; Is Offset ¢ 07
BF RO,~_BRAT_PEEK_LOOP 3 If not, loop
i We must wrap around to top of BRAT
oC SYS_LEN_MASK
AND RO,A2,R3 i R3 ¢~ Length of BRAT
sus R3,2,R3 3 Point to top ID slot in BRAT
BR “_BRAT_PEEK_LOOP

; If ID not in tadle, we end up here
_BRAT_PEEK_FAIL:

MOVE NIL,R3 ; R3 ¢~ NIL
_BRAT_PEEK_GOT_HIM:

MOVE " R3,R0 i RO <- Offset of ID in BRAT

POP R3

POP R2

POP 1P
BRAT_PEEK_TRP_END:

-llllllllllll‘ll!tll!‘!‘!ll!‘llttllltlllttltttllllllll“lllll‘llllttl!llt‘"l

EXTENDED CALL ROUTINES

3
H
»
»

-lllltttltltl3!33"tt‘ll"ltlllllltlltllll!tllltlll!lllllltlllll!lllt:lttl“'

’

BRAT_ENTER_XTRP -- Add an ID/ADOR patr to the BRAT

; Runs Under: AQ Absplute Mode, Unchecked Mode

: Inputs: RO,R1

; Takes and ID/ADDR pair 1n RO & R1 and enters the pair into the BRAT.

BRAT_ENTER_XTRP:
PUSH A2
PUSH R3
PUSH R2
PUSH R1
PUSH RO
MOVE RO,R2 ; R2 <- 1D
MOVE R1,R3 ; R3 <~ ADDR
[» o VAR_BRAT_BASE 3 RO <~ Offset to BRAT variable
MOVE [RO,A0],R1 ; R1 <- BRAT_BASE
oC SYS_LEN_BITS
LSH R1,RO,R1 ; Shift BRAT_BASE to addr fleld
oC VAR_BRAT_LENGTH
OR RY,[RO,A0],RY ; R1 <- BRAT base | length
WTAG R1,TAG_ADOR, R1 ; Cast R1 into an ADOR
MOVE R1,A2 ; Move BRAT ptr into A2
MOVE R2,R0 i RO <- ID that was passed in
MOVE RO,R1 ; R1 <~ ID that was passed in
CALL TRAP_BRAT_PEEK i Find offset & return in RO
BNNIL RO,~ BRAT_ENTER_OK i If offset != ni1l, we got ID
MOVE R1,RO i RO <~ ID (st111 in RY)
MOVE NIL,R1 3 R1 (- NIL
CALL TRAP_BRAT_PEEK ; Find offset & return {n RO
BNNIL RO,~_BRAT_ENTER_OK ; If offset non nil, st111 room
CALL TRAP_DIE 3 If no room, die for now.
-BRAT_ENTER_OK:
MOVE R2,[R0,A2] ; Put ID in 13t siot
ADD RO, 1,RO
MOVE R3,[RO,A2] i Put ADDR tn 2nd slot
POP RO
POP R1
POP R2
POP R3
POP A2
POP

P
BRAT_ENTER_XTRP_END:

BRAT_ENTER_NEW_XTRP -- Add a new ID/ADDR pair to the BRAT

Runs Under:
Inputs:

BRAT_ENTER_NEW_XTRP:
PUSH ~ A2
PUSH R3
PUSH Rt
PUSH RO .
PUSH RO
MOVE R1,R3
oc VAR_BRAT_BASE
MOVE [RO,A01,R
0C SYS_LEN_BITS
LSH R1,R0,RT
oc VAR_BRAT_LENGTH
OR R1,(R0,AD],R1
WTAG R1,TAG_ADOR,R1
MOVE R1,A2
POP RO
MOVE NIL,R1
CALL TRAP_BRAT_PEEK
BNNIL RO,~_BRAT_ENTER_NEW_OK
CALL TRAP_DIE

_BRAT_ENTER_NEW_OK:
POP R1
PUSH R1
MOVE R1,[RO,A2]
ADD 0,1,R0
MOVE R3,(R0,A2]
POP RO
POP R1
POP R3
POP A2
POP

1P
BRAT_ENTER_NEW_XTRP_END:

A0 Absolute Mode, Unchecked Mode
1

.-

s e we we we wo we we

----- ccaw comme=

Takes and ID/ADOR patr 1n RO & RY and enters the pair into the BRAT. The
caller must be sure that the ID 1s not aiready in the BRAT, because
no search is made for pre-existance.
be a fster way to enter initial bindings, as in a NEV call.

This routine ts intended to

; Save RO

R3 <- ADDR

RO <- Offset to BRAT variable
R1 <- BRAT_BASE

Shift BRAT_BASE to addr field

R1 <- BRAT base | length
Cast R1 1nto an ADDR

Move BRAT ptr into A2

RO ¢- ID that was passed in
R1 <= NIL (find empty slot)
Find offset & return in RO

If offset non n1l, stitl room
If no room, die for now.

RY ¢~ ID
Push ID back on stack
Put ID in 1st slot

Put ADDR 1n 2nd slot

3 Runs Under: A0 Shadow, Unchecked Mode

; Inputs: RO
3 Output: RO

; Takes the ID to lookup 1n the BRAT 1in RO.
ADDR value 1s found,

’

H

BRAT_XLATE_XTRP:

PUSH
PUSH
PUSH

MOVE

oc
MOVE
oc
LSH
oc

OR

WTAG
MOVE
MOVE
MOVE
CALL
BNIL

ADD

MOVE
_BRAT_XLATE_RETURN:

PoP
PoP

POP
BRAT_XLATE_XTRP_

A2
R2
R1

RO,R2

VAR_BRAT_BASE
CRO,A0],R1
SYS_LEN_BITS
R1,R0,RT
VAR_BRAT_LENGTH
R1,[R0,AD],R1
1, TAG_ADOR, R1
R1.A2

R2,R0
R2,R1

TRAP_BRAT_PEEK
RO,~_BRAT_XLATE_RETURN

RO, 1,R0
{RO,A2],R0

R1
R2
A2

IP
END:

when

it 1s returned in RO,

.

BRAT XLATE XTRP -- Xlate an ID from the BRAT into an ADOR

the corresponding

R2 <- 1D

RO ¢~ Offset to BRAT variadble
R1 <~ BRAT_BASE

Shift BRAT_BASE to addr field
R2 <- BRAT base | length

Cast R2 into an ADDR
Move BRAT ptr into A2

Find offset & return in RO
If RO A1) return the n1)

Pick out ADDR & return tn RO

Inputs: RO

Enter with ID

BRAT_PURGE_XTRP:
PUSH

Runs Under: A0 Shadow, Unchecked Mode

to purge in RO,

A2

PUSH R2

PUSH R1

PUSH RO

MOVE RO,R2

o¢ VAR_BRAT_BASE

MOVE [RO,A0),R1

oc SYS_LEN_BITS

LSH R1,RO,R1

0C VAR_BRAT_LENGTH

Or R1,[RO,AD],R?

WTAG R1,TAG_ADOR,R1

MOVE R1,A2

MOVE R2,R0

MOVE R2,R1

CALL TRAP_BRAT_PEEK

BNIL RO,~_BRAT_PURGE_RETURN

MOVE RO,R1

oc SYM:0

MOVE RO,[R1,A2)

ADD R1,1,R1

MOVE RO,[R1,A2)
_BRAT_PURGE_RETURN:

poP RO

poP R1

POP R2

POP A2

POP 1P
BRAT_PURGE_XTRP_END:

- .. we . e

.o -

R2 <-

RO <-
R1 (-

Shify
R2 <-

BRAT_PURGE_XTRP -- Purge an ID/ADOR pair from the BRAT

The routine writes NIL into both
the ID & ADDR slot of the binding in the table.

10

Offset to BRAT variable
BRAT_BASE

BRAT_BASE to addr field
BRAT base | length

Cast R2 intd an ADOR
Move BRAT ptr into A2

Find offset & return in RO
If ID not in table, return

The ID of the object to migrats is in RO, and the destination node

number is in Rt,

If the object 1s not loca!

message is sent to the residence of the obje

Runs under:

A0 absolute mode, unchecked

7 Inputs: RO, R1
; Trashes: R2, R3
MIGRATE_OBJECT_XTRP:
PUSH I
MOVE TRUE, R2
MOVE R2,1
XLATE RO,R2,XLATE_ID_TO_NODE
PUSH RO
CHECK R2,TAG_ADOR,R3

R3,“MIGRATE__OBUECT_LOCAL

8T
MIGRATE_OBJECT_FORWARD_MESSAGE :
SEND R2

POP
MIGRATE_OBJECT_LOCAL:
PURGE

MOVE
MIGRATE_OBJECT_LOOP:
MOVE

oc
SEND
POP

SEND2E
POP

MOVE
CALL
AND
oC
ADD
ADD
SEND2
POP
SEND
MOVE
SEND

MSG: (MIGRATE_OBJECT_MSGC<SYS_LEN
RO

RO
RO,R1
I

IP

RO
XCALL_BRAT_PURGE ,R3
TRAP_XCALL

R2,SYS_LEN_MASK,R3

MSG:SYS_UNC| (IMMIGRATE_OBJECT_MSG

RO,R3,R0
RO,3,R0
R1,RO

RO

RO

NNR, RO
RO

0,R0

R2,A2
R3,1,R3
R3,“MIGRATE_OBJECT_LAST
(RO,A2]

RO, 1,R0
~MIGRATE_OBJECT_LOOP

MIGRATE_OBUECT_LAST:
SENDE

>
OR
MOVE
POP

(rO,A23
TAG_OBJHEAD: SYS_MARK_MASK
ro,{0,A2],R0

RO,(0,A2]

1

POP P
MIGRATE_OBJECT_XTRP_END:

’
B
y
i
’
i
H

e e va ve we me me

L

e wroer we me

» @ MIGRATE_OBJUECT_MSG
Cct.

i Save old I-Oisable flag
i R2
; Disable interrupts
i R

<- True

<- Address of ID in RO

; Save ID
; Is object local?
Hd 4

30, migrate it

Send restdence node ¢
BITS)i3

Send message header
Restore object ID

Send object id & node ¢
Restore interrupts
Return

Remove binding from cache

R3

<~ Purge Xcall ¢

Purge RO from BRAT

R3

<~ Length of object

<SYS_LEN_BITS)

Add length of object

Add 3 for hdr, ID, this node
Send node #, header

RO

<- ID

Send 1D

RO

<- This nod. ¢

Send this node number
Current index = 0

Copy object address to A2
ODecrement length

Ir

length = 0, send last word

Mat1) out object word
Increment index
Loop

Send final object word

RO

<- Deletion mark mask

Mark header deleted
Store back into header
Restore interrupts
Return

H ltltltlllllttlttllllll‘lltl‘lllltlll‘lll‘:lllllllllltll!tll!llll'lll!ttllllll

H

EXCEPTION

HANDLERS

H
H tlltlltllltltlltl3ttltl!lllllllllll‘ttlllllllllltlt“ttllllltlllll!'llllllllt

3 Runs under:

INVADR_EXC:

LSH

EQUAL

BT

EQUAL
T

A0 absolute mode,unchecked

RO
R1

R2

R3

TRP,R3

SYS_OPO_MASK

R3,R0,R2

-(SYS_OPO_BITS + 2 + 2)
R3,R0,R1

R1,2,R0

RO, ~INVADR_EXC_REG_ORIENTED
R1,3,R0

RO, “INVADR_EXC_REG_ORIENTED

8
INVADR_EXC_NORMAL_OPO

MOVE
oC
AND
8R

0,R3

X1

R2,R0,R2
“INVADR_EXC_REXLATE

e ve we we v wr ve we we

R3

<- Faulting instruction
(- Mask to keep OPO field
(- OP0 f1eld

- Bits to shift down

<~ Opcode

opcode 2 (READR)?

30, treat OPQ special
opcode 3 (WRITER)?

s0, treat OP0 spectial

<- 0 (means curr. priority)

Mask to keep Ax bits

R2

Re-~

<- A index
translate IDx -)> Ax

INVADR_EXC_REG_ORIENTED:
LSH R2,-(SYS_OPO_BITS - 1),R3

oc X1

AND R2,R0,R2
INVADR_EXC_REXLATE:

LSH R3,2,R3

R3,R2,R3 i R3 <- (PAA}

OR
INVADR_EXC_DISPATCH_ON_PAA:
BR R3

INVADR_EXC_ID_LOADERS::

R3 <- Relative priority
Mask to keep Ax bits
R2 (- A index

; Branch forward R3 words

MOVE 100,R0 ; RO <- 100
BR ~INVADR_EXC_XLATE ; Branch and XLATE
MOVE ID1,RO ; RO <~ ID1

B8R ~INVADR_EXC_XLATE ; Branch and XLATE
MOVE 102,R0 ; RO <- ID2

BR ~INVADR_EXC_XLATE : Branch and XLATE
MOVE 103,R0 ; RO <- ID3

B8R ~INVADR_EXC_XLATE ; Branch and XLATE
MOVE I00*,R0O ; RO <- 1DO*

BR ~INVADR_EXC_XLATE ; Branch and XLATE
MOVE ID1*,RO ; RO <- IDY*

BR ~INVADR_EXC_XLATE ; Branch and XLATE
MOVE I02',R0O 3 RO <- ID2°

8R “INVAOR_EXC_XLATE ; Branch and XLATE
MOVE ID3*,RO ; RO ¢- ID3°

BR AINVADR EXC_XLATE ; Branch and XLATE

INVADR EXC _XLATE:
LATE RO,R?,XLATE .LOCAL 3 R1 <= Addr, Int, or NIL

What is object isn’t here! If XLATE faults, we don’t save stacksl

. o .

; EARLY_EXC -- Exception handler for early queue access

.
H
; Runs under:
; Trashes:

EARLY_EXC:

A0 shadow
TEMPO

RO,[TEMPO,A0]
RO

RO, TAG_INT,RO
RO, -9,R0

RO, 1,R0
RO,9,R0

RO, TAG_IP,RO
RO

[TEMPO, A0], RO
1P

. s we s e we e wo va we

Save RO in TEMPO

RO <- Return Address
Cast into an INT

Shift RO to LSBits

Back up address/phase
Shift address field back
Cast back into an IP
Push return IP on stack
Restore RO

Retry instruction

Runs under:
Trashes:

SEND_EXC:
MOV

POP
WTAG
LSH
suB
LSH
WTAG
PUSH
MOVE

POP
SEND_EXC_END:

Runs under:
; Trashes:

XLATE_EXC:
MOVE
MOVE
MOVE
MOVE

READR
WTAG

SEND_EXC -- Exception handler for send buffer

A0 shadow
TEMPO

RO,[TEMPO,A0]
RO

RO, TAG_INT,RO
RO, -9,R0
RO,1,R0
RO,9,R0

RO, TAG_IP, RO
RO

(TEMPD, A0, RO
P

T we ve e s we we we we e

A0 Absolute Mode, Unchecked

TEMPO-4

RO,[TEMPO,A0)
R1,[TEMP1,A0]
R2,[TEMP2,A0)
R3,({TEMP3,A0]

TRP,RO
RO, TAG_INT,RO

overflow

Save RO in TEMPO

RO <- Return Address
Cast into an INT

Shift RO to LSBits

Back up address/phase
Shift address field back
Cast back into an IP
Push return IP on stack
Restore RO

Retry instruction

Save data registers in
TEMPO - TEMP3 for use
as an array

RO <- Current priority TRP

ENTER
_XLATE_RETRY:
POP

LSH
suB
LSH
PUSH

MOVE
MOVE
MOVE
MOVE
POP

RO,[TEMP4,A0]
RO,-7,RO
RO,%11,R0

RO, TEMPO, RO
(RO,A0],RO
RO,R?

XCALL_BRAT_XLATE,R3
TRAP_XCALL
RO, ~XLATE_EXC_NO_BINDING

R1,RO

R3
R3,-9,R3
R3,1,R3
R3,9,R3
R3

(TEMPO,A0],RO
[TEMP1,A0],R1
[TEMP2,A0],R2
[TEMP3,A0],R3
P

XLATE_EXC_NO_BINDING:
MOVE

LSH
oC
AND
EQUAL

XLATE_EXC_LOCAL:

MOVE
oc
AND
ADD
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
POP

XLATE_EXC_O8.J_MODE

CALL

[TEMP4,A0],RO

RO, -(SYS_OPO_BITS+SYS_OP1_BITS),

{1 << SY5_OPZ_BITS) - 1
R2,R0,R2

R2, XLATE_0BJ,R0

RO, “XLATE_EXC_OBJ_MODE

R2, XLATE_ID_TO_NODE , RO

RO, ~XLATE_EXC_ID_TO_NODE_MODE
R2, XLATE_METHOD, RO

RO, “XLATE_EXC_METHOD_MODE_JUMP

; s35 Dest must
TRP,R1
%1111119
R1,R0,R2
R2, TEMPO,R2
NIL.RO
RO,[R2,A0]
{ TEMPO,A0],RO
[TEMPY,AD], R1
[TEMP2,A0],R2
[TEMP3,A0],R3
P

TRAP_DIE

XLATE_EXC_METHOD_MODE_JUMP:
B8R

ZXLATE_EXC_METHOD_MOOE

XLATE_EXC_ID_TO_NODE _MODE :

MOVE
LSH
AND
ADD

TRP, R
R1,-7,R1

R1,%11,R1

R, TEMPO, R1

(R1,A0],R1
R1,-SY$_ID_ID_BITS,R?
R1,5YS_ID_NODE_MASK,R1
TRP,R2

%1111111

R1,[R2,A0]

[TEMPO,A0],RO
{ TEMP1,40], R1
[TEMP2,A0],R2
[TEMP3,A0],R3
P

XLATE_EXC_ME THOD_MOOE :
POP

LSH
suB
LSH

R3
R3,-9,R3
R3,1,R3
R3,9,R3

; Now R1 holds source ID, & retry

XLATE_EXC_SAVE_MSG:

PUSH
PUSH

MOVE

R1
102

[0,A3],R2

TEMP4 (- Current priority TRP
Pick out src. register field

Add TEMPO as start of array
Load RO with source ID
Copy ID to R1

See if ID is 1n BRAf
If not, handle no binding

Enter pair in cache

R3 ¢- Return IP

Shift IP unti) phase is LS8
Back up one phase

R3 <- Failed inst. IP

Put retry IP on stack

Restore data registers

Retry failed instruction

; RO - Fatled instruction
R2

; RO <- mask to keep op2 field
3 RZ - XLATE mode from op2
; Were we in XLATE_OBJ mode?
; If so, branch

i Were we 1n XLATE_ID_TO_NODE?
; If so, branch

; Were we in XLATE_METHOD mode?
; If so, branch

be a data regtster! sss

; R1 (- Fatled XLATE

; RO <- Mask to keep Dest field
: R2 <- Dest field of XLATE

; R2 <- TempO(Dest]

; RO (- NIL

; TempO([Dest] <~ NIL

; Restore dats registers

Return

Just die for now

3 Jump extender

RY <- Fatled XLATE

Shift Source bits down

Just keep source bits

R1 <- TEMPO + Rs

R1 <~ Source ID

Shift Birthnode number down
Just keep node number field
R2 <- Fatled XLATE

RO <- Mask to keep Dest field
R2 - Dest fteld of XLATE

R2 <- TEMPO + Dest (Rx only!)
TEMP{Dest]) = birthnode number
Restore data registers

s e we wh ve ve ve %o we ws we me we

Return

Shift IP unti) phase 1s LSB
Back up one phase
R3 <- Failed inst. IP

.. o we

IP ts 1n R3

Save away R1
Push I02 on stack

; R2 (- Message header

ADD
XLATE_EXC_COPY_MSG:

oc SYS_LEN_MASK

AND RO,R2,R3

ADOD R2,2,R0

MOVE CLASS_MESSAGE,R?

CALL TRAP_NEW

XLATE RO,AZ,XLATE_ogy

PUSH RO

R2,2,R1

8z R2, “XLATE_EXC_MAKE_CONTEXT

sus R2,1,R2

sus R1,1,R1

MOVE [R2,A3],R0

MOVE RO,(R1,A2]

8R ~XLATE_EXC_COPY_MSG
XLATE_EXC_MAKE_CONTEXT:

MOVE 0,RO

CALL TRAP_NEW_CONTEXT

PUSH I

MOVE TRUE,RO

MOVE RO,

MOVE A1,R0

LSH RO, -SYS_LEN_BITS,R0

ADD RO, [CONT_PSTATE_OFFSET,A23,R0

LSH RO, SYS_LEN_BITS R0

ADD RO,([CONT_PSTATE_OFFSET,A2],R0

ADD RO, 1,RO

MOVE RO,A2

A0 -> 7777 100 -> 7777

.. 9 .o .

- .. we

.o we -

A1 -> Context

101 -> Context

A2 -> Pstate 102 -> 7777
A3 > 77?7? 103 -> 7177?

§

EEEN L R

%

F111 IP slot of context
R3,(PSTATE_IP,A2]
F111 ID slots 1n context

R3
R3,[PSTATE_ID3,A2]
R3

R3,[PSTATE_ID2,A2]
ID1,R3
R3,(PSTATE_ID1,A2]
100,R3
R3,[PSTATE_ID0,A2)
Fill Rx slots 1n context
(TEMPO,AQ],R3
R3,[PSTATE_RC,A2]
[TEMP1,A0],R3
R3,[PSTATE_R1,A2}
[TEMP?, B
R3,[PSTATE_R2,A2)]
[TEMP3,A0],R3
R3,[PSTATE_R3,A2]

R1,TAG_CS,R3
R3, “XLATE_EXC_REQUEST_METHOD

XLATE_EXC_LOOKUP_METHOD:
MOVE

.. s e

NNR, R3

- D T I

s e wa we we e

.

s e we wews w0 we we e

.

-

RO <- Mask to keep len bits
R2 <- Length of msg

RO <- Length + 2 words hdr
R1 (- Class for copted msg
Make an object to hold msg
A2 (- Address of object
Push msg object ID on stack

R1 <~ Length + 2 words hdr

If no length, done copying
Decrement source index
Decrement dest index

RO <- word from queue
Copy 1nto msg object

Loop

No local space needed
A2 <- Context address

RO <- True

Disable interrupts

RO <- Pointer to ctxt

Shift addr portion down

Add pstate offset to addr
Shift addr portion back up
Add in length - 1

RO <- ADOR: <ps_addr><ps_len>
A2 <- Pointer to pstate

Context IP <- backed up IP

Potnt ID3 to msg object
102 13 on stack

Does Tag » class/selector?
If not, we were xlating an 1d

R3 <- This node number

RO <- ID of LookupMethod code
Send LookupMethod ID,c/s
Send context to reply to

R2 <- Base of method cache
R3 <- Length of method cache

Get R1 back (clean up later)

oC MSG: (CALL_MSGC(CSYS_LEN_BITS)|3 ; RO <- header

SEND2 R3,RO ; Send node,header

oC HANOLER _LOOKUP_METHOD H

SEND2 RO,Rt ;

SENOE [OBJECT_1D,A2) ;

SUSPEND

XLATE_EXC_REQUEST_METHOO:

oC VAR_RCACHE_BASE

MOVE [RO,A0],R2 :

[o VAR_MCACHE_LENGTH

MOVE (R0,A0],R3 H

MOVE NIL,RO

MOVE RO,[TEMPA,AQ) ; TEMP& <- NIL

POP I

POP 3] H
Now R1 holds the method ID, R2 holds the base of
the method cache, and R3 holds the length of the
method cache

ADD R2,R3,R2 H

R2 <- Offset past mcache

XLATE_EXC_SEARCH_MC_ID:
sue R2,2,R2
SUB R3,2,R3
£Q R1,[R2,A01,R0

8T RO, “XLATE_EXC_FOUND_MC_ID

MOVE (R2,A0],R0

BNNIL RO, “XLATE_EXC_MC_LOOP
MOVE (TEMP4,A03,R0

BNNIL RO, “XLATE_EXC_MC_LOOP
MOVE R2,[TEMP4,A0]

XUATE_EXC_MC_LOOP:

8NZ R3, “XLATE_EXC_SEARCH_MC_ID

MOVE [TEMP4,A0],RO
BNNIL RO,”~XLATE_EXC_GOT_ROOM

XLATE_EXC_ENTER_IN_OVERFLOW_LIST:
MOVE "RY,[CONT_RESOURCE,A2]

>4 VAR_MCACHE_OVERFLOW_LIST

MOVE RO,R2
MOVE {RG,A0],R0

MOVE RO, CONT_NEXT_CONTEXT,A2]

MOVE [0BUECT_ID,A2],R0
MOVE RO,[R2,A0)

BR “XLATE_EXC_MAIL_ORDER_METHOD

XLATE_EXC_GOT_ROOM:
MOVE ~ [TEMP4,A0],R2

MOVE R1,[R2.A0]
XLATE_EXC_FOUND_MC_ ID:
ADD R271,R2

MOVE [R2,A0],RO
MOVE [0BJECT_ID,A2),R3
MOVE R3,[R2,A0)

MOVE RO, [CONT_NEXT_CONTEXT,A2]

Decrement offset

Decrement 1ength

Is this the 1d we want?

If so, add context to 1ist

If entry not n11, loop again

If TEMP4 ts non-nit, loop
Entry 1s n11, so £111
TEMP4 with offset to this
empty place.

If length !'= 0, loop

. we .o -

If TEMP4 not n11, we found an
empty space in the table.

Resource = Method ID

RO <- Overflow 1i1st addr
Copy to R2

RO <- Car of overflow 1ist
Next context = rest of 1ist
RO <- Context-ID

Oftow 11st <- Context-ID
Matl for method

i R2 <- Empty slot offset
F{1) MC 10 with method ID

i Point offset to wait list
i RO <~ (car watt-1ist)

3 R3 <- Context-ID

i Point wait-11st to context
i Point child slot to the

i rest of wait-11st (or n11)

; Now we have set up the wait 1ist for the method.
i We have to mai) off a method request to the hometown
i node of the method in question (ID in R1).

XLATE_EXC_MAIL_ORDER_METHOD:
PUSH

R1 ; Save ID
CALL TRAP_I0_TO_NODE i R1 <- Node number of 1D
MOVE R1,R3 ; Move to R3
POP R1 ; Restors ID
oC MSG:(METHOO_REOUEST_MSG((SYS_LEN_BITS)I3|SY3_UNC
SEND2 R3,RC i Send dest node ¢ & message
READR NNR,R3 3 R3 <- This node number
SEND2E R1,R3 ; Send method-ID & this node ¢
SUSPEND i Wait for method reply

XLATE_EXC_END:

EXC_VECTORS :
oc IP: SYS_ABS | (BKGD_EXCCCSYS_LEN_BITS)
oc IP:SYS_ABS| (EMPTY_FAULTCCSYS_UEN_BITS) ; DBLFAULT
bc IP:SYS_ABS|(EMPTY_FAULT<CSYS_LEN_BITS) ; ILGINST
oc IP:SYS_ABS|(EMPTY_FAULTCCSYS_LEN_BITS) ; ILGADRMD
oc IP:SYS_ABS| (EMPTY_FAULTCCSYS_LEN_BITS) : ACCESS
oc 1IP: SYS_ABS | (EARLY_EXCCCSYS_LEN_BITS)
oc IP:SYS_ABS| (EMPTY_FAULTCCSYS_LEN_BITS) ; LIMIT
C IP:SYS_ABS|(EMPTY_FAULTCKSYS_LEN BITS) : INVADR
oc IP:SYS_ABS|(EMPTY_FAULTCCSYS_LEN_BITS) : Msg
oc IP:SYS_ABS|(EMPTY_FAULT<CSYS_LEN_BITS) : QUEUE
oC IP:SYS_ABS | (SEND_EXCC<SYS_LEN_BITS)
oC IP: SYS_UNC|SYS_ABS | (XLATE_EXCICSYS_LEN_BITS)
oc IP:SYS_ABS| (EMPTY_FAULT<CSYS_LEN_BITS) ; RANGE
oc IP:SYS_ABS | (PUSH_EXCCCSYS_LEN_BITS)
oc 1P:SYS_ABS | (POP_EXCCCSYS_LEN_BITS)
oC IP:S¥S_ABS | (EMPTY_FAULTCISYS_LEN_BITS)
0C IP:SYS_ABS| (EMPTY_FAULTCCSYS_LEN BITS) ; OVERFLOW
oc IP:SYS_ABS|(EMPTY_FAULTCCSYS_LEN_BITS) -
oc IP:SYS_ABS| (EMPTY_FAULTCCSYSOLEN_BITS) ; IA
oC IP:SYS_ABS | (EMPTY_FAULTC<KSYS_LEN_BITS) ; I8
o IP:SYS_ABS|(EMPTY_FAULTC(SYS_LEN_BITS) : Ic
0C IP:SYS_ABS| (EMPTY_FAULTCCSYS_LEN_BITS) : Ip
oc IP:SYS_ABS | (EMPTY_FAULTCCSYS_LEN_BITS) : IE
oc IP:SYS_ABS | (EMPTY_FAULTCCSYS_LEN_BITS) ; IF
0C IP:SYS_ABS | (EMPTY_FAULTC<CSYS_LEN_BITS)
oc IP:SYS_ABS | (EMPTY_FAULTC<CSYS_LEN_BITS)
oc IP:SYS_ABS | (EMPTY_FAULTC(SYS_LEN_BITS)
oc IP:SYS_ABS | (EMPTY_FAULT<CSYS_LEN_BITS)
oC IP:SYS_ABS | (EMPTY_FAULTCCSYS_LEN BITS)

IP:SYS_ABS | (EMPTY_FAULTC(SYS_LEN_BITS)
IP:SYS_ABS | (EMPTY_FAULTC(SYS_LEN_BITS)
IP:SYS_ABS | (EMPTY_FAULT<(SYS_LEN_BITS)
IP:SYS_UNC|SYS_ABS | (NEW_CONTEXT_TRP<(SYS_LEN_BITS)
IP:SYS_UNC|SYS_ABS | (FREE_CONTEXT_TRP<(SYS_LEN_BITS)
IP:SYS_ABS|(XFER_I0_TRPCCSYS_LEN_BITS)
1P:SYS_ABS| (XFER_ADDR_TRP<(SYS_LEN_BITS)
IP:SYS_ABS | (ID_TO_NODE_TRPCCSYS_LEN_BITS)
IP:SYS_UNC|SYS_ABS | (NEW_TRP(<SYS_LEN_BITS)
IP:SYS_UNC|SYS ABS | (MALLOC_TRP<<SYS_LEN_BITS)
IP:SYS_ABS | (GENID_TRPCSYS_LEN_BITS)
IP:SYS_ABS| (VERSION_TRP<(SYS_LEN_BITS)
IP:SYS_UNC|SYS_ABS | (BRAT_PEEK_TRPC(SYS_LEN_BITS)
IP:SYS_UNC|SYS_ABS | (SWEEP_TRP(SYS_LEN_BITS)
IP:SYS_UNCISYS_ABS | (FREE_SPECIFIED_CONTEXT_TRPCCSYS_LEN_BITS)
IP:SYS_ABS | (EMPTY_TRAPCCSYS_LEN_BITS)
1P:SYSABS | (EMPTY_TRAP<(SYS_LEN_BITS)
IP:SYS_UNC|SYS_ABS | (XCALL_TRPC(SYS_LEN_BITS)

IP: (DIE_TRP<CSYS_LEN_BITS)
EXC_VECTORS_END:

88BBBRRRZZ8388R88KRA
!

XCALL_VECTORS :
IP:SYS_ABS) (EMPTY_XCALLCCSYS_LEN_BITS)
IP:SYS_UNC|SYS_ABS | (BRAT_ENTER_XTRPCSYS_LEN_BITS)
IP: SYS_UNC|SYS_ABS | (BRAT_XLATE _XTRPCCSYS_LEN_BITS)
IP: SYS_UNC| SYS_ABS | (BRAT_PURGE _XTRP<CSYS_LEN_BITS)
IP:SYS_UNC|SYS_ABS | (MIGRATE_OBJECT_XTRPCISYS_LEN_BITS)
IP:SYS_ABS|SYS_ABS | (BRAT_ENTER_NEW_XTRPCCSYS_LEN_BITS)
1P: SYS_ABS | (EMPTY_XCALL<ISYS_LEN_BITS)
IP:SYS_ABS | (EMPTY_XCALL<<SYS_LEN_BITS)
IP:SYS_ABS | (EMPTY_XCALL<<SYS_LEN_BITS)
IP:SYS_ABS | (EMPTY_XCALL<<SYS_LEN_BITS)
1P: SYS_ABS | (EMPTY_XCALL<<SYS_LEN_BITS)
1P:SYS_ABS | (EMPTY_XCALL<(SYS_LEN_BITS)
IP:SYS_ABS| (EMPTY_XCALL<<SYS_LEN_BITS)
1P:SYS_ABS | (EMPTY_XCALLC<SYS_LEN_BITS)
IP:SYS_ABS | (EMPTY_XCALL<<SYS_LEN_BITS)
IP:SYS_ABS | (EMPTY_XCALL<CSYS_LEN_BITS)
IP:SYS_ABS | (EMPTY_XCALL<<SYS_LEN_BITS)

IP:SYS_ABS | (EMPTY_XCALL<<SYS_LEN_BITS)

IP:SYS_ABS | (EMPTY_XCALL<<SYS_LEN_BITS)
XCALL_VECTORS_END:

E8BBRRBRBRARRBRLRRE

i ROM Constants

ROM_VERSION: DC INT: (1<<16) |0

ROM_SIZE: oc INT: (ROM_END - 1024)

TWIDOLE: oc 0.0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
ROM_END:

END

JOSS Quick Reference

Primitive Message Handlers
Name Arguments
WRITE (dest-address) (data)*
READ (src-address) (reply-node) (reply-hdr)

CALL

SEND

REPLY

NEW_METHOD

RESTART_CONTEXT

MIGRATE_OBJECT

(method-id) (args)*

(selector) (receiver-id) (args)*

(context-ID) (context-slot) (value)

(class) (selector) (code)*

(size) (class) (id) (selector) (data)*

(context-id)

(object-id) (node-number)

Descripti

Fills the block of memory at
<dest-address> with the data
contained in the message. The
<dest-address> word must be a
proper ADDR-tagged value.

Reads the block of memory
starting at <src-address> and
mails the data back to the
<reply-node> in a message
whose header is <reply-hdr>.

Starts up the method with ID
<method-id>. The <args> are
used by the task being started.

Starts up the method that
performs the operation indicated
by <selector> on the object with
ID <receiver-id>. The process
started uses the <args>.

Places a value in the specified
slot <context-slot> of the context
with ID <context-id>. If the
context was waiting for this slot,
it will be restarted.

Allocates storage for a new
method, copies the <code> into
the metfiod object, and installs
the <class> and <selector> to
method ID bindings in the
system table.

Allocates a new object of type
<class> on a remote node with
length <size>, copies the
optional <data> into the object,
and when done, sends the
<selector> to the object with
ID «id>.

Queues the context with ID
<context-id> for execution.

Moves the object with ID
<object-id> to node number
<node-number>

System Calls

XCALL

SWEEP

NEW_CONTEXT

ID_TO_NODE

FREE_CONTEXT

Arguments

Xcall routine number in R3

Size of user space in RO

Size of object in RO
Class of object in R1

Object ID in R1

Block size in RO

Context ID to free in ID1

FREE_SPECIFIED_CONTEXT

GENID

VERSION

XFER_ID

XFER_ADDR

BRAT_PEEK

Context ID to free in RO

Context ID to restart in RO

Context address in Al

ID to hash in RO
ID to search for in R1
Base of BRAT table in A2

Descript

Calls one of the routines defined in
the extended call vector table. This
was implemented since the CALL
vector table was running out of room.

Compacts the heap.

This routine creates a new context
object with RO words of user space
and returns the context address in Al
and A2. RO is trashed.

Creates a new object of size R0 and
class R1, and returns the object's ID
in RO. R1 gets trashed.

Retums a likely node for the object
with ID R1 to be on in R1.

Allocates RO words of physical
memory and returns the address in
A2,

Frees the context with ID in ID1,
possibly placing it on the context
free list.

Frees the context with ID in RO,
possibly placing it on the context
free list. This trashes R0 and R1.

Generates a new ID, and returns the
ID in RO.

Rewns the OS version number in
RO, where the high 16 bits hold the
major value, and the low 16 bits the
minor value.

Transfers control to the context whose
ID is in RO. This never retumns.

Transfers control to the context whose
ID is in A1l. This never returns.

Hashes the ID in RO to find a first

slot in the BRAT to search. A linear
search proceeds from there until the ID
in R1 is found. When found, the offset
from the start of the BRAT where this
entry is located is returned. If not
found, NIL is remumed.

Extended System Calls

Name Arguments Description
BRAT_ENTER ID to enter in BRAT in RO Enters the ID/ADDR pair
Address in R1 RO/R1 into the BRAT.

BRAT_XLATE ID to lookup in BRAT in RO Looks RO up in the BRAT and
returns the bound value in R0.

BRAT_PURGE ID to purge from BRAT in R0 Removes the first binding of RO from
the BRAT.

MIGRATE_OBJECT ID of object to migrate in RO Migrates the object whose ID is in RO

Node to migrate object to in R1 to the node whose number is in R1.

Bibliography

[Aea80]

[Dal]

[Dal86a)

[Dal86b]

[Dal86c¢]

(DC]

[Dea87]

[DK87)

Arvind and et. al. A Dataflow Architecture with Tagged Tokens. Technical Re-
port MIT/LCS/TM-174, Massachusetts Institute of Technology, September 1980.

W. J. Dally. Joss: the jellybean operating system. Notes from the JOSS Talk.

W. J. Dally. Directions in concurrent computing. In Proceedings of the IEEE

International Conference on Computer Design, pages 102-106, October 1986.

W.J. Dally. Message-Passing Intermediate Code. Concurrent VLSI Architecture

Group Memo, Massachusetts Institute of Technology, August 1986.

W. J. Dally. A VLSI Architecture for Concurrent Data Structures. PhD thesis,
California Institute of Technology, 1986.

William J. Dally and Andrew A. Chien. Object-oriented concurrent program-
ming in cst. To be presented in the 3rd Symposium on Hypercube Concurrent

Computers and Applications.

W.J. Dally and et. al. Architecture of a message-driven processor. In Proceedings
of the 1{th Annual Symposium on Computer Architecture, pages 189-196, June
1987.

W. J. Dally and T. F. Knight. The J Machine: A Concurrent VLSI Message
Passing Computer for Symbolic and Numeric Processing. Concurrent VLSI Ar-

chitecture Group Memo, Massachusetts Institute of Technology, 1987.

152

[Hil85]

[HT87]

[HT8S]

(Kun82)

(Lam82]

(Lin80)

[LS80]

[0SS80]

[RF87]

[Sed83]

[Sei85]

W. Daniel Hillis. The Connection Machine. An ACM Distinguished Dissertation
1986, MIT Press, Cambridge, MA, 1985.

W. Horwat and B. K. Totty. Message-Driven Processor Simulator. Concurrent
VLSI Architecture Group Memo, Massachusetts Institute of Technology, Decem-
ber 1987.

W. Horwat and B. K. .Totty. Message-Driven Processor Architecture. Concurrent

VLSI Architecture Group Memo, Massachusetts Institute of Technology, 1988.
H. T. Kung. Why systolic arrays? COMPU TER, 37-46, January 1982.

B. W. Lampson. Fast procedure calls. In ACM Symposium on Architectural
Support for Operating Systems and Programming Languages, 1982.

Bruce Lindsay. Object Naming and Catalog Management for a Distributed
Database Manager. Technical Report RJ2914, IBM Research Laboratory, San
Jose, August 29 1980.

Bruce Lindsay and Patricia G. Selinger. Site Autonomy Issues in R*: A Dis-
tributed Database Management System. Technical Report RJ2927, IBM Research
Laboratory, San Jose, September 15 1980.

J. K. Ousterhout, D. A. Scelza, and P. S. Sindhu. Medusa: an experiment in dis-
tributed operating system structure. In Communications of the ACM, February

1980.

D. A. Reed and R. M. Fujimoto. Multicomputer Networks: Message-Based Paral-
lel Processing. Scientific Computation Series, MIT Press, Cambridge, MA, 1987.

Robert Sedgewick. Algorithms. Addison- Wesley, Reading, MA, 1983.

C. L. Seitz. The cosmic cube. In Communications of the ACM, 1985.

153

[SFS85]

[Tot87]

(Tot88]

(Ung87]

[WLHS1]

W. Su, R. Faucette, and C. Seitz. C Programmer’s Guide to the Cosmic Cube.
Technical report 5203:TR:85, California Institute of Technology, September 1985.

B. K. Totty. An OS Kernal for the Jellybean Machine. Concurrent VLSI Archi-

tecture Group Memo, Massachusetts Institute of Technology, August 1987,

B. K. Totty. Issues of Storage Reclamation in the Jellybean Machine. Concurrent
VLSI Architecture Group Memo, Massachusetts Institute of Technology, January
5 1988.

D. M. Ungar. The Design and Evaluatioﬁ of a High Performance Smalltalk Sys-
tem. An ACM Distinguished Dissertation 1986, MIT Press, Cambridge, MA,
1987. ’

W. A. Wulf, R. Levin, and S. P. Harbison. H YDRA/C.mmp: An Ezperimental
Computer System. Advanced Computer Science Series, McGraw-Hill, New York,
1981.

154

This empty page was substituted for a
blank page in the original document.

CS-TR Scanning Project ‘ _
Document Control Form Date : 1,19 ;85

Report#_Ai/N- [0

Each of the following should be identified by a checkmark:
Originating Department:

KAniﬁcial Intellegence Laboratory (Al)
O Laboratory for Computer Science (LCS)

Document Type:

[J Technical Report (TR) DX, Technical Memo (TM)
O other:

Document Information Number of pages: 166(1g-imrces)
~ Notto inciude DOD forms, printer intstructions, etc... original pages only.

Originals are: Intended to be printed as :
O Single-sided or O Single-sided or
X Double-sided X Double-sided
Print type:
[J Typewriter [[] OffsetPress [Laser Print
[J inksetPrinter [Unknown [otner___ <0 £y

Check each if included with document:

B{ pop Form (x.) O Funding Agent Form O cover Page

0 spine O Printers Notes O Photo negatives
O other:

Page Data:

Blank Pagesy pege mmbes:_foisouwivc PACKS 730396991 104,107, 15

Photographs/Tonal Material ey pege numbes:

Other (now descriptionipage numben:
Description : Page Numbe& N

image mag [-Buv e T3 T Nern pckny PACES AN® by 1 BLank.
8192 CaCrRS T 17 ANC LU F/AD Biavik

g

(3~ 3 Jo 1 2. 90 ”; /) 2/
(y-4€ v B gi-dg 4 v)
(Y-28i Y IreeCy A & 4
7dee) v TR g 4 0 s
he Q3~lpy % JL i

i85 I‘lﬁ - Flos-107 4 Y o
Q.q.ué)) ? T pefsy ¥ 4 7

Scanning Agent Signoff: (167~ S<aweovtao | 0002, TRGTS)
Date Received: _ 7/!% /%5_ Date Scanned: _f /% /15 Date Retumed: _¥ /) 1 35~

Scanning Agent Signature: ()’V‘w 1”\/J C@O‘Qé' Rev /04 DSALCS Document Control Form cetrform ved

UNCLASSIFIED o : -2 e
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) é&W / ‘; Yy

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
\. REPORT NUMBER 2. GOVT ACCESSION NO.J). RECIPIENT'S CATALOG NUMBER
AIM 1070 AD/A-Qoipslz/
4. TITLE (end Subtitie) R S. TYPE OF REPORT & PERIOD COVERED
An Operating Environment for the memoirandum

Jellybean Machine

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) §. CONTRACT OR GRANT NUMBERA(®)
Brian K. Totty NO0014-80-C-0622
9. PERFORMING ORGANIZATION NAME ANO ADDRESS 10. PROGRAM ELEMENT PROJECT, TASK

. AREA & WORK UNIT NUMBERS
Artificial Intelligence Laboratory

545 Technology Square
Cambridge, MA 02139

1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Advanced Research Projects Agency May 1988
1400 Wilson Blvd. 13. NUMBER OF PAGES
Arlington, VA 22209 . 156

V4. MONITORING AGENCY NAME & ADORESS(if difterent trom Controlling Olfice) 18. SECURITY CLASS. rof this report)
Office of Naval Research

UNCLASSIFIED
Information Systems
Arlington, VA 22217 Sa. gggéASS{ICAHON/DOWNGRANNG

16. DISTRIBUTION STATEMENT (of thia Report)

Distribution is unlimited

17. DISTRIBUTION STATEMENT (of tHe abatract entered in Bilock 30, ¥ difterent from Report)

v

Unlimited

10. SUPPLEMENTARY NOTES

None

19. KEY WORDS (Continue on reverse aide Il neceseary and identily oy bdlock number)

operating systems distributed systems
jellybean machine networks
parallel processing virtual memory

ensemble machines

20. ABSTRACT (Continue on reverse side It necocsery and identity by block numbder)

see back of page

DD ,on'3s 1473 eoition oF 1 nov es s ossoLeTe UNCLASSIFIED
S/N 0:02-014- 6601 |

SECURITY CLASSI'!C.ATION OF THIS PAGE (When Dara Bnterec

Block 20 cont'd

The Jellybean Machine is a scalable MIMD concurrent processor consisting of special-purpose RISC pro-
cessors loosely coupled into a low latency network. The problem with such a machine is to find a way to
efficiently coordinate the collective power of the distributed processing elements. A foundation of efficient,
powerful services is required to support this system.

To provide this supportive operating environment, I developed an operating system kernel that serves
many of the initial needs of our machine. This Jellybean Operating System Software provides an object-
based storage model, where typed contiguous blocks act as the basic metric of storage. This memory model
is complemented by a global virtual naming scheme that can reference objects residing on any node of the
network. Migration mechanisms allow object relocation among different nodes, and permit local caching of
code. A low cost process control system based on fast-allocated contexts allows parallelism at a significantly
fine grain (on the order of 30 instructions per task).

The system services are developed in detail, and may be of interest to other designers of fine grain,
distributed memory processing networks: The initial performance estimates are satisfactory. Optimizations
will require more insight into how the machine will perform under real-world conditions.

Scanning Agent Identification Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the M.L.T
Libraries. Technical support for this project was
also provided by the MLL.T. Laboratory for
Computer Sciences.

darptrgt.wpw Rev. 9/94

