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Abstract

The benefits of programming in a functional style are well known. In par-
ticular, algorithms that are expressed as compositions of functions operating on
sequences/vectors/streams of data elements are easier to understand and modify
than equivalent algorithms expressed as loops. Unfortunately, this kind of expres-
sion is not used anywhere near as often as it could be, for at least three reasons: (1)
Most programmers are less familiar with this kind of expression than with loops;
(2) Most programming languages provide poor support for this kind of expression;
and (3) When support is provided, it is seldom efficient.

In any programming language, the second and third problems can be largely
solved by introducing a data type called series, a comprehensive set of procedures
operating on series, and a preprocessor (or compiler extension) that automatically
converts most series expressions into efficient loops. A set of restrictions specifies
which series expressions can be optimized. If programmers stay within the limits
imposed, they are guaranteed of high efficiency at all times.

A Common Lisp macro package supporting series has been in use for some time.
A prototype demonstrates that series can be straightforwardly supported in Pascal.
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1. Sequence Expressions

The mathematical term ‘sequence’ refers to a mapping from the non-negative integers
(or some initial subset of them) to values. Under the name of sequences [5, 36], vectors [23,
31, 32, 36], lists [36], streams [6, 19, 25, 30], sets [35], generators [18, 48], and flows [34],
data structures providing complete (or partial) support for mathematical sequences are
ubiquitous in programming.

The most common use for sequence data structures is as mutable aggregate storage.
Essentially every programming language provides operations for accessing and altering
the elements of at least one such structure.

Sequences have another use that is potentially just as important and yet is supported
by only a few languages. Most algorithms that can be expressed as loops can also be
‘pxpressed as functional expressions manipulating sequences. For example, consider the
problem of computing the sum of the squares of the odd numbers in a file Data. This
can be done using a loop as shown in the following Pascal [24] program.

type FileOfReal = file of Real;

function FileSumLoop (Data: FileOfReal): Real;
var Sum: Real;
begin
Reset(Data);
Sum := 0;
while not eof(Data) do
begin
If 0dd(Dataf) then Sum := Sum+Sqr(Dataf);
Get(Data)
end;
FileSumLoop := Sum
end

Alternatively, the sum of the squares of the odd numbers in the file can be computed
using the sequence expression shown below. This expression assumes that four subrou-
ines have been previously defined: CollectSum computes the sum of the elements of a
equence; MapFn computes a sequence from a sequence by applying the indicated function
o each element of the input; ChooseIf selects the elements of a sequence that satisfy a
predicate; and ScanFile creates a sequence of the values in a file.

function FileSum (Data: FileOfReal): Real;
begin

FileSum := CollectSum(MapFn(Sqr, ChooseIf(0dd, ScanFile(Data))))
end

For those who are not accustomed to functional programming, the greater familiar-
ity of the program FileSumLoop may make it appear preferable. However, the program
ileSum has two important advantages. First, the patterns of computation that are mixed
ogether in the loop in FileSumLoop are pulled apart. Second, each of these subcompu-
ations is distilled into a subroutine. For example, the pattern of initializing a variable
b 0 and then repetitively accumulating a result by addition is distilled into CollectSum.
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Because the subcomputations are pulled apart, they can be understood in isolation.
The action of the expression as a whole is the composition of the actions of the sub-
computations. This makes FileSum more self-evidently correct than FileSumLoop. The
separation of the subcomputations also means that they can be altered in isolation. This
makes FileSum easier to modify. The distillation of the subcomputations into subrou-
tines makes FileSum shorter and enhances the reusability of the subcomputations. It also
enhances reliability in two ways. Since the subcomputations are being explicitly reused
instead of regenerated by the programmer from memory, there is less chance of error. In
addition, since each subroutine can be reused many times, it is practical to work very
hard to ensure that the algorithm used in the subroutine is robust.

bnfortunately, there are two problems that inhibit most programmers from writing
programs like FileSum. First, most programming languages provide very few predefined
procedures that operate on sequences as aggregates, rather than merely operating on their
individual elements. Second, even in languages such as APL and Common Lisp, where
a v}ide range of sequence operations are available, sequence expressions are typically so
inefficient (2 to 10 times slower than equivalent loops), that programmers are forced to
use loops whenever efficiency matters.

The primary source of inefficiency when evaluating sequence expressions is the phys-
ical creation of intermediate sequence structures. This requires a significant amount of
space overhead (for storing elements) and time overhead (for accessing elements and pag-
ing). The key to solving the efficiency problem is the realization that it is often possible to
transform sequence expressions into a form where the creation of intermediate sequence
stryctures is eliminated. For example, it is straightforward to transform the expression
in KileSum into the loop in FileSumLoop.

A transformational approach to the efficient evaluation of sequence expressions has
been used in a number of contexts. For example, it is used by optimizing APL compil-
ers [11, 21], Wadler’s Listless Transformer [38, 39] which can improving the efficiency of
programs written in a Lisp-like language, and Bellegarde’s transformation system [7, 8]
which can improve the efficiency of programs written in the functional programming lan-
guage FP [5]. In addition, Goldberg and Paige [17] have shown that the transformational
approach can be used to improve the efficiency of data base queries.

Unfortunately, it is not possible to completely transform every sequence expression
into an efficient loop. There are two basic ways to deal with this problem. First, one
can hide the issue from the programmer and simply transform what can be transformed.
Second, one can develop a set of restrictions defining what can be transformed and
communicate with the programmer about the transformability of individual sequence
expressions.

he hidden approach, which is followed by all the systems above, has the advantage
that programmers can benefit from increased efficiency in some situations without having
to think about efficiency in any situation. However, it makes it difficult for programmers
to think about efficiency when they want to, because they have no way of knowing for sure
whether a given sequence expression will be completely transformed. This is significant,
because sequence expressions typically remain quite inefficient if any part of them fails to
be transformed. In addition, quite simple changes in an algorithm often suffice to change
an untransformable expression into a transformable one. As a result, it is not really a
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favor to hide the issue of transformability from programmers.

The most important contribution of the research reported here is a set of restric-
tions that can serve as a basis for the communicative approach to the transformation
of sequence expressions into loops. As discussed in Section 2, these restrictions identify
a class of optimizable sequence expressions that can always be completely transformed.
The restrictions are novel in two ways. First, they are explicit. While every system that
optimizes sequence expressions implicitly embodies some set of restrictions, the restric-
tions used are not explicit except in the work of Wadler [40]. Second, the restrictions in
Section 2 are less strict than most other sets of restrictions. In particular, they are much
less strict than Wadler’s restrictions.

Sections 4-6 show how the communicative approach can be used to add comprehensive
and efficient support for sequence expressions into any given programming language. This
is done by adding a new sequence data type called series and a preprocessor that can
ﬁ;ransform optimizable series expressions into loops. The support for series utilizes the
optimizability restrictions in two ways. One of the key restrictions is enforced by selecting
the set of series operations so that the restriction cannot be violated. The rest of the
restrictions are explicitly checked by the preprocessor. Non-optimizable expressions are
flagged with warning messages and left unoptimized. If users take the time to make
each series expression optimizable, they can have complete confidence that every series
expression is efficient. This is facilitated by the fact that simple series expressions that
only use each series once can always be optimized.

Section 3 presents the series data type and a broad suite of associated functions.
Currently, the most comprehensive support for series is in Common Lisp. This imple-
mentation [46, 47] is presented in Section 4, along with an extended Lisp example showing
how series expressions can be used. A prototype implementation [28, 45] shows that series
expressions can also be added into Pascal. This implementation is presented in Section 5,

long with an extended Pascal example of how series expressions can be used. Readers
@re encouraged to focus on whichever of Sections 4 and 5 discusses the most familiar
anguage.

Section 6 presents the algorithms used to transform optimizable series expressions
into loops. Section 7 concludes by comparing series expressions with related concepts.
The comparison includes both other implementations of sequences and other approaches
to expressing loops in ways that are easy to understand and modify.

Getting Rid of Loops

To fully appreciate the practical impact of series expressions in general and optimiz-
able ones in particular, one must return to the perspective of sequence expressions as a
wotational variant for loops. The program FileSum is an example based on the Pascal
mplementation of series. The series expression in it is optimizable and is transformed
nto a loop essentially identical to the one in FileSumLoop. As a result, it is not merely
the case that FileSumLoop and FileSum compute the same result using the same abstract
£lgorithm; the two programs denote exactly the same detailed computation. Using the

xpression in FileSum, one gains the advantages of functional form without paying any
rice in terms of efficiency or anything else, because there is no change in anything other
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the notation.

The value of optimizable series expressions as an alternate notation for loops is directly
related to the percentage of loops that can be profitably replaced by them. Any loop
'be expressed as an optimizable series expression by converting the subcomputations
use; in it into series operations and composing them together. (At worst, the entire
loop becomes a single series operation.) The value of doing this depends on how many
fragments the loop can be decomposed into and how many of these fragments correspond
to familiar computations. In general, the change is advantageous as long as there is at
least one familiar fragment, because at the least, there is value in separating the familiar
from the unfamiliar.

An informal study [41] revealed that 80% of the loops programmers typically write
are iconstructed solely by combining just a few dozen familiar looping fragments. (A
somewhat similar study is reported in [15].) Experience with the Lisp implementation of
series expressions indicates that at least 95% of loops contain some familiar computation.
Given this, the practical benefit of optimizable series expressions can be summarized as

follpws:

Optimizable series expressions are to loops
as structured control constructs are to gotos.

Structured control constructs (if...then...else, case, while...do, repeat.. .until)
are not capable of expressing anything that cannot be expressed as gotos. In addition,
thete are probably a few algorithms for which the use of gotos is preferable. Nevertheless,
in almost every situation, structured control constructs are much better to use than gotos.
They are better, not because they allow more algorithms to be expressed, but because
they allow the same algorithms to be expressed in a way that is much easier to understand
and modify.

ptimizable series expressions have the exact same advantage. They do not allow
algorithms to be expressed that cannot be expressed as loops. However, they allow
alggrithms to be expressed in a much better way. The only place where the analogy
with structured control constructs breaks down is that while one can argue that gotos
are [never needed, there are definitely some algorithms that can be expressed better as
loops than as optimizable series expressions.

At the current time, most programs contain one or more loops and most of the inter-
esting computation in these programs occurs in these loops. This is quite unfortunate,
since loops are generally acknowledged to be one of the hardest things to understand in
any|program. If optimizable series expressions were used whenever possible, most pro-
graﬁJns would not contain any loops. This would be a major step forward in conciseness,
readability, verifiability, and maintainability.
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2. Optimizable Sequence Expressions

As noted above, the primary source of inefficiency when evaluating sequence expres-
sions is the creation of intermediate sequence structures. There are two aspects to this.
First, a subexpression may compute a sequence only part of which is used by the rest
of the expression. Second, even when all the elements are used, a significant amount
of space and time overhead is required to construct physical data structures containing
them.
- The first problem can be overcome by using lazy evaluation [16] to ensure that se-
quence elements are not computed until they are actually used. (This also makes it easy
to support unbounded sequences.) However, lazy evaluation does little to assist with the
second problem. In particular, in simple situations where the sequence elements are all
used, lazy evaluation wastes time and does not save any space. Although the same ele-
ments are computed, time is wasted, because coordination overhead is required to decide
Mhen to compute the elements. The same space is used, because each element has to
be stored after it is computed. (Otherwise, a later reuse of an element would require
recomputation.)

Both of the problems above can be solved by pipelining the evaluation of sequence ex-
pressions. When this is possible, elements are computed on demand without coordination
overhead and do not have to be stored.

Definition 1 (Pipelined) The evaluation of a sequence expression E is pipelined if the
evaluation proceeds in such a way that the following conditions hold for every sequence S
computed by any part of E. First, each element of S is computed at most once. Second,
when an element is computed, it is used wherever it needs to be used, and then discarded
before any other element of S is computed.

The primary implication of the definition above is that, while some of the procedures
alled by E may buffer sequence elements within themselves, no additional buffering is
equired when evaluating E. Each sequence is transmitted between the procedure that
creates it and the procedures that use it, one element at a time.

When compile-time pipelining is possible, a sequence expression can be evaluated as

fliciently as a loop. Unfortunately, pipelining is not always possible. Any system that
oes pipelining can only do so for a restricted class of sequence expressions. Whatever
the system, it is valuable for these restrictions to be made explicit. If in addition, the
rogrammer is given feedback about which expressions fail to meet the restrictions, two
wdvantages can be obtained. First, the programmer is given a clear picture of which
2xpressions are efficient and which are not. Second, the programmer has the opportunity
o change inefficient expressions so that they can be pipelined.
It would be nice to have a set of necessary and sufficient restrictions that specifies
2xactly which sequence expressions can be pipelined. However, there are a number of
easons why a somewhat stricter set of restrictions are of greater pragmatic benefit. First,
he restrictions must be associated with practical algorithms that can check whether the
estrictions hold and can perform the pipelining. Second, the restrictions must be simple
nough to understand that programmers can succeed in fixing expressions that violate
hem.
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The primary contribution of the work presented here is a set of five restrictions that
satisfy the subsidiary goals above without being excessively strict. These restrictions
de%e a class of optimizable sequence expressions. It can be shown that every optimizable
sequence expression can be pipelined at compile time by transforming it into a loop, using
the algorithms in Section 6.

Definition 2 (Optimizable Sequence Expression) An optimizable sequence ex-
pression is a sequence expression that satisfies the following restrictions:

) Optimizable sequence expressions must be statically analyzable.

) Optimizable sequence expressions must be straight-line computations.

) Procedures called by optimizable sequence expressions must be preorder.

) Intermediate values in optimizable sequence expressions must be sequences.

) Every non-directed data flow cycle in an optimizable sequence expression
must be on-line.

C i QD DD et

The restrictions in Definition 2 can be divided into three groups. A restriction anal-
ogous to the first one is required for any optimization that is to be applied at compile
time as opposed to run time. The second restriction greatly simplifies the algorithms
in Hection 6, but is undoubtedly stronger than necessary. It is hoped that it will be
weakened in the future. The remaining three restrictions are the theoretical heart of the
mafter.

n this section, programs are discussed from the point of view of data and control flow
graphs rather than program text. In this representation, procedure calls and data literals
are ‘represented by nodes. The nodes have labeled ports corresponding to data inputs
and outputs. There are no limits on the numbers of inputs or outputs. Data flow is
reptesented by directed arcs connecting output ports to input ports. A given output can
be ¢onnected to several inputs. Control flow is modelled by additional arcs connecting
spegial control inputs and outputs. In the context of these graphs, the term sequence
expression is defined as follows.

Definition 3 (Sequence Expression) A sequence procedure is a procedure that
consumes or produces a sequence. A sequence data flow is a data flow arc that transmits
a sequence. A sequence subexpression is a (not necessarily proper) subset of the nodes
in a data and control flow graph that can be built up through repetitive application of
the following two rules. Each node corresponding to a sequence procedure call or literal
sequence is a sequence subexpression. If there is a sequence data flow from a node in a
sequence subexpression X to a node in another sequence subexpression Y, then X UY
is a|sequence subexpression. A sequence expression is a sequence subexpression that is
not a proper subset of any other sequence subexpression.

The Static Analyzability Restriction

As with most other optimization processes, a sequence expression cannot be pipelined
at compile time, unless it can be determined at compile time exactly what computation
is being performed. To make sure that this will be possible, it is required that every use
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of a sequence procedure in an optimizable sequence expression be an explicit call on a
predefined sequence procedure. This ensures that it will always be clear exactly what
sequence computation is being performed.

Similarly, it is required that every sequence value come directly from a sequence
procedure call. This ensures that it will always be clear exactly how the sequence is
being computed. Unfortunately, this also implies that a sequence cannot be stored in
any kind of data structure. This is undoubtedly somewhat stronger than necessary.
 Arbitrary storage of sequences in data structures is bound to block compile-time
ipelining. However, certain limited cases could be allowed. For instance, one can some-
imes determine how a sequence contained in another sequence is being computed. The
racticality of this has been demonstrated by compilers for APL [11], Hibol [34], and

odel [32].

The Straight-Line Restriction

In the interest of simplicity, optimizable sequence expressions are required to be
Etraight-line computations, not subject to any conditional or looping control flow. That
s to say, it must be the case that whenever a sequence expression is evaluated, every
procedure call in it is evaluated exactly once.

While it is likely that looping control flow in sequence expressions must be prohibited,
simple conditional control flow could probably be allowed. However, this would compli-
cate pipelining in a number of ways and much of what can be done using conditional
sontrol flow can be done using operations like ChooseIf instead.

The fact that sequence expressions are straight-line computations means that they
can be pipelined without worrying about control flow. As a result, control flow is not
mentioned in the rest of this discussion.

| The Preorder Restriction

Suppose that a procedure call F uses a sequence computed by another procedure
¢all G. For the computation of these two calls to be pipelined, two conditions must be
satisfied. First, it must be the case that the sequence elements are created and consumed
one at a time. Second, the elements must be consumed in the same order they are
¢reated. A good way to ensure that this will always be the case is to pick some fixed
rder and require that every sequence procedure process every sequence one element at

time in that order. Given a desire to support unbounded sequences, a good order to
ick is preorder.

efinition 4 (Preorder) A sequence procedure is preorder if it processes the elements
f each of its sequence inputs and outputs one at a time in ascending order starting with
he first element.

o

In this paper, the word ‘function’ is reserved for referring to mathematical functions,
vhile the word ‘procedure’ is used to refer to the implementation of a function in a
rogramming language. With that in mind, note that the definition above applies to
rocedures, not functions. It is a property of the way a computation is performed, not

the mathematical relationship between the input and the output. Any mathematical

s o P

o



8 | Optimizable Sequence Expressions

sequence function can be implemented as a preorder procedure. At worst, one can simply
reafl the input elements into a buffer in preorder, compute the result, and then write the
elements of the result in preorder.

A property that does apply to mathematical functions is the amount of internal
bu:Lering that is required when implementing the function as a preorder procedure. For-
tunately, most sequence functions can be implemented as preorder procedures that do
not| require internal buffering of input or output elements. For instance, the procedure
MapFn operates as follows: it reads one element of each input sequence, applies the in-
dicated function to them, writes the resulting output element, and then goes on to the
next group of input elements.

The only common functions where internal buffering is required are ones that re-
arrange the input elements (e.g., reversal, rotation, and sorting). In same cases this
buffering is solely due to the needs of preorder processing. For instance, while preorder
reversal requires the entire input to be read before the first output element can be pro-
duced, some non-preorder implementations require no buffering. In other cases (e.g.,
sorting) the buffering is required no matter how the operation is implemented.

The goal of pipelining is the elimination of the external buffering of elements between

progedure calls. The algorithms in Section 6 are applicable no matter how much internal
buffering the individual procedures use. As a result, the restrictions in Definition 2 do
not|place any limits on internal buffering. (This issue is discussed further at the end of
this section.)
Nevertheless, using large internal buffers clearly violates the spirit of what pipelining
is trying to achieve. It is of no benefit to eliminate external buffering if this is replaced
by internal buffering. Therefore, in the interest of overall efficiency, the functions oper-
atillE on series (see Section 3) are limited to ones that can be implemented as preorder
progedures without internal buffering of sequence elements.

The Sequence Intermediate Value Restriction

Even if a sequence expression satisfies the three restrictions above, it may still not
be ‘%ossible to pipeline its evaluation. The problem is that if a sequence is used in two

places, the two uses may place incompatible constraints on the times at which sequence
elements should be computed.

The following program shows an expression in which this problem arises. (This pro-
gram, and the others below, are based on the Pascal implementation of series, see Sec-
tion|5.) The sequence expression in NormalizedMax creates a sequence X of the numbers
in aJ file Data. It then creates a normalized sequence by dividing each number by the
sum of the numbers. Finally, the procedure returns the maximum of the normalized
elements. (The procedure Series creates a sequence indefinitely repeating the value of
its argument. The call on MapFn divides each element of X by this value.)

function NormalizedMax (Data: FileOfReal): Real;

var X: series of Real;
begin

X := ScanFile(Data);

NormalizedMax := CollectMax(MapFn(/, X, Series(CollectSum(X))))
end
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The two uses of X place contradictory constraints on the way pipelined evaluation
must proceed. The procedure CollectSum requires all the elements of X to be produced
before the sum can be returned and Series requires that its input be available before it
can start producing its output. However, MapFn requires that the first element of X be
available at the same time as the first element of the output of Series. For pipelining
to work, this implies that the first element of the output of Series (and therefore the
output of CollectSum) must be available before the second element of X is computed.
Unfortunately, if X contains more than one element, this is impossible.

The essence of the inconsistency above is the cycle of constraints used in the argument.
This in turn stems from a non-directed cycle in the data flow graph underlying the
expression. Figure 2.1 shows the nodes in the sequence expression in NormalizedMax
and the data flow between them. The nodes are represented by boxes and data flow is

represented by arrows. Simple arrows indicate the flow of sequences and cross hatched
arrows indicate the flow of other values.

— ScanFile —<-’ MapFn / . ColMlaexct- -
Collect- »| Series .

LiLLl
Sum in

Figure 2.1: The sequence expression in NormalizedMax.

From the point of view of Figure 2.1, the problem in NormalizedMax can be summa-
rized by noting that the non-directed data flow cycle has two conflicting parts. In the
upper part, pipelining requires that each sequence element be used as soon as it is com-
puted. In the lower part, the non-sequence data flow forces a delay—all of the elements
at the left end of the lower part have to be available before any of the elements at the
right end can be produced. If the upper part also contained a non-sequence data flow,
then the delays on the two parts would balance. However, if there was a non-sequence
data flow in the upper part, the expression would be broken into two separate sequence
expressions: one on the left and one on the right.

Based on Definition 3, it can be shown that whenever a non-sequence value created by
a node in a sequence expression is used by another node (either directly as in Figure 2.1
or via a chain of computation) the expression will be associated with a non-directed cycle
ike the one in Figure 2.1. To prevent this problem, it is required that intermediate values
In optimizable sequence expressions must be sequences.

This restriction places significant limits on the qualitative character of optimizable
ﬁequenoe expressions. In particular, they all have the general form of creating some

umber of sequences, computing various intermediate sequences, and then computing one
)r more non-sequence results. A non-sequence value cannot be used in the intermediate
omputation unless it is the output of a disjoint expression.

~
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The On-Line Cycle Restriction

The last situation that can block pipelining is illustrated in the program 0ddSum
pw. This program creates a sequence X of the numbers in a file. It then selects the
elements of X and multiplies the sth odd element of X by the ith element of X. Finally,

it sums the resulting products.

on
inh
eler

eler
For

- function 0ddSum (Data: FileOfReal): Real;
? var X: series of Real;
begin
X := ScanFile(Data);
0ddSum := CollectSum(MapFn(*, X, ChooseIf(0dd, X)))
end

As in the program NormalizedMax, the two uses of X place contradictory constraints
the way pipelined evaluation must proceed. The key problem is that ChooseIf is
erently unsynchronized in the way it operates. In this example, it produces output
nents only when it reads odd input elements. However, MapFn requires that the ith
nent of X be available at the same time as the ith element of the output of ChooselIf.
pipelining to work, this implies that the ith element of the output of ChooseIf must

be available at the same time that ChooseIf reads the ith element of X. Unfortunately, if
any| of the first ¢ elements of X are even, this is impossible.

pro

As shown in Figure 2.2, the problem in 0ddSum is fundamentally much the same as the
blem in NormalizedMax. In particular, it also stems from a non-directed cycle in the

underlying data flow graph. Like the non-sequence data flow in Figure 2.1, the Chooself
in Higure 2.2 introduces a delay that is not matched in the other part of the cycle. This
deldy depends on the input data, but may be arbitrarily large.

. _[Collect-
—{ ScanFile [ MapFn * Sum .
Chooself >

Figure 2.2: The sequence expression in 0ddSum.

In contrast to 0ddSum, consider the program CosSum below, which is identical except

that| ChooseIf is replaced by MapFn of Cos. A sum is computed of each element of X

mul

iplied by its cosine.

function CosSum (Data: FileOfReal): Real;

var X: series of Real;
begin

X := ScanFile(Data);

CosSum := CollectSum(MapFn(*, X, MapFn(Cos, X)))
end
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Even though CosSum has exactly the same data flow graph as 0ddSum (with ChooseIf
replaced by MapFn of Cos), CosSum can be pipelined without difficulty. The reason is that
the MapFn of Cos produces an output element every time it reads an input element. There-
fore, there is no problem synchronizing the arrival of the elements of the two sequence
inputs of the MapFn of *.

The comparison of 0ddSum and CosSum shows that pipelining is blocked in 0ddSum by
the delay introduced by Chooself, rather than by the mere existence of a non-directed
data flow cycle. To develop a good restriction that rules out this problem, one has to
develop a vocabulary for talking about where delays are introduced.

Definition 5 (On-Line and Off-Line) An input or output port of a sequence pro-
cedure is on-line if and only if it operates in lock step with all the other on-line ports
of the procedure as follows: The initial element of each on-line input is read, then the
initial element of each on-line output is written, then the second element of each on-line
input is read, then the second element of each on-line output is written, and so on. If
all of the sequence ports of a procedure are on-line, the procedure as a whole is on-line.
A non-directed cycle of data flow is on-line if every port it passes through is on-line. A
non-directed cycle passes through an input or output port of a procedure call if and only
if exactly one data flow arc in the cycle touches the port. (For example, the cycle in
Figure 2.2 passes through every port it touches except for the output of ScanFile.) If a
port, procedure, or data flow cycle is not on-line, it is off-line.

Definition 5 extends the standard definition of the term ‘on-line’ (1, 22] so that it
applies to individual ports as well as whole procedures. Like Definition 4, Definition 5
ppplies to procedures, rather than functions. While, some mathematical functions (e.g.,
choosing elements from a sequence) cannot be implemented in an on-line fashion, many
can. For example, since the ith element of the result of mapping a function is computed
solely from the ith elements of the inputs, it is easy for MapFn to be on-line.
Returning to the issue of pipelining, it can be shown that if a non-directed data flow
ycle in an optimizable sequence expression is on-line, the lock step processing of the
orts involved guarantees that there will not be any conflicts between the constraints
associated with the cycle. If every non-directed cycle in an expression is on-line, the
¢valuation of the expression can be pipelined using the following divide and conquer
approach.

It can be shown that when a sequence expression in which every non-directed data
ow cycle is on-line contains an off-line port, it is always possible to divide the expression
to two non-overlapping subexpressions so that all data flow between the subexpressions
riginates (or terminates) on the off-line port in question. The expression as a whole can
e pipelined by pipelining the evaluation of the two subexpressions separately and using
simplified form of lazy evaluation to interleave the evaluation of the subexpressions in a

- Once partitioning based on off-line ports has been applied as many times as possible,
ne is left with subexpressions where every data flow connects on-line ports. In such a
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su ]I:xpression, pipelining can be achieved by simply evaluating every procedure call in
lock step, one element at a time.

The limits imposed by the on-line cycle restriction are softened by the fact that a
wide range of mathematical sequence functions can be implemented in an on-line way.
For|instance, any preorder procedure that has only one sequence port is trivially on-line.
Beyond this, most of the functions in Section 3 can be implemented as on-line procedures.

Obeying the Restrictions

n the current implementations of series (see the discussion in the following sections),
the |preorder restriction is implicitly enforced by ensuring that every predefined series
progedure is preorder and not providing any means for defining series procedures that
are not preorder. (Note that the composition of two preorder procedures is preorder.)
[he other four restrictions are explicitly checked. Whenever an expression satisfies
thege restrictions, the algorithms in Section 6 are used to transform the expression into
flicient loop. When they are not satisfied, a warning is issued. In the Pascal im-
entation, these warnings are fatal errors. However, in the Lisp implementation, the
expressions are simply left as is and evaluated/compiled without optimization.

he best approach for programmers to take is to write expressions without worrying
about the restrictions and then fix the expressions in the event that a problem is reported.
The virtues of this approach are enhanced by the fact that simple expressions are very
unlikely to violate any of the restrictions. In particular, it can be shown that if every
sequence procedure in an expression has only one output and sequence outputs are not
stored in variables, then the sequence intermediate value and on-line cycle restrictions
cannot be violated.

$imilarly, it can be shown that violations of the sequence intermediate value and on-

line [cycle restrictions can always be fixed using code copying to break the expression in
two|or to break the offending cycle. For instance, the program NormalizedMax can be
brought into compliance with the sequence intermediate value restriction by duplicating
the [call on ScanFile. This breaks the sequence expression into two separate sequence
expressions that each satisfy the sequence intermediate value restriction.

function NormalizedMaxA (Data: FileOfReal): Real;

var Sum: Real;
begin

Sum := CollectSum(ScanFile(Data));

NormalizedMax := CollectMax(MapFn(/, ScanFile(Data), Series(Sum)))
end

t would be possible to automatically introduce code copying to resolve conflicts with
the sequence intermediate value and on-line cycle restrictions. However, this can lead to
significant inefficiencies. It is better to leave it up to the programmer to figure out how to
fix cpnflicts. For example, the procedure NormalizedMax can be brought into compliance
more efficiently, by realizing that the operations of computing the maximum and dividing
by the sum commute.
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function NormalizedMaxB (Data: FileOfReal): Real;
var X: series of Real;
begin
X := ScanFile(Data);
NormalizedMax := CollectMax(X)/CollectSum(X)
end

This example brings up an important secondary goal underlying the restrictions pre-
sented here. This goal is to make it easy for programmers to reliably tell which expressions
are efficient and which are not. It would be better to make every expression efficient.
However, given that this is not possible, programmers need accurate information in order
to decide what to do.

Other Approaches to Restrictions

The optimizability restrictions presented above are the result of research going back
twelve years. The basic concept of representing common looping subcomputations as op-
erations on sequences is descended from ideas developed in the Programmer’s Apprentice
project [33, 41]. The first attempt to state a formal set of restrictions appears in [42, 43].
A set of restrictions intermediate between the initial ones and the ones presented above
appear in [44].

Optimizability restrictions are implicit in all the work on sequence expression opti-
mizers. However, these restrictions are typically implicit in the way the optimizers work,
rather than being explicitly stated. The only other research featuring explicit restrictions
s that of Wadler [40].

The key difference between Wadler’s restrictions and the ones presented here is that

he assumes that procedures can only have one output and only considers the situation
where two procedures are composed together. This can be straightforwardly generalized
o expressions that are tree-like in form—i.e., ones where the output of each function is
only used once. However, it is not applicable to more complex situations.
Wadler’s implicit requirement that expressions be trees rules out non-directed data
flow cycles. This obviates the need for anything like the sequence intermediate value or
on-line cycle restrictions. However, it is unreasonably limiting. Since it is often possible
to pipeline the evaluation of an expression even though it contains non-directed cycles of
data flow, it is unreasonable (both from the point of view of readability and efficiency)
to require that an intermediate value that is used in n places must always be computed
n times.

The restriction that Wadler explicitly states (i.e., that procedures must be preorder
ﬂf'stless) is basically equivalent to the preorder restriction stated here, except that it also

mits the storage used, as discussed below. (Wadler’s definition of the term preorder is
ifferent from the one used here.)

Another significant difference between Wadler’s work and the work presented here is
hat he approaches the problem of efficiency from a different direction. Rather than con-
idering pipelining directly, he focuses on the amount of storage required when evaluating
n expression. He requires that preorder listless procedures evaluate using a bounded
mount of storage (over and above the storage required for the inputs and outputs them-
elves) and shows that the composition of two such functions can be evaluated using a

w [o VN1
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bounded amount of storage (over and above the storage required for the net inputs and
outputs of the composition).

It can be shown that when all the procedures called by an optimizable sequence ex-
pregsion use bounded storage, the pipelined evaluation of the expression will use bounded
storage. However, it was decided not to introduce a restriction limiting sequence proce-
dures to bounded storage for three reasons. First, such a restriction has nothing to do
with pipeline per se. Pipelining can be applied just the same no matter how much storage
thejindividual procedures use. The key thing is that pipelining allows the storage require-
ments of an expression to be the sum of the storage requirements of the procedures called
by it. Second, when considering individual sequence procedures a requirement that they
use/bounded storage is too weak to be useful. As discussed in the section on the preorder
resriction, one certainly does not want unbounded storage to be used to store input or
output elements. (However, what if it is used for some other purpose?) In addition, large
fixed storage needs are just as much of a practical problem as unbounded ones. What
is rgally needed is for the implementor of the procedure to make a good faith effort to
use|as little storage as possible. Third, such a restriction cannot be usefully supported,
because there is no practical way to determine whether a user-defined sequence procedure
requires unbounded storage.

A final difference between Wadler’s work and the work presented here is that Wadler
choge to apply his restrictions to a pre-existing data type (lists). In the approach taken
herg, a new data type (series) is developed for three reasons. First, since lists cannot
represented unbounded sequences, focusing on lists unduly limits the kind of procedures
that can be expressed. Second, lists (and vectors) have evolved a style of use and a
suite of associated operations that are appropriate for that use. These work well for
their intended use, but are not as useful as they could be from the perspective of writing
efficient sequence expressions. Developing a new data type makes it possible to create a
new suite of operations that is more appropriate for this purpose. Third, an important
par{ of the approach being advocated here is the error messages that report unoptimizable
series expressions. These are important if programmers are to achieve efficiency. However,
they would be irritating and counterproductive if they were constantly being reported
for list expressions that were not intended to be optimizable. By adding a series data
type, programmers can benefit from the restrictions when they choose to follow them,
without being prevented from using lists, vectors, and streams in standard ways.
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3. Series Expressions

Vectors, lists, and other such data structures differ in how closely they model the
mathematlcal concept of a sequence and in the range of associated operations. The
geries data type embodies a set of design decisions that combine full support for the
mathematical concept of a sequence, a wide range of operations, and high efficiency. As
llustrated in the next two sections, support for series can be straightforwardly added
to any programming language. High efficiency is obtained by using a preprocessor or
compiler extension like the one presented in Section 6.

Informally speaking, series are like vectors except that they can be unbounded in
ength. Formally, series are defined by the way they can be operated on. The remainder
of this section presents an illustrative selection of these operations as mathematical func-
ions. (See [9] for an in depth discussion of the mathematical properties of many of these
lunctions when applied to finite sequences.) The next two sections present procedures
mplementing these functions in specific programming languages.

In the following, lowercase letters (x, y) denote arbitrary values, uppercase letters
R, S) denote series, and calligraphic letters (F, P) denote functions and predicates.
[n addition, special notations are used to denote four of the most basic series functions.
The construction function, which creates a series containing the indicated elements in

the indicated order is denoted using angle brackets, i.e., (z,y,..., z) The concatenating
function, which creates a series containing the elements of a series R followed by the
nlernen‘cs of another series S is denoted using the operator “||”, i.e., R | S. The tail

function, which creates a series containing the elements of a non-empty series S after the
first one is denoted by drawing a line over the series, i.e., 5. The head function, which
returns the first element of a non-empty series is denoted by subscripting the series with
zero, i.e., So. (For convenience, the series used as examples below contain numerical
elements. However, any kind of object can be used as a series element.)

(6,7,8) ]| (9,10) = (6,7,8,9,10)
<6a—7a-8—>- = <718>
(6,7,8), = 6

(10,(4,5),,20) = (10,4,20)

Series functions can be divided into three categories: scanners produce series without
,onsummg any, collectors compute non-series values from series, and transducers compute
series from series. For instance, the head function is a collector and the concatenating
function is a transducer.

There are two kinds of scanners. Some scanners create a series of the elements in an
#ggrega,te data structure, for instance, a series of the nodes in a tree. Other scanners
reate a series based on some formula, for instance, the successive powers of some number.
The Lisp implementation of series supports 15 scanners. However, one of these (scanning,
iee below) can be used to define all the rest.

Scanning is a higher-order function—a function that takes functions as arguments.
I'he first argument is an initial value z, which becomes the first element of the series
created. The second argument is a stepping function F, which is used to compute each
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s element from the previous element. The third argument is a predicate P, which is

used to determine where the series should end. The series created contains the elements
z, ¥(z), F(F(z)), and so on, up to but not including the first value satisfying P. If no

val

of 2

stru
seri
fror
sup

e satisfies P, the series is unbounded in length. The example computes the powers
that are less than 100.

(2) || scanning(F(z), F, P) otherwise
scanning(l, Az .z+z, Az.z>100) = (1,2,4,8,16, 32, 64)

scanning(z, F, P) = { 0 if P(z)

There are also two kinds of collectors. Some collectors create an aggregate data
cture containing the elements of a series, for instance, a hash table containing the
es elements. Other collectors create a summary value computed by some formula
n the elements of a series, for instance, their sum. The Lisp implementation of series
ports 18 scanners. However, one of these (the higher-order series function collection

shown below) can be used to define all the rest.

The
left

one

Collection uses a binary function F to combine the elements of a series S together.
combination process begins with an initial value z. Typically, z is chosen to be a
identity of . The example computes the sum of a series.

1
| z if §$= )
collection(F(z, So), F, S) otherwise

collection(0, A zy.z+y, (1,2,3)) = 6

collection(z, F, S) = {

Transducers are more complex than scanners or collectors. In particular, there is no
transducer that serves as a basis for the rest. Nevertheless, four key higher-order

transducers support wide classes of common transduction operations.

Collecting is the same as collection except that it returns a series of partial results,

rather than just a final value. The length of the output is the same as the length of S.
The example computes a series of partial sums.

. _ {9 S =)
collecting(z, F, §) = {(]—"(z, So)) || collecting(F(z, So), F, S) otherwise

collecting(0, Azy.z+y, (1,2,3)) = (1,3,6)

By far the most commonly used series function is mapping, which maps a function

F aver some number of series producing a series of the results. Each element of the
output is computed by applying F to the corresponding elements of the inputs. The
length of the output is the same as the length of the shortest input. The example adds

the

corresponding elements in two series.
O if any S* = ()
mapping(F, S', ..., §") = (F(Sg, ..., Se) .
mapping(F, St, ..., §7) otherwise

mapping(A zy . z+y, (1,2,3), (4,5,6,7)) = (5,7,9)
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~ Truncating cuts off a series by testing each element with a predicate and discarding
all the remaining elements as soon as an element satisfying the predicate is encountered.
The example truncates a series at the first negative element.

. B () if § = <> or P(So)
truncating(P, S§) = { (So) || truncating(P, 5) otherwise

truncating(A z.2<0, (0,3,2,-7,1,-1)) = (0,3,2)

Mingling combines two series into one under the control of a comparison predicate.
The comparison is performed as indicated to ensure that the combination will be stable—
f two elements are considered equal by the comparison predicate, the element from R
will precede the element from S in the result. The example shows the combination of
two sorted series into a sorted result.

R if $=()
S if R =)
(Ro) || mingling(R, S, P) if =P(So, Ro)
(So) || mingling(R, S, P) otherwise

mingling((1,3,7), (2,4,5), Azy.z<y) = (1,2,3,4,5,7)

mingling(R, S, P) =

Choosing selects the elements of a series that satisfy a predicate. The example picks
out the negative elements of the input.

{() if §=()

choosing(P, S) = (So) || choosing(P, S) if P(S)

choosing(P, S) otherwise
choosing(A z. <0, (0,3,2,-7,1,—-1)) = (-7,—1)

In addition to the higher-order transducers above, some specific transducers are im-
portant as well. The function spreading is a quasi-inverse of choosing. Spreading takes a
eries of non-negative integers R and a series of values S, and creates a series containing
he elements of S. In the output, the elements of S are spread out by interspersing them
vith copies of z. If the ith element of R is n, then the ith element of S is preceded by
2 copies of z. Taken together with the example above, the example below illustrates the
telationship between choosing and spreading.

O o if R=() or S= ()
spreading(R, S, 2) = (So) || spreading(R, S, 2) if R =0
‘ (2) || spreading({Ro—1) || R, S, z) otherwise

spreading((3,1), (=7,~1), 0) = (0,0,0,-7,0,—1)

Subseries is a generalization of the tail function. It creates a series of the elements of
its input from the nth up to but not including the mth. The first ‘element in a series has
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index 0. If m is greater than or equal to the length of S, output stops as soon as the
ut runs out of elements. The example takes a chunk out of the middle of a series.

O ifm=0o0rS =)
subseries(S, n, m) = subseries(S, n—1, m—1) ifn>0
(So) || subseries(S, 0, m—1) otherwise

subseries((1,1,2,2,3,3,4,4), 2, 5) = (2,2,3)

The function chunk is different from the ones above, because it can produce more than

one output. It has the effect of breaking a series S into (possibly overlapping) chunks of
width m > 0. Successive chunks are displaced n > 0 elements to the right, in the manner
of 4 moving window. Chunk produces m output series. The ith chunk is composed of
the|ith elements of the m outputs. Suppose that the length of S is I. The length of each
output is |1 4+ (I—m)/n]. By itself, chunk may appear somewhat unusual, however, it
is quite useful in combination with other transducers. For instance, the example shows
how chunk could be used as part of the computation of a moving average. (Programming
languages differ in the mechanisms that could be used to channel the outputs of chunk
to the inputs of mapping.)

chunk(m, n, §) = R!, ..., R™ where
RF = chunk(1, n, subseries(S, k—1, 0o0))
_ 10 if §= )
chunk(l, n, §) = { (So) || chunk(1, n, subseries(S, n, co)) otherwise

chunk(2, ,1,(1,5,3,7)) = (1,5,3), (5,3,7)
mapping(A zy . (z+y)/2, (1,5,3), (5,3,7)) = (3,4, 5)

rhe list of functions above can be viewed as a recommendation for the kind of func-

tio

disc

€ers

F that can profitably be supported in conjunction with a sequence data type. As
ssed in Section 7, some languages (e.g., APL) support most of these functions; oth-
e.g., Pascal) support almost none of them.

I'he list of functions is also interesting for what it does not contain. To start with, it

does not contain functions for accessing arbitrary series elements or altering the value of
series elements. This reflects the fact that, unlike vectors or lists, series are not intended

to

e used as mutable data storage.
In addition, the choice of functions is significantly influenced by the optimizability

restrictions in the last section. The list only includes functions that can be implemented

as
fun

eorder procedures using small fixed amounts of internal storage. (The only common
g g

d¢tions ruled out by this criteria are ones like reversal, rotation, and sorting that

rearrange the order of the elements of a sequence.) The list also favors functions that
can be implemented as on-line procedures, because these are more useful in optimizable
expressions. (The only functions in the list that require off-line implementation are

con

¢atenating, tail, mingling, choosing, spreading, subseries, and chunk.)
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4. A Common Lisp Implementation

Series can be added into essentially any programming language by adding an imple-
mentation of the series data structure and defining a set of procedures supporting the
series functions in Section 3. The optimization of series expressions can be supported by
a preprocessor (see Section 6). It is in the nature of Lisp, that both of these things are
easy to do using a macro package. Such a macro package has been in regular use for a
number of years and is generally available (see [46, 47)).

~ Series. In the Lisp implementation, series are implemented lazily using closures. A
series has a procedural part and a data part. The procedural part is a generator [18, 29]
capable of computing the elements one by one. The data part records the elements
computed so far. ‘

~ The elements of a series are accessed using a second generator that enumerates the
elements in the data part of the series and then uses the procedural part to compute
more elements as needed. Each time the generator is called, it returns another element
in the series. The generator takes a procedure argument that specifies what to do when
the series runs out of elements.

~ The two-level generation scheme above ensures that: elements are not computed
until needed, no element is computed twice, and each user of a series can access all

(setq firsts ; Implementation of (1,2,3,4,5).
(let ((x 0))
(list #’(lambda (at-end)
(if (< x 5) (setq x (+ x 1)) (funcall at-end))))))

(defun generator (s) ; Returns a generator for the elements of a series.
(let ((g (car s8)))
#’(lambda (at-end)
(when (null (cdr s))
(setf (cdr s)
(block nil
(1ist (funcall g #’(lambda () (return T)))))))
(if (not (eq (cdr s8) T))
(car (setq s (cdr 8)))
(funcall at-end)))))

(defun choose-if (p s) ; Implementation of choosing(P, S).
(let ((gen (generator s)))
(list #’(lambda (end-action)
(loop (let ((x (funcall gen end-action)))
(if (funcall p x) (return x))))))))

(defun collect-sum (s) ; Implementation of collection(0, Azy.z+y, S).
(let ((gen (generator s))
(sum 0))
(loop (let ((x (funcall gen #’(lambda () (return sum)))))
(setq sum (+ sum x))))))

(collect-sum (choose-if #’oddp first5)) => 9

Figure 4.1: Illustration of the Lisp implementation of unoptimized series.
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elements. For those familiar with Lisp, Figure 4.1 illustrates the implementation of

serips data structures. The same basic implementation approach is used in the language

Seque [19].

not ‘

The closure implementation of series is effective and straightforward; However, it is

very efficient. No effort has been expended on producing a more efficient imple-

mentation, because the focus of series expressions is on the situations where they can

be
whe
orl

ptimized, eliminating the physical representation of series altogether. In situations
re optimization is impossible, it is usually better to represent a sequence as a vector
st than as a series.

The protocol above for obtaining a generator for the elements of a series and thence

thelelements themselves is not an exported part of the series implementation. Users must
manipulate series using the series procedures below. This is important in the interest of

[

op

by
#Z(

to

and

Imizability in general and static analyzability in particular.

Series procedures. The series functions described in Section 3 are all supported
Lisp procedures as shown in Figure 4.2. In addition, the # macro character syntax
r y ... 2) is provided for reading and printing literal series. The difference between

mal;E-series and #Z is that the arguments to #Z are implicitly quoted, while the arguments

ake-series are evaluated one at a time as needed.

(catenate (make-series 1 (+ 2 2)) #Z(7 8)) => #Z(1 4 7 8)
(collect-first (choose-if #’oddp #Z(8 -7 6 -1))) = -7
(subseries (mingle #Z(1 5 9) #Z(2 6 8) #'<) 2 4) => #Z(5 6)
(multiple-value-bind (xs ys) (chunk 2 1 #Z(1 & 3 7))

(map-fn T #’(lambda (x y) (/ (+ x y) 2)) xs ys)) = #2Z(3 4 5)

Ihe higher-order procedures implementing scanning, collecting, mapping, truncating,
collection are extended so that they can accept multiple series arguments and produce

Series Function Lisp Implementation
(z,y,...,2) (make-series z y ... z)
So (collect-first S)
S (subseries S 1)
R|| S (catenate R S)
scanning(z, F, P) (scan-fn type Z F P)
collection(z, F, S) (collect-fn type Z F S!' ... S")
collecting(z, F, S) (collecting-fn type Z F S' ... §™)
mapping(F, S, ..., S") (map-fn type F S! ... S™)
truncating(P, S) (until-if P S' ... S™)
mingling(R, S, P) (mingle R S P)
choosing(P, S) (choose-if P S)
spreading(R, S, 2) (spread R S z)
subseries(S, n, m) (subseries S n m)
chunk(m, n, S) (chunk m n S)

Figure 4.2: Lisp support for series functions.
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imultiple values. (Series of tuples could be used to get the same effect in any given
situation. However, using multiple series values is usually more convenient and almost
always more efficient than using tuples.)

The examples below illustrate the Lisp procedure scan-fn, which supports scanning.
In the second example, a two-valued stepping procedure is used and two series are re-
turned (the unbounded series of natural numbers and a series of their partial sums).
While scanning is in progress, two internal states are maintained. The stepping pro-

cedure must accept as many values as it returns. Each of these values is treated as a
separate state variable.

(scan-fn ’list #’(lambda () ’(a b c d)) #’cddr #°null)
= #Z((abc d) (c d))

(scan-fn ’(values integer integer)
#’ (lambda () (values 1 1))
#’(lambda (i sum)
(setq i (+ i 1)) (values i (+ sum i))))
= #2(1 23 4 ...) and #2(1 36 10 ...)

~ Three other features of scan-fn are worthy of note. First, a new first argument is
ntroduced, which specifies the type (or types) of the values returned by the stepping
procedure. Given the lack of typing information in Lisp, this argument is necessary
bo ensure that the number of arguments returned by the stepping procedure can be
determined at compile time. Second, the initial value is replaced by a procedure that
returns the initial values. This is convenient in situations where multiple initial values
are needed. Third, the predicate argument is made optional. Omitting it is the same as
supplying a predicate that is not true of any value. The first and second extensions are
applied to collect-fn, collecting-fn, and map-fn as well as scan-fn.

As a convenience to the user, a number of specific scanners are provided in addition
to scan-fn. These include: series which creates a series indefinitely repeating a given
value, scan which enumerates the elements in a list, vector, or string, scan-range which
*numerates the integers in a range, and scan-plist which creates a series of the indicators
n a property list along with a second series containing the corresponding values. The

irst argument of scan specifies the type of object to be scanned. If omitted, the type
lefaults to 1ist.

i (series "test") => #Z("test" "test" “"test" o)

‘ (scan ’(a b c)) = #zZ(a b ¢)

| (scan ’vector ’#(a b c)) = #Z(a b c)
(scan ’string "Tuz") => #Z(#\T #\u #\z)
(scan-range :from 1 :upto 3) => #Z(1 2 3)
(scan-plist *(a 1 b 2)) => #Z(a b) and #Z(1 2)

Similarly, a number of specific collectors are provided including: collect which com-
bines the elements of a series into a list, vector, or string, collect-sum which adds up the
lements of a series, collect-length which returns the number of elements in a series,
nd collect-last which returns the last element of a series (or an optional default value

€
if the series is empty). The first argument of collect specifies the type of object to be
produced. If omitted, the type defaults to 1ist.
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(collect #Z(a b c)) = (a b ¢)

- (collect ’simple-vector #Z(a b c)) => #(a b c)

.~ (collect ’string #Z(#\T #\u #\z)) => "Tuz"

| (collect-sum #Z(1 3 2)) => 6

(collect-length #Z("fee" "fi" "fo" "fum")) => 4
(collect-last #Z("fee" "fi" "fo" "fum")) => "fum"
(collect-last #Z() "none") => *"none"

Finally, a number of additional transducers are provided including: previous (based
on map-fn) which takes in a series and shifts it over one element by inserting the indicated
valye at the front and discarding the last element, choose (based on choose-if) which
selects the elements of its second argument that correspond to non-null elements of its
first argument, and positions (also based on choose-if) which returns the positions of
the non-null elements in a series. If given only one argument, choose returns the non-null
elements of this series.

(previous #Z("fee" ufqn et llfumll) n n) => *z(n " onfgalt HfiM nfon)
(choose #Z(T nil T) #Z(1 2 3)) = #Z(1 3)

(choose #Z(nil 3 4 nil)) => #Z(3 4)

(positions (map-fn #’oddp #Z(1 2 3 5 6 8))) = #2(0 2 3)

Convenient support for mapping. In cognizance of the ubiquitous nature of
mapping, the Lisp series implementation provides three mechanisms that make it easy
to express particular kinds of mapping. The # macro character syntax #MF converts a
pro¢edure F into a transducer that maps F.

(#Msqrt #Z(4 16)) = (map-fn T #’sqrt #Z(4 16)) => #Z(2 4)

The form mapping can be used to specify the mapping of a complex computation over
one|or more series without having to write a literal 1ambda expression. It has the same
basic syntax as let. For example,

 (mapping ((x (scan ’(2 -2 3))))
(expt (abs x) 3)) => #Z(8 8 27)

is the same as

(map-fn T #’(lambda (x) (expt (abs x) 3))
(scan (2 -2 3))) => #2(8 8 27)

’fhe form iterate is the same as mapping except that the value nil is always returned.

(iterate ((x (scan ’(2 -2 3))))
(if (plusp x) (prini x))) => nil <after printing “23”>

To a first approximation, iterate and mapping differ in the same way as mapc and
map¢ar. In particular, like mapc, iterate is intended to be used in situations where the
body is being evaluated for side effect rather than for its result. However, due to the lazy
evalnation nature of series, the difference between iterate and mapping is more than just
a question of efficiency. If mapping is used in a situation where the output is not used, no
co butation is performed, because series elements are not computed until they are used.

Nested loops. The equivalent of a nested loop is expressed by simply using a series

expression in a procedure that is mapped over a series. This is typically done using
mapping. In the example, a list of sums is computed based on a list of lists of numbers.
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(let ((data *((1 2 3) (4 5 6) (7 8))))
(collect

(mapping ((number-1list (scan data)))
(collect-sum (scan number-1list))))) => (6 15 15)

- User-defined series procedures. As shown by the definitions of collect-sum
and mapping below, the standard Lisp forms defun and defmacro can be used to de-
Ene new series procedures. However, the Series macro package must be informed when
a series procedure is being defined with defun. This is done by using the declaration
optimizable-series-function. No special declaration is required when using defmacro.

(defun collect-sum (numbers)
(declare (optimizable-series-function))
(collect-fn ’number #’(lambda () 0) #’+ numbers))

(defmacro mapping (var-value-pair-list &body body)
(let* ((pairs (scan var-value-pair-list))
(arg-list (collect (#Mcar pairs)))
(value-list (collect (#Mcadr pairs))))
‘(map-fn T #’(lambda ,arg-list ,Q@ body) ,@ value-list)))

Example. The following example shows what it is like to use series expressions in a
realistic programming context. The example consists of two parts: a pair of procedures
that convert between sets represented as lists and sets represented as bits packed into an
integer and a graph algorithm that uses the integer representation of sets.

Sets over a small universe can be represented very efficiently as binary integers where
each 1 bit in the integer represents an element in the set. Here, sets represented as binary
ntegers are referred to as bit sets.

Common Lisp provides a number of bitwise operations on integers, which can be used
to manipulate bit sets. In particular, logior computes the union of two bit sets while
logand computes their intersection.

The procedures in Figure 4.3 convert between sets represented as lists and bit sets.
To perform this conversion, a mapping has to be established between bit positions and
potential set elements. This mapping is specified by a universe. A universe is a list of
2lements. If a bit set integer b is associated with a universe u, then the ¢th element in u

(defun bset->list (bset universe)

(collect (choose (#Mlogbitp (scan-range :from 0) (series bset))
(scan universe))))

(defun list->bset (items universe)
(collect-fn ’integer #’(lambda () 0) #’logior
(mapping ((item (scan items)))
(ash 1 (bit-position item universe)))))

(defun bit-position (item universe)

(or (collect-first (positions (#Meq (series item) (scan universe))))
(1- (length (nconc universe (list item))))))

Figure 4.3: Converting between lists and bit sets.
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(defun collect-logior (bsets)
(declare (optimizable-series-function))
(collect-fn ’integer #’(lambda () 0) #’logior bsets))

. (defun collect-logand (bsets)
| (declare (optimizable-series-function))
(collect-fn ’integer #’(lambda () -1) #’logand bsets))

Figure 4.4: Operations on series of bit sets.

is in the set represented by b if and only if the ith bit in 4 is 1. For example, given the
uniyerse (a b c d e), the integer #601011 represents the set {a,b,d}. (By Common Lisp
conyention, the Oth bit in an integer is the rightmost bit.)

Given a bit set and its associated universe, the procedure bset->1ist converts the bit
set Into a set represented as a list of its elements. It does this by scanning the elements
in the universe along with their positions and constructing a list of the elements that
corgespond to ls in the integer representing the bit set. (When no :upto argument is
supplied, scan-range counts up forever.)

he procedure 1ist->bset converts a set represented as a list of its elements into a
bit [set. Its second argument is the universe that is to be associated with the bit set
cregted. For each element of the list, the procedure bit-position is called to determine
h bit position should be set to 1. The procedure ash is used to create an integer
the correct bit set to 1. The procedure collect-fn is used to combine the integers
sponding to the individual elements together into a bit set corresponding to the list.
he procedure bit-position takes an item and a universe and returns the bit position
sponding to the item. The procedure operates in one of two ways depending on
her or not the item is in the universe. The first line of the procedure contains a

igure 4.4 shows the definition of two collectors that operate on series of bit sets. The
procedure computes the union of a series of bit sets, while the second computes the
section.

ive variable analysis. As an illustration of the way bit sets might be used, consider
ollowing. Suppose that in a compiler, program code is being represented as blocks
raight-line code connected by possibly cyclic control flow. The top part of Figure 4.5
s the data structure that represents a block of code. Each block B has several pieces
information associated with it. Two of these pieces of information are the blocks that
ranch to B and the blocks B can branch to. A program is represented as a list of
s that point to each other through these fields.

addition to control flow information, each structure contains information about
ay variables are accessed. In particular, it records the variables that are written by
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(defstruct (block (:conc-name nil))
predecessors ;Blocks that can branch to this one.
successors ;Blocks this one can branch to.

written ;Variables written in the block.

used ;Variables read before written in the block.
live ;Variables that must be available at exit.
temp) ;Temporary storage location.

(defun determine-live (program-graph)
(let ((universe (list nil)))
(convert-to-bsets program-graph universe)
(perform-relaxation program-graph)
(convert-from-bsets program-graph universe))
program-graph)

(defstruct (temp-bsets (:conc-name bset-))
used written live)

(defun convert-to-bsets (program-graph universe)
(iterate ((block (scan program-graph)))
(setf (temp block)
(make-temp-bsets
:used (list->bset (used block) universe)
:written (list->bset (written block) universe)
:live 0))))

(defun perform-relaxation (program-graph)
(let ((to-do program-graph))
(1oop
(when (null to-do) (return (values)))
(let* ((block (pop to-do))
(estimate (live-estimate block)))
(vhen (not (= estimate (bset-live (temp block))))
(setf (bset-live (temp block)) estimate)
(iterate ((prev (scan (predecessors block))))
| (pushnew prev to-do)))))))

(defun live-estimate (block)
(collect-logior
(mapping ((next (scan (successors block))))
(logior (bset-used (temp next))
(logandc2 (bset-live (temp next))
(bset-written (temp next)))))))

(defun convert-from-bsets (program-graph universe)
(iterate ((block (scan program-graph)))
(setf (live block)
(bset->1list (bset-live (temp block)) universe))
(setf (temp block) nil)))

Figure 4.5: Live variable analysis.
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the block and the variables that are used by the block (i-e., either read without being
wrjtten or read before they are written). An additional field (computed by the procedure
detiermine-live discussed below) records the variables that are live at the end of the
blogk. (A variable is live if it has to be saved, because it can potentially be used by a
following block.) Finally, there is a temporary data field, which is used by procedures
(suth as determine-1live) that perform computations involved with the blocks.

The remainder of Figure 4.5 shows the procedure determine-live, which given a
program represented as a list of blocks, determines the variables that are live in each
block. To perform this computation efficiently, the procedure uses bit sets. The procedure
operates in three steps. The first step (convert-to-bsets) looks at each block and sets
up gn auxiliary data structure containing bit set representations for the written variables,
the| used variables, and an initial guess that there are no live variables. This auxiliary
strycture is defined by the third form in Figure 4.5 and is stored in the temp field of the
block. The integer 0 represents an empty bit set.

The second step (perform-relaxation) determines which variables are live. This is
done by relaxation. The initial guess that there are no live variables in any block is
sucgessively improved until the correct answer is obtained.

The third step (convert-from-bsets) operates in the reverse of the first step. Each
blo¢k is inspected and the bit set representation of the live variables is converted into a
list, which is stored in the live field of the block.

On each cycle of the loop in perform-relaxation, a block is examined to determine
whether its live set has to be changed. To do this (see the procedure live-estimate),
the jsuccessors of the block are inspected. Each successor needs to have available to it
the |[variables it uses, plus the variables that are supposed to be live after it, minus the
varipbles it writes. (The procedure logandc2 takes the difference of two bit sets.) A new
ate of the total set of variables needed by the successors as a group is computed by
collect-logior.

f this new estimate is different from the current estimate of what variables are live,
then the estimate is changed. In addition, if the estimate is changed, perform-relaxation
has to make sure that all the predecessors of the current block will be examined to see
whether the new estimate for the current block requires their live estimates to be changed.
This is done by adding each predecessor onto the list to-do unless it is already there. As
soon as the estimates of liveness stop changing, the computation stops.

ummary. Figure 4.5 is a particularly good example of the way series expressions
are Intended to be used in three ways. First, all the series expressions are optimizable.
Secand, series expressions are used in a number of places to express computations that
would otherwise be expressed less clearly as loops or less efficiently using operations on
lists|or vectors. Third, the main relaxation algorithm in perform-relaxation is expressed
as ajloop. This is done, because the data flow in this algorithm prevents it from being
decomposed into two or more fragments. This highlights the fact that optimizable series
exga ssions are not intended to render iterative programs entirely obsolete, but rather to
pro’ E:de a greatly improved method for expressing the vast ma jority of loops.

~
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5. A Pascal Implementation

Series can be added to Pascal in much the same way as they are added to Lisp. A
prototype system has been constructed that demonstrates this [28, 45]. However, the
prototype is written in Lisp rather than Pascal and only supports optimizable series
expressions. A fatal error is issued whenever optimization is blocked. Although less
complete than the approach of the Lisp implementation, this still allows loops to be
replaced by optimizable series expressions.

Series. The Pascal series preprocessor supports the declaration of series in analogy
with array declarations as shown below. (This is the only syntactic extension required to
support series. Further, the output of the preprocessor is standard Pascal without any
references to series.) In line with the general philosophy of Pascal, it is required that all
the elements of a series have the same type. However, the length of a series is not part
of its type. This is important to facilitate the definition of series procedures operating
on series of arbitrary length.

type Integers = series of Integer;
var InputData: series of Real;

Series procedures. The series functions described in Section 3 are all supported by
Pascal procedures as shown in Figure 5.1. In general, these have the same names as the
corresponding Lisp procedures with any hyphens removed (e.g., scan-fn becomes ScanFn).
Since Pascal does not support the concept of a function procedure that returns multiple
values, the outputs of chunk are turned into arguments. (The examples in [28, 45] show
an obsolete set of names linked to an earlier Lisp implementation of series.) The Pascal
implementation does not provide a syntax for series literals. (The mathematical syntax
is used in the examples below.)

Series Function Pascal Implementation
(z,¥,...,2) MakeSeries(z, y, ..., z)
So CollectFirst(S)

S Subseries(S, 1)

R|S Catenate(R, S)
scanning(z, F, P) ScanFn(z, F, P)
collection(z, F, S) CollectFn(z, F, S)
collecting(z, F, S) CollectingFn(z, F, S)
mapping(F, S, ..., S*) MapFn(F, S!, ..., S™)
truncating(P, S) TruncateIf (P, S)
mingling(R, S, P) Mingle(R, S, P)
choosing(P, S) ChooseIf (P, S)
spreading(R, S, 2) Spread(R, S, 2)
subseries(S, n, m) Subseries(S, n, m)
chunk(m, n, S) Chunk(m, n, S, R', ..., R™)

Figure 5.1: Pascal support for series functions.




28 | A Pascal Implementation

Catenate(MakeSeries(1, 2+2), (7,8)) = (1,4,7,8)
CollectFirst(ChooseIf(odd, (8,-7,6,-1))) = -7
Subseries(Mingle((1,5,9), (2,6,8), <)) 2 4) = (5 6)
Chunk(2, 1, (1,5,3,7), Xs, Ys) = Xs := (1,5,3) and Ys := (5,3,7)
MapFn(Average, Xs, Ys) = (3,4,5)
function Average (x,y: Integer): Integer;
begin

Average := (x+y)/2
end;

The Pascal implementation does not extend the higher-order procedures over their
spegifications in Section 3 for two reasons. Given the strong typing in Pascal, the pre-
progessor can obtain type information without needing type arguments. Since, Pascal
doeg not support the concept of multiple return values, some other method needs to be
employed to avoid the need for tuples.

he procedures in Figure 5.1 do not follow the usual Pascal restrictions on the pa-
rameters of procedures. Some of the procedures allow the number of arguments they
recgive to vary and they all allow considerable flexibility in the types of their arguments.
This is important because the series procedures are inherently generic in character. For
instance, MapFn is naturally applicable to any number and any type of series as long as
the|element types are compatible with the procedure being mapped.

ue to their generic nature, the procedures in Figure 5.1 could not be implemented
as yser-defined procedures in Pascal. However, as an extension to the language, they
do not violate the spirit of Pascal. In particular, the predeclared Pascal procedures are
generic in exactly the same way. Several (e.g., Read and Write) allow variable numbers
of arguments and most of them are applicable to more than one type of object. Using
re flexible language such as Ada [50], it would be possible to implement (at least
of) the higher-order series functions as user-defined procedures.

All of the specific scanners, collectors, and transducers from the Lisp implementation
tha{ are applicable to Pascal are supported by the Pascal implementation as well. Given
the strong typing in Pascal, Scan and Collect do not need type arguments. Since Pascal
has|sets, but not lists, these functions apply to sets and not lists. In keeping with
the |general style of Pascal, Collect takes the destination vector/string/set as its first
argyment rather than returning an aggregate value.

Series(’test’) = (’test’,’test’,’test’, ...)
Scan(’Tuz’) = (’T’,’u’,’z’)
Scan([Mon,Wed,Fril) => (Mon,Wed,Fri)
ScanRange(1, 3) => (1,2,3)

Collect(X, (’T’,’u’,’z’)) { Places ’Tuz’ in X. }
CollectSum((1,3,2)) => 6
CollectLength((’fee’,’fi’,’fo’,’fum’)) => 4
CollectLast(({’fee’,’fi’,’fo’,’fum’)) = ’fum’
CollectLast((), ’none’) => ’none’

Previous((’fee’ ’fi’ ’fo’ ’fum’), * ) => (° ’,’fee’,’fi’, fo?)
Choose((true,false,true), (1,2,3)) = (1,3)
Positions(MapFn(0dd, (1,2,3,5,6,8))) => #2(0 2 3)
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| Implicit mapping. To avoid making syntactic extensions, the Pascal implemen-
tation does not support constructs analogous to the Lisp forms mapping and iterate.
However, it supports a related concept that is in many ways even more useful. Whenever
a non-series procedure is applied to a series, it is automatically mapped over the elements
of the series. For example, in the expression below, Sqr is automatically mapped over
the series of numbers created by scanning the set.

CollectSum(Sqr(Scan([2,4])))
‘ = CollectSum(MapFn(Sqr, Scan([2,4]))) = 20

The key virtue of implicit mapping is that it reduces the number of helping procedures
that have to be defined. For instance, in the example of a moving average above, you

can write the following instead of defining a procedure Average and explicitly mapping
1t.

Chunk(2, 1, (1,5,3,7), Xs, Ys); (Xs+Ys)/2 => (3,4,5)

The concept of implicit mapping is completely separate from the other concepts as-
sociated with series expressions. As such, it could easily be dispensed with. However,
as shown by experience with APL and the other languages that support it, implicit map-
ping is extremely useful. (The lack of reliable compile-time type information makes it
impractical to support implicit mapping in Lisp.)

User-defined series procedures. As shown in the examples below, series proce-
dures in Pascal are simply procedures that either have series inputs or return series values.
As with series in general, all such definitions are handled directly by the preprocessor.

Chere is no need for any special kind of declaration. Pascal does not support the concept
of macros.

Example. The following example illustrates how series expressions can best be used
n Pascal. As in the last section, all of the expressions are optimizable. The example
revolves around a job queue data abstraction that might be used in an operating system.
The basic type definition is shown below. A JobQ is a pointer to a chain of entries
hat point to records describing jobs. These records have a number of fields including a
numerical priority.
|

type JobQ = fJobQentry;
type JobQentry = record; Job: JobInfo; Rest: JobQ end;
type JobInfo = {JobRecord;

type JobRecord = record Priority: Real; ... end;

There are a number of procedures defined that operate on job queues. These proce-
ures include putting a new job onto a queue (shown below) and removing a job from a
ueue (discussed near the end of this section). To add a job onto a queue, one merely
eeds to allocate a new queue entry and attach it to the front of the queue.

procedure AddToJobQ (J: JobInfo; var Q: JobQ);
var E: TJobQentry;

begin
new(E) ;
Ef.Job := JoblInfo;
ET.Rest := Q;
Q := E

end
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In addition to ordinary procedures that operate on job queues, it is useful to define

a number of series procedures that operate on job queues. In particular, as with any
aggregate data structure, it is useful to have procedures ScanJobQ and CollectJobq that
conjvert job queues to series of jobs and vice versa. It also turns out to be useful to have
a procedure ScanJobQtails that enumerates all of the tails of a queue (i.e., {(Q, Qf.Rest,
QT [Rest.Rest, ...)). As shown below, ScanJobQtails can be implemented using the
higher-order series procedure ScanFn and two special-purpose procedures operating on

job

belq

ng
Sca]

queues.

function ScanJobQtails (Q: JobQ): series of JobQ;
function JobQrest (Q: JobQ): JobQ;
begin JobQrest := Q].Rest end;
function JobQnull (Q: JobQ): Boolean;
begin JobQnull := Q=nil end;
begin
ScanJobQtails := ScanFn(Q, JobQrest, JobQnull)
end

Among other things, ScanJobQtails can be used to implement ScanJobQ as shown
)w. The expression Qsf.Job causes the operations of following a pointer and select-

the job field of a JobQentry to be implicitly mapped over the pointers returned by
nJobQtails.

function ScanJobQ (Q: JobQ): series of JobInfo;
var Qs: series of JobQ;

begin
Qs := ScanJobQtails(Q);
ScanJobQ := Qs.Job

end

The procedure RemoveFromJobQ removes a job from the end of a queue. It can be

implemented using ScanJobQtails as shown below. To start with, RemoveFromJobQ enu-
merates the tails of the queue and uses CollectLast and Previous to obtain pointers to
the last and next to last entries in the queue. The job field of the last queue entry is
returned as the result of RemoveFromJobq. (It is assumed that there must be at least one
joblin the queue.) The rest pointer in the next to last entry is set to nil, in order to

re
itse

ve the last entry from the queue. (If there is no next to last entry, the queue variable
f is set to nil.) The storage associated with the last entry is then freed.

function RemoveFromJobQ (var Q: JobQ): JobInfo;
var Qs: series of JobQ;
NextToLast, Last: JobQ;
begin
Qs := ScanJobQtails(Q);
Last := CollectLast(Qs, nil);
NextToLast := CollectLast(Previous(Qs, nil), nil);
RemoveFromJobQ := Last(.Job;
if NextTolLast=nil
then Q := nil
else NextToLast.Rest := nil;
dispose(Last)
end
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The first three lines of the body of RemoveFromJobQ are a series expression, while the
remainder are non-series expressions. From an efficiency standpoint, it should be noted
that since there is only one instance of ScanJobQtails, the series expression is converted
into a loop that only traverses the queue once.

As a final example of the use of optimizable series expressions, consider the procedure
SuperJob below. This procedure inspects a job queue and returns the last (i.e., longest
queued) job in the queue whose priority is more than two standard deviations larger than
the average priority of the jobs in the queue. If there is no such job, nil is returned. The
first five statements in the procedure compute the mean and deviation of the priorities.
The next two statements select the jobs that have sufficiently large priorities. The final
line selects the last of these jobs, if any.

function SuperJob (Q: JobQ): JobInfo;
var Jobs, SuperJobs: series of JobInfo;
N: Integer;
Mean, SecondMoment, Deviation, Limit: Real;
begin
Jobs := ScanJobQ(Q);
N := CollectLength(Jobs);
Mean := CollectSum(Jobs.Priority)/N;
SecondMoment := CollectSum(Sqr(Jobs.Priority))/N;
| Deviation := Sqrt(SecondMoment-Sqr(Mean));
i Limit := Mean+2*Deviation;
| SuperJobs := Choose(Jobs.Priority>Limit, ScanJobQ(Q));
SuperJob := CollectLast(SuperJobs, nil)
end

The programs above are a good example of the way series expressions are intended to
e used. To start with, all of the programs are straightforward in nature. This reflects
he fact that the primary goal of series expressions is to convert the vast majority of
rograms that are in fact straightforward programs into dirt simple programs. When
program is straightforward, it is usually easy to write it in a loop-free form without
aving to use anything other than very simple series expressions.
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A preprocessor or compiler extension that transforms optimizable series expressions
intp loops can be implemented in three stages: parsing which locates optimizable expres-
siops and converts them into equivalent data flow graphs, pipelining which converts the
expressions into loops, and unparsing which converts the resulting loops into appropriate
program code and inserts this code in place of the original expressions.

Below, the Pascal implementation of series is used as a concrete illustration. The
on Lisp implementation works in the same way, except that the characteristics of
simplify the parsing and unparsing stages.

arsing. When the preprocessor is applied to a program, it begins by parsing the
gram. Series expressions are located by inspecting the types of the procedures called
he program. While this is being done, the static analyzability and straight-line
putation restrictions are checked and any violations reported.

n a language like Pascal where complete compile-time type information is available,
licit mapping can be supported by noting places where non-series functions are ap-
d to series. Each such application is replaced by an appropriate use of MapFn.

‘I he final action of the parsing stage is to create a data flow graph corresponding to
h optimizable series expression located. Since each of these expressions is a straight-
el computation, this is easy to do. Each procedure call becomes a node in the graph
the data flow between the nodes is derived from the way procedure calls are nested
the way variables are used.

ipelining. The operation of the pipelining stage is illustrated in Figure 6.1. The
es expression in the procedure SumSqrs (which computes the sum of the squares
e odd elements of a vector) is transformed into the loop shown in the procedure
3qrsPipelined. The readability of the loop code is reduced by the fact that it con-
s a number of internally generated variables. However, the code is quite efficient. The
y significant problem is that the pipeliner sometimes uses more variables than strictly
necessary (e.g., Result5). However, this need not lead to inefficiency during execution as
long as a compiler capable of simple optimizations is available.

he pipelining process operates in several steps. In the first step, the divide and
juer strategy discussed in Section 2 is used to partition the data flow graph for a
s expression into subexpressions where all the data flow connects on-line ports. While
g this, the pipeliner checks that the expression obeys the sequence intermediate value
on-line cycle restrictions.

nce partitioning is complete, the procedures in each subexpression are combined into
ingle procedure. The resulting procedures are then combined based on the data flow
een the subexpressions. To support the combination process, each series procedure

is represented as a loop fragment with one or more of the following parts:
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function SumSqrs (V: array [1..N] of Integer): Integer;
begin
SumSqrs := CollectSum(Sqr(ChooseIf(0dd, Scan(V))))

end
U

function SumSqrsPipelined (V: array [1..N] of Integer):
label 0,1;
Var Element12, Index15, Result5, Sum2: Integer;

begin
Index15 := 0;
Sum2 := 0;

1: Index15 := 1+Index15;
if Index15>N then goto 0;
Element12 := V[Index15];
if 0dd(Element12) then goto 1;
ResultS := Sqr(Elementi2);
Sum? := Sum2+Results;
goto 1;

0: SumSqrsPipelined := Sum?

end

== Scan of a Vector ==-=---——mmmmm
inputs- Vector: array [K..L] of ElementType;
outputs- Element: Series of ElementType;
vars- Index: Integer;
prolog- Index: 1-K;
body- Index := i+Index;
if Index>L then goto 0;
Element := Vector[Index];

== Chooself ---=--—meem oo .
inputs- function P(X: ElementType): Boolean;
Item: Series of ElementType;
outputs- Item: Series of ElementType;
labels~ 2;
body- 2: NextIn(Item); if P(Item) then goto 2;

=- Implicit mapping of SQr -------=e-cecemmcmcoo___
inputs- Item: Series of ElementType;
outputs- Result: Series of ElementType;
body- Result := Sqr(Item);

== CollectSum ----====m e
inputs- Number: Series of ElementType;
outputs- Sum: FElementType;
prolog- Sum := O;
body- Sum := Sum+Number;

Figure 6.1: Transforming optimizable series expressions into loops.

Integer;

33
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inputs- Input variables.

o#utputs- Output variables.

. vars- Auxiliary variables used by the computation.

labels- Labels used by the computation.

prolog- Statements that are executed before the computation starts.
body- Statements that are repetitively executed.

epilog- Statements that are executed after the loop terminates.

The bottom part of Figure 6.1 shows the fragments that represent the procedures
called by the series expression in SumSqrs. These fragments are combined to create the
loop in SumSqrsPipelined. The numbers in the left hand margin indicate which fragment
each line of the loop comes from. Two different combination algorithms are used: one
corfesponding to data flow between on-line ports and one corresponding to data flow
touching off-line ports.
hen two procedures are connected by data flow connecting on-line ports (e.g, the
datp flow from the output of Sqrs to the input of CollectSum), the procedures are com-
bingd by simply concatenating the various parts of the corresponding fragments together.
In addition, the variables and labels in the fragments are renamed so that there will be
no possibility of conflicts. The data flow between the procedures is implemented by re-
naming the input variable of the destination so that it is the same as the output variable
e source. (The process above is much the same as an application of the standard
compiler optimization technique of loop fusion [3].)

hen two procedures are connected by series data flow terminating on an off-line
inptit (e.g., the data flow from the output of Scan to the series input of ChooseIf in the
figure), the fragment representing the destination procedure contains an instance of the
form NextIn, which specifies when elements of the input should be computed. The two
fragments are combined exactly as in the on-line combination algorithm except that the
body of the source fragment is substituted in place of the call on NextIn, rather than
being concatenated with the body of the destination fragment. (This process essentially
compiles in support for a simple case of lazy evaluation (16].)

Unparsing. The result of pipelining is a single loop fragment that corresponds to
the |series expression as a whole. In the unparsing stage, this fragment is converted into
a lopp as indicated below. The combination process eliminates the inputs. The other
parts of the fragment appear directly in the loop except for the outputs.

label 0,1,labels;
var vars;
begin
prolog;
} 1: body;
‘ goto 1;
0: epilog;

The outputs are connected up to the surrounding code when the loop is substituted
intolthe program in place of the original series expression. Once each series expression has
been replaced by a loop, the resulting code can be passed to a standard Pascal compiler.
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Side-effects. The correctness preserving nature of the transformations above has
been shown under the assumption that there are no side-effects involved. It is believed
that if unoptimized series are implemented as shown in the beginning of Section 4, the

ransformations are also correctness preserving in the presence of side-effects. The reason
Eor this is that the transformed code exactly mimics the lazy evaluation of the untrans-
ﬁormed expression. For instance, the off-line port combination algorithm involves code
otion; however, this motion simply moves the generation of the series elements to the
lace where lazy evaluation requires the elements of the series to be first computed.
The above can be made more formal from the point of view of path analysis [10].

ath analysis seeks to determine at compile time where in a program each lazy value will
e first used and where it will be reused. This information can be used to optimize lazy
evaluation in two ways. If there is an identifiable place of first use of a given value then
ordinary evaluation can be used instead of lazy evaluation for that value. If there is an
identifiable last use for a value, the value does not have to be stored beyond that time.
The restrictions in Section 2 guarantee that for each series, there is an identifiable
place where each element of the series is first used and that, for each element, the last
use precedes the computation of the next element. The transformations above merely
position the computation of the elements at their place of first use and omit their long
term storage.
The above notwithstanding, one should realize that side-effects are still problematical,
because lazy evaluation makes it difficult for programmers to figure out what the net
results of side-effects will be. Some situations can be readily understood. For example,
one can depend on the fact that mapping will apply the mapped function F first to the
first element of the input, then to the second, and so on in strict temporal order. Thus,
f F interacts with itself or the environment outside of the containing series expression X
via side-effects (e.g., by doing input or output), but does not interact with anything else

n X, the result is easy enough to understand. More complex uses of side-effects should
be avoided.

Systems Based on Similar Algorithms

The algorithms above have evolved into their current form over the past twelve years.
he first generally available implementation was a Lisp macro package called LetS [42,
3]. The current Lisp implementation [46] is available in Portable Common Lisp.

The same basic approach to representing and combining sequence procedures was in-

ependently developed by Wile [48]. However, he does not explicitly address the question
f restrictions and his approach does not guarantee that every intermediate sequence can
be eliminated. Much the same can be said about APL compilers [11].
A quite similar approach is also used internally by the Loop macro [12]. However,
s discussed in the next section, the Loop macro is externally very different from se-
ies expressions. In particular, it uses an idiosyncratic English-like syntax rather than
epresenting computations as compositions of procedures operating on series.

b _pd,
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There are two primary vantage points from which to compare series expressions with
ted concepts. The most obvious comparison is with other support for sequence ex-

prepsions. From this perspective, the key feature of series expressions is that they support

mo
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t of the operations supported by the vector operations of APL [31], Common Lisp
ience operations [36], and the stream operations of Seque [19] (along with a few
itional ones) while being more efficient.

Another way to view series expressions is that they are a logical continuation of the

tre
Fro

d in programming language design toward supporting the reuse of loop fragments.
this point of view, series expressions extend the approach taken by iterators in

CLU [27] and the Lisp Loop macro [12]. The key feature of series expressions in this
context is that they support the reuse of a wider variety of fragments and are easier to
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rstand and modify, without being any less efficient.

To lend depth to the comments above, the remainder of this section presents detailed
iparisons between the Common Lisp implementation of series expressions and five
°r systems. Each of these comparisons features the example below. This example

ctor. It also illustrates how a new series procedure can be defined. (The example
mes the existence of a procedure Positive that tests whether an integer is greater
) Zero.)

shoEs the definition of a procedure that computes the sum of the positive elements of

function SumPositive (V: array [1..N] of Integer): Integer;
begin
SumPositive := CollectSum(ChooseIf(Positive, Scan(V)))

end
function CollectSum (S: series of Integer): Integer;
begin
CollectSum := CollectFn(0, +, S)
end

Other Support for Sequence Expressions

sio

[here are many programming languages that provide support for sequence expres-
,eg., [5, 6,19, 25, 32, 34, 35, 36]. So many, that it would not be practical to make

detailed comparisons between each one of these languages and series expressions. Three
representative languages are discussed below.

PL. One of the oldest and must used languages that takes a functional approach is

APL|[23, 31]. A style of writing APL has evolved where vector expressions are used instead
of lgops. The correspondence between the series functions discussed in Section 3 and the
APL| vector operators is summarized in Figure 7.1. The APL concept of the extension of
scalar operations to vectors corresponds to implicit mapping.

As illustrated below, both the vector summation algorithm and user-defined sequence

prodedures can be very compactly represented in APL. Since each sequence is directly
represented as a vector, there is no need for an operation analogous to Scan.
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V SUM«SUMPOSITIVEAPL V
(1] SUM«—COLLECTSUM((V>0)/V)

\Y%

SV SUM«—COLLECTSUM NUMBERS
[1] SUM«—+/NUMBERS

\Y%

The key differences between APL and series expressions are that APL vectors cannot
represent unbounded sequences, the set of APL operations is somewhat different, and
users are not given any feedback about what is efficient and what is not.
Although all the series operations could have been supported in APL, there is no direct
tuilt-in support for scanning, mingling, or chunk. In addition, APL does not support
igher-order operations as well as it might initially appear. For instance, the reduction
operator appears to be a higher-order operation. However, at least in standard APL, the
operation to be reduced must be one of the predefined scalar operations—user-defined
operations cannot be used. As a result, the reduction operator is actually just part of a
naming scheme for a small set of specific collectors. (This has the collateral benefit of
allowing the initial identity value to be implicit.)
APL supports four operations (reversal, membership, grade up, and grade down) that
are not supported by series expressions because they cannot be implemented in a preorder
fashion using bounded storage. APL also allows the modification of the elements of a
sequence. When using series expressions, one has to rely on other constructs in the host
anguage when performing any of these operations. For instance, to sort a series in the
Lisp implementation of series, one must first collect the series into a list and then sort
the list. Explicitly creating a list makes the expensive nature of sorting more obvious,

Series Function APL Operation name
(z,y,...,2) Yy, 2 scalar catenation
So S(1] indexing first element
S 115 dropping first element
R|S R,S catenation
scanning(z, F, P) missing
collection(z, F, S) F/S reduction
collecting(z, F, S) F\S scanning
mapping(F, S, ..., §") S! F §? extension of scalar operations
truncating(P, S) (P S)e1)=1)TS take
mingling(R, S, P) missing
choosing(P, S) (PS)/S compression
spreading(R, S, 2) idiom based on expansion
subseries(S, n, m) (m—n)Tn|S take and drop
chunk(m, n, S) missing
simple idioms index generation, membership, inner product, etc.
missing reversal, rotation, grade up/down, modifying elements

Figure 7.1: The correspondence between series functions and APL operations.
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however, it does not make sorting more expensive, because sorting requires that some
physical representation of the sequence be created.

A few APL compilers [11, 21] are capable of producing efficient code in most of the
sityations where series expressions can be optimized; however, most are not. As a result,
optimizable series expression are typically much more efficient. Further, even when the
compiler supports optimization, programmers are not given any feedback about whether
optjmization will occur. Rather, programmers are (at least implicitly) encouraged not to
think about such issues.

n area where APL is fundamentally more powerful than series expressions is that
the|standard intermediate structure in APL is the array. APL has a number of powerful
arrgy operators (not shown in Figure 7.1) and a few APL compilers can optimize some
arrgy expressions. In contrast, while it is possible to have series of series, there are no
spetial series operations for operating on them, and they are never optimized.

inally, a superficial but striking difference between series expressions and APL is that
series expressions use standard subroutine calling notation while APL uses a special set
of dpncise, but cryptic, operators.

ommon Lisp Sequence Operations. While many (if not most) Lisp program-
mers use loops extensively, a style of writing Lisp has evolved where expressions com-
puting intermediate lists and vectors are used instead of loops. Unfortunately, until
recently, Lisp supported an impoverished set of predefined sequence operations—it sup-
porfed mapcar, but not much else. When Common Lisp was designed [36], this defect
wag rectified by introducing a relatively comprehensive suite of sequence operations.
In Common Lisp, the term ‘sequence’ is used to refer to either a list or a vector. How-

Series Function Sequence Operation
(z,y,...,2) (list z y ... 2)
So (elt 0 S)
S (subseq S 1)
R| S (concatenate type R S)
scanning(z, F, P) missing
collection(z, F, S) (reduce F S)
collecting(z, F, S) missing
mapping(F, S, ..., S*) (map type F S! ... S™)
truncating(P, S) (subseq S 0 (position-if P §))
mingling(R, S, P) (merge type R S P)
choosing(P, S) (remove-if-not P )
spreading(R, S, z) missing
subseries(S, n, m) (subseq S n m)
chunk(m, n, S) missing
simple idioms elt, length, count, find, some, etc.
missing reverse, sort, modifying elements

Figure 7.2: The correspondence between series functions and sequence operations.
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ever, since both of these structures are limited to representing bounded sequences, Lisp
sequences are not a complete implementation of mathematical sequences. The correspon-
dence between the basic series functions and the Lisp sequence operations is summarized
in Figure 7.2. Lisp does not support implicit mapping.

The example below shows how the Common Lisp sequence operations can be used to
express the vector summation algorithm and a user-defined sequence procedure. Since a
vector is a Lisp sequence, there is no need for a procedure analogous to scan.

(defun sum-positive-sequence (v)
(collect-sum (remove-if-not #’plusp v)))

(defun collect-sum (numbers)
(reduce #’+ numbers))

Except for the fact that Lisp sequences cannot represent unbounded sequences, there
is no reason why all the series functions could not be supported by sequence operations.
However, there is no direct built-in support for scanning, collecting, spreading, or chunk.
In addition, the identity value to use for reduce (collection) is specified in an odd way.
The procedure argument must be implemented in such a way that when called with zero
arguments it returns the identity value.
Current Lisp compilers do not optimize sequence expressions. As a result, optimizable
eries expressions are much more efficient. In light of the lack of optimization, it is not
Eurprising that Lisp provides no feedback about optimizability. As in APL, there is no
bias toward preorder functions and modification of sequence elements is allowed. It is
also common to have sequences of sequences, however, Lisp does not provide any special
pperations for manipulating them.

An interesting aspect of the Lisp sequence operations is that they typically support
2 number of keyword arguments that modify their behaviors. For example, consider
the sequence operation count-if, which takes a predicate and a sequence, and returns a
count of the number of elements in the sequence that satisfy the predicate.

(count-if #’plusp ’(1 -2 3 4 -5)) = 3

~ The Lisp operation count-if takes two keyword arguments :start and :end, which
can be used to specify a subsequence of the input in which counting is to occur. In
addition, a keyword argument :key can be used to specify an access procedure that will
be used to fetch the part of each sequence element that should be tested by the predicate.
Finally, an operation count-if-not exists, which is the same as count-if except that it
putomatically negates the values returned by the predicate.

As illustrated by the example below, none of these options is strictly necessary. The
start and :end keywords can be dispensed with by using subseq. The :key keyword
and count-if-not can be dispensed with by specifying complex predicates.

(count-if-not #’plusp ’((1) (-2) (3) (4) (-5))
:start O :end 3 :key #’first)
= (count-if #’(lambda (element) (not (plusp (car element))))
(subseq ’((1) (-2) (3) (4) (-5)) 0 3)) = 1
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Nevertheless, the various options described above are important for two reasons. First,
7 promote efficiency. (Using subseq instead of the :start and :end keywords is ineffi-
t, because it creates an intermediate sequence.) Second, they increase the probability

predefined operations can be used as procedure arguments instead of 1ambda expres-

sionls. This makes uses of count-if more concise and easier to read.

belc

Using series expressions, neither of these issues comes up. In the Lisp series expression
w, the use of subseries does not lead to inefficiency, since pipelining eliminates the

physical creation of its output series. Convenient support for mapping makes it possible

to 3

void the need for an explicit 1ambda expression. The desired test and key is simply

mapped over the series in question (again without inefficiency). Finally, count-if itself

can

be dispensed with by using a combination of choose and collect-length. The

approach taken by series expressions allows the individual procedures to be simpler and

mal

lang

tes things more functional in appearance.

(let ((elements (subseries (scan ’((1) (-2) (3) (4) (-5))) 0 3)))
(collect-length (choose (#Mnot (#Mplusp (#Mcar elements)))))) => 1

Seque. Under the name of streams, sequences are the central data type of the
suage Seque [19]. Using the same basic lazy evaluation technique discussed in the

beg

cor

inning of Section 4, Seque supports both bounded and unbounded sequences. The
espondence between the series functions discussed in Section 3 and the stream opera-

tionjs provided by Seque is summarized in Figure 7.3. As in APL, many of these operations
are provided by means of special syntax. In addition, implicit mapping is supported for

many non-stream operations when they are applied to streams.

Series Function Seque Operation name
(Tyy,...,2) {z, ¥y, ..., 2} sequence of expressions
So Sl referencing first element
S S i1 pre-truncation
RS R->S concatenation
scanning(z, F, P) idioms based on generators
collection(z, F, S) Red(S, F) ! Length(9) reduction
collecting(z, F, S) Red(S, F) reduction
mapping(F, ST, ..., S") [F(S 14, ..., §™ 14)] derived stream
truncating(P, S) S\\ [if P(S !'¢) then i—1]!1 post-truncation
mingling(R, S, P) missing
chgosing(P, S) [if P(S !¢) then S !74] filtering
spreading(R, S, z) missing
subseries(S, n, m) S{n-1,m-2} sectioning
chunk(m, n, S) missing
simple idioms Length, reference, operations over streams, etc.
missing modifying elements

Figure 7.3: The correspondence between series functions and Seque operations.
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 Asillustrated below, both the vector summation algorithm and user-defined sequence
procedures can be easily represented in Seque. Since streams are a distinct data type
from vectors, an operation ! equivalent to Scan is required.

procedure SumPositive (V)

return CollectSum([:!V: lambda(e) if e>0 then e])
end

procedure CollectSum (S)

L := Length(S)

return if L=0 then O else Red(S, "+")!L
end

Since unbounded sequences are supported, it would be easy to completely support all
the series functions in Seque. However, there is no direct support for mingling, spreading,
or chunk. In addition, collection is only indirectly supported by collecting, this leads
o awkwardness when collection is applied to an empty sequence, because there is no
specification of the correct default value to return. There is also no direct support for
he higher-order function scanning. However, there is an impressive array of facilities for
lefining scanning functions, both in Seque and in the language Icon [18], which Seque is
based on. It is interesting to note that like the series operations, all of Seque’s stream
pperations are preorder.

Seque does not attempt to optimize the evaluation of stream expressions by eliminat-
ng the computation of unnecessary intermediate streams. As a result, series expressions
are never less efficient and often much more efficient. Seque programmer’s are encouraged
o think in terms of streams of streams and to make use of assigning to the elements of
treams without any regard for the consequences on efficiency.

Summary. In comparison with the languages above, series expressions have three
orincipal advantages. They support a wider range of operations than any one of the
anguages. Except in comparison with the best of APL compilers, they are much more
fficient. They give clear feedback about what is efficient and what is not. As part of this,
hey make the use of non-preorder procedures more awkward, by forcing the programmer
o use the facilities of the host language.

Looping Notations

The fundamental virtues of series expressions in comparison with looping constructs
ire illustrated by the discussion in the beginning of Section 1. However, this discussion
Is colored by the fact that it illustrates the use of only the most basic kind of looping
onstruct. More complex looping constructs support several of the features of series
expressions. In particular, they allow the equivalent of scanners and collectors (but not
transducers) to be expressed as localized forms rather than as a statements dispersed in
a loop.

~ Most programming languages contain a for construct, which makes it easy to express
1bops that are based on enumerating a range of integers (i.e., they support a standard
pop fragment analogous to scan-range). Some languages go beyond this by providing
gpecial looping forms corresponding to a few additional scanners. For example, Common
Lisp provides a form dolist that makes it easy to implement a loop based on scanning
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the|elements of a list. A couple of languages go further still by supporting a relatively
wide range of standard looping fragments. Some of the oldest and most comprehensive
support for this is in Lisp.

The Lisp Loop macro. The Lisp Loop macro [12] (which is based on the iterative
statements in the InterLisp Clisp facility [37]) introduces two concepts into Lisp. First,
it sypports a looping construct analogous to for that uses an Algol-like keyword syntax.
Secpnd, it goes way beyond most for constructs by supporting a wide range of looping
fragments analogous to scanners and collectors. Because of its non-Lisp syntax, the Loop
magro has always been controversial. However, because of the utility of its predefined
looping fragments, it has gained wide use.

he example below shows a program that uses the Loop macro to implement the
vector summation algorithm. It also shows how a keyword vector-element (which cor-
responds to scanning a vector) could be defined. (The Loop macro does not support
the |definition of new collector-like fragments.) The code produced by the Loop macro
is more or less identical to the code produced when optimizable series expressions are
piplﬂlined. As a result, the two approaches are equally efficient.

(defun sum-positive-loop-macro (v)
(loop for item being each vector-element of v
when (plusp item)
sum item))

(define-loop-path vector-element scan-vector (of))

(defun scan-vector (path-name variable data-type prep-phrases
inclusive? allowed-prepositions data)
(declare (ignore path-name data-type inclusive?
allowed-prepositions data))
(let ((vector (gensym))
(i (gensym))
(end (gensym)))
“(((,vector) (,i 0) (,end) (,variable))
((setq ,vector ,(cadar prep-phrases))
(setq ,end (- (length ,vector) 1)))
(> ,i ,end)
(,variable (aref ,vector ,i))
nil

Gi(+,1i DN

Loop supports a keyword when that is similar to the transducer choosing (see the
example). A call on the Loop macro can also contain an arbitrary body that is mapped
over the values computed by the scanner-like fragments (this is not shown in the example).
However, the Loop macro does not support any other transducer-like looping fragments.
subtle difficulty with the Loop macro is that there are no restrictions on the com-
putation that can be in the body and there is no attempt to prevent the body from
interfering with the computation specified by the looping fragments. As a result, pro-
grammers cannot depend on the fact that these fragments will necessarily do what they
are intended to do.
nother problem with the Loop macro is that the facilities provided for defining the
equivalent of new scanners are quite cumbersome. The user has to define a procedure that
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deals with parsing parts of the Loop syntax and that returns a list of six parts analogous
to the parts of the loop fragments discussed in Section 6. (Recently, the Common Lisp
standardization committee decided to adopt most of the Loop macro as part of Common
Lisp. However, on the grounds that it is too complex, they decided not to include the
scanner-defining form.)

The concept of Generators and Gatherers presented in [29], provides essentially the
same capabilities as the Loop Macro, but with a more functional syntax and simpler
defining forms.

Iterators in CLU. Among Algol-like languages, some of the most powerful support
for the use of looping fragments is provided by CLU [27]. In CLU, scanner-like fragments
called iterators can be used in for loops to generate a series of elements that are processed
by the body of the for. CLU provides a number of predefined scanners including one
corresponding to scanning a vector and users can define new ones. (Alphard [49] supports
a construct called a generator that is essentially identical to a CLU iterator.)

As an illustration, the example below shows how the vector summation algorithm can
be expressed in CLU. It also shows the definition of a user-defined scanner. This is done
by writing a coroutine that yields the scanned elements one at a time.

SUM_POSITIVE_CLU = proc(V: ARRAY[INT]) returns(INT)
SUM: INT := 0
for ITEM: INT in SCAN_VECTOR(V) do
if ITEM>0 then SUM := SUM+ITEM end
end
return(SUM)
end SUM_POSITIVE_CLU

SCAN_VECTOR = iter(V: ARRAY[INT]) yields(INT)
I: INT := ARRAY[INT]S$LOW(V)
END: INT := ARRAY[INTI$HIGH(V)
while I<=END do

yield(V[I])
I := I+1
end

end SCAN_VECTOR

Taken together, CLU iterators and the for statement are essentially the same as the
Loop macro except for three things. Nothing besides mapping and scanning is supported.
In the example above, the operations of choosing and summing are both represented in
won-local ways in the body of the loop.) Each for can only contain one iterator instead
f many. CLU’s method for defining iterators as coroutines is significantly easier to use
han the Loop macro’s scanner-defining form.

A method for supporting multiple iterators in a CLU for statement is described in
14]. Going beyond this, [13] describes how one could support collectors (again restricted
o only one in each loop). While both of these papers merely present proposals rather
han describing actual implementations, there is no doubt that everything supported by
he Lisp Loop macro could be straightforwardly supported in an Algol-like language.

Summary. The key difference between the looping constructs above and series ex-
pressions is that while the looping constructs support looping fragments corresponding to
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(potentially unbounded) scanners and collectors and are highly efficient, they do not sup-
port the concept of a sequence data structure nor the idea of treating loop fragments as
progedures. This preserves the iterative feel of the constructs, however, it is significantly
ing in several ways.

The lack of a sequence data type prevents the constructs from supporting anything
er than a few simple transducers. (It is not clear how one could support transducers
general without having some kind of object that they can act upon.)

The fact that the loop fragments are not procedures means that the way the fragments
be used is intimately tied up with the syntax of the constructs. One has to learn a
|

|

language of combination rather than simply using standard functional composition.
addition, this new language of combination is much more restricted than functional
position. For instance, the only thing that can be done with a scanner-like fragment
0 use it in a call on loop or for and map some computation over the values scanned.
An interesting thing to note about the looping constructs above is the way they avoid
ing involved with a discussion of the restrictions in Section 2. By not allowing a
ence data structure to be stored in a variable, only supporting preorder fragments,
gely ignoring transducers (particularly off-line ones), and limiting the way fragments
be combined, the constructs implicitly enforce these restrictions without having to
about them. Unfortunately, the total restrictions they embody are much stronger
the ones in Section 2. This unnecessarily limits what can be expressed.

sequence expressions in such a way that they can be included in any programming
guage without: removing any preexisting features of the language, requiring the use
of upusual syntax, or causing inefficiency. This support includes most of the operations
An alternate perspective focuses on the fact that programmers are given clear and
ediate feedback about the efficiency of the series expressions they write. Series
expfessions that do not violate the restrictions in Section 2 are guaranteed to be as
ent as they look. By means of error messages, programmers are encouraged to think
icient methods for computing the results they want. In particular, unlike APL, Lisp,
Jeque, programmers are never tempted to think that all sequence expressions are
ally efficient.

A final perspective is summarized by the statement that “optimizable series expres-
g are to loops as structured control constructs are to gotos.” By using optimizable

s are much easier to understand and modify than loops, this has the potential for
a step forward at least as important as banishing gotos.

hile the idea has not yet been explored, optimizable series expressions might also be
helpful in the context of parallelism. Even though it is optimized for sequential machines,
the |pipelining applied to optimizable series expressions is very much the same as the
‘software pipelining’ of loops for execution on very large instruction word machines [26]
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and for execution by the processors of a systolic array [2, 20]. If programs were written
using series expressions, the process of analyzing the programs to determine a good
schedule for the pipelined computation might be simplified. In addition, the restrictions
n Section 2 appear relevant, because buffering of elements also causes inefficiency in a
parallel context.

The application of optimizable series expressions to non-pipelined parallelism is less
lear. The emphasis in such situations is on locating opportunities for evaluating sub-
computations completely in parallel with no data flow between them. This is appropriate
or mapping, but not for most of the other series operations. Nevertheless, using opti-
mizable series expressions might make it easier to detect where such parallelism exists.
For example, this might make it easier to ‘vectorize’ [4] programs.
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