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ABSTRACT

Combining numerical techniques with ideas from symbolic computation and
with methods incorporating knowledge of science and mathematics leads to a
new category of intelligent computational tools for scientists and engineers.
These tools autonomously prepare simulation experiments from high-level
specifications of physical models. For computationally intensive experiments,
they automatically design special-purpose numerical engines optimized to
perform the necessary computations. They actively monitor numerical and
physical experiments. They interpret experimental data and formulate nu-
merical results in qualitative terms. They enable their human users to control
computational experiments in terms of high-level behavioral descriptions.
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ratory of the Massachusetts Institute of Technology. Support for the labo-
ratory’s artificial intelligence research is provided in part by the Advanced
Research Projects Agency of The Department of Defense under Office of
Naval Research contract N00014-86-K-0180.



Intelligence in Scientific Computing

Harold Abelson, Michael Eisenberg, Matthew Halfant,
Jacob Katzenelson, Elisha Sacks, Gerald Jay Sussman,
Jack Wisdom, Kenneth Yip

Combining numerical techniques with ideas from symbolic computation
and with methods incorporating knowledge of science and mathematics leads
to a new category of intelligent computational tools for scientists and en-
gineers. These tools autonomously prepare simulation experiments from
high-level specifications of physical models. For computationally intensive
experiments, they automatically design special-purpose numerical engines
optimized to perform the necessary computations. They actively monitor
numerical and physical experiments. They interpret experimental data and
formulate numerical results in qualitative terms. They enable their human
users to control computational experiments in terms of high-level behavioral
descriptions.

As an example of such a tool, imagine an ocean engineer designing a
offshore mooring tower for large ships. When standing free, such a tower can
be modeled in a straightforward way as an inverted pendulum anchored to
the sea bed, driven by wave motion, and restored to vertical position by its
buoyancy in sea water. However, a massive ship attached to the mooring
structure vastly complicates the dynamics: when the mooring line is slack,
the restoring force is the same as before; but when the line is taut, the ship
also exerts a force through tension in the line. Numerical simulations of such
systems have shown that the effect of even small waves can lead to potentially
dangerous resonances that can make the structure fail [25]. The goal of the
engineer is to design a structure that can withstand the worst conditions that
can be expected to occur in the environment without making the structure
excessively expensive. .

The following excerpt of a dialogue shows how we imagine an intelligent
computer assistant aiding an ocean engineer in the design of such a structure.
Assume that the engineer has already proposed a particular structure, either
by drawing it or by combining previously defined structures.



Computer: The dynamical equations for this model are: (displays a
very large set of equations).

Engineer: Call that the full model. Try to find a simpler approxi-
mate model.

Computer: The time constants for the bending moments and tor-
sional stresses in equations 1 through 25 are very small compared
with the period of lowest mode of the structure seen as a pendulum
and with the periods of the largest components in our standard wave
spectrum for this region of the gulf coast. Because the deflections of
the structure are small we can use the following approximate model:
(displays a much smaller number of equations).

Engineer: Call that the simplified model.

Engineer: Characterize the response of the simplified model to
the standard wave spectrum.

Computer: State-space analysis shows that the response of this sys-
tem can be broken into three regions. For very small deflection angles
(smaller than 2 degrees) there are stable oscillations, damped with
time constants similar to the oscillation frequencies. Significant de-
flections toward the boat show trajectories with competing domains
of attraction. There are large subharmonic responses. For deflections
larger than about 10 degrees we find complex chaotic motions, but -
such large deflections violate the assumptions of the model.

Engineer: Characterize the response to the dominant frequency in
the spectrum as the amplitude varies from 1 foot to 20 foot seas.

Computer: There are two families of periodic motions here, A and
B. Family A is present at the start of the parameter range s = 1,
with a periodic motion of order 1. At s = 5.2 this motion undergoes
a symmetry-breaking bifurcation and splits into a pair of motions A,
and A;. As s increases, both A; and A; undergo period-doubling
cascades: order 2 (s = 6.5), order 4 (s = 9.8), order 8 (s = 10.7),
order 16 (s = 10.9) The cascade was not traced passed the order 16
motions. Chaotic motions were observed at s = 12. Family B begins
with a motion of order 1 arising from a fold bifurcation at s = 8. This
motion persists through the end of the parameter range s = 20.

Engineer: How do the maximum stresses affect the structure?
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Computer: Family A motions are within the safe operating region
for structures of type UG/751 construction, but the family B motions
can easily exceed the safe operating region in a 50-year storm.

Engineer: Perform the same analysis, assuming that we triple the
bouyancy of the float.

Computer: The qualitative behavior in the two situations differs
slightly in the initial phase of growth of oscillations. Once oscillations
are established the behavior is approximately the same. The maxi-
mum deflections differ by less than 10% between the two situations,
but the frequencies are very different.

Engineer: Begin design of an active stabilizer to damp the fam-
ily B motions. Assume we install thrusters at positions halfway up
the structure and at 90% of the height of the structure. Expand the
full model to include drives from these thrusters. ...

No systems as sophisticated as this engineer’s assistant yet exist. How-
ever, computer programs incorporating important pieces of it are already in
place. Generating stylized natural language is not too hard, although under-
standing unstructured English text is still difficult, and we will not address
that problem in this paper. Additionally, our discussion is not really about
ocean engineering; the scenario above is not intended to illustrate good design
practice in that domain. Rather, our concern here is with the development of
intelligent techniques appropriate for the automatic preparation, execution,
and control of numerical experiments, and with the automatic interpretation
of their results.

¢ Our envisioned engineer’s assistant begins with a description of a mech-
anism and automatically generates efficient numerical programs that
predict.its dynamical behavior. This may require more than just straight-
forward simulation. A stability-analysis task such as “characterize the
response to the dominant frequency in the spectrum” requires com-
piling procedures that evolve, in addition to the state, the variations
with respect to changes in initial conditions and the sensitivities with
respect to changes in parameters.



e The engineer’s assistant automatically prepares high-performance nu-
merical experiments. It has extensive knowledge of numerical meth-
ods and it can compose appropriate and correct numerical procedures
tailored to the specific application. For critical applications, this com-
pilation can be targeted to the automatic synthesis of special-purpose
hardware.

e The engineer’s assistant interprets the results of numerical experiments
in high-level qualitative terms. This interpretation is based on general
mathematical and physical knowledge that constrains the kind of be-
havior to expect. The interpretation is used to prepare a report to the
user, but it is also used in the experimental protocol. The summary of
behavior produced from observations of the results of previous exper-
iments is used to automatically select critical values of experimental
parameters for subsequent experiments, thus efficiently uncovering the
salient phenomena.

Section one of this paper demonstrates significant portions of these ca-
pabilities. These include the automatic preparation and monitoring of nu-
merical simulations, the automatic generation of qualitative interpretations
of numerical results, and the achievement of breakthrough performance on
computationally-demanding problems with the aid of specially-designed com-
puters. (Our special-purpose engine for computing planetary motions has
produced the first solid numerical evidence that the solar-system’s long-term
dynamics is chaotic, thereby answering the famous question of the stability
of the solar system.)

Section two takes a closer look at the technology behind these demonstra-
tion results. We explain how algorithms from computer vision are applied to
interpret phase-space diagrams in dynamics. We illustrate how knowledge
about dynamical systems can be encoded using constraints and symbolic
rules. We show how to formulate numerical algorithms at appropriate levels
of abstraction with higher-order procedures and how to combine these with
symbolic algebra to automatically generate numerical programs.

Section three sketches some next steps required to realize the vision of
systems like the engineer’s assistant.



1 Numerical modeling can be automated

In a typical numerical modeling study, an investigator repeatedly prepares
and runs a series of computations and examines the results at each step to
select interesting new values for parameters and initial conditions. When
enough values have been tried, the investigator classifies and interprets the
results. Even with powerful numerical computers, this process requires sub-
stantial human effort to prepare simulations, and it relies upon significant
human judgment to choose interesting values for parameters, to determine
when a simulation run is complete, and to interpret numerical results in
qualitative terms.

This section exhibits three programs that automate much of the above
process. The Bifurcation Interpreter investigates the steady-state orbits in
parameterized families of dynamical systems, classifying the types of orbits
and the bifurcations through which they change as parameters vary. The
KAM program autonomously explores nonlinear conservative systems and
produces qualitative descriptions of phase-space portraits and bifurcations.
Both programs automatically generate summary reports similar to those ap-
pearing in published papers in the experimental dynamics literature and in
engineering studies of artifacts that have complex dynamics, such as airfoils,
ship hulls, and mooring structures. In addition, the capabilities demonstrated
by these programs have application in the design of intelligent automatic con-
trol systems. The breadth of applicability is illustrated by the Kineticist’s
Workbench, a program that models how chemists understand complex chem-
ical reactions. It combines numerical and symbolic methods to characterize
reaction mechanisms in qualitative terms that are useful for the working
chemist.

We also discuss the place of special-purpose numerical engines as scientific
instruments and survey significant results in planetary dynamics obtained
using the Digital Orrery.



1.1 Programs can discover and interpret qualitative
behavior

In a nonlinear dynamical system with a periodic drive, motion starting from
any set of initial conditions will typically evolve to a steady-state orbit. 1
For a parameterized family of dynamical systems, tracing the changes in
steady-state orbits as the parameters vary provides a valuable summary of
the family’s qualitative behavior. Much research in nonlinear dynamics is
devoted to studying these bifurcations, or changes in type, of steady-state
orbits. For one-parameter families at least, the bifurcations generically en-
countered have been classified and are well-understood. Some examples are
the fold bifurcation, at which a stable orbit can appear or vanish, the flip
bifurcation, at which the period of an orbit doubles, and the pitchfork bifur-
cation, at which an orbit splits into two orbits of the same period. There are
also commonly-observed bifurcation sequences that occur as the parameter
varies. An example is the period-doubling cascade, where the order of an
orbit successively doubles via a sequence of increasingly closely spaced flip
bifurcations, producing chaos.?

Dynamicists commonly gain insight into the qualitative behavior of non-
linear systems by developing summary descriptions of steady-state orbits
and bifurcations. Figure 1 reproduced here from [7] shows a schematic sum-
mary drawn by a physicist based on numerical studies of the two-dimensional
Navier-Stokes equation for an incompressible fluid. As the Reynolds number
- of the fluid increases, the steady-state orbits evolve through a sequence of bi-
furcations. The diagram summarizes how the evolving orbits can be grouped
into four distinct families.

The Bifurcation Interpreter, a computer program being developed at MIT
by H. Abelson, automatically generates such summary descriptions for one-
parameter families of periodically-driven dynamical systems. The dynamical

1 Possible types of steady-state orbits are periodic orbits, quasi-periodic orbits (which
have discrete-frequency spectra, but not at rational muitiples of the drive period), and
chaotic orbits (which, loosely speaking, are steady-state orbits that are neither periodic
nor quasi-periodic).

2Various authors use different, and sometimes incompatible terminology to refer to
these bifurcation types. For example, the flip is sometimes called a cusp or a pitchfork.
We have adopted the terminology used in the book by Thompson and Stewart [26], which
provides an introduction to the methods of nonlinear dynamics together with an extensive
bibliography.
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FIG. 16. Graphical summary of the
phenomenology of the eight-mode mod-
el as R varies. A sequence of dots is used
to represent a stable fixed point, a con-
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Figure 1: This diagram, reproduced from a published paper in fluid mechanics, is a
physicist’s schematic summary description of an approximation to the two-dimensional
Navier-Stokes equation for an incompressible fluid. The varying parameter here is the
Reynolds number.
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Figure 2: The Bifurcation Interpreter automatically generates summary descriptions
of dynamical systems similar to those appearing in published papers. This (preliminary
version) diagram describes the behavior of a periodically-impacted hinged beam as the
load varies, exhibiting the evolution of two different families of steady-state motions.



system can be specified by differential equations to be integrated, by a pe-
riod map that directly computes successive states at multiples of the drive
period, or by a description of a physical model such as an electrical network.
Given a dynamical system, a parameter range to explore, and a domain in
state-space, the interpreter discovers periodic orbits, tracks their evolution
as the parameter varies, and locates and classifies bifurcations. Using this
information, the program categorizes the orbits into families and produces a
summary report that describes each family and its evolution through bifur-
cations.
Here is a sample input to the interpreter:

1—e o™
Periodmap [* ™ T7 T 9m asmz+—2—y’

y — —e ?™gsing +e My

Values for fixed parameters

Range for varying parameter | a | 1 to 7 |

z | —m to w (periodic)
y|—4to4

Bounds on state variables

The system to be investigated models the vibration of a hinged bar with
viscous damping subjected to a fixed-direction periodic impact load at the
free end. This problem is discussed in [13], which derives the period map for
this motion. Here z is the angular displacement and y is the angular velocity,
a specifies magnitude of the load and m specifies the damping factor. The
interpreter is asked to explore the system as the load ranges from 1 to 7.
With this specification, the interpreter a.nalyzes the system and generates
the following report:

There are 2 distinct families of periodic orbits, A and B.

Family A is already present at the start of the parameter range a = 1
as a periodic orbit Ag of order 1. At a = 4.130 there is a supercritical
flip bifurcation at which A undergoes period doubling to produce
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a periodic orbit A; of order 2. At a = 6.489 there is a supercritical
pitchfork bifurcation at which the family A splits into subfamilies A(1)
and A(2), beginning with A, splitting into two periodic orbits of order
2. As the parameter a increases, each subfamily undergoes a period-
doubling cascade via a sequence of supercritical flip bifurcations to
order 4 at a = 6.838, order 8 at a = 6.891, order 16 at a = 6.901,
order 32 at a = 6.903. The period-doubling cascade was not traced
past the order 32 orbit, which apparently period doubles again at
a = 6.904.

Family B first appears at a = 3.969 with an orbit By of order 4
appearing at a fold bifurcation. As the parameter a increases, B
undergoes a period-doubling cascade via a sequence of supercritical
flip bifurcations to order 8 at a = 4.239, order 16 at a = 4.239, order
32 at @ = 4.251. The period-doubling cascade was not traced past the
order 32 orbit, which apparently period doubles again at a = 4.252.

The program can display this same information as a diagram (figure 2)
that is similar in style to manually-developed Navier-Stokes analysis in fig-
ure 1.3

1.2 Smart programs can see what not to compute

Dynamical behavior is complex, but it is not arbitrary. There is structure
on phase space that restricts the classes of legal trajectories and provides a
grammar of legal phase portraits. For example, trajectories of autonomous
systems cannot intersect, and as we vary the initial conditions, the trajec-
tories vary smoothly except at isolated places where the behavior changes.
As we vary parameters, the phase portrait changes qualitatively only at bi-
furcations. In Hamiltonian systems the evolution of the phase space is area-
preserving, which greatly restricts the classes of possible structures that can
occur in the phase space. This kind of knowledge enables dynamicists to infer
a good understanding of a physical system from only a small, but well-chosen,
set of experiments.

The phase portrait in figure 3, taken from a historically important pa-
per in dynamics by M. Hénon [9], describes how adding a simple quadratic

3The diagram-generation program illustrated in figure 2 was developed by Ognen
Nastov.
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Figure 3: This phase portrait is Hénon’s summary of the dynamics of the map for
cosa = .24,

nonlinearity to a linear rotation can lead to dramatic changes in dynamical
behavior. Observe how the figure characterizes the dynamics by showing
only a few orbits. Presumably, Hénon was able to generate this figure after
performing only a few judiciously chosen numerical experiments.

The KAM program developed by K. Yip at MIT can analyze systems in
the same way [29, 30]. It knows enough about the constraints on the structure
of phase space to choose initial conditions and parameters as cleverly as an
expert dynamicist. KAM’s summary description of Hénon’s map is shown
in figure 4. Observe that this is almost identical to the summary presented
by Hénon. Moreover, KAM was able to deduce this description after trying
only ten initial conditions.

KAM’s ability to control numerical experiments arises from the fact that
it not only produces pictures for us to see—it also looks at the pictures
it draws, visually recognizing and classifying different orbit types as they
numerically evolve. By combining techniques from computer vision with
sophisticated dynamical invariants, KAM is able to exploit mathematical
knowledge, represented in terms of a “grammar” that dictates consistency
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Figure 4: The KAM program generates this summary picture of Hénon’s map.

constraints on the structure of phase space. When it chooses new initial
conditions to explore, it does so in an attempt to make the picture consistent
with these constraints. In addition to drawing the picture, KAM generates
a textual analysis that explains what the program “sees.” Here is KAM’s
description of the picture it generates for Hénon’s map.

The portrait has an elliptic fixed point at (0,0). Surrounding the
fixed point is a regular region bounded by a KAM curve with rotation
number between 1/5 and 1/4. Outside the regular region lies a chain of
5 islands. The island chain is bounded by a KAM curve with rotation
number between 4/21 and 5/26. The outermost region is occupied by
chaotic orbits that eventually escape.

1.3 Programs can construct and analyze approxima-
tions

A powerful strategy for analyzing a complicated dynamical system is to ap-
proximate it with a simpler system, analyze the approximation, and map
the results back to the original system. The approximations must be accu-
rate enough to reproduce the essential properties of the original system, yet
simple enough to be analyzed efficiently. Human experts have found that
piecewise linear approximations satisfy both criteria for a wide class of mod-
els. The PLR program, developed by E. Sacks at MIT, exploits this fact to
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automate the analysis of second-order autonomous ordinary differential equa-
tions [21, 22]. It derives the qualitative behavior of intractable equations by
approximating them with piecewise linear equations and constructing phase
diagrams of the approximations.

PLR constructs a composite phase diagram for a piecewise-linear system
by combining the local phase diagrams of its linear regions. It employs the
standard theory of linear equations to ascertain the local phase diagrams.
Linear systems have simple well-understood dynamics. Either all trajectories
are periodic, all approach a fixed point, or all approach infinity. PLR pastes
together the local phase diagrams by determining which sequences of regions
trajectories can traverse. It summarizes the results by a transition graph
whose nodes and links represent regions and transitions. Each path through
the transition graph of a piecewise-linear system indicates that trajectories
traverse the corresponding regions in the prescribed order. Loops denote
trajectories that remain in one region forever, whereas longer cycles denote
trajectories that continually shift between a sequence of regions.

As a simple example, PLR can qualitatively analyze the behavior of an
undriven van der Pol oscillator, a simple nonlinear circuit consisting of a
capacitor, an inductor, and a nonlinear resistor connected in series. The
current through the circuit obeys the equation

i+ %(i2 - 1) + %z =0, (1)
with C the capacitance, L the inductance, and k a scaling factor. PLR
approximates this equation with a piecewise linear equation and constructs
the phase diagram and transition graph shown in Figure 5. It deduces that
the system oscillates from the fact that tracing edges starting from any node
in the graph leads to a cycle. Intuitively, the system oscillates because the
nonlinear resistor adds energy to the circuit at low currents and drains energy
at high currents.

1.4 Domain knowledge can guide numerical modeling

M. Eisenberg’s Kineticist’s Workbench, also being developed at MIT, is a
program that combines general knowledge of dynamics with specific knowl-
edge about chemical reactions in the analysis, understanding, and simulation
of complex chemical reaction mechanisms.
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Figure 5: PLR’s phase diagram and transition graph for its piecewise linear
van der Pol approximation. Arrows indicate boundaries that trajectories
Cross.

Chemists, in trying to model reactions, typically hypothesize a set of ele-
mentary reaction steps (corresponding to molecular collisions) that constitute
a proposed pathway for the overall reaction. This collection of elementary
steps may be large. It usually gives rise to a mathematical model consist-
ing of many tightly-coupled nonlinear differential equations. The problem of
simulating such a system can be formidable, but a simulation merely pro-
vides numerical results. Even more important to the chemist is to achieve
some sort of qualitative understanding of the reaction mechanism. The Ki-
neticist’s Workbench combines numerical simulation with a variety of sym-
bolic methods in order to characterize reaction mechanisms in terms that are
meaningful to the working chemist such as “equilibrium,” “steady states,”
and “oscillations.”

The Workbench also suggests ways to simplify complex mechanisms. The
key idea here is that the program can use its qualitative characterization of a
given mechanism’s behavior to determine which steps within the mechanism
have an important behavioral effect, and which are superfluous and may
therefore be dropped from the chemist’s model.

The following scenario shows how the Workbench is intended to interact
with a user in the analysis of a chemical process. The initial information is
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specified as follows:

Step no. | Step Rate Constant
(1) C—-B 300

(2) B-C 100

(3) A—-X 1

(4) B+X->Y+D]|1

(5) 2X+Y - 3X 0.333

(6) X—-E 1

(M C—-F 100

External sources for species C (rate of addition: 100 mmol/liter-sec)

Concentration of A assumed constant at 1 mmol/liter. Initial concen-
trations of all species besides A are 0 mmol/liter.

With this specification, the Workbench responds:

The mechanism may be decomposed into two submechanisms. The
first may be written as follows:*

(1.1)

[Ezternal] & C « B — [Exzternal]

This submechanism results in a rapid equilibrium between C' and B;
‘the final concentrations of both C and B (1 and 3 mmol/liter, respec-
tively) are independent of their initial concentrations.’

The second submechanism may be written as follows:

(2.1) [External] = X
(22) B+X—Y
(2.3) 2X+Y —3X

“The notation [External] used in this example is a catchall used to indicate the presence
of external sources or sinks for some species. The notation corresponds roughly to the “zero

complex” notation of Feinberg [6].

SIn performing this simplification, the Workbench has treated the original reaction (7)
as the presence of an external sink for species C, since the concentration of species F'
merely grows with time and does not affect any other species. Similarly, reaction (4),
being slow compared to all the reactions included in (1.1), may be treated as a slow (but
time-varying) sink for species B. This reasoning could be exposed at the user’s request.
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Since the concentration of B in the first submechanism is constant at
3 mmol/liter, the second submechanism may be further simplified as
follows:

(2.1') [Ezternall « X - Y
(2.2) 2X+Y > 3X

Simulation of this second mechanism reveals that the concentrations of
X and Y oscillate over time. Each oscillation consists of five phases:
(1) slow growth in the concentrations of X and Y; (2) more rapid
growth in X; (3) large jump in X and decline in Y'; (4) large decline
in X and increase in Y; (5) slower decline in X and slow increase in
Y. The time between oscillation peaks is approximately 17.8 seconds.

The chemist now asks the program to compare the results of the approxi-
mate mechanism (2.1'-2.2’) with the numerically exact results of mechanism
(1-7), comparing the qualitative behavior of the two mechanisms as reflected
in species X and Y. The workbench responds:

The qualitative behavior of the two mechanisms differs slightly during
the initial phase of slow growth in X and Y. Once oscillations begin,
the exact mechanism (1-7) displays the same qualitative structure as
the approximate mechanism (2.1’-2.2’), and the period is still approx-
imately 17.8 seconds. The concentrations of X and Y at comparable
points in the oscillations differ by less than 2 percent between the two
mechanisms.

The chemist now tries a different variation on the original reaction, and
alters the original mechanism so that the concentration of A is not constant
over time, but is rather an explicit function of time, as given by the equation
[A] =1 + sint. The workbench responds:

The decomposition into submechanisms is not affected; nor is the con-
stant concentration of B. Again, the concentrations of X and Y ap-
pear to be oscillating, but each oscillation now consists of eight phases,
instead of five, as before.

It is worth noting some of the key features of this example. First, the
Workbench is able to decompose the original mechanism into two submech-
anisms, each of which is capable of independent simulation; this simplifies
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both the analysis and simulation of the larger mechanism. Second, the Work-
bench is able to decompose the first of the two submechanisms in terms of a
dichotomy between fast and slow steps; this allows the program to approxi-
mate the submechanism as a system in equilibrium. Third, the program uses
numerical simulation to derive equilibrium concentrations for this submech-
anism. Finally, the Workbench is able to describe the results of simulating
the second submechanism in terms of a succession of qualitative episodes
characterized by changing growth rates of the species X and Y.

1.5 Fast computers need not be large or expensive

Numerical modeling often requires substantial resources. Scientists and en-
gineers have traditionally obtained these resources either by acquiring large-
scale computers or renting time on them. However, a specialized computer
can be simple and physically small. Indeed, it may be just as easy to design,
build, and program a special-purpose computer than to develop software for
general-purpose supercomputers. Moreover, the specialized computer can be-
come an ordinary experimental instrument belonging to the research group
that made it, thus avoiding the administrative burden and the scheduling
problems associated with expensive, shared resources.

The question of the stability of the solar system is probably the most
famous longstanding problem in astrodynamics. In fact, it was investigations
into precisely this problem that inspired Poincaré to develop the modern
qualitative theory of dynamical systems. In 1988, G. Sussman and J. Wisdom
completed a series of numerical experiments at MIT demonstrating that the
long-term motion of the planet Pluto, and by implication the dynamics of
the Solar System, is chaotic [24].

The stability question was settled using the Digital Orrery [4], a special-
purpose numerical engine optimized for high-precision numerical integrations
of the equations of motion of small numbers of gravitationally interacting
bodies. Using 1980 technology, the device is about 1 cubic foot of electronics,
dissipating 150 watts. On the problem it was designed to solve, it is measured
to be 60 times faster than a VAX 11/780 with FPA, or 1/3 the speed of a
Cray 1.

Figure 6 shows the exponential divergence of nearby Pluto trajectories
over 400 million years. This data is taken from an 845-million-year integra-
tion performed with the Orrery. Before the Orrery, high-precision integra-
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tions over simulated times of millions of years were prohibitively expensive.
The longest previous integration of the outer planets was for five million
years, performed on a Japanese supercomputer in 1984 [14]. Even though
the Orrery is not as fast as the fastest supercomputer, its small scale and
relative low cost mean that it can be dedicated to long computations in ways
that a conventional supercomputer could not. To perform the integration
that established Pluto’s chaotic behavior, the Orrery ran continually for five
months.

The Orrery was designed and built by six people in only nine months.
This was possible only because of novel software support for the design pro-
cess. The simulator for the Orrery is partially symbolic—simulated registers
hold symbolic values and simulated arithmetic parts combine these to pro-
duce algebraic expressions (in addition to checking timing and electrical con-
straints). This means that a successful simulation yields a simulated memory
containing algebraic expressions that can be checked for correctness.
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Figure 6: The exponential divergence of nearby trajectories is indicated by the average
linear growth of the logarithms of the distance measures as a function of time. In the upper
trace we see the growth of the variational distance around a reference trajectory. In the
lower trace we see how two Plutos diverge with time. The distance saturates near 45AU;
note that the semimajor axis of Pluto’s orbit is about 40AU. The variational method of
studying neighboring trajectories does not have the problem of saturation. Note that
the two methods are in excellent agreement until the two-trajectory method has nearly

saturated.
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2 Intelligent numerical computing rests on AI tech-
nology '

The illustrations above achieve their impressive results by bringing symbolic
methods to bear on the problems of numerical computation. Some of these
techniques are traditional AI methods, which achieve new power when they
are combined with deep knowledge of dynamical systems. The KAM pro-
gram, for example, uses techniques from machine vision to recognize and
classify the relevant geometrical properties of the trajectories. The Bifurca-
tion Interpreter uses algebraic manipulation and knowledge about the local
geometry of bifurcations to automatically generate numerical procedures that
track periodic orbits. The key to automatically generating high-performance
numerical algorithms is to express knowledge of numerical analysis at an ap-
propriate level of abstraction. This is supported by a library of numerical
methods that is organized around the liberal use of higher-order procedural
abstractions. With this organization, one constructs sophisticated numerical
methods by mixing and matching standard components in well-understood
ways. The resulting programs are both more perspicuous and more robust
than conventional numerical methods. For example, a procedure by G. Roy-
lance that automatically generates special functions has constucted a Bessel-
function routine that is 40 times more accurate than the National Bureau of
Standards approximation, for the same amount of computation.

2.1 The KAM program exploits techniques from com-
puter vision

Yip’s KAM program is notable because it applies judgement, similar to that
of an expert dynamicist, in directing the course of its numerical experiments.
In making judicious choices of what to try next, KAM must interpret what
it sees. This process occurs in three phases: aggregation, clustering, and
- classification. The images of an initial point produced by iterating the map
forms a set of isolated points. This orbit must be classified. In Hamiltonian
systems there are three types of orbits to distinguish. In a surface of section,
periodic orbits appear as isolated points, quasiperiodic orbits appear as closed
curves or island chains, and chaotic orbits appear to take up regions of 2-
dimensional space. KAM must also aggregate the components of an orbit so
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that it can be further classified. It must be able to determine the number
of islands in an island chain, as this number gives the period of the enclosed
periodic point. KAM must be able to estimate the centroid and area enclosed
by a curve and to recognize the shape of a curve. KAM implements these
abilities with techniques from computational geometry and computer vision.

KAM classifies orbits using methods based on the Euclidean minimal
spanning tree—the tree that interconnects all the points with minimal total
edge length—which it constructs by means of the Prim-Dijkstra algorithm [5)].
For each sub-tree of the spanning tree, KAM examines the degree of each
of its nodes, where the degree of a node is the number of nodes connected
to it in the sub-tree. For a smooth curve, the spanning tree consists of two
terminal nodes of degree one and other nodes of degree two. For a point
set that fills an area, its corresponding spanning tree consists of many nodes
having degree three or higher (figure 7).

To aggregate points, KAM deletes from the tree edges .that are signif-
icantly longer than nearby edges, following an aggregation algorithm sug-
gested by Zahn [31]. This divides the tree into connected components. Fig-
ure 8 shows how the program aggregates points of a quasiperiodic orbit and
recognizes it as an island chain.

To compute the area and centroid of the region bounded by a curve,
KAM generates an ordered sequence of points from the spanning tree, and
spline-interpolates the sequence to obtain a smooth curve. Straightforward
algorithms are then applied to compute the area and centroid. Shape recog-
nition is accomplished using scale-space methods pioneered by Witkin [28].

2.2 Al techniques can implement deep mathematical
knowledge

Viewed as abstract examples of Al technology, our demonstration programs
are hardly novel. The uniqueness of these programs, and the source of their
power, is that they use classic Al methods to exploit specific domain knowl-
edge based on rigorous mathematical results.

PLR for instance, combines geometric reasoning, symbolic algebra, and
inequality reasoning to test whether trajectories of a piecewise linear system
cross between adjacent regions in phase space. For a trajectory to cross from
region R to S via boundary u, its tangent ¢ at the intersection point with
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Figure 7: Starting with the successive iterates of a point, KAM classifies orbits using al-
gorithms from machine vision. As shown above, a quasiperiodic orbit can be distinguished
from a chaotic orbit by examining the branching factor in the Euclidean minimal spanning

tree.
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Figure 8: KAM uses the minimal spanning tree to cluster orbits into components. The
components of an island chain can be isolated by detecting long edges in the spanning tree
and deleting these from the graph.

u must form an acute angle with the normal n, as shown in Figure 9. This

geometric condition is equivalent to the algebraic condition that the inner .

product ¢t-n be positive. Hence, a transition exists from R to S unless ¢t-n < 0
everywhere on u. PLR resolves the inequality t-n < 0 on u with the BOUNDER
inequality reasoner [20].

PLR combines symbolic reasoning with deep knowledge about dynamical
systems to interpret the transition graphs that it constructs. For example,
the transition graph for the van der Pol equation shows that all trajectories
spiral around the origin, but tells nothing of whether they move inward, move
outward, or wobble around. PLR invokes a difficult theorem to prove that
all trajectories converge to a unique limit cycle. It tests the preconditions of
the theorem by proving inequalities and manipulating symbolic expressions.

The KAM program limits the number of phase-space trajectories it must
explore by drawing upon constraint analysis, as pioneered by Waltz [27]. As
in any constraint analysis, KAM relies upon “grammar” that expresses the
consistent ways in which primitive elements can be combined. In KAM’s case,
the primitive elements incorporate sophisticated mathematical invariants,
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Figure 9: Trajectory crossing from R to S via u: the tangent ¢ at the crossing
point must form an acute angle with n, the normal to u that points into S.

and the grammatical rules embody deep theorems about the behavior of
dynamical systems.

One such invariant, for example, is the rotation number of an orbit, a
quantity that measures the asymptotic average of the angular distances be-
tween any two successive iterates in units of 2m-radians. A rule in KAM’s
grammar embodies a theorem that the rotation numbers of nearby orbits
must change continuously [16]. As an example of how this is used, suppose
that KAM has located two nearby almost-periodic orbits having rotation
numbers p; and p; respectively. Suppose p; is slightly smaller than 1/5, and
p2 slightly larger. With only these two orbits, KAM’s evolving phase-space
picture cannot be complete. By continuity, KAM expects to find a third,
nearby orbit with rotation number exactly equal to 1/5, that is, a periodic
orbit of period 5, which KAM proceeds to search for and classify.

In a similar manner, Abelson’s Bifurcation Interpreter draws upon knowl-
edge of the geometry of typical changes in the steady-state orbits of one-
parameter families of dynamical systems. Periodic orbits of a periodically-
driven oscillator can be identified as fixed-points of the period map, which
maps a state to the end-point of the trajectory starting from that state and
evolving for one period of the drive. Stability of an orbit is determined by
the stability of the corresponding fixed point. If the interpreter notices that
a stable orbit suddenly becomes unstable as the family parameter increases,
it attempts to explain this change as the result of a bifurcation. The type
of bifurcation can be conjectured by examining the eigenvalues of the period
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map at the fixed point, and the conjecture can be verified by a search that
is tailored to the local geometry for that bifurcation type.

For example, for a stable orbit, the complex eigenvalues of the correspond-
ing fixed point of the period map must lie within the unit circle. If stability
is lost with an eigenvalue apparently crossing the unit circle at —1, a classi-
fication theorem for bifurcations [11] tells the interpreter to expect that this
is a supercritical-flip bifurcation, which corresponds to a period doubling of
the orbit. Near the bifurcation one should expect to see a stable orbit just
before the critical parameter value and, just after the critical value, an un-
stable orbit together with a stable orbit of double the period. For this type of
bifurcation, the interpreter attempts to locate the new expected orbits using
a search technique that detects fixed points by computing the Poincaré indez
of the period map [12]. If these orbits are located, the bifurcation is probably
a flip. If a different local geometry is found, the apparent bifurcation may be
the result of numerical error, or the interaction of two nearby bifurcations,
or it may be a bifurcation of non-standard type. In any case, the result of
the search is passed to a critic that attempts to reconcile the local results for
all bifurcations detected and produce a consistent description.

Going beyond general knowledge of dynamical systems, the Kineticist’s
Workbench program employs a number of techniques specific to the domain
of chemical kinetics. For example, the program examines the qualitative his-
tory of a reaction simulation, attempting to find periods of time during which
concentrations of some species may be treated as constant; this is an automa-
tion of the kind of steady-state analysis that is a staple of kinetic investiga-
tion [15]. Another portion of the program—that portion devoted to spotting
fast equilibria within a mechanism—makes extensive use of the reaction net-
work formalism developed by Feinberg, Horn, Jackson, and coworkers at the
University of Rochester [6]. An especially fruitful result of their work is the
zero-deficiency theorem, which provides a simple algorithmic test for deter-
mining whether a reaction mechanism gives rise to stable equilibria. Finally,
the portion of the Workbench program devoted to decomposing mechanisms
according to mutual influence between species may be used to identify tran-
sient species, and to drop those species from a particular simulation as soon
as their concentrations are deemed too low to affect the remainder of the
simulation.
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(define-network driven-van-der-pol a s s
: It
((a parameter v/i"3)
(b parameter resistance)

(d drive voltage)) C‘D e’
(n1 n2 n3) T

(parts
(nl-res non-linear-resistor (n+ n3) (an- gnd) r
(vic (lambda (v i)
(v (-(*+aiii) (+bi)))))
(1 inductor (a+ n1) (n- n2))
(¢ capacitor (n+ n2) (n- n3))
(s voltage-source (n+ n1) (n- gnd) (strength 4))))

Figure 10: The wiring diagram of a simple nonlinear circuit is described by means of
a special-purpose language of electrical networks. This description can be automatically
compiled into numerical procedures that evolve the state of the system.

2.3 Numerical experiments can be prepared automat-
ically

Translating high-level specifications into high-quality numerical routines can
be a tedious and error-prone process whose difficulty limits the utility of even
the most powerful numerical computers. A program by H. Abelson and G.J.
Sussman draws upon a spectrum of computational tools—numerical meth-
ods, symbolic algebra, and semantic constraints (such as dimensions)—to
automate the preparation and execution of numerical simulations [2]. These
tools are designed so that combined methods, tailored to particular problems,
can be constructed on the fly. One can use symbolic algebra to automatically
generate numerical procedures, and one can use domain-specific constraints
to guide algebraic derivations and to avoid complexity.

Figure 10 shows the wiring diagram for a simple nonlinear circuit, a driven
van der Pol oscillator consisting of voltage source, a capacitor, an inductor,
and a nonlinear resistor with the cube-law characteristic v = a:® — b. The
figure also shows a description of this wiring diagram in a language formu-
lated for describing electrical networks. This description specifies circuit’s
parameters, its primitive parts, and how the parts are interconnected.

Given this description, the program combines models of the primitive
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elements to form equations that are then algebraically solved to produce state
equations for the van der Pol oscillator. The state equations are compiled into
a procedure (the system derivative) that will evolve the system numerically
when combined with an appropriate numerical integrator.

These operations can involve a nontrivial amount of algebraic manipu-
lation. Even for systems that are specified in closed form, most nonlinear
systems cannot be algebraically solved to produce explicit state equations. In
the general case, the program recognizes variables that cannot be eliminated
from the state equations and compiles an iterative scheme for approximating
these variables. This requires symbolic differentiation to produce a Jacobian
that is incorporated into a Newton-Raphson search and to augment the sys-
tem state so that it will evolve good starting points for Newton’s method at
each step of the integration.

For applications such as the Bifurcation Interpreter, one must also compile
numerical routines that find period orbits and track them as the system
parameters vary. Finding and tracking periodic orbits rests upon determining
the sensitivity of trajectories to variations in initial state and parameters.
This can be done by evolving the variational system, obtained by symbolic
manipulation of the state equations, and by evolving various derived systems
obtained by differentiating the state equations with respect to parameters.
Figure 11 shows a numerical routine, automatically generated from the circuit
description in figure 10, that can be combined with a numerical integrator
to evolve the states and the variational states of the driven van der Pol
oscillator.

The result of the physical modeling, algebraic manipulation, and fancy
compilation shown above in figure 11 is a higher-order procedure—a system-
derivative generator for the dynamical system under study. The generator
takes as arguments numerical values for the system parameters and produces
a system-derivative procedure, which takes a system state vector as argument
and produces a differential state (a vector that when multiplied by an incre-
ment of time is an increment of state). This system-derivative procedure
is passed to an integration driver that returns a procedure which, given an
initial state, evolves the system numerically.

Since all system derivative procedures are constructed to respect the same
conventional interfaces, we may choose from a variety of integration meth-
ods. Moreover, the integration methods themselves can be automatically
constructed from a library of procedures that can be used as interchangeable
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(lambda (c.c 1.1 d b a)
(lambda (*varstate*)
(let ((t (vector-ref *varstate* 0))
(v.c (vector-ref *varstate* 1))
(1.1 (vector-ref *varstate* 2))
(v.c.del.v.c (vector-ref *varstate* 3))
(v.c.del.i.l (vector-ref *varstate* 4))
(i.l.del.v.¢ (vector-ref *varstate* 5))
(i.1.del.i.1 (vector-ref *varstate* 6)))
(let ((g27 (* a i.1 i.1)))
(let ((g28 (* -3 g27)))

(vector 1
(/ i.1 c.c)
(/ (+ (*+ -1 g27 i.1) (* -1 v.¢) (¥ b i.1) (4 t))
1.1)

(/ v.c.del.i.l c.¢)
(/ (+ (* -1 v.c.del.v.c)
(* b v.c.del.i.l)
(* g28 v.c.del.i.l))
1.1)
(/ i.l1.del.i.1 c.c)
(/ (+ (* -1 i.1l.del.v.c)
(* b i.l.del.i.l)
(* g28 i.1l.del.i.l))
1.1)0))N)

Figure 11: This numerical procedure is the augmented system derivative generator for
evolving variational states for the driven van der Pol oscillator. The procedure was auto-
matically generated from the circuit description shown above.
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components in the construction of traditional applications. Going further,
we believe that it is not difficult to automatically implement these numerical
procedures as special-purpose hardware, like the Orrery.

To support the automatic construction of numerical procedures, we are
developing a kernel numerical library that is organized around the liberal
use of high-order procedural abstractions. For example, figure 12 illus-
trates this mix-and-match construction of numerical routines, expressing
Romberg’s method of quadrature as a combination of trapezoidal integration
and Richardson extrapolation, following the exposition given by M. Halfant
and G.J. Sussman in [8]. Such a formulation is valuable in that it separates
the ideas into several independent pieces. Clever ideas need be coded and
debugged only once, in a context independent of the particular application,
thus enhancing the reliability of software built in this way. For instance,
G. Roylance [19] shows how to construct high-performance implementations
of special functions, abstracting recurrent themes such as Chebyshev econ-
omization. His automatically-constructed procedure for computing Bessel
functions is 40 times more accurate, for the same number of terms, than the
approximation specified in the National Bureau of Standards tables [3]. More
significantly, Roylance’s formulation clearly exposes the underlying approx-
imation methods so that parameters, such as the required precision of the
routines, can be changed at will.

Besides providing a convenient target for automatic construction of nu-
merical procedures, powerful abstraction mechanisms help us to express some
of the vocabulary and methods of numerical analysis in a form that is close
to the mathematical theory, and is thus easy to understand and check. A
program is a communication, not just between programmers and computers,
but also between programmers and human readers of the program; quite of-
ten, between the programmer and him/herself. One power of programming is
that it allows one to make the knowledge of methods explicit, so that meth-
ods can be studied as theoretical entities. Traditional numerical programs
are hand-crafted for each application. The traditional style does not admit
such explicit decomposition and naming of methods, thus forfeiting much of
the power and joy of programming.
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(define (romberg f a b tolerance)
(stream-limit
(richardson-sequence (trapezoid-sums £ a b)
2
2)
tolerance))

(define (trapezoid-~sums f a b)
(define (next-S S n)
(let* ((h (/ (- b a) 2 n))
(fx (lambda(i) (£ (+ a (* (+ i i -1) h))))))
(+ (/5 2) (* h (sigma fx 1 n)))))
(define (S-and-n-stream S n)
(cons-stream (list S n)
(S-and-n-stream (next-S S n) (* n 2))))
(Qet* ((h (- b a))
(s (* (/h2) (+ (£a) (£1))))

(map-stream car (S-and-n-stream S 1))))

(define (richardson-sequence seq start-index inc-index)
(define (sequences seq order)
(cons-stream seq
(sequences "
(let* ((2°p (expt 2 order)) (2°p-1 (- 2°p 1)))
(map-streams (lambda (Rh Rh/2)
(/ (- (*+ 2°p BRh/2) Rh) 27p-1))
seq
(tail seq)))
(+ order inc-index))))
(map-streams head (sequences seq start-index)))

Figure 12: Romberg’s method of quadrature can be built by combining a primitive trape-
zoidal integrator with an accelerator that speeds convergence of sequences by Richardson
extrapolation. The result is an infinite sequence (stream) of increasingly accurate approx-
imations to the definite integral. The same Richardson accelerator can be combined with
other sequence generators to build other classical numerical routines.
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3 Intelligent tools are feasible

The work described in the preceding sections demonstrates much of the tech-
nology required to produce programs that can serve scientists and engineers
as intelligent problem-solving partners, programs such as the engineer’s as-
sistant that we envisioned at the beginning of this paper.

We have shown how to use symbolic algebra to compile high-level descrip-
tions such as circuit diagrams directly into numerical modeling and simula-
tion programs whose elements can be automatically generated from a library
of mix-and-match numerical subroutines expressed at appropriate levels of
abstraction. Our experience with the Digital Orrery proves that such nu-
merical programs can be run at supercomputer speeds, without the cost of a
general-purpose supercomputer. The Bifurcation Interpreter, KAM and PLR
demonstrate that intelligent programs incorporating knowledge of dynami-
- cal systems can automatically control and monitor numerical experiments
and interpret the results in qualitative terms. The Kineticist’s Workbench
illustrates how these capabilities can be combined with knowledge about a
particular domain to produce a sophisticated tool for modeling and analysis.

3.1 Higher-dimensional systems are hard

Most systems of interest have more than two degrees of freedom, yet the
KAM and PLR programs and the Bifurcation Interpreter depend upon spe-
cial properties of low-dimensional systems. The grammar of possible phase
portraits and the catalog of generic bifurcations embodied in these programs
cannot easily be extended to higher dimensional systems. On the other hand,
there are qualitative features of such systems that can be usefully extracted
and used to guide numerical experiments.

Exploring the qualitative behavior of high-dimensional systems requires a
combination of analytic and numeric methods. Analytic methods can provide
clear definitive information, but are often hard to apply or unavailable. There
are well-established method for deriving the local behavior of trajectories in
the neighborhood of fixed points, but few tools exist for determining global
behavior. On the other hand, a program could detect a saddle analytically,
calculate its stable and unstable manifolds numerically, determine whether
the manifolds intersect each other, and draw conclusions about global behav-
ior.
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Moreover, even in high-dimensional spaces, it is still possible to use clus-
tering techniques to examine the set of iterates of a map or the flow of
a differential equation and determine if a trajectory is confined to a lower
dimensional submanifold of the formal state space. Each reduction in dimen-
sion is evidence of an integral of motion, such as conservation of energy. One
can also (as people do) apply visual recognition techniques to low-dimensional
sections and projections of the full space. Despite the fact that orbit types
and bifurcations in high-dimensional spaces have not been completely classi-
fied, nonetheless it is still possible to recognize qualitatively different regions
of behavior, and to map out these regions in state space and parameter space.

3.2 Computers, like people, need imagistic reasoning

In observing professional physicists and engineers, we are often struck by
how an expert’s “intuitive grasp” of a field is hard to articulate verbally.
This is perhaps indicative of the use of non-verbal reasoning processes as
part of the process of solving otherwise verbally presented problems. We
observe scientists, mathematicians, and engineers continually using graphical
representations to organize their thoughts about a problem. The programs we
are developing use numerical methods as a means of shifting back and forth
between symbolic and geometric methods of reasoning. The programs not
only draw graphs and state-space diagrams, but they look at these diagrams
and hold them in their “mind’s eye” so that powerful visual mechanisms can
be brought to bear on what otherwise would be purely symbolic problems.

The idea that problem solvers employing visual, analogue, or diagram-
matic representations can be more effective than those relying on linguistic
representations alone is not new. Even before 1960, Gelernter’s Geometry-
Theorem Proving Machine [10] used. diagrams to filter goals generated by
backward chaining. Nevins’s [18] forward-chaining theorem prover focussed
its forward deduction of facts on those lines explicitly drawn in a diagram.
Stallman and Sussman’s EL [23] program performed antecedent deductions
in circuit analysis by exploiting the finite connectivity of devices.

What is provocative, however, is the suggestion that our thought pro-
cesses are importantly imagistic, and that visual thinking may play a crucial
role in problem solving. In scientific computation there has been tremendous
emphasis on visualization, but this has mostly meant the development of
computer-graphics technology to aid human visualization [17]. We believe
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that imagistic reasoning is a very general class of problem-solving strategies,
each with its own appropriate representations and technical support. The
programs discussed above suggest that it may be at least as important for
scientific computation to develop visualization aids for programs as well as
for people.
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