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Abstract

We describe research in four related areas, based on the following theoretical
principles: the assistant approach (incremental automation) and the exploitation
of clichés (using knowledge of common engineering practice).

Each investigation involves the construction of a prototype system to provide
intelligent assistance for a person performing the task: A recognition assistant
will help reconstruct the design of a program, given only its source code. A design
assistant will assist a programmer by detecting errors and inconsistencies in his
design choices and by automatically making many straightforward implementa-
tion decisions. An optimization assistant will help improve the performance of
programs by identifying intermediate results that can be reused. A debugging
assistant will aid in the detection, localization, and repair of errors in designs as
well as completed programs.

These prototypes will be constructed using two shared technologies: a pro-
gramming language independent formal representation for programs and pro-
gramming knowledge (the Plan Calculus) and an automated reasoning system
(CAKE), which supports both general logical reasoning and special-purpose deci-
sion procedures.
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1 Introduction

This paper describes new and ongoing research in the Programmer’s Apprentice project [49].
Each of the following four sections describes a three-year investigation into automating an
aspect of the programming task within the framework of the assistant approach and the
exploitation of clichés. Each investigation also involves the construction of a prototype
system using the shared technologies of the Plan Calculus and CAKE.

In the area of program recognition, we have demonstrated the essential feasibility of au-
tomatically recognizing programming clichés in undocumented source code, using the Plan
Calculus as an intermediate language. It is clear however, that the completely automatic,
bottom-up graph-parsing approach we have developed will not scale up to programs of real-
istic size—additional guidance will have to be provided, for example, by a person. In order
to arrange this division of labor appropriately, a key question to be answered is what are the
fundamental limits of bottom-up recognition.

In the area of program design, we are building a prototype Design Apprentice, which will
assist a programmer in the process of detailed design by detecting errors and inconsisten-
cies in his design choices and automatically making many straightforward implementation
decisions. The Design Apprentice extends our earlier work (KBEmacs), which used the
Plan Calculus and a library of clichés to partially automate program implementation. This
extension is made possible by the availability of CAKE to provide the necessary automated
deduction facilities.

In the area of program optimization, our work is motivated by the fact that constructing
software using clichés (or more generally, any kind of reuse) often sacrifices run-time effi-
ciency. Our solution to this problem is to develop a powerful program optimization system,
using the Plan Calculus as the intermediate language and using CAKE to verify the necessary
properties. As in the case of program recognition, we plan to explore the limits of completely
automatic optimization, as a prelude to applying the assistant approach.

Finally, in the area of program debugging, we have demonstrated the feasibility of using
the Plan Calculus and the truth-maintenance facilities of CAKE to assist in the localization of
bugs using test cases. We plan to extend and generalize this work in several directions, such
as intelligent assistance for bug repair and the application of similar techniques to incomplete
programs with partial specifications. We also plan to investigate the utility of bug clichés
within this framework.

1.1 The Assistant Approach

One approach to solving current software problems is to totally eliminate programmers
through “automatic programming.” As typically conceived, automatic programming calls
for an end user to write a complete specification for what he wants; a completely automatic
system then generates a program satisfying this specification. Program generators of this
type have been successfully developed for a number of narrow applications. However, com-
pletely automatic programming for a broad range of applications is not a realistic near-term
goal [48].

An alternate approach is to assist programmers, rather than replace them. A provocative



example of the assistant approach was proposed by IBM’s Harlan Mills in the early 1970’s.
He suggested creating “chief programmer teams” by surrounding expert programmers with
support staffs of human assistants, including junior programmers, documentation writers,
program librarians, and so on. The productivity of the chief programmer was thereby in-
creased, because he could apply his full effort to the most difficult parts of a given software
task without getting bogged down in the routine details that currently use up most of every
programmer’s time. Experience has shown that this division of labor can be very successful.
The long-term goal of our project is to provide every programmer with a support team in
the form of an intelligent computer program, called the Programmer’s Apprentice.

The assistant approach lends itself to incremental progress. Initially, the Apprentice will
be able to take over only the simplest and most routine parts of the programming task. As
technology advances, however, the proportion of the task handled by the Apprentice will
increase—we don’t have to wait until some activity can be totally automated. Furthermore,
some parts of a given program may always have to be hand coded due, for example, to
extremely strict performance requirements. However, especially in large systems, there is
always plenty of routine work to be done.

The key to making the assistant approach work is the communication between the pro-
grammer and the Apprentice: It must be based on a substantial body of shared knowledge
of programming techniques. If the programmer had to explain everything to the Apprentice
in elementary terms, it would be easier to do the work himself. This leads us to the second
principle.

1.2 Clichés

Human programmers seldom think only in terms of primitive elements, such as assignments
and tests. Rather, like engineers in other disciplines, they mostly think in terms of commonly
used combinations of elements. We call these familiar combinations clichés. Successive
approximation, device driver, and information system, are examples of programming clichés
spanning the range from low-level implementation ideas to high-level specification concepts.
(Soloway and Ehrlich [56] have conducted a number of empirical studies with programmers
that support the psychological reality of programming clichés.)

In general, a cliché consists of roles and constraints. The roles of a cliché are the parts
that vary from one occurrence of the cliché to the next. The constraints are used to specify
fixed elements of structure (parts that are present in every occurrence), to check that the
parts that fill the roles in a particular occurrence are consistent, and to compute how to fill
empty roles in a partially specified occurrence of a cliché.

An essential property of clichés is their relationship to one another. For example, a cliché
may be a special case or an extension of another cliché. Algorithmic and data structure
clichés may be related as possible implementations of specification clichés.

Given a library of clichés, it is possible to perform many programming tasks by inspec-
tion, rather than by reasoning from first principles. For example, in analysis by inspection,
properties of a program are deduced by recognizing occurrences of clichés and referring
to their known properties. In synthesis by inspection, implementation decisions are made
by recognizing clichés in specifications, and then choosing among various implementation



clichés.

Our work focuses on the use of inspection methods to automate programming, as opposed
to more general, but harder to control methods, such as deductive synthesis or program trans-
formations. In human programming, inspection methods are the most effective approach to
use whenever they are applicable. However, since inspection methods are ultimately based on
experience, they are applicable only to the routine parts of programming problems. This is
compatible with the intended division of labor between the programmer and the Apprentice.

As we will see in the upcoming sections, codifying clichés is a central activity in the
project. We are building libraries of clichés in the areas of program implementation, design,
and requirements. We will also see how a shared vocabulary of clichés serves as the language
of communication between the programmer and the Apprentice.

1.3 The Plan Calculus

The Plan Calculus is a formal representation for programs and programming clichés. Since
this formalism is now quite well known, we will summarize only its key properties here.
(Program representations related to or derived from the Plan Calculus have been used by
many others for work in program recognition [21, 34], tutoring [16, 30], translation [18, 60],
algorithm design [26, 27], debugging [54, 33], and maintenance [35].)

To a first approximation, the Plan Calculus can be thought of as combining the rep-
resentation properties of flowcharts, data flow schemas, and abstract data types. A plan
is essentially a hierarchical graph structure made up of different kinds of boxes (denoting
operations and tests) and arrows (denoting control and data flow). The representation has
both a graphical notation [46] and a formal semantics used for reasoning [44, 43].

The major advantage of the Plan Calculus is that it abstracts away from the details
of algorithms and data structures that are a result only of their expression in a particular
programming language. The explicit representation of control and data flow in the Plan
Calculus greatly simplifies all of the manipulations that need to be performed for intelligent
programming assistance, as well as making it possible to implement assistants that are, to
a large degree, programming-language independent. For example, a data flow arc between
two operations abstracts away from whether a temporary variable was used, or whether the
producing operation was nested inside the invocation of the consuming operation. Similarly,
the same net control flow graph can be achieved by many different combinations of control
primitives.

The Plan Calculus is a wide-spectrum formalism. Each operation and test in a plan has
associated with it a set of preconditions and postconditions specified in a logical language.
A plan in which all of the operations and tests are primitives in some programming language
is equivalent to a concrete program. However, the Plan Calculus is also used to represent
partially designed programs and programming clichés, in which case the operations and
tests may may have abstract or incomplete specifications, and there may be arbitrary logical
constraints, as well as data and control flow.

Taxonomic relationships between clichés, such as specialization, are handled by special-
purpose mechanisms in the cliché library. The relationship between a specification and
an implementation is represented in the Plan Calculus by an overlay. Formally, an overlay



defines a mapping from the set of instances of the implementation plan to the set of instances
of the specification. (This is a generalization of the abstraction function in the abstract data
type methodology.) A cliché library may contain different overlays with the same domain
and/or range, corresponding to different ways of abstracting the same implementation and/or
different ways of implementing the same specification. An key feature of overlays is that they
are used for both analysis and synthesis.

1.4 A Hybrid Reasoning System

The degree of intelligent assistance the Apprentice can provide ultimately depends on its
ability to reason about structured objects (programs, specifications, requirements) and their
properties. Our approach to this reasoning task is to use a combination of special-purpose
techniques and general-purpose logical reasoning.

Special-purpose representations and algorithms are essential to avoid the combinatorial
explosions that typically occur in general-purpose logical reasoning systems. On the other
hand, logic-based reasoning is very valuable when used, under tight control, as the “glue”
between inferences made in different special-purpose representations.

We have developed a hybrid knowledge representation and reasoning system, called
CAKE [45, 19, 20], that we are using for all current work in the project. Figure 1 shows
the architecture of CAKE. CAKE combines special-purpose representations, such as frames
and the Plan Calculus, with general-purpose logical and mathematical reasoning. Each layer
of CAKE builds on facilities provided by the layers below.

Figure 2 is a short transcript from the currently running version of CAKE, illustrating some
of the facilities provided in the propositional, algebraic, and frame layers. (Line numbers in
the following discussion refer to Figure 2.)

The propositional layer of CAKE provides three principal facilities. First, it automatically
performs simple “one-step” deductions (lines 1-3) (technically, unit propositional resolution).
The use of very limited form of logical inference here is an example of what we mean by
keeping tight control over general-purpose mechanisms.

Second, the propositional layer acts as a recording medium for dependencies (what is often
called a truth-maintenance system), and thus supports explanation (line 3) and retraction
(lines 4-5). These facilities are motivated by the observation that when you delegate work to
an assistant, you also need to have accountability and the ability to recover from mistakes,
in case it doesn’t do what you expected.

I Plan Calculus |

I Frames I

| Algebraic Reasoning |

| Propositional Logic ]

Figure 1. CAKE has a layered architecture.



1> (Assertq P)
2> (Assertq (Implies P Q))
3> (Whyq Q)
Q is TRUE by Modus Ponens from:
1. (IMPLIES P Q) is TRUE as a premise.
2. P is TRUE as a premise.
4> (Retractq P)
5> (Whyq Q)
I don’t know whether or not Q is true.
6> (Assertq (And P (Not Q)))
>>Contradiction: There is a conflict between the premises:
1. (AND P (NOT Q)) is TRUE.
2. (IMPLIES P Q) is TRUE.
Type cr to postpone dealing with this contradiction.
Type premise number to retract one of the premises.
7>
Retracting (AND P (NOT Q)) being TRUE...
#<Node (AND P (NOT Q)): False>
8> (Assertq (= I J))
9> (Whyq (= (F I) (F 1)))
(= (F I) (F J)) is TRUE by Equality from:
1. (= I J) is TRUE as a premise.
10> (4ssertq (Transitive R))
11> (Assertq (R W X))
12> (Assertq (R X Y))
13> (Assertq (R Y Z))
14> (Whyq (R W 2))
(R W Z) is TRUE by Transitivity from:
1. (R W X) is TRUE as a premise.
2. (R X Y) is TRUE as a premise.
3. (RY Z) is TRUE as a premise.
4. (TRANSITIVE R) is TRUE as a premise.
16> (Assertq (Subset A B))
16> (Assertq (Member X A))
17> (Whyq (Member X B))
(MEMBER X B) is TRUE by Subsumption from:
1. (SUBSET A B) is TRUE as a premise.
2. (MEMBER X A) is TRUE as a premise.
18> (Deftype Address (:Specializes Number))
19> (Deframe Interrupt
(:Roles (Location Address) Program))
20> (Deframe Device
(:Roles (Transmit Address) (Receive Address)))
21> (Deframe Interface
(:Roles (Target Device) (From Interrupt) (To Interrupt))
(:Constraints (= (Location ?From) (Receive ?Target))
(= (Location ?To) (Transmit ?Target))))
22> (FInstantiate ’Interface :Name ’K7)
23> (FPut (>> ’K7 ’Target ’Receive) T777777)
24> (FGet (>> ’K7 ’From ‘Location))
777777
25> (Why ...)
(= 777777 (LOCATION (FROM K7))) is TRUE by Equality from:
1. (= (LOCATION (FROM K7))
(RECEIVE (TARGET K7))) is TRUE.
2. (= (RECEIVE (TARGET K7)) 777777) is TRUE as a premise.

Figure 2. A transcript from the currently running version of CAKE, illustrating the reasoning
capabilities of the propositional, algebraic, and frame layers.
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Third, the propositional layer detects contradictions (lines 6-7). Furthermore, contra-
dictions are represented explicitly in such a way that reasoning can continue with other
information not involved in the contradiction. This feature is motivated by our desire to
support an evolutionary programming process. In this kind of process, the programmer’s
knowledge is very often in an inconsistent state, particularly during the requirements acqui-
sition and analysis phase.

The algebraic layer of CAKE contains special-purpose decision procedures for equality
reasoning, common algebraic properties of operators (such as commutativity, associativity,
and transitivity), partial functions, and the algebra of sets. The congruence closure algorithm
in this layer determines whether or not terms are equal by substitution of equal subterms
(lines 8-9). The decision procedure for transitivity (lines 10-14) determines when elements
of a binary relation follow by transitivity from other elements. The algebra of sets (lines
15-17) involves the theory of membership, subset, union, intersection and complements.

Equality reasoning is very important in CAKE, because the formal semantics of the Plan
Calculus makes heavy use of equality. Data flow arrows in plans imply equalities between
terms representing the source and destination points; correspondences in overlays are also
equalities. Other algebraic properties, such as transitivity, commutativity, etc., come up
everywhere in the formal modeling of data structures.

The frames layer of CAKE supports the standard frame notions of inheritance (:Specializes
in line 18), slots (:Roles in lines 19-21), and instantiation (line 22). The organization of
cliché libraries is based on frame inheritance.

A notable feature of CAKE’s frame system is that constraints are implemented in a general
way. For example, the definition of the interface frame (line 21) has constraints between the
roles of the instances filling its roles. When an instance of an interface is created (line 22) and
a particular value (777777) is put into one of its “second level” roles (line 23), the same value
can be retrieved from the other constrained role (line 24). This propagation is not achieved
by ad hoc procedures, but by the operation of the underlying logical reasoning system,
including dependencies (line 25). Constraint propagation makes it possible to incrementally
acquire information in any order.

The Plan Calculus layer of CAKE supports graph-theoretic manipulations of plan dia-
grams and overlay diagrams, such as following arcs. It also implements the formal semantics
of the Plan Calculus, so that hybrid reasoning can take place involving both structure (as
expressed by the diagrams) and function (as expressed in the preconditions, postconditions,
and other logical annotations). In the semantics of the Plan Calculus, names of plans become
predicate symbols, names of roles and overlays become function symbols, correspondences
become equalities, data flow becomes a combination of equalities and a partial order, and
control flow becomes a combination of an equivalence relation and a partial order.

2 Recognition

Program recognition is the process of identifying occurrences of clichés in a program. The
result of the process is a hierarchical description of the program that can be interpreted as
its design in terms of a given library of clichés (in general, there may be several possible such
descriptions). Recognition is an important task to study for both practical and theoretical



reasons.

The main practical motivation for studying program recognition is the observation that
recognition is a prominent activity in program maintenance, which is currently the dominant
software cost. In the long run, we advocate recording the information during design that will
be needed for maintenance (see next section). However, in the meanwhile, there is a huge
body of extant code being maintained, for which the design record is effectively unavailable.
Automated program recognition could be of great assistance to program maintainers in this
situation.

Program recognition is important from a theoretical standpoint because it provides an
additional constraint on the representation of clichés. Earlier work on representing pro-
gramming knowledge using source-to-source transformations (e.g., [5]) suffered from being
overly biased toward using the knowledge only in the synthesis direction; the Plan Calculus
supports both analysis and synthesis in the same representation.

Program recognition may also serve to enhance the power of techniques for other tasks,
such as program optimization and debugging (see subsequent sections on these topics). For
example, recognition could compensate for the absence of design information required for
optimization. Similarly, debugging assistance may be enhanced by the ability to recognize
clichés for incorrect programs.

As a simple example of the recognition process, consider the program in Figure 3. A
prominent feature of this program is the clichéd usage of CAR, CDR, and NULL in the loop to
enumerate the list in the variable BUCKET. The form of the COND test in the loop indicates that
the loop is implementing a membership test for ELEMENT in BUCKET and that the BUCKET list
is ordered. Finally, the way BUCKET is computed from STRUCTURE and ELEMENT using SXHASH
indicates that STRUCTURE is a hash table and, therefore, that the program as a whole is testing
for the membership of ELEMENT in this hash table.

(DEFUN HASH-TABLE-MEMBER (STRUCTURE ELEMENT)
(LET ((BUCKET (AREF STRUCTURE (SXHASH ELEMENT)))
(ENTRY NIL))
(LOOP
(IF (NULL BUCKET) (RETURN NIL))
(SETQ ENTRY (CAR BUCKET))
(COND ((STRING> ENTRY ELEMENT) (RETURN NIL))
((EQUAL ENTRY ELEMENT) (RETURN T)))

(SETQ BUCKET (CDR BUCKET)))))

Figure 3. Undocumented Common Lisp program.

Like visual recognition, program recognition often appears effortless when people do it.
However, program recognition has a number of features that make it difficult to automate:

e Syntactic variation — There are typically many different ways to achieve the same net
flow of data and control (e.g., the program in Figure 3 could have had more or fewer
temporary variables, or used DO instead of LOOP).



e Implementation variation — There are typically many different concrete algorithms
that can be used to implement a given abstraction (e.g., the hash table in Figure 3
could have been implemented using a hash/rehash scheme rather than bucket lists).

e Diffuse structure — Pieces of a cliché are sometimes widely scattered through the
text of a program, rather than being contiguous. (As discussed in [31], this can be a
significant source of difficulty for human program recognition as well.)

e Unrecognizable structure — Not all programs are completely constructed out of clichés.
Recognition must be be able to ignore unrecognizable structure.

2.1 A Feasibility Demonstration

A prototype system has been implemented, which automates the recognition of clichés [61].
Given a program and a library of clichés, the recognizer finds all occurrences of the clichés
in the program and builds a hierarchical description of the program in terms of the clichés
found and the relationships between them. As shown in Figure 4, the system can present
this description in the form of a textual explanation of the program design.

HASH-TABLE-MEMBER is a Set Membership operation.

It determines whether or not ELEMENT is an element of the set STRUCTURE.

The Set is implemented as a Hash Table.

The Hash Table is implemented as an Array of buckets, indexed by hash code.
The buckets are implemented as Ordered Lists. They are ordered
lexigraphically. The elements in the buckets are strings. An Ordered
List Membership is used to determine whether or not ELEMENT is in the
fetched bucket, BUCKET.

Figure 4. An explanation of the design of the program in Figure 3, automatically produced by
the prototype program recognition system. Upper case (e.g., ELEMENT) indicates identifers in the
program; initial capitalization (e.g., Set Membership) indicates the names of clichés in the library
and their roles.

The architecture of the prototype recognition system is shown in Figure 5. The program
to be analyzed is first converted into a plan. This translation deals with most of the syntactic
variation among programs by mapping syntactically distinct programs to identical plans.
Using the Plan Calculus also addresses the problem of diffuse structure, since many clichés
are much more localized in a data and control flow graph than in program text.

The recognizer is able to deal with implementation variation by virtue of the fact that
the cliché library contains not only clichés, but also information (in overlays) about how
they implement one another.

The actual recognition is performed by means of a graph parsing algorithm [10], which has
been extended to “skip over” unrecognizable sections of the input graph. The cliché library
1s treated as a graph grammar [17], in which each cliché defines a non-terminal. Overlays are
treated as additional rules that capture implementation decisions. The output of the parsing
algorithm is, in general, a set of derivations, which encode a hierarchical decomposition of
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Figure 5. Architecture of the prototype recognizer.

the original program in terms of clichés and implementation decisions in the library. (There
may be several different paths through the grammar that result in the same program.) By
knitting together pieces of “canned” text attached to the clichés, it is straightforward to
produce a textual explanation, such as Figure 4, from a derivation (see [14]).

Most other attempts to automate the program recognition process use an architecture
that is fundamentally similar to Figure 5. However, they differ in their intermediate repre-
sentation for programs and clichés, and in the way parsing is performed.

Most existing [25, 52] and proposed [32] recognition systems operate directly on program
text. This limits the variability and complexity of the structures that can be recognized,
because these systems must wrestle directly with syntactic variations, performing source-to-
source transformations to twist the code into a recognizable form. Most of these systems’
effort is expended on trying to canonicalize the syntax of a program, rather than recognizing
its deeper semantic content.

The Laura system [2] uses a graphical representation for programs. These graphs, how-
ever, only represent control flow; assignment statements become nodes in the graph. As a
result, this system does not handle syntactic variability in data flow any better than systems
operating directly on source text.

A few existing [30] and proposed [21] systems have adopted plan-like intermediate nota-
tions. This aids them significantly in dealing with syntactic variations. However, like the
other systems described above, these systems depend on heuristic techniques to recognize
features of a program, rather than on the kind of systematic and exhaustive approach pre-
sented here. These heuristic approaches have advantages with regard to efficiency, but limit
the power and extensibility of the systems.

One system that takes the same approach as the prototype recognizer we have built is
Lutz’s system [33, 34]. This system uses the Plan Calculus representation for programs and a

graph parsing algorithm. The parsing algorithm is based on generalization of a chart parsing
technique for strings.

2.2 Determining the Limits of Bottom-Up Recognition

Full scale, automated program recognition will probably require a hybrid approach, com-
bining the kind of bottom-up recognition demonstrated above with top-down processing
driven by expectations provided by a person or automatically gleaned from documentation

(including comments). A key question in this architecture is just how much can be done
bottom-up.
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In the first year of the research, we plan to explore this question empirically. To do so, the
prototype recognition system needs to be extended in several ways. In particular, the current
prototype cannot yet handle recursion (other than tail recursion for loops), destructive op-
erations on data structures, or incomplete programs. In addition, the prototype lacks some
needed logical inference capabilities. All of these deficiencies are a result of the fact that this
prototype was implemented on top of an earlier version of the Plan Calculus, rather than
using CAKE. In addition, the cliché library will need to be expanded and a module needs
to be implemented to automatically convert the library into an equivalent graph grammar
(this is currently a manual process). Our goal for the first year is to begin to experiment
with completely automatic recognition of programs in the order of hundreds to thousands of
lines.

Our goal for the second year of the research is to come to a theoretical understanding of
the limits of this approach. This will begin with the metering of specific experiments and
culminate with an abstract characterization of the complexity of the full-scale system. This
theoretical analysis will suggest, among other things, where the division of labor should be
in a hybrid system. For example, if the complexity of the algorithm is dominated by the size
of the grammar, then we will be led to consider how user guidance can be utilized to narrow
down the set of clichés to be searched for at any particular time. The complexity analysis
may also point out opportunities for utilizing parallel hardware (we have already started a
small exploration in this direction [51]).

In the third year of the research, we plan to build a first prototype of a hybrid recog-
nition system, which combines bottom-up algorithmic techniques with expectation-driven
mechanisms, including user guidance.

3 Design

Our first prototype of a part of the Programmer’s Apprentice, called KBEmacs (Knowledge-
Based Editor in Emacs) [59, 58], focused on intelligent assistance for program implementa-
tion. KBEmacs allows a programmer to construct a program more rapidly and reliably than
using a conventional program editor, by using the Plan Calculus as an internal representa-
tion of the algorithmic structure of a program and by providing a library of programming
clichés. The research described in this section is motivated partly by problems uncovered
in working on KBEmacs and partly by the desire to extend the range of assistance into
low-level specifications and design.

3.1 What KBEmacs Can and Cannot Do

KBEmacs augments the existing text- and syntax-based commands of Emacs [57] with a new,
higher, level of editing commands. Using KBEmacs, changes in the algorithmic structure of
a program can be achieved by a single command, even when they correspond to widespread
changes in the program text. In particular, an entire cliché can be merged into a program
with a single high-level command. Also, the same high-level interface can be used to define
new clichés. Due to the use of the Plan Calculus as an internal representation, KBEmacs
is predominantly programming-language independent. Although the first running version of
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the system was constructed to operate on Lisp programs, relatively little effort was required
to extend it operate on Ada programs as well.

Figure 6 illustrates the power of KBEmacs. The commands in this figure refer to a
number of implementation-level clichés such as simple report, chain enumeration, and query
user for key. The terms enumerator, main file key, title, and summary are the names of roles
in these clichés. (Our current library of implementation clichés is similar in scope and level
to earlier machine-usable codifications of program implementation knowledge, such as [22];
however, as discussed earlier, the Plan Calculus provides a better representation of this
knowledge.)

Define a simple_report program UNIT_REPAIR_REPORT.

Fill the enumerator with a chain_enumeration of UNITS and REPAIRS.
Fill the main_file_key with a query_user_for_key of UNITS.

Fill the title with ("Report of Repairs on Unit * & UNIT_KEY).
Remove the summary.

Figure 6. These 5 KBEmacs commands produce a 55 line Ada program.

Given that a programmer knows which clichés he wants to use, KBEmacs can be very
helpful in taking care of the details of putting the clichés together correctly. However,
KBEmacs is not in a position either to suggest to the programmer which clichés to choose,
or to critique the programmer’s choices. Another area of difficulty with KBEmacs is the
overly imperative, order-dependent nature of KBEmacs commands.

These problems with KBEmacs stem from the fact that it has no notion of specifications
or of the relationship between specification and implementation clichés. This is because
KBEmacs was implemented on top of an earlier version of the Plan Calculus, rather than
using CAKE. The availability of CAKE, which supports logical reasoning within the Plan
Calculus, now makes it possible to provide a more declarative and design-oriented language
for the programmer to use. The reasoning facilities in CAKE will also support the detection
and explanation of some errors made by the programmer and some automatic selection of
clichés.

3.2 A Target Scenario

Figure 7 shows a hypothetical interaction between a programmer and the proposed Design
Apprentice. This is the first part of a much longer target scenario [47], in which the initial
design shown is further elaborated and changed by the programmer, with assistance from
the Apprentice.

Figure 7 begins with the programmer providing a specification. This could be done
interactively or prepared with a text editor and submitted to the Apprentice all at once. The
specification consists of two parts. The first part describes a hardware device (an imaginary
device called the K7). The second part describes a driver program for the K7. (The domain
of device drivers was chosen, because it is a good example of the kind of domain in which the
Apprentice approach is most appropriate—namely a domain where there are many similar
programs, but where each program is likely to have some unanticipated idiosyncrasies.)
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> The "K7" is an interactive display device where:
The screen height is 4 lines.
The screen width is 40 characters.
The I/0 is in terms of ASCII characters.
Direct cursor positioning is not supported.
The bus interface is a standard SLU except that:

Writing a 1 in Bit 1 of the XCSR initializes the device.
Initialization of the device blanks the screen and homes the cursor.
Completion of initialization is signaled in the same way as the

transmission of a character.
Sending characters to the K7 and initialization of the K7 cannot be
done at the same time.
> The K7 driver is an interactive display driver where:
Echoing is not supported.
Rubout handling is not supported.
The basic software functions are:

Supported: PUTC, WRITE & GETC.

Ignored: OPEN & CLOSE.

Not supported: READ & SEEK.

The control codes are:

:CLEAR - blanks the screen.

:RESET - does a :CLEAR and flushes pending input.

:LINE-NUMBER - returns the cursor line.

The implementation guidelines are:

i- Do no consing.

2- Favor space efficiency.

3~ Defer error checking.

> Write code for the K7 driver.

Request for advice regarding implementation of :CLEAR.
The following suggest implementing :CLEAR by initialization of the K7:
(1) :CLEAR blanks the screen.
(2) The only K7 operation that blanks the screen is initialization.
However, this decision leads to the following constraint violations:
(3) Initialization homes the cursor, which is not part of the specification of :CLEAR.
(4) A device should only be initialized by its initialization function.
>Override constraints.

Request for advice regarding implementation of :LINE-NUMBER.
The following suggest no choices for implementing :LINE-NUMBER:
(1) :LINE-NUMBER returns the cursor line.

(2) No K7 operation returns the cursor line.
> Postpone.

Constraint Violation: Interactive device drivers usually have a lookahead operation.
The following are standard lookahead specifications:

(1) :ARE-CHARS-WAITING returns T if there are pending characters.
(2) :NUMBER-CHARS-WAITING returns the number of pending characters.
(3) :PEEK returns NIL if there are no pending characters and returns the next

character (without removing it from the input buffer) if a character is pending.
> Use (2).

Figure 7. Excerpt of a target scenario for program design. Programmer input follows the “>”
prompt. Response from the Design Apprentice is in italics.
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Notice that the statements at the beginning of Figure 7 are much more declarative than
KBEmacs commands. They also have a markedly different character than logic-based spec-
ifications, such as Larch [23] or Ina Jo [28], or very-high-level programming languages, such
as Refine [1] or GIST {4], due to the prominent use of design clichés, such as interactive
display device and serial line unit (SLU). The use of clichés makes this in effect an extensible
language.

The K7 specification contains both positive information, which describes how particular
roles of this cliché are filled in (e.g., the screen height), and negative information, which
states that some aspects of the cliché are not relevant (e.g., the K7 does not support direct
cursor positioning).

A particularly interesting part of the driver specification is the implementation guidelines
section at the end. The Apprentice will use these guidelines when deciding which algorithms
to pick in implementing the driver. For example, the first two guidelines cause the Appren-
tice to select algorithms with no dynamic storage allocation and which trade time for space.
The third guideline instructs the Apprentice to defer inclusion of error checking code until
after the prototype version of the driver is written and tested. The key benefit of this post-
ponement is not that it saves the Apprentice coding time, but that it saves the programmer
thinking time.

The remainder of the interaction in Figure 7 illustrates the Design Apprentice’s ability to
detect and explain errors made by the programmer. The interactions shown will be supported
by the facilities in Cake for propagation of information, dependencies, and contradiction
handling.

One kind of interaction revolves around incomplete knowledge. After being requested to
write the code for the K7 driver in the middle of Figure 7, the Apprentice starts to make
the remaining design decisions. The first request for advice arises when the only way the
Apprentice knows to implement one of the K7 operations (:CLEAR) conflicts with its default
constraints. The programmer in this instance tells the Apprentice to override the constraints,
effectively extending the specification of:CLEAR. A second request for advice arises when the
Apprentice lacks any applicable knowledge for how to implement the: LINE-NUMBER operation.
Notice that the programmer may at any time postpone answering a question, which enables
him to maintain control of the interaction.

Another kind of interaction revolves around inconsistency, which can be of two forms.
First, there may be inconsistency between different things the programmer says explicitly
(this is not illustrated in the short excerpt here). Second, there may be inconsistency between
what the programmer says and knowledge contained in the clichés library (e.g., the constraint
violation at the end of Figure 7).

After the problems with :CLEAR and :LINE-NUMBER have been resolved, the Apprentice
generates executable code for the K7 driver, as requested. (Space constraints make it impos-
sible to show the code created. See [47].) To do so, the Apprentice needs to automatically
make a number of additional detailed implementation decisions. For example, it has to make
reasonable decisions regarding the implementation of the various semaphores and buffers in
the driver.

The Design Apprentice differs from program generators, such as Draco [39] and PHI-
nix [7], and procedurally implemented compilers for very-high-level languages such as SETL [53],
primarily in the fact that it supports advice-taking from the programmer, and even allows
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the programmer to get involved in detailed coding where necessary. This flexibility is made
possible by the use of the Plan Calculus to represent the current design, together with
the explicit representation of the possible design and implementation decisions in the cliché
library.

The Design Apprentice also differs significantly from transformational implementation
systems such as Pecos [6], PDS [12], and Refine [1]. Although overlays encode much of the
same knowledge as transformations, the use of the Plan Calculus makes it possible to reason
about this knowledge more easily. In addition, the derivation of a program in the Plan
Calculus typically has many fewer steps than a transformational derivation, since there is
no need for transformations that deal with minor syntactic variations.

3.3 Building The Design Apprentice

In the first year of the research, we plan to concentrate on building a comprehensive library
of design clichés in the domain of device drivers, using the knowledge representation facilities
of CAKE. One source for these clicheés are system design textbooks such as [9] and [13].

In the second year of the research, we expect to implement the control and problem-
solving structures necessary to support the kind of interactions illustrated in Figure 7. By
the end of the second year, we expect to demonstrate a substantial portion of the capabilities
of the Design Apprentice.

In the third year of the research, we plan to test our ideas by applying the Design
Apprentice to a different domain (to be chosen). This new domain should have some overlap
with device drivers (to demonstrate the reuse of clichés), but be different enough to challenge
the methodology. By the end of the third year, we expect to complete a prototype that
demonstrates all of the capabilities of the full target scenario [47] in both domains.

4 Optimization

A central thrust of the work described in the preceding section is toward designing software
using standard, well-understood components (clichés) as much as possible. This approach
promises to both reduce the cost of production and increase the reliability of the resulting
software. However, any approach based on extensive reuse almost inevitably sacrifices the
efficiency of the resulting software. Greater efficiency can almost always be obtained by
writing specialized code tailored for the task at hand. A traditional approach to dealing
with this kind of problem is to apply various optimization (improvement) techniques. We
are investigating a new such technique: automatic redistribution of intermediate results [24].

Programs generally call many subroutines and perform many state-changing operations
in the course of a computation. On completion, a subroutine returns one or more values
and possibly produces some changes in the program’s state (via side effects). The term
intermediate result (or simply result) is used to refer to any such value or state change.
Intermediate results are used as input to, and to satisfy preconditions of, other subroutines.

One source of inefficiency in programs is computing new results even though previously
computed results would suffice. This is particularly true in programs designed using a library
of predefined, general abstractions. Such programs can be improved by modifying them to
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make certain intermediate results available later in the computation. This “redistribution”
can be accomplished in many ways, such as explicitly storing results for later retrieval (using
variables or a special-purpose data structure), passing extra parameters between subroutines,
and moving code that can use a result into the local context of the result’s initial computation.
A common feature of these program modifications is they break down the abstraction barriers
between the reusable components.

The concept of redistribution of intermediate results unifies and extends a number of
standard optimization techniques. In particular, common compiler techniques such as subex-
pression elimination, dead code removal, loop fusion, and code motion [3] are all examples
of redistribution. An essential limitation of optimization techniques in compilers, however,
is that they operate only at the source language level. This means that they cannot apply
the same optimizations to user-defined (or library) abstractions. For example, although an
optimizing Lisp compiler may be able to conclude that a certain list copy operation is un-
necessary, it cannot apply the analogous reasoning to eliminate the redundant copying of a
user-defined abstraction.

Memoization [37] (explicitly saving values for later use) and tupling [41] (the combination
of two initially separate functions into a single, tuple-valued function to share intermediate
results) are more complex examples of redistribution that, to date, are typically only applied
manually. In addition, although it is quite different in spirit, much of the effect of finite
differencing [40] (incrementally updating a result rather then recomputing it completely on
each cycle of a loop) can be obtained by means of redistribution.

4.1 An Example

As an illustration of the concept of optimization by redistribution of intermediate results,
consider the following very small example involving a program designed using a library of
set abstractions. In particular, suppose that we have chosen an implementation of the set
abstraction in which sets are represented as lists of their elements, subject to the invariant
that the list has no duplicates. Three of the library-defined operations associated with this
implementation are shown below:

(DEFUN SET-ADD (ELEMENT SET)
(IF (MEMBER ELEMENT SET) SET (CONS ELEMENT SET)))

(DEFUN SET-MEMBER? (ELEMENT SET)
(MEMBER ELEMENT SET))

(DEFUN SET-SIZE (SET)
(LENGTH SET))

Now consider the following program that uses these operations. Assume that the elided
portions of the program include no invocations, either directly or via further subroutines, of
the SET-SIZE operation. Furthermore, assume the program has no side effects, and that it
only returns from the last expression in the body.

(DEFUN MY-PROGRAM (...)
(SET-ADD ...)
. (SET-MEMBER? ...) ...
(THE INTEGER ...))
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The redistribution opportunity here relies on the observations that (1) the only opera-
tion in this example that depends on the representation invariant “no duplicates in list” is
SET-SIZE, and (2) the test in SET-ADD has the sole purpose of enforcing this invariant. Inas-
much as MY-PROGRAM does not invoke SET-SIZE, and its only result (a value of type INTEGER)
cannot involve a set, the maintenance of the invariant is not needed. Therefore, the input to
the test in SET-ADD may be eliminated and its input redistributed directly to the consumers
of its output. (This has the effect of converting SET-ADD from linear time to constant time.)
In other words, the program may be rewritten as follows:

(DEFUN SET-ADD-1 (ELEMENT SET)
(CONS ELEMENT SET))

(DEFUN MY-PROGRAM (...)
(SET-ADD-1 ...)
(SET-MEMBER? ...)

(THE INTEGER ...))

Although this example is overly simplified (due to lack of space), it exhibits two key
features of the redistribution of intermediate results, both of which make it a more tractable
subcase of optimization in general.

First, redistribution does not change the basic algorithm of a program. For example,
changing the implementation of a sorting routine from bubblesort to heapsort involves more
than redistribution. Although we do not yet know how to precisely characterize this notion
of “not changing the basic algorithm,” we believe it has to do with preserving the structure
of the design explanation—or ultimately, the proof of correctness—of the program.

Second, it is almost always more efficient to share an intermediate result instead of
recomputing it. In general, knowing whether a program’s efficiency will improve after an
optimization is very difficult, involving a deep understanding of the performance properties
of the algorithm as a whole. In the case of redistribution, however, this can usually be
determined by a much more limited analysis (such as making sure the overhead of adding
an auxiliary data structure does not exceed the cost of recomputation).

4.2 Automating Redistribution

We will demonstrate that redistribution of intermediate results can be automated by imple-
menting the technique using the representation and reasoning facilities of CAKE. As part
of this demonstration, we will provide to the optimizer, in addition to a program, a record
of the design of the program in the Plan Calculus, such as will be produced by the Design
Apprentice.

Automating the optimization technique can be broken into three subtasks: identifying
opportunities for redistribution, determining whether the redistribution is advantageous,
and implementing the redistribution. Of these three, the first subtask is the most difficult
to automate, since a priori it requires a search in the space of all pairs of a result and a
use of a result in the program. In our initial investigations, we will ignore the question of
determining whether a redistribution is advantageous. Implementing the redistribution is
straightforward: in the Plan Calculus representation of a program it is often no more than
rerouting a data flow arc.
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The search for potential redistribution pairs can be filtered in a number of ways. For
example, one need only consider pairs in which the target result is in a control environment
reachable from the source result. (This is easily computed in the Plan Calculus.) One can
also filter out pairs that involve disjoint data types.

For each remaining pair, the question that needs to be answered is whether the earlier
result satifies the weakest preconditions on the later use. (A special case of this is when an
intermediate result is identical to a later result, i.e., when the same thing is literally computed
twice.) A major focus of the research will be to discover constraints on the structure of the
design record that make answering this form of question tractable. For example, if the design
record is equivalent to a complete proof of correctness of the program, the fact that certain
clauses in a postcondition are not used in the proof may suggest that the relevant results
may be replaced by weaker ones. We also need to develop techniques for using incomplete
specifications, while still guaranteeing that the optimization is correctness-preserving.

If it is not possible to fully automate the identification of redistribution opportunities,
we can also apply the assistant approach to this subtask. For example, the programmer
may be able to help prune the search. In the limit, the programmer might ask the system
to redistribute a specific result to a specific target location, with the system taking care of
the details of implementing the redistribution. Alternatively, the system may be able to
query the programmer for a specific bit of additional specification information needed to
justify a particular potential redistribution (similar to Miller’s proposal for an “interactive
compiler” [36]).

In the first year of the research, we will concentrate on developing a rich corpus of hand-
worked examples of the technique applied to a wide range of programs. A major goal of
this phase will be to gain further insight into the structure of the design record required to
support automation of the technique. Going hand-in-hand with these example programs will
be a library of reusable abstractions and their implementations.

In the second year of the research, we will begin implementing the demonstration system.
We expect to work first on modules for automatically implementing redistribution, such as
by adding global variables, hash tables, etc., and secondly on the techniques for pruning the
search. For convenience, we will use Lisp as the source language; however, our system will
be to a large extent language-independent due to the use of the Plan Calculus as the internal
representation.

In the third year of the research, we will concentrate on strengthening the ability of the
system to prove properties of programs within the framework of the design record. One
of our final measures of success will be to demonstrate actual runtime speedup on realistic
programs resulting from automatic redistribution of intermediate results.

5 Debugging

No technology will ever completely eliminate error in the software development process. The
best we can hope for is to detect bugs as early as possible and provide support for correcting
them. For example, the Requirements Apprentice described in [50, 42] is directed towards
detecting bugs that can creep in at the very earliest point in the process, when an informal
requirement is first formalized. In this section, we first report on an intelligent assistant
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for localizing bugs in completed programs. We then describe further research to generalize
and extend the system to support incremental change (evolution) throughout the design and
implementation.

5.1 Localizing a Bug

We have recently completed a prototype debugging assistant, called Debussi [29], that assists
a programmer in the task of determining the smallest region of a program that manifests
a bug. This task is only part of the debugging process (other tasks are detecting an bug
and repairing it), but it is a particularly time-consuming one for people to perform in large
software systems.

Formally speaking, there are only two kinds of bugs that can occur in a program: the
wrong subroutine (or primitive) is called at some point, or there is something wrong with
the pattern of data and control flow in the definition of some subroutine. Debussi’s goal is
to narrow the bug to either a single erroneous call, or a single subroutine definition in which
the data/control flow is erroneous.

The way Debussi works is best described by means of an example. The top part of
Figure 8 shows a simple unification program that contains a bug. (Again, for convenience
we are using Lisp as the source language, but the implementation of Debussi is to a large
extent language-independent.) As illustrated by the test cases in the middle part of the
figure, the toplevel function UNIFY compares two patterns. In these patterns, variables are
represented by lists whose first element is “?”. If it is not possible to unify the patterns, the
symbol NOMATCH is returned; otherwise an association list is returned specifying the necessary
variable bindings. Note that a return value of NIL means that the patterns unify without
binding any variables.

The third part of Figure 8 shows an interaction with Debussi that leads to the localization
of a bug. This interaction begins with a test case that manifests a bug. The two patterns
shown should unify with a NIL binding list. Notice that the programmer here is performing
the task of detecting the existence of a bug in the first place. There is a large body of
literature on automating the functional testing of programs (see [8]), including our earlier
work on a Testing Assistant [11].

The command (OUTPUT-SHOULD-HAVE-BEEN NIL) informs Debussi that the preceding test
case should have resulted in a different value. Debussi responds by translating the program
UNIFY into the Plan Calculus and using CAKE to produce a proof (using a mixture of symbolic
and concrete execution) of why the output is wrong. The dependencies in this proof are used
to localize the bug.

As a starting hypothesis, Debussi assumes that the data flow and control flow structure
of UNIFY is correct, i.e., that the bug is in one of the calls. If this assumption fails to further
localize the bug, it will then be reasonable to assume that something is in fact wrong with
the structure of UNIFY.

A first analysis of the dependencies produced by CAKE reveals that that the calls to
EXTEND-IF-POSSIBLE and FREEOF? cannot be responsible for the bug. However, in the toplevel
execution of UNIFY, there are fifteen calls that do participate in the computation of the
incorrect result: five predicates that together decide that the fifth COND clause is applicable,

19



(DEFUN UNIFY (P Q &0PTIONAL (FRAME NIL))
(COND ((EQ FRAME ’NOMATCH) °’NOMATCH)
((AND (VAR? P) (VAR? Q)) (VAR-VAR-MATCH P Q FRAME))
((VAR? P) (EXTEND-IF-POSSIBLE P Q FRAME))
((VAR? Q) (EXTEND-IF-POSSIBLE Q P FRAME))
(CAND (CONSP P) (CONSP Q))
(UNIFY (CDR P) (CDR Q) (UNIFY (CAR P) (CAR Q) FRAME)))
((EQ P Q) FRAME)
(T ’NOMATCH)))

(DEFUN VAR? (X) (AND (CONSP X) (EQ (CAR X) ’7)))

(DEFUN VAR-VAR-MATCH (V W FRAME)
(IF (EQ V W) FRAME
(LET ((BV (ASSOC V FRAME :TEST #’EQUAL))
(BW (ASSOC W FRAME :TEST #°EQUAL)))
(IF (AND (NULL BV) (NULL BW)) (CONS (CONS V W) FRAME)
(UNIFY (IF BV (CDR BV) V) (IF BW (CDR BW) W) FRAME)))))

(DEFUN EXTEND-IF-POSSIBLE (V VAL FRAME)
(LET ((BV (ASSOC V FRAME :TEST #’EQUAL)))
(COND (BV (UNIFY (CDR BV) VAL FRAME))
((FREEOF? V VAL FRAME) (CONS (CONS V VAL) FRAME))
(T *NOMATCH))))

(DEFUN FREEOF? (VAR E FRAME)
(COND ((ATOM E) T)
((VAR? E)
(AND (NOT (EQUAL VAR E))
(LET ((B (ASSOC E FRAME :TEST #’EQUAL)))
(OR (NULL B) (FREEOF? VAR (CDR B) FRAME)))))
(T (AND (FREEOF? VAR (CAR E) FRAME)
(FREEOF? VAR (CDR E) FRAME)))))

> (UNIFY *(F (7 X)) *(G 3)) --> NOMATCH
> (UNIFY *(F (7 X)) *(F (G (? )))) --> (((2 X) . (G (? Y))))
> (UNIFY °(F 3 4) *(F 3 4)) --> NIL

> (UNIFY °((7 F) 4) *((? F) 4)) -=> ((? F) . (2 F))
> (OUTPUT-SHOULD-HAVE-BEEN NIL)

Pursuing suspect: (UNIFY *(? F) *(? F)) --> ((? F) . (? F))
Are the arguments to UNIFY correct? YES

Expanding structure of UNIFY.
Expanding structure of VAR-VAR-MATCH.
The bug is the call to (EQ V W) in VAR-VAR-MATCH.

Figure 8. An bug localized by Debussi.
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four function calls that compute data used by the predicates, and six function calls that
compute the result. Any one of these calls could be responsible for the bug.

The number of suspects can be further narrowed by appealing to the following pruning
method, which is closely related to the constraint suspension technique for hardware trou-
bleshooting described in [15]. Assuming that the current manifestation is due to a single bug
(this is not the same as assuming there is only one bug anywhere in the program, which is
certainly not very plausible for a large system), if every possible output of the suspect leads
to an erroneous result (including abnormal termination of the program), then that suspect
can be exonerated (removed from consideration). In other words, it is not possible to correct
the bug by changing this suspect.

For example, in the execution of the failing test case, the predicate (VAR? P) returns NIL.
To exonerate this suspect, Debussi considers what would happen if the predicate returned
a non-nil value instead. Since this also leads to an erroneous overall result, this predicate
is exonerated. In the example in Figure 8, this kind of pruning exonerates all five suspect
predicates. Furthermore, this allows the four calls computing values used by the predicates
to be exonerated as well, since their values are used only by the predicates.

Note that if the single-bug assumption turns out to be wrong in a particular instance,
Debussi may end up in the anomalous state of having no suspects left. In this situation, it
can either give up and notify the programmer, or try applying the same pruning method to
pairs of suspects, triples, and so on (this is liable to be too expensive for all but the smallest
programs). However, Debussi may also succeed in finding a bug using the simple pruning,
even when there is more than one, depending on the exact details of the situation.

In terms of CAKE, what this pruning technique is doing is forcing it to look for an
alternative proof of the failure of the test case that does not involve the given suspect.
Since CAKE is a limited reasoner, it is possible that the first proof it found had unnecessary
dependencies. For example, in CAKE’s initial symbolic execution, the result of a program
depends on the value (nil or non-nil) of every predicate that is tested on the execution path.
To exonerate a predicate, we see if assuming it produced the opposite value still leads to an
erroneous result.

To choose between the six remaining suspects, Debussi solicits additional information
from the user. Debussi chooses to ask first about the recursive calls to UNIFY using the
heuristic that user-defined functions are more likely to be associated with bugs than built-in
functions. Starting with the first (in execution order) of these calls, Debussi determines
whether the bug is in the recursive call to UNIFY by asking the user whether the inputs
provided are correct (see Figure 8). The user responds that they are correct. Since the
output of this call is already known to be incorrect (it is the same as the result of the
toplevel execution of UNIFY), this localizes the bug. Debussi continues by expanding this
call.

Things now proceed much as above except that, after predicate pruning, only one suspect
(VAR-VAR-MATCH P Q FRAME) remains. No questions need to be asked about the inputs and
output of this call, because they are connected directly to the inputs and output of UNIFY
and are therefore known to conflict (under the assumption that the data flow and control
flow in UNIFY is correct).

Debussi then proceeds to look in detail at the definition of VAR-VAR-MATCH. One of the
initial suspects at this level is the predicate (EQ V W), which returns NIL. Resimulating with
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this predicate returning T, Debussi discovers that UNIFY returns the correct value for the
test case. It therefore informs the user that the bug is this call (see Figure 8). Notice that
starting with the user’s initial declaration of a failing test case, Debussi only had to ask one
question to localize the bug.

The repair for this bug (which is the responsibility of the user) is to call EQUAL instead
of EQ. It is interesting to note that this bug was actually made by one of our students—we
suspect it was due to the fact that he had implemented a special reader macro, which allowed
him to type ?F for a variable instead of (? F)

Debussi differs from most other automated program debugging systems, such as [2, 25,
32, 38, 52, 54], which are built around libraries of patterns for correct and/or incorrect
programs. This knowledge-based approach renders these other systems more powerful in
the area where they are knowledgeable, but much less widely applicable. Many of these
other systems can also utilize their knowledge to suggest how to repair a bug. Debussi only
addresses the problem of localization.

Due to its reliance on reasoning from first principles, Shapiro’s system [55] for debugging
Prolog programs comes closest to Debussi. To localize a bug, Shapiro’s system performs
a binary search of the computation history, asking the user about the correctness of the
various intermediate results. This can sometimes work well, but fails to take advantage of
opportunities to prune the set of suspects.

5.2 Assistance for Design Evolution

Debussi has demonstrated the effectiveness of applying the Plan Calculus and CAKE’s dependency-
based reasoning facilities to assisting in the debugging of completed programs using concrete

test cases. We believe this approach can be extended to cover more of the debugging pro-
cess, l.e., bug detection and repair, and to deal with bugs earlier in the software process,

L.e., during design. More generally, Debussi illustrates the beginnings of a dependency-based
methodology for managing change (evolution) throughout the software process.

In the first year of the research, we will experiment with using Debussi to localize bugs in
partially designed programs. This extension should be fairly straightforward, since the Plan
Calculus is a wide-spectrum representation. Along with this, we will generalize the notion
of “test case” to include any partial specification. For example, a test case might say that if
the input to a routine is positive then its output is negative. The deductive capabilities of
CAKE will be crucial to using this kind of symbolic information.

In the second year of the research, we will investigate the use of clichés in debugging. This
is an area that we have explored in earlier work [54], but which we may now be able to improve
upon significantly using the automated recognition techniques described in Section 2. We
plan to consider both explicit “bug clichés,” and the use of near-miss cliché recognition to
detect bugs. It may also be useful to associate bug clichés with design clichés in the library.

In the third year of the research, we will investigate intelligent assistance for bug detection
and repair. For example, in the area of bug detection, it may be useful to associate test
generation information with design clichés. In the area of repair, we will explore the use of
incremental reasoning techniques to verify that a repair is successful.
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6 Conclusion

The preceding sections have covered a wide range of research topics, with a primary goal of
bringing out their synergy. Work in each of these four areas shares not only a philosophi-
cal outlook—the assistant approach and clichés—but are also using the same experimental
medium—the Plan Calculus and CAKE. This facilitates communication about shared prob-
lems and makes it possible to quickly exploit opportunities to share results.

Specific examples of expected synergy include the following (some of which have already
been pointed out above): Recognition and design can be viewed as inverse functions that
share the same library and representations. Design will eventually include debugging tech-
niques. Optimization techniques will compensate for inefficiencies introduced by cliché-based
design. Optimization may make use of recognition techniques to identify opportunities for
optimization. Debugging may make use of recognition techniques to recognize bug clichés.
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