
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

A.I. Memo No. 1102 March 1989

XP

A Common Lisp Pretty Printing System

by

Richard C. Waters

Abstract

xP provides efficient and flexible support for pretty printing in Common
Lisp. Its single greatest advantage is that it allows the full benefits of pretty
printing to be obtained when printing data structures, as well as when printing
program code.

XP is efficient, because it is based on a linear time algorithm that uses only
a small fixed amount of storage. XP is flexible, because users can control the
exact form of the output via a set of special ormat directives. XP can operate
on arbitrary data structures, because facilities are provided for specifying
pretty printing methods for any type of object.

XP also modifies the way abbreviation based on length, nesting depth,
and circularity is supported so that they automatically apply to user-defined
functions that perform output-e.g., print functions for structures. In addi-
tion, a new abbreviation mechanism is introduced that can be used to limit
the total number of fines printed.

Copyright co Massachusetts Institute of Technology, 1989

This report describes research done at the Artificial Intelligence Laboratory of the Mas-
sachusetts Institute of Technology. Support for the laborator 's artificial intelligence research
has been provided in part by the National Science Foundation under grant IRI-8616644 in
part by the IBM Corporation, 'in part by the NYNEX Corporation, in part by the Siemens
corporation, in part by the Alicroelectronlics and Computer Technology Corporation ad 'in
part by the Advanced Research Projects Agency of the Department of Defense under Office
of Naval Research contract N00014-88-K-048 '. The views and conclusions contained in this
document are those of the author, and should not be interpreted as representing the policies.
neither expressed nor iplied, of the sponsors.

Contents

1. Introduction . I

2. Pretty Printing-

Additional Printer ontrol Variables

Extensions to Output Functions . . .

3

3

4

3. Dynamic Control of the Arrangement of Output 6

Logical Blocks 7

Conditional Newlines . 10

Indentation . 13

Pretty Printing as Selection 14

Tabbing Within a Section 14

User-Defined Format Directives 15

A bbreviation . 17

Functional Interface 19

4. Pretty Printing Types of Objects '.)J 3

Pretty Printino, Functions 24

Pretty Printing Type Specifiers

5. Ugly details .

Doing Things Right

)-a I-j

. . . 32

Bibliography - - - - - - - - - - - - - - - 3 5'

Historical Note .

Functional Summary and Index

36

37

Acknowledgments. A number of people have ade iportant contributions to
the development of xP. In particular, K. Pitnian, C. Rich, Y. Feldinan, G. Steele, and
D. Moon, as well as J. Healy, R. Robbins, P. Aagnostopoulos, D. Chapnian, and B.
Morrison made suacrestions tat ed to a. uniber of very significant improvements in XP.

I

1. Introduction

xP is a portable pretty printer for Common Lisp. As a pretty printer for Lisp code,
xP has the advantage that it is fast and allows the user to easily change the way code is
formatted. Beyond this, unlike most pretty printers, XP provides comprehensive facilities
for pretty printing data structures.

Four levels of use. xP can be used at four different levels. At the lowest (weakest)
level, you merely have to install XP as described below. This wll give you the benefits
of more attractive and faster pretty printing. If this is all you want to do, you need not
read anything more than this introduction. However, you should take note of the issues
raised in the beginning of Section .

Moving to a slightly higher level, Section 2 describes several variables that can be
used to control XP and some simple additional functionalities provided by xP.

Section 3 exposes the heart of the approach taken by XP and describes a set of new
format directives that allows users to control the layout of their output dynamically 'in
response to the space available for printing it.

The highest level of using XP is discussed in Section 4 Facilities are provided for
specifying how particular types of objects should be pretty printed. These facilities can
be used to define (or redefine) the way program code and data structures are displayed.

Section describes a number of shortcomings of xP that stem from the fact that it is
supported as a portable package of functions and macros rather than being a standard
part of Common Lisp. A number of things cannot be supported quite as they should be,
because Common Lisp does -not provide all the necessary hooks. Section also describes
how proper integration with Common Lisp can be achieved.

Setting up XP. To use xP, the file containing it has to be loaded. At the MIT

AI Laboratory, XP resides 'in the file "b:>1m,lib>xp.lisp`. Compiled versions exist for
Symbolics and Lucid (Sun) Common Lp.

If a compiled version of this file does not exist at your site, one needs to be created.
Information about how to get this file via the ARPANET can be obtained by sending a
message to the author "dickoai. mit. edu". No other method of distribution is available.

AR of the functions and forms discussed below are defined in the package 11xp11 To
make these names easily accessible, you must use the package xp". The most convenient
way to do this is to call the function xp - :install, which 'also sets up some additional
features of XP.. The examples in this manual assume that the form (xp: -.install) has
been evaluated.

e xp: -. inst all &key (package *package macro T) shadow T) (remove nil) T

Calling this function sets up XP for use in the package :package. The argument
-.package can either be a package a package name, or a symbol whose name is the name
of a package. It defaults to the current pckage.

The package "XP" is used in :package. If .-macro is not nil, the readmacro dis-
patch character ... 11 p. 5) is set up. If :shadow is not nil, the symbols xp: :write,
xp: :print, xp: :prini, xp: :princ, xp: :pprint, xp: :format, xp-. :terpri, xp: :fresh-line,
xp :rite-line, xp :rite-string. xp-. .-write-char. p :write-to-string, xp: :princ-

Introduction

to-string, xp:-.prini-to-string, xp::finish-output, xp::force-output, xp:,C16ar-
output, and xp: : def struct are shadowing iported into :package. This introduces these

functions into -.package in place of the standard printing functions. If :shadow is nil you

wiRI have to refer to these functions with explicit package prefixes whenever you wish to

print something using P.
If :remove 'is not nil the effects of havina previously installed xP are undone. In

7 Zn

particular, the package is unused and any shadowing is undone. However, any changes

to the readtable are left in place.

XP son of PP 7 son of Gprint [5 6 son of #print is the latest in a line of pretty

printers that goes back 2 years. All of these printers use essentially the same basic

algorithm and conceptual interface. Further, except for #print, which was not used

outside of the MIT Ai Laboratory, each of these printers has had extensive use. XP has

been in experimental use as the pretty printer in C%,1U Common Lisp for onths. PP

has been the pretty printer in DEC ommon Lisp for the past 3 years. Prior to three

years ago, Gprint was used for 2 years as the pretty printer in DEC ommon Lisp. In

addition, Gprint has been the pretty printer in various generations of Symbolics Lisp

for upwards of years. Both the algorithms and the approach have survived the test of

time. A chapter describing the XP interface will appear in te next edition of 4 andL

this 'Interface 'is being considered as a formal extension to Common Lisp by the Common

Lisp standardization committee.

The basic pretty printing algorithm used by #print, Gprint, PP, and XP has been

independently developed by a number of people 2 31 in addition to the author. This

paper does not go into adetailed discussion of the algorithm since it is fully discussed

elsewhere (see 3 5]). However, it should be noted that the algorithm is an inherently

fast linear algorithm that uses very little storage. As a result, pretty printing need not

be significantly slower than ordinary printing.

The relevance of XP is not restricted to Common Lisp. Many of the ideas discussed in

thi's paper have a wider area of applicability. For instance, the mechanisms for allowing

the user to exercise control over the dynamic arrangement of output could be incorpo-

rated into almost any programming language (e.g., into the formatted output statements

of Fortran or PL/I) Smilarly, the echanisms for linking special pretty printina func-

tions with various types of objects could be introduced into almost any programming

environment, given the same kind of type information from the compiler that a ood

debu ger requires.

------- --

3

2. Pretty Printing

Additional Printer Control Variables

XP supports all the standard printer control variables (see W). In addition, it supports
several new control variables that are relevant to its printing method. None of these new
variables has any effect when *print-pretty* is nil.

e *print-dispatch* default value causes standard pretty printing

This variable holds a rinting dispatch table (see Section 4 that controls the way
pretty printing is performed. It is 'nitialized to a value that causes traditional Lisp
pretty printing. Altering this table, or setting *print-dispatch* to a different table
alters the style of pretty printing.

* *print-lines* default value nil

When not nil, this variable controls the number of lines that will be printed by a single
pretty printing event. If an attempt is made to pretty print more than *print-lines*
lines is, printed at the end of the last line and pretty printing prematurely halts.

(pprint I setq a b 2 c 3 d 4)

With *print-lines* 3 and line width 20 prints:

(SET A
2

C 3

Experience has shown that abbreviation based on the number of lines printed can be
much more useful than the traditional depth and length abbreviation mechanisms. This
is particularly true when te user wants to limit output to a small space. To do this with

depth and length abbreviation, the length and depth have to be limited to very small

values such as 3 or 4 This often has the unfortunate effect of producing output that

consists almost totally of #"s and ". . ."s grouped in parentheses. In contrast, limiting

the total number of lines printed to 3 or or even produces lecible otput. Seeing

the first few lines of output is usually ore informative than seems, only the top level

skeletal structure of the output.

print-miser-width default value 40

A fndamental problem ith pretty printing arises when printing deeply nested struc-

tures, As line breaks have to be inserted at deeper and deeper levels of nesting, the

indentation aets greater and greater. This causes the line width available for printin to

get saller and smaller u-ntil it is no longer possible to print, subsstructures in the space

available.

An approach to dealinfl, with this problem, which has been used at least since the

original Goldstein pretty printer, 1' is to introduce a special compact kind of layout

(called 'iniser' style) and o use tis style once the line width begins to et sall. The0 0

Pret ty Printing4

key idea behind miser style is that by trading off readability for compactness, it reduces
the width necessary for printing a structure and limits the increase in indentation when
further descending into the structure.

XP switches to an extra compact style of output whenever the width available for
printing a substructure is less than or equal to *print-miser-width*. If *print-miser-
width* is given the value nil, miser style is never used.

A constant default value of 40 for *print-miser-width*, irrespective of the right
margin, is used because the point at which miser style should be triggered does not
depend on the total line width, but rather on the length of the mnimal unbreakable
units in the output being printed. When pretty printing programs, the sze of these
units depends on the lengths of the symbols in the program. Experience suggests that
print-miser-width should be set at from two to four times the lenath of the typical
symbol.

e *print-right-margin* default value nil

When not nil, this variable specifies the right margin to be used when pretty printing.
By introd 'ucing line breaks, XP attempts to prevent any line of output from going beyond
print-right-margin.

The left margin for printing is set to the column position where the output begins (or
0 if this position cannot be determined). Except for unconditional newlines (see page 12)
and negative indentation (see page 13), XP will not allow anything but white space to
appear to the left of the left margin.

e *default -right -margin* default value 70
When *print-right-margin* is nil, XP queries the output stream, to determine the

width available for printing. However, there are some situations (e.g., printing to a string)
where the stream has no inherent width limits. In this situation, the right margin is set
to the value of *default-right-margin*, which must be an integer.

Extensions to Output Functions

XP alters the standard printing functions (see the description of xp - :install) so that
they operate via XP when (and only when) *print-pretty* is not nil. In addition, XP
provides some additional functionalities

e write ob ect &key :dispatch :right-margin -.lines :miser-width object

The list of keywords accepted by the standard output function write is extended by
adding four more keywords corresponding to the first four control variables above.

A neutral format drective. XP provides a new f ormat directive -W, which bares the
same basic relationship to write tat -S nd -k bare to prini and princ. In particular,
-W prints the corresponding argument obeying every printer control variable, rather than
overriding the value of *print-escape*. In addition, interacts correctly with depth
abbreviation, rather than resetting the depth counter to zero. To get the best results
when using XP you should use -W whenever possible instead of -S or -A.

Extensions to Output Functions 5

IV I -modifier, -wUnlike - and A, W does not accept parameters. If gven the colon i
binds *print-pretty* to T. If given the atsign modifier, -W binds *print-level* and
pr-int-length to nil.

Efficien 't support for formatted output. The control strings used by format are

essentially programs that perform printing. Given that almost all of these strings are

constants, there is no reason why they cannot be compiled into highly efficient code. In

fact, most languages other than Lisp have always compiled their format-like constructs.

However, every implementation of Common Lisp known to the author operates on f ormat
control strings in a purely 'Interpretive manner.

XP supports compiled f ormat strings through the combination of two echanisms.

The standard function f ormat (and the directives ""'? and -1 with no body) are extended

so that they can accept functional arguments in addition to standard f ormat control

strings. (This recovers the functionality of the original MacLisp format directive

The functions passed to format must accept the pattern of arguments shown below.

f ormatting-f unction stream &rest args =* unused-args

When f ormat (or `? or N wth no body) is called with a functional argument

instead of a control strina, it applies the function to an appropriate output stream and

the appropriate list of arguments. The function should perform whatever output is

necessary. In addition, it should return a list of any of the input arguments that it does

not use when producing this output. (This is needed for the proper operation of the

directives Q? and -- I with no body.)

A function to be passed to format can be defined in any way desired. However, xP

supports a new readmacro character ... " that makes it possible to obtain the efficiency

of using a function as the second argument to f ormat without loosing the compactness of

format strings. The string following #" in this notation is identical in every respect to

a f ormat control string. The readmacro merely translates 'it 'Into an equivalent function

that follows the conventions discussed above. (As in any string, any instances of ""'

in the delimited region must be preceded by 'T'.) Note that ... 11 is not limited to

appearing only as the second argument to format. It can appear anywhere-e.g., passed

to some other function that will eentually pass it to format or used for some totally

different purpose.

(format T #`%Prices: 1.5 323 450)
(format T #'(lambda (stream &rest args)

(terpri stream)
(write-string "Prices: stream)
(loop (prini (pop args) stream)

(if (null args) (return nil))
(write-string stream))

args)

1.50 323 450)

Using compiled format control strings instead of interpreted ones approximately

triples the speed of xP when running on te Symbolics Lisp Xiachine.

Dynamic Control of the Arrangement of Output6

3. Dynamic Control of the Arrangement of Output

Through the introduction of several additional format directives, xP allows the user

to exercise precise control over what should be done when a piece of output is too large

to -fit in the lne width available for displaying it. The discussion below assumes that

the reader has a basic understanding of the function f ormat and the standard f ormat

directives, as described in 4.

Basic concepts. Three concepts underlie the way xP supports the dynamic ar-

rangement of output-logical blocks, conditional newlines, and sections. The positions

of logical blocks and conditional newlines are specified by eans of f ormat directives. To-

gether, these directives divide the output as a whole into a hierarchy of sections within

sections.
The first line of Figure 31 shows a schematic piece of output. The characters in the

output are represented by -"s. Te positions of conditional newlines are indicated by

digits. The beginnings and ends of logical bocks are indicated by <" and >" respec-

tively.

The output as a whole is always treated as a louical block and forms one outermost)

section. This section is indicated by the O's on the second line of Figure 31. Each

conditional newline defines two additional sections (one before it and one after it) and is

associated with a third (the section immediately containing it).

The section after a conditional newline consists of: all the output up to, but not

including, (a) the next conditional newline imediately contained in the same loorical

block; or if (a) 'is not applicable, (b) the next newline that is at a lesser level of nesting

in logical blocks; or if (b) is not applicable, (c) the end of the output as a whole.

The section before a conditional newline consists of: all the output back to, but not

including, (a) the previous conditional newline that is immediately contained in the same

logical block- or if (a) is not applicable, (b) the beginning of the, immediately containing

logical block. The last four lines in Figure 31 indicate the sections before and after the

four conditional newlines.

The section immediately containing a conditional newline is the shortest section that

contains the conditional newline in question. I Figure 31 te first conditional newline

is immediately contained in the section arked with O's, te second and tird conditional

newlines are immediately contained in the section before the fourth conditional newline,

and the fourth conditional newline is imediately contained in the section after the first

conditional newline.

000000000000000000000000000

22 222
333 3333

44444444444444 44444

Figure 3: Example of logical blocks, conditional newlines, and sections.

Logical Blocks 7

It also makes sense to talk about the section immediately containing a given logical
block-i.e., the shortest section containing the logical block. Note that this section
immediately contains every conditional newline that is imediately contained in the
block. In Figure 31, the outermost logical block is immediately contained in the section
marked with O's, the second logical block 'is immediately contained in the section before
the fourth conditional newline, and the innermost logical block 'is immediately contained
in the section after the first conditional newfine.

Whenever possible, xP prints the entire contents of a given section on the same line.
However, if a section is too long to -fit in the line width available, XP inserts line breaks
at one or more conditional newline positions within the section-printing the section on
more than one line. The pretty printing algorithm uses internal buffering of the output
so that it can determine which way to print a section. The algorithm is fast, because the
amount of lookahead required is strictly limited by the maximum line width available for
printing.

Logical Blocks

if > is used to terminate a >, the directive delimits a logical block In addition,
the directive descends into the corresponding f ormat argument (which should be a list)
in the same way as the standard directive (iterate once over list).

(format T #+ '<Roads <W, :-'W'-.> Town -<-Vw-.>'.-> +11
((elm cottonwood) (boston)))

With line width 50 prints:

+ Roads ELM, COTTONWOOD Town BOSTON

With lne width 25 prints:

+ Roads ELM, COTTONWOOD
Town BOSTON

With line width 21 prints:

+ Roads ELM,
COTTONWOOD

Town BOSTON

(As discussed in the next section, the directive indicates a conditional newline.
An instance of is replaced b a line break when the following section cannot fit on

y 0
the end of the current line. Whenever line breaks are introduced, indentation is also

introduced so that each line in a logical block beoins in the same column as the logical

block as a whole.)
If the atsian odifier is used wit It > the directive operates o the remaining

format arguments in the same way as the standard directive Af -I (iterate once over

remaining aratiments), except that all of the remaining arguments are always consumed

by te <. >, wether or not they are atually used by the format string nested in the

directive. The directive (termination test) can be used to exit front > just as

it can be used to exit from - . - .

Dynamic Control of the Arrangement of Output8

(format T # '<Roads <W'-, '-.-'W'.-> '-.- Town <'W'-.>':> +11
I (elm) I boston))

With line width 21 prints:

+ Roads ELM
Town BOSTON

The portion of a f ormat -control string enclosed in a < > directive can be divided

into segments A< Mix-; body-; sufflx- > by directives. It 'is an error for the enclosed

portion to be divided into more than three segments. If the portion is only divided into

two segments, the suffix defaults to the null string. If the portion consists of only a single

segment, both the prefix and the suffix default to the null string. The prefix and suffix

must both be constant strings. They cannot contain format directives. The body can be

any arbitrary f ormat control strina

When a <pre-fix--body--stifEx-:> directive is processed, the prefix is printed out

just before the logical block begins and the suffix is printed out just after the logical

block ends. This behavior is the same as if the characters in the pre-fix and suffix simply

appeared before and after the < - > directive, except for the way error situations

are handled and the way interacts with depth and circularity abbreviation (see

page 17).

(format T #+ '<Roads <;'W Town <A';'W--1-.->-:> +11
'((elm cottonwood) boston))

With line width 21 prints:

+ Roads [ELM
COTTONWOOD]

Town BOSTON

An interesting additional feature of <... - > 'is illustrated by the example' above.

When a > directive is applied to an argument that is not a list the directive

is ignored and the offending argument is printed using -W. Among other things, this

means that while the argument is printed, the prefix and suffix are not. The soft fail-

ure of - <. . -.- > when presented with non-lists makes it possible to write robust format

strings that produce reasonable output for a wide range of possible arguments. Tis is

particularly useful in debugging situations.

During the processing of the format strina nested in <... > arguments are taken

one by one from the list passed to >. If an attempt is made to access an argument

at a time when the rmaining portion of this argument list is not a cons then

is inserted in the output, -W is used to print ot the remaining argument list, and the

processing of the loaical block is terininated, except for printing the suffix (if any). This

makes it, easier to write f ormat strinas tat are robust in the face of malformed argument
ZD 0

lists. (Note that -- exits onl when te remaining argument list is nil.
Y 0

(format T #+ '<Roads <;-W'- ':-'W-;]':> ':- Town
,((elm cottonwood) boston))

With line width '2II prints:

+ Roads ELM
COTTONWOOD]

Town BOSTON

Logical Blocks 9

If the colon modifier is used with >, the prefix and sffix default to (10 and
11) 11 (respectively) instead of to the null string. Note that the prefix and suffix are printed
out even when the argument corresponding to - > is an empty list.

(format T "+ -<Roads :<'W '-._"W':> Town ':<-Wm-.>--.>
'((elm cottonwood) 0)

With lne width 21 prints:

+ Roads (ELM
COTTONWOOD)

Town 0

If the directive Q; is used to terminate the prefix in a <... - > directive, the prefix is

treated as a per-line prefix. A per-line prefix is printed at the beginning of every line in

the logical block. rather than just before the start of the block as a whole. This is done

in such a way that the prefixes on subsequent lines are directly below the occurrence of

the pre-fix on the first line.

(f ormat T 'Q; Roads <= `0 `W -W"' > Town "'<'W`m >
,((elm cottonwood) (boston)))

With line width 1150 prints:

Roads = ELM, COTTONWOOD Town BOSTON

With line width 25 prints:

Roads = ELM,
= COTTONWOOD

Town BOSTON

If a <... - > directive is terminated with -: o, then a is automatically inserted

after each group of blanks immediately contained in the body (except for blanks after a

'<newline> directive). This makes it easy to achieve the equivalent of paragraph filling.

(format T #`.<.:(-W-) street goes to (main boston))
(format T <':(-W-) -:-street -:-goes -.-- to

,(main boston))

With line width 12 prints:

Main street
goes to
Boston.

To a considerable extent, the basic form of the directive is incompatible with

the dynamic control of the arranorement. of output by -W, -I and -:T. As a

result, it is a error for any of these directives to be nested within (Note that

in standard f ormat it nia-kes little sense to have anythinc, hat can cause a line break
withi a and does not dfine what would happen if this were the case.)

L i

Beyond tis.. it, is also an error for the <... form of to be used at

all in conjunction with anv of these directives. This is a functionality that is rendered

obsolete by per-line refixes in

10 Dynamic Control of the Arrangement of Output

Conditional Newlines

The f ormat directive is used to specify conditional newlines. By means of the colon
and atsign modifiers, the directive can be used to specify four different criteria for the
dynamic insertion of line breaks: linear-style, fill-style, miser-style, and mandatory-style.

By default, whenever a line break is inserted by a conditional newline, indentation is
also introduced so that the followina line begins in the same column as the first character
in the imediately containing logical block. This default can be changed by using the
directive -I (p. 13).

Linear-style conditional newlines. Without any modifiers, -_ specifies linear-
'le insertion of line breaks. This stvle calls for the subsections f a logical block to be

sty .1
printed either all on one line or each on a separate line.

Linear-style conditional newlines are replaced by line breaks if and oly if the im-
mediately containing section cannot be printed on one line. As soon as the line width
available becomes less than the length of a given section, every linear-style conditional
newline in it is replaced by a line break.

(format T #`W :<LIST '0<'W '-'W)(first second third))

With line width > 25 prints:

(LIST FIRST SECOND THIRD)

With line width < 25 prints:

(LIST FIRST
SECOND
THIRD)

Miser-style conditional newlines. If the atsign modifier is used with -, the
directive specifies miser-style insertion of line breaks. Miser-style conditional newlines
are replaced by line breaks if and only if miser style is in effect 'in the immediately
enclosing logical block and the immediately containing section cannot be printed on one
line. Miser style is in effect for a given logical block if and only if the the starting column
of the logical block is less than or equal to *print-miser-width* columns from the end of
the line. (Note that the C' in the example below i's not in the lo(rical block, but rather

before it.)

(format T :<LIST 0_'0<'W -W _W-`:>w:>" (first second third))

With line width 10 and *print-miser-r;idth* < 9 prints:

(LIST FIRST
SECOND
THIRD)

With line width 10 and *print-miser-width* > 9 prints:

(LIST
FIRST
SECOND
THIRD)

Even in iser style, the pretty printing algorithm is ot uaranteed to succeed in

I 0 0
keeping te outp-ut within the line width available. In particular, line break's- are never

... ----

Conditional Newlines 11

inserted except at conditional newline positions. As a result, a given output requires a
certain minimum amount of line width to print it. If the amount of line width available
is less than this amount, characters are printed beyond the end of the line.

(GTRINT [5] supported an additional mechanism for dealina with deeply nested struc-
tures. When indentation reduced the line width to a small percentage of its initial value

0 I
major program structures (such as prog and lt) were radically shifted to the left by re-
ducing the indentation to nearly zero. This violated standard Lisp pretty printing style,
but significantly increased the line width available for printing. Unfortunately, experi-
ence showed that, though this was very useful in some situations, it was, in general, more
confusing than helpful.)

Fill-style conditional newlines. If the colon modifier is used with the directive
specifies fill-style insertion of line breaks. This style calls for the subsections of a section
to be printed with as any as possible on each lne.

Fill-style conditional newlines are replaced by line breaks if and only if either (a)
the following section cannot be printed on the end of the, current lne, (b) the preceding
section was not printed on a single line, or (c) the immediately containing section cannot
be printed on one line and miser style is in efFect in the immediately containing logical
block. If a logical block is broken up into a number of subsections by fill-style conditional
newlines, the basic effect is that the logical block 'is printed with as many subsections as
possible on each line. However, if miser style is in effect, fill-style conditional newlines
act like linear-style conditional newlines.

For instance onsider the example below. The format control string shown uses the
standard directives -Qf -1 (iterate over arguments) and (terminate iteration) to
decompose the list ar(rument into pairs. Each pair 'in the list is itself decomposed into
two parts using a > directive. A space and a are placed after each pair except
the last.

(format T #"(LET
'((x 4 (*print-length* nil) (z 2 (list nilM

With line width 35 prints:

(LET ((X 4 (*PRINT-PRETTY* NIL)
(Z 2 (LIST NIL))

With line width 22 prints:
(LET ((X 4)

(*PRINT-LENGTH*
NIL)

(Z 2)
(LIST NIL))

Note that when the line width is 35, only one line break 'before "'(Z 2 has to be
inf roduced. Once this is one "(Z 2 " and "(LIST IL))"' can both fit on the next line.

t even thouah
Also note that when the line width 's 25, there 'is a line break after "NIL)

"(Z 2 would fit on the end of the previous line. The line break is introduced, due to

criteria (b) in the definition above. This criteria is used, because many people jdge that
output of te following form violates the basic aesthetics of Lisp pretty printing.

I- --

12 Dynamic Control of the Arrangement of Output

(LET ((X 4)
(*PRINT-LENGTH*

NIL) (Z 2)
(LIST NIL))

It is often useful to ix different kinds of conditional newlines together in a single
logical block. In general, this works well without any conflicts arising between the ways
the various conditional newlines work. However, it 'is not a good idea to have a miser-
style conditional newline immediately after a fill-style conditional newline. The problem
is that the miser-style conditional newline will terminate the section following the -fill-style
conditional newline. As a result, no account will be taken of what follows the miser-style
conditional newline when deciding whether or not to insert a line break at the fill-style
conditional newline. This can cause the output after the nil'ser-style conditional newline
to extend beyond the end of the line.

Mandatory-style conditional newlines. If the colon and atsian modifiers are
both used with the directive specifies mandatory insertion of a line break. Aong
other things, this implies that none of the containing sections can be printed on a single
line. This will trigger the insertion of line breaks at linear-style conditional newlines
in these sections. With regard to indentation, mandatory-style conditional newlines are
treated 'ust like any other kind of conditional newline. This makes them different from
unconditional newlines.

Unconditional newlines. There are at least six ways to introduce a newline into
the output without using -. You can use the directives -% and -&. You can include a
newline character in a format string. You can call terpri or print. You can print a string
that contains a newline. Each of these ethods produces an unconditional newline that
must always appear in the output. Like a mandatory conditional newline, this prevents
any of the containing sections from being printed on one line.

It is not completely obvious how unconditional newlines should be handled. There
are two very suggestive cases, which unfortunately contradict each other. First, suppose
a program containing a string constant containing a newline character is printed out and
then read back in. To ensure that the result of the read will be equal to the original
program, it is iportant that indentation not be 'Inserted after the newline character in
the string. On the other hand, suppose that the same program is being printed into
a file by a format string specifying a per-line prefix of with the intention that
the program appear in the output as a comment. To ensure that this comment will not
interfere with subsequent readinty from te file, it is important that the prefix be printed
when the newline i the string is printed.

In an attempt to satisfy the spirit of both of te cases above. XP applies the followino,117)
heuristic. Indentation is used only if a newline is created with

(format T #11-:<LIST -�<-W _W':>':>" '(first "string on
two lines"))

With line width 100 prints:

(LIST FIRST
11string on

two lines")

Indentation 13

However any per-line prefixes (and any indentation preceding them) are always printed7 C>

no matter how a newline originates.

(format T #"'0<-; '--:<LIST Q<-W '(first "string on
two lines"))

With line width 100 prints:

(LIST FIRST
string on

two lines")

Discarding trailing spa6es. onditional newline directives are typically preceded

by some amount of blank space. This is done so that the subsections of a section will

be visually separated when they are printed on a single line. However, without anything

more bing said, this would lead to the printing of unnecessary blank spaces at the end

of most lines when line breaks are inserted. In the interest of efficiency, xP suppresses

the printing of blanks at the end of a line if (and only if) the line break was caused by

a -_ directive. For instance, there are no blanks at the end of any of the lines in the

examples above, except that, if there are blanks after the word "on" in the string in the

two unconditional newline examples, these blanks appear in the output.

Indentation

By default, the second and subsequent output lines corresponding to a logical block

are indented so that they line up vertically under the first character in the block. The

format directive -I makes it possible to specify'a different indentation.

The directive I specifies that the indentation within the immediately containing

logical block should be set to the column position of the first character in the block

plus n. If omitted, n defaults to zero. The parameter can be negative, which will have

the effect of moving the indentation point to the left of the first character 'in the block.

However the total indentation cannot be moved left of the beginning of the line or left

of the end of the rightmost per-line prefix.

The directive -n:I is exactly the same as -nI except that it operates relative to the

position in the output of te directive itself, rather than relative to the position of te

first character in the block.

As an example of using -I, consider the following: If the line width aailable is 2,
the -_ directive is replaced by a line break. The 1I directive specifies that the statement
in the bod of the defun should be printed at, a relative indentation of I in the logical

y Zn

block. If the line width is 15, the is also replaced by a line break. The - I directive

before the printina the function name causes the argument list to be lned up uder the

function name. The column position corresponding to the I is determined dynamically
as the output is rinted.

(format T V :<'W 0I'W ..- ,w '1I'_-W':>"
1(defun prod (x y) (* x yM

With line width '0 prints:

(DEFUN PROD (X Y) (* X Y))

14 Dynamic Control of the Arrangement of Output

With line width 25 prints:

(DEFUN PROD (X Y)
X M

With line width 15 prints:

(DEFUN PROD
(Y)
Y)

Changes in indentation caused by a -I directive do not take effect until after the

next line break. As a result, it is iportant that the -I directives in the example above

precede the -_ directives they are supposed to affect. It should also be -noted that, a -I

directive only affects the indentation in the imediately containing logical block.

In miser style, all -I directives are ignored, thereby forcing the lines corresponding to

the logical block to line up under the first character in the block.

With line width 15 and *print-miser-width* 20 prints:

(DEFUN
PROD
(Y)

Y)

Pretty Printing as Selection

Stepping back a moment, it is useful to reflect on how the format directives above

interact to support pretty printing. The > and -_ directives in a format control

string divide the output up into a hierarchy of sections within sections. The -_ and

""'I directives simultaneously specify three ways (on one line, on multiple lines, and in

miser style) for printing each section. The job of the pretty printer boils down to se-

lecting (based on the length of the section, the line width available, and the value of

print-miser-width) which of the three ways is appropriate for printing each section.

The format directives have been designed so that it is relatively easy to specify three

different ways to print a logical block in a single format control strina. In particular,

except for line breaks, white space, (and per-line prefixes), the characters to be printed

are exactly the same in each of the three styles. The -_ and -I directives specify how

the logical block sections are to be arranged when printed on multiple lines and in miser

s t yle.

Many other kinds of pretty printing directives could have been supported-for exam-

ple, arbitrary sections of text that are otput oly Nvhen a section is printed on ultiple

lines. xP supports onl the limited set of irectives above, because experience has shown

them to be a aood compromise between the requirements of expressive power., easy un-

derstandability, and efficiency.

Tabbing Within a Section

The standard format directive -T is extended so that it supports the colon modifier in

addition to the atsign iodifter. If the colon odifier specified,, the tabl-)ing computationI

User-De-fined Format Directives 15

is done relative to the beginning of the immediately containing section, rather than
with respect to the beginning of the line. (When this computation is performed, any
unconditional newlines in the section are ionored.) As an example of using T, consider

the following. Each street name is followed by a -8:T, which ensures that the total width

taken up will be a multiple of 8. Fill-style conditional newlines are used to put as many

streets as possible on each line.

(format T #"-.<Roads
I (elm main maple center))

With line width 25 prints:

Roads ELM MAIN
MAPLE CENTER

The fact that -: T operates solely within the immediatel- containing section means

that the number of spaces to insert is independent of whatever 'Indentation is in effect.

In the example above, a column spacina of is used, but the entire table is shifted over

6 columns. (Note the way the -- delimits the beginning of the section containing the

first road.)

(The fact that -:T operates solely within the immediately containing section and ig-

nores unconditional newlines means that the amount of space to insert can be determined

before deciding which (if any) conditional newlines have to be replaced wth line breaks.

This is essential for the efficient operation of the pretty printing algorithm.)

When the normal directive T (without a colon) is processed, tabbing is computed

relative to the beginning of the line and all conditional newlines are 'ignored. (Again, this

is important so that the number of spaces to insert can be determined before making any

decisions about conditional newlines.)

As a practical matter, one should not use -T after a conditional newline nor 11:T after

an unconditional newline.

User-Defined Format Directives

XP provides a mechanism for allowing the user to define new format directives. In

a somewhat simplified form, this revives a feature of f ormat that was left ot when

Common Lisp was initially developed.

XP allows a format strino, to contain a directive of the, form -/name/. When this is

the case, it is assumed that a function named ame has been defined. This function must

accept the pattern of arguments shown elow. Name cannot contain any instances of

In addition, the P's ust be sed even if the ame only has one character. Amonor

other things this means tat this echanism cannot, e used to redefine the standard

format directives.)

name strea.rn arg colon.? atsian? &rest parameters =�- ionored
The colon modifier the atsian modifier., and arbitraril man parameters can be

I 0 Y y
specified with the /ame/ directive. This information, along with h otput stream

and one argument from the current araument list, are passed to the fnction name. The

input colon? is T if and only if the colon modifier was specified. The input atsiqn? is T if

, ---- -- --- -

16 Dynamic Control of the Arrangement of Output

and only if the atsign modifier was specified. The function name should perform whatever
operations are required to print arg into stream. Any value returned by the function is
ignored.

Packages. A key problem with -/name/ directives derives from the fact that, as
written by the user, ame is a string, not a symbol. This string has to be converted into
a symbol to identify the function. The question is, what package should this symbol be
in? You can write a directive of the form Ipackage:namel, in which case the package
is explicitly specified and there is no problem. However, if no package name is specified,
a default package has to be chosen.

In Common Lisp, symbols without explicit package prefixes are placed in the package
that is contained in the variable *package* at the oment when the symbol is first read.
To continue this policy, name should be placed in the package that is contained in the
variable *package* at the moment when the format string is first read. If a -/name/
directive appears in a format strinor specified using ... 11, then this correct behavior is
obtained.

Unfortunately, if -/name/ appears in a format string specified using simply ...
then name is placed in the package that is contained in the variable *package* at the
moment when the format string is first evaluated. It is very possible that this package
will not be the same as the one in effect when the string was read. As a result, it is
advisable to use #,,. whenever using - namel directives.

Special format drectives for lists. xP provides three special format directives
for printing lists. These are defined and accessed using the mechanisms for user-defined
format directives described above.

The directive /linear-style/ prints out the elements of a list either au on one line
or each on a separate line. parentheses are printed around the list if the colon modifier
is specified.

(defun linear-style (stream list &optional (colon? T) atsign?)
(declare (ignore atsign?))

(if colon?
(format stream list)
(format stream list))),

(format T #`V :/linear-style/" '(one two three))

With line width 15 prints:

(ONE TWO THREE)

With line width 14 prints:

(ONE

TWO

THREE)

The directive -/fiii-style/ prints ot the elements of a, list with as any elements

as possible on each line. Except for the fact that it, uses instead of it is identical

to '/linear-style/.

Abbreviation 17

(format T #`/fill-style/" '(one two three four five))

With line width 25 prints:

ONE TWO THREE FOUR FIVE

With line width 15 prints:

ONE TWO THREE
FOUR FIVE

The directive -/tabular-style/ is similar to -/f ill-style/, except that it prints the

elements of the list so that they line up in a table. In addition to the colon modifier,

'/tabular-style/ takes a parameter (default 16) that specifies the width of columns in

the table.

(f ormat T #'8: /tabular-styleP I (one two three f our f ive))

With line width 20 prints:

(ONE TWO
THREE FOUR
FIVE)

Abbreviation

xP fully supports abbreviation controlled by *print-level*, *print-length*, and

print-circle. In addition, see Section 2 XP supports a new abbreviation mechanism

that limits the total number of lines printed. All four mechanisms are supported in such

a way that they automatically pply to user-defined functions that perform output.

Depth abbreviation. XP obeys *print-level* in its internal operation. In addition,

it makes it very easy to write f ormat control strinas that obey *print-level*. This

is done by basing depth abbreviation on the concept of logical blocks. Whenever a

- <. - > directive is encountered at a dynamic nesting depth in logical blocks greater

than *print-level*, #" is printed instead of the block. In addition, the argument (or for

-�<... - > arguments) that would have been consumed by the directive are skipped.

The following example illustrates how <... " > supports depth abbreviation. The

most important feature of the example is tat it shows that depth abbreviation is con-

trolled by the dynamic nesting of <. - > directives, not their static nestin'g. In the

second output shown, the statically outermost instance if <. . - > in '/linear-style/

(p. 22) is at a dynamic nesting depth of 3 (ote that since there is an iplicit log-

ical block dnamically wrapped around the entire output, the dynamically outermost

instance of > is at a dynamic nesting depth of t

(format T #+ :<-W :<'W -/1inear-sty1e/--.>--.> + (2 3)

With *print-level* nil prints:

+ (2 3

With *print-level* 2 prints:

+ (2)) +

-------- --

Dynamic Control of the Arrangement of Output18

Length abbreviation. xP obeys *print-length* in its internal operation. In ad-

dition, it makes it very easy to write format control strings that obey *print-length*.
This is done by basing length abbreviation on the concept of logical blocks.

provides automatic support for length abbreviation. If *print-length* is
not nil, a count is kept of the umber of arguments used within the >. If this

count ever reaches *print-length*, is 'inserted in the output and the processing

of the logical block is terminated, except for printing the suffix (if any). As with depth

abbreviation, the processing depends on dynamic relationships, not static ones.

(format T #10+ wl--.> +)(2 3 4 5))

With *print-length* nil prints:

+ (2 3 4 5) +

With *print-length* 2 prints:

+ (2 ...

Circularity abbreviation. xP oeys *print-circle* in its internal operation. In

addition, it makes it very easy to write f ormat control strings that obey *print-circle*.
This is done by supporting circularity abbreviation through the combined actions of W

and <... - >.

In situations where *print-circle* is not nil, the following extra processing is per-

formed. When -W is applied to a non-list, a check is made to see whether the argument

has previously been encountered. If so, an appropriate #n# marker is printed out instead

of printing the argument. Similarly, when a <... - > is applied to a list, a check is made

to see whether the list has previously been encountered.

In addition, if an attempt is made to access an argument from the list passed to

M > at a time when the remaining portion of this list has already been encountered

during the printing process, ". #i#" is inserted in the output and the processing of the

logical block is terminated, except for printing the suffix (if any). This catches instances

of cdr circularity in lists.

(format T #+ :<'Of-Ww- m':> +1 #l=(2 1 3 . #1#))

With *Print-circle* T prints:

+ #1=(l 2 #1 3 #1# +

With *print-circle* T and *print-length* 2 prints:

+ (2 +

Circularity detection is an inherently slow process. In particular, two entire passes

have to e made over the output oe to determine what #n= markers should be printed

and another to perform the actual printing. All and all, setting *print-circle* to T
more than doubles the time required for printing using XP and should be aoided unless0
strictly ecessary. In te interest of efficiency, xP does not print circularity abreviation

markers in situations where other abbreviation methods hide the circularity. Tis is

illustrated in the last part of te example above.

For a format string to correctly support circularity abbreviation, every part of the

object being printed must be seen 1)y an occurrence of or (If some part is

Functional Interface 19

skipped (e.g., printed with -), XP will fail to detect circularities involving that part.)
(The above criteria are also required for depth and length abbreviation to be handled in
a completely correct way.)

Reprinting an abbreviated object. XP keeps track of the last pretty printing event
that lead to abbreviation due to *print-level*, *print-length*, or *print-lines* A
hook, is provided for obtaining this information. Using this hook, mechanisms can easily
be iplemented for reprinting abbreviated objects 'in full (see page 32).

9 *last-abbreviated-printing*

This variable records the last printing event where abbreviation occurred. Funcalling
its value (e.g., after turning off abbreviation) causes the printing to happen a second
time.

Functional Interface

The primary interface to XP's operations for dynamically determining the arrange-
ment of output is provided through f ormat. This is done, because f ormat strings are

typically the most convenient way of interacting with xP. However, X's operations have

-nothing inherently to do with format per se. In particular, they can also be accessed via

the six functions and macros below.

within-logical-block (stream-symbol list &key :pref ix -.per-line-pref ix : suf f ix)

&body body =:�- nil

In the manner of <. - - > this macro causes printing to be grouped into a logical

block. The value nil is always returned.

The argument stream-symbol must be a symbol. If it is nil, it is treated the

same as if it were *standard-output*. If it is T, it is treated the same as if it were

terminal-io. The run-time value of stream-symbol must be a stream (or nil eaning

standard-output or t meaning *terminal-io*). The logical block is printed into this

destination stream.

Within the body, stream-symbol is bound to a special kind of stream that supports

dynamic decisions about the arrangement of output and then forwards the output to the

destination stream. All and oly the output sent to stream-symbol is treated as being in

the logical block. (It is an error to send any output directly to the underlying destination

stream.)

The : suff ix, .-pref ix, and :per-line-pref ix must all be expressions that (at run

time) evaluate to strings. The argument :suffix (which defaults to the null string)

'fies a suffix that is printed just after the loaical block. The aryUnlent :pref ix

specifies a prefix to be rinted before the beginning of 'the logical block. If te argu-

nient :per-line-prefix is supplied, it specifies a prefix that is printed before the block

and at he e-Yinning of ach new line in the block. It is an error for :prefix and

-.pre-line-pref ix to both. e spplied. If neither is supplied, a : pref ix of te ull string

is assumed.

The argument list is interpreted as being a list tat te bo(�y is responsible for print-

ing. If list is not a list, it is printed using write on streani-svinbol -,and the bodv is

20 Dynamic Control of the Arrangement of Output

skipped along wth the printing of the prefix and suffix. If *print-circle* is not nil
and list is a cons that has already been printed by or within a dynamically containing
logical block, then an appropriate #n# marker is printed on stream-syrzibol and the body
is skipped along wth the printing of the prefix and suffix. (If the bodyis riot responsible
for printing a list, then te behavior above can be turned off by supplying nil for the
list argument.)

If *print-level* is not nil and the logical block 'is at a dynamic nesting depth of
greater than *print-level* in logical blocks, #" 'is printed on stream-symbol and the
body is skipped along with the printing of the pre-fix and suffix.

The body can contain any arbitrary Lisp forms. All the standard printing functions
(e.g., write, princ, terpri) can be used to print output into stream-symbol. Within a
logical block, these functions interact correctly with *print-circle* and *print-depth*.

From the above, it can be seen that within-logical-block supports all of the func-
tionality of <... - > except for the automatic introduction of fill-style conditional new-
lines supported by <... :,o. This feature is omitted, because it is a transformation on
format strings rather than a printing operation.

9 conditional-newline kd &optional (stream *standard-output*) =:�* nil

The function conditional-newline supports the functionality of -. The stream
argument (which defaults to *standard-output*) follows the standard conventions for
stream arguments to printing functions (i.e., nil can be used to mean *standard-output*
and T can be used to mean *terminal-io*). If stream is a special stream bound by
within-logical-block a conditional newline is sent to stream. Otherwise, conditional-
newline has no effect. The value nil is always returned.

The kind argument specifies the style of conditional newline. It must be one of linear
(__), ..fill (-:-), -.miser (-�-), or :mandatory

* logical-block-indent relative-to n &optional (stream *standard-output*) ==�- nil

The function logical-block-indent supports the functionality of -I. The stream
argument (which defaults to *standard-output*) follows the standard conventions for
stream arguments to printing functions. If stream is a special stream bound by within-
logical-block, logical-block-indent specifies the indentation within the innermost en-
closing logical block. Otherwise, logical-block-indent has no effect. The value nil is
always returned.

The argument n specifies the amount of indentation. If relative-to is :block this
indentation is relative to the start of the eclosing block (as for -I). Alternatively, if
relative-to is :current, te indentation is relative to the current output position in the
immediately containing section (as for -: I). It is an error for relative-to to take on any
other value.

* logical-block-tab kill(] colmun colinc &optional (stream *standard-output*) =� il

The function logical-block-tab supports the functionality of -T. The stream arau-
nient (which defaults to *standard-output*) follows the standard conventions for stream
arguments to printing fnctions. If stream is a special stream bound by within-logical-

Functional Interface
4.4') 1

block, tabbing is performed. Otherwise., logical-block-tab has no effect. The value nil
is always returned.

The arguments colnum and colinc correspond to the two numeric parameters to -T.

The kind argument specifies the style of tabbing. It must be one of -. line (-T), :block
T), -. line-relative OT), or :block-relative (-: OT).

e logical-block-pop args &optional (stream *standard-output*) =�- item

The macro logical-block-pop is identical to pop except that, when used in conjunc-

tion with within-logical-block, it supports *print-length* and *print-circle*. It is

an error to use logical-block-pop anywhere other than syntactically nested within a call

on within-log ical-block.

The argument args must be a symbol or expression acceptable to pop. The stream

argument (which defaults to *standard-output*) follows the standard conventions for

stream arguments to printing functions. f stream is a special stream bound by within-

logical-block, then logical-block-pop performs the special operations described below.

Otherwise, logical-block-pop is identical to pop.

Each time logical-block-pop is called, it performs three tests. First, it checks to

see whether args is a cons. If not, is printed on stream, args is printed on stream

using write, and the execution of the immediately containing within-logical-block is

terminated except for the printina of the suffix. Second, if *print-length* is nil and

logical-block-pop has already been called *print-length* times wthin the immediately

containing logical block, is printed on stream and the execution of the immedi-

ately containing within-logical-block is terminated except for the printing of the suffix.

Third, if *print-circle* is not nil, args 'is checked to see if it is a circular reference. If it

is7 ". followed by an appropriate #iz# marker is printed on stream and the execution of

the immediately containing within-logical-block is terminated except for the printing

of the suffix. If all three of the tests above fail, logical-block-pop pops the top value

off of args and returns this value.

logical-block-count &optional (stream *standard-output*) =:�- nil

This macro is identical to logical-block-pop except that it does not take an ags

araurnent, always returns nil, and only performs the second test discussed above. It is

useful when the components of a non-list are being printed.

As an example of sing the functions above, consider that tabular-style is defined

as follows. Using logical-block-tab in the definition makes 'it easy to communicate the
parameter tabsize to te alaorithin controlling the dynamic arrangement of output. By

n Z75

means of the list araunient of within-logical-block and the macro logical-block-pop,
the definition is robust in te face of alformed lists and supports *print-length*,

print-level, and *print-circle*.

22 Dynamic Control of the Arrangement of Output

(defun tabular-style (s list &optional (colon? T) atsign? (tabsize nil))
(declare (ignore atsign?))

(if (null tabsize) (setq tabsize 16))
within-logical-block (s list :prefix (if colon? "' fill)

:suffix (if colon?
(when list

(loop write (logical-block-pop list s) -.stream s)
(if (null list) (return nil))
(write-char #\space s)
(logical-block-tab -.block-relative tabsize s)
(conditional-newline :fill WM

The function below prints a vector using #(...) notation. A dummy list argument

of nil for within-logical-block is used along with the macro logical-block-count,

because the structure being printed is not a list. Here the functional interface to XP is

appropriate, because format control strinas do not provide any way to traverse a vector.

(defun print-vector (v *standard-output*)
(within-logical-block (nil nil :prefix '*" .-suffix

(let end (length v)) (i 0))
(when (plusp end)

(loop (logical-block-count)
(write (aref v W
(if = incf i) and) (return nil))
(write-char #\space)
(conditional-newline -.fill))M)

9 f ill-style stream list &optional (colon? T) atsign? =:�- nil

* linear-style stream list &optional (colon? T) atsicrn.9 =:�- nil

e tabular-style stream list &optional (colon? T) atsign? (tabsize 16) nil

The directives -/f ill-style/, /linear-style/, and /tabular-style/ (see page 16)

are supported by the three functions above. These functions can also be called directly

by the user. Each function prints parentheses around the output if and only if colon?

(default T) is not nil. Each function 'ignores its atsian? aratiment and returns nil. Each

function handles abbreviation and circularity detection correctly., and uses write to print

list when given a non-list argument.

The function linear-style prints a list either all on one line, or with each element on

a separate line. The function f ill-style prints a list ith as many elements as possible

on each line. The function tabular-style is the same as f ill-style except that it prints

the elements so that they line up in columns. This function takes an additional argument

tabsize (default 16) that specifies the column spacinol

23

4. Pretty Printing Types of Objects

As discussed in Section 2 the pretty printing performed by xP 'is directed by the
value of *print-dispatch*. The value of this variable is a print dispatch table. This
table is initialized with a number of entries that specify how to pretty print all the
bui It-in Common Lisp acros and special forms. You can tailor the pretty printer to
your own needs by adding new entries into the table and/or replacing existing entries.
Multiple styles of pretty printing can be supported by onstructing several tables and
switching between hem. The primitives supported for operating on print dispatch tables
are designed in analogy with the operations associated with read tables.

* copy-print-dispatch &optional (table *print-dispatch*) =:�- copy

A copy is made of table, which defaults to the current print dispatch table. If table

is nil, a copy is made of the standard print dispatch table initially defined by xP.

e def ine-print-dispatch type-specifier options &body function ==> T

This puts an entry into a print dispatch table. The type-speci-fier is implicitly quoted

and is a standard Common Lisp type specifier as defined in 4 It specifies what type of

objects the entry is applicable to. The function specifies how to pretty print that type

of object. When appropriate, the function will be called with two arguments: an output

stream and the object to print. The options are a list of pairs of a keyword and a value.

Three different keywords are possible:

-.table table)

This option specifies where to put the print dispatch entry being defined. If this

option is not present, the entry is placed in the table stored in *print-dispatch*.

(-.priority number)

This option specifies a priority that is used to control the order in which entries in

the print dispatch table are compared against an ob'ect to be printed. If this option is

not present, the priority defaults to .

-.name nme)

If present, this option specifies a name to be iven to function. This makes it possible

to reuse the function-e.a., in another call on define-print-dispatch.

Before creatina a new entry in te table, def ine-print-dispatch removes ay existing

entry with the same (equal) type specifier no matter what its priority. This guarantees

that there will never be two entries that have the same (equal) type specifier. However,

given a particular object it is likely that it will match several etries. The entry to use
for printing is selected by takin te matching etry with the highest priority.

Before discussing te handling of the fnction and type-s ecifier in detail, it is useful

to consider a brief example. The definition below specifies a new way to print ratios.

Once entered into the print dispatch table. it alters the way very ratio is pretty printed.

24 Pretty Printing Types of Objects

(The use of &rest x in the agument list below makes it possible to use -/ratio-print/
in a format string.)'

(define-print-dispatch ratio ((:name ratio-print)) (stream obj &rest x)
(declare (ignore x))

(format stream #"#.(/ -,OF -,OF)" (numerator obj) (denominator obj)))

(pprint 1(2/3 250 45))

Prints:

2 3) 250 #.(4 .))

Pretty Printing Functions

The function in a def ine-print-dispatch call can be specified in one of five ways.

First, as shown in the example above, it can be an argument list followed by a body

consisting-of one or more statements. The argument list must be consistent with the fact

that the function will be called with a stream and an object. The function can assume

that the object satisfies the associated type specifier.

Second, the function can consist solely of an instance of name. If so, the indicated

function will be used as the printing function. (Note that 'if ratio-print used instead

of -,OF to print the nmerator or denominator, infinite recursion would occur, because

these parts are themselves 'Integers.)

(define-print-dispatch integer ((:priority ratio-print)

(pprint 1(2/3 20 45))

Prints:

2. 3.) #.(/ 250. 1.) -4. 5.))

Third, the function can be an instance of ... it.

(define-print-dispatch (and ratio (satisfies plusp)) ((:priority 2)
#"(+ /ratio-print/)")

(pprint 1(2/3 20 45))

Prints:

((+ #.(2 3 #.(/ 250. 1.) # 4 5.))

Fourth, the function can be nil. In this case, any currently existing entry for the

type, specifier 'is removed without replacing if by anything. Pretty printing for ob'ects

that match the indicated type specifier will be controlled by the other entries they atch

(if any).

(define-print-dispatch (and ratio (satisfies plusp)) 0 nil)

(pprint 1(2/3 20 45))

Prints-

2 3 #/ 250 1) #.(4)

Fifth, the function can be totally otnitted I this case, any currently existing entry

for the type specifier is removed and the. standard pretty printing function (if ay) corre-
sponding to the tpe specifier is reenter into the table at the newly Unspecified priority.

Pretty Printing Type Specifiers 25

Pretty Printing Type Specifiers

When an object is to be pretty printed, the print dispatch table stored in the variable
print-dispatch is consulted to find out how to print it. This is done by looking at the
entries in the table in the order of their priorities and selecting the first entry for which
(typep object type-specifier) is not nil. The type specifiers can take any of the forms
described in the Common Lisp book 4 In addition, the type specifier cons is extended
to make it more useful.

It is expected that the table may contain entries whose type specifiers partially overlap
in various ways. For example, the standard print dispatch table contains a catchall entry
for printing lists in aeneral and a number of entries for printing specific knds of lists.
As a result, you must be careful with our choice of priorities. If an ob'ect matches two

y J
different entries that have the sam. priority, there are no guarantees as to which entry
will be used.

Pretty printing lisp code. The definition below shows the default method xP uses
for printi-na lists that represent data rather than proarams. (The functions linear-style,
f ill-style, and tabular-style are all defined with their colon? and atsign? arguments
optional so that they can be used as def ine-print-dispatch functions.) It can be very
usefullin some stuations to use tabular-style instead of f ill-style to print data lists.

(define-print-dispatch cons ((:priority -10)) #'fill-style)

However, it should be noted that, in Lisp there is no completely reliable way to

distinguish between lists that represent program code and lists that merely represent

data. Nevertheless, the following type specifier is useful for specifying tests that do a
good job ost of the time.

cons &optional (car-type T) (cdr-type T)

When used simply as the symbol cons, this type specifier matches any cons cell. When

used in the form above, it matches a cons cell only if the car of the cell matches the type

specifier car-type and the cdr of the cell atches the type specifier cdr-type.

The examples below show some of the predefined pretty printing functions for Lisp

code. By default, fnction calls are printed in the standard way-i.e, either all on one

line or with the arguments one to a line indented after the function name. Lists beginning

with cond are printed the same way as function calls except that the clauses are always

printed in linear style, rather than in the format suggested by teir cars. Lists beginning

with setq are printed with two ansunients on each line. Lists beginning with quote are

printed using the standard syntax. Note the care taken to ensure that data lists that

happen to begin with quote will be printed legibly.

(define-print-dispatch (cons (and symbol (satisfies fboundpM
((:priority -5))

W-- ---- :>I$)

(define-print-dispatch (cons (member cond))

I

26 Pretty Printing 'Types of Objects

(define-print-dispatch (cons (member setq)) O
>

(define-print-dispatch (cons (member quote)) O (s list)
(if (and (consp (dr list)) (null (cddr list)))

(format s #""WI' s (adr list))
(fill-style list)))

Pretty printing structures. An 'important use of XP is to print data structures.

In fact, typical Lisp 'Interactions call for much more printing of data than printing of

programs. Pretty printing can do just as much to enhance the readability of this output

as it can to enhance the readability of code. As shown below, pretty printing functions

for structures that have been defined wthout the type option can be specified with

reference to their types.

(def struct f amily mom kids)

(define-print-dispatch family O (s f)
(format s #"�<#<'--W and '2I'_'-./fill-stY1e/'->'-.>"

P I
(family-mom f) (family-kids f)))

(write (list 'Principle-family
(make-family :mom "Lucy"

Aids #1=("Mark" "Bob" #1# "Bill" "Dan"M)

With *print-pretty* T, line width 23, and *print-lines* 3 prints:

(principle-family
#<"Lucy" and

("Mark" "Bob"

With *print-pretty* T, *print-level* 3 and *print-length* 3 prints:

(primary-f amily #<"Lucy" and ("Mark" "Bob" # . . . >)

With *print-pretty* T, *print-escape* nil, and *print-circle* T prints:

(primary-family #<Lucy and #1=(Mark Bob #1# Bill Dan)>)

A key thing to notice about the pretty printing function above is that without the

programmer having to take any explicit action, it tolerates a malformed kids ist and

correctly follows the printer control variables *print-lines*, *print-level*, print-

length*, *print-escape* and *print-circle*. This should be contrasted with Common

Lisp's current support for structure print self functions, where it is difficult to handle

print-level and *print-length* correctly and impossible to handle *print-circle*

correctly.

There is clearly a close relationship between XP's pretty printing functions for struc-

tures and the standard concept of a print function for a structure. However, there is

a fundamental difference in approach. XP stores the fnction in a print dispatch table

rather than directly with te structure. This akes it possible to sin-tultaneously spport

several different styles of printing y maintaining eeral different dspatch tables and

to switch rapidly between them. However, it has te disadvantage tat pretty printing

functions are only used when *print-pretty* is not nil. This could have he effect of

forcina you to define a pretty printing function and a print fnction for the same struc-

ture erely to ensure that the structure is always printed the same Nvay. To avoid this

Pretty Printing Type Specifiers 27

problem, XP uses the print function for a structure when no pretty printing function is
available.

Efficiency. Given only what is said above, the process of determining the printing
functions to be used for the various parts of an object to be printed would be horrendously
inefficient, because every part of the object would have to be compared against every entry
in the print dispatch table. xP avoids this problem by speeding up the selection process
in two ways.

A hash table is used to very rapidly compare an ob'ect against every entry with a
type specifier in the print dispatch table that has the form (cons (member symbol)). A
second hash table is used to rapidly compare objects with type specifiers that are the
types of structures defined without the :type option. It is advisable for you to make as
many print dispatching entries as possible fit into these two categories.

Predefined pretty printing functions. To support traditional Lisp pretty printing
style, xP provides pretty printing functions for all of the Common Lisp macros and
standard forms. The user can change the wa any oriven kind of list is printed by defining
a new list pretty printing function for it. To facilitate the correct utilization of priorities,
Figure 41 summarizes the contents of the standard print dispatch table initially defined
by xP.

Priori ty Type Specilier Pretty Printing Action
0 (cons (member smbol)) __60 printers for Lisp code.

-5 (cons (and symbol (satisfies fboundpM Print as function call.
-10 cons Print u'sing f ill-style.

Figure 41: Contents of the initial print dispatch table.

If an attempt is made to pretty print an object that does not match any entry in
the current print dispatch table, one of the following default actions is taken. Arrays are
printed appropriately following the value of *print-array*. Structures are printed using
their print functions (if any). Otherwise the object is printed using the standard printer,
with *print-pretty* bound to nil.

Ugly detailsIN

5. Ugly details

XP is iplemented in fully ortable Common Lisp. However, a number of compro-

inises had to be made for this to be true. The discussion above deliberately glosses over

these problems on the theory that there is no fundamental need for them to exist and

they would not exist if XP were implemented as part of Common Lisp, rather than as a

separate package. This section discusses these problems in detail and explains how they

have been dealt with in Symbolics Common Lisp [8]. It is hoped that they can be dealt

with as easily in other implementations of Common Lisp.

Insufficient integration with non-pretty printing. XP never comes into play

unless *Print-pretty* is not nil, is encountered, or a f ormat string is evaluated

that contains on e of xp's special format directives. This is done as a matter of safety

and so that xP will operate purely as an add-on system. However, it has drawbacks. For

example, the variable *print-right-margin* only has an effect when XP is in operation.

Similarly, *last-abbreviated-printing* only gets set when XP is in operation. If XP were

combined into a ommon Lisp implementation, it would be natural to combine it directly

into the standard output routines, and support variables like *print-right-margin* and

last-abbreviated-printing all of the time.

Getting XP to take effect. By far the biggest problem is that Common Lisp has

no standard mechanism for allowing a new prettv printer to be specified. The function

xp- :install uses shadowing to redefine the standard Common Lisp printing functions.

However, this is of somewhat limited utility for several reasons.

First, shadowing fundamental functions like print and def struct is a dangerous prac-

tice. In particular, while it can work when 'it 'is done by one subsystem, it 'is almost never

going to work if two sbsystems try to do it.

Second, shadowing only effects programs that are read into the package where 'is

installed after XP has been installed. Among other things this means that it will not

change the printing that is nitiated by the Lisp system itself. For example, it will not

change the printing done by the top level read-eval-print loop. You can change this easily

enough, but that leaves a host of other places where the system itiates output such as

various things printed by the debuaoer.

You could try to install xP ore firmly by altering the function cells of the standard

printing functions. However, this is an exceptionally dangerous thing to do and is qite

likely to break the sstem. (To start with, it will break XP.)

In any event, clobbering these function cells would not fix the problem, because many
Lisp iplementations do output by calling primitive output functions that are not part of

the standard set of Common Lisp tput fnctions. As a result, lobbering the standard

functions still would not, fix all otput.

A better answer is to have a hook in the Lisp system that is prepared to accept a

new pretty printer. Symbolics Common Lisp has such a hook in the form of the vari-
able sci: *print-pretty-printer*. The symbolics Common Lisp version of the function

xp: :install sets tis variable to a value that auses XP to be used for all pretty printing

An interesting aspect of the function installed on scl: *print-pretty-printer* is that

it traps any errors that occur wen printino, is done. This is very useful when stich errors

wm�--------

29

are happening while you are trying to debug something else. However, trapping such
errors can be very annoying when it is a def ine-print-dispatch fnction or something

like that that is being debugaed. You can turn off the error trapping feature by setting

the variable xp: -. *allow-errors* to T.

Obtaining information from output streams. To operate as intended, XP needs

to be able to get two pieces of iformation fom an output stream before starting to print

into it. This information is obtained by calling the following two functions.

* xp: output-width &optional (output-stream *standard-output*) =:�- width

Returns the aximum number of characters that can be printed on a single line

without causing truncation or wraparound when printing to output-stream, or nil if this

cannot be computed.

* xp-. -.output-position &optional (output-stream *standard-output*) #�- position

Returns the number of characters printed so far on the current output line in utput-

stream, or nil if this cannot be computed.

Unfortunately, although every implementation of Common Lisp probably supports

internal functions providing this information, there are currently no standard Common

Lisp functions yielding this information. XP contains appropriate definitions of the func-

tions above for several different implementations of Common Lisp; however, in other

implementations it is reduced to usinor default (useless) definitions of these two functions

that always return nil. If you are operating in one of these other 'implementations (you
can tell by looking at the beginning of the file) you should povide better implernen-

tations for these functions.

Imperfect integration with structures. To operate as 'Intended, xP needs to be

able to determine which types are structure types. This is done by calling the following

function.

0 xp: : structure-type-p type =:�- boolean

Returns non-nil if and only if type is a structure type defined by def struct without

the . type option, and nil otherwise.

Unfortunately, although every implementation of Common Lisp probably supports an

internal function providina this nformation, there is currently no standard Common Lisp

function yielding this information. XP contains appropriate definitions of the functions

above for several different iniplementations of Common Lisp; however, in other imple-

mentations it is reduced to pessimistically 7 assuming that the only structures are ones

defined using xp: : def struct (which is used to shadow lisp: def struct if xp :install is

called with shadow T). If you are operatiny in one of these other iplementations (you

can tell b looking at te beainninu of the xP file) you should provide an iplementation

for xp: : structure-type-p.

Another potential problem is that XP assumes that if a structure is defined using xP's

shadowed version of defstruct, then te struCt Lire's print fnction (if any) is defined

usina the, XP's shadowed ersions of the vrious printing fi-inctions. As a result, xP does

30 Ugly details

not hesitate to call such a print function with one of its special pretty printing streams
as an argument. Since it is possible for the assumption to be false, this can lead to
problems.

Limitations on the definition of new type specifiers. Due to the extreme
restrictions Common Lsp places on the ways complex type specifiers can be constructed,
there is no implementation independent way to support the, extended definition of the
type specifier cons as a first class type specifier, even though it does not violate the
spirit' of what can ad cannot be a type specifier. As a consequence of this limitation

the extend form of cons can only be used 'in conjunction with define-print-dispatch.
This could easily be remedied if XP were incorporated directly into Common Lisp.

Imperfect integration with format. XP supports 99% of the functionality of
format, but not all of it. In particular, XP takes pains to fully support format as described
in 4 However, there 'is one place where XP falls short of this goal.

As discussed above, the standard format directive <... > is more or less incompatible
with > and the other pretty printina directives. However, it is permissible to have a
garden variety instance of nested in a f ormat string that also contains some pretty
printing directives. In this situation, XP uses the standard function f ormat to process
the part of the format string containing the < >. Unfortunately, this only works
when it can be determined exactly how many arguments will be used by the <... >.
As a result, xP is forced to require that <.. . > cannot contain complex directives like
Wof... -11 w-, and -* or anything similar. This problem could be straightforwardly fixed
if XP duplicated all of the code 'in the standard function format that supports
instead of merely using the standard function f ormat.

- Another area of difficulty concerns the fact that XP 'is oriented around supporting
formating functions (e.g., created by #... 11) rather than format control strings. Nev-
ertheless, in the 'interest of upward compatibility, XP aows f ormat strings to be used.
However, there are three complications with this.

First, to avoid having to 'Implement an interpreter for f ormat strings as will as a
compiler for .. . 1 7 XP converts each format string that contains any of xP's special

directives into a function the first time it is encountered. This works well as long as

format strings are not modified by side-effect. The caching of converted format control

strings can be turned off by setting the variable xp: : *f ormat-string-cache* to nil.

Second, some iplementations of Common Lisp support f ormat directives beyond the

ones defined in 41 or support additional features of the standard format directives. No

attempt is made to support this functionality in conjunction with the special directives,

supported by XP. However, in order to ake sure that merely installing xP will not

break any currently running code, XP Converts f ormat strings to functions only if they

contain one or ore of XP's special directives. If a format string does not contain any of

XP)s special directives, it is left as a string and the standard function format is used to

process it.

Third, the dual approach of using XP for some format strings and standard format

for others has some implications with reorard to the directive -? and the usage with

no body. If these forms exist in a format strina tat oes not contain any of xP's special

directives, then the control arguments they receive must be f ormat strings rather than

1131

functions. On the other hand if thev exist in a format string that contains an of x's
special directives then the control aguments the receive must either by functions or?n y

format strings that can be successfully converted to fnctions by xP.
Beyond the problems above there are several points where te documentation in 41

1 L I

is not entirely clear, and about wich different iplementations of oninion Lisp seem
to disagree. XP may not be doing the riaht thine in these situations. In particular:

How exactly does Q* act in a - ad -I? Is it relative to the arguments

being processed by the whole loop, or relative to the arguments being process by the
current step of the loop? assumes the former.

There is no detailed grammar given for how a directive can be specified. In particular,

can a colon or atsign modifier be specified before all te parameters have been specified?

XP assumes not.
What is supposed to happen to the argument list when a cycle of is pre-

maturely terminated by a - directive? In particular, are the arguments that have been

processed supposed to ave been removed or not.? In the interest of simplicity, XP assumes

they should be removed.

Is -- supposed to operate identically when accessed via with no body and a Q?

directive? XP assumes that it is. (It would be ite difficult for xP to support things any

other way.)

Assumptions about the read table. It was possible to ore than double the

speed of XP by assuming that the characters a-z", 44A-Z", + < > and

always have the same syntax as defined in the initial read table. This assumption would

not be necessary if Common Lisp provided any quick way to determine what the syntax

of a character is.

The delay caused by buffering. As part of its operation, XP buffers up output

characters before actually printing them into the appropriate stream. The fundamental

source of the efficiency of the pretty printing algorithm is that thinors are designed so

that the buffer never has to contain more than one line width worth of output. The

algorithm sends output to the underlying stream one lne width at a time. The buffer

is not guaranteed to be completely epty until the printing is completed. Thus there is

typically a delay between the time characters are put in the buffer (e.g.. by a call on some

printing function in the pretty printing function for some type of object) and the time

they appear in the output stream. This can be confusing if a process which is performing

pretty printing is interrupted (e.g., durinor the debucraina of a pretty printing function).

The functions f inish-output and f orce-output can be sed to force te iternal

buffer to empty out. However, to aintain internal consistency in the retty printing

algorithm, all of the logical blocks that ave been started but not yet completed are

printed as if they will not be able to fit on a snale line. As a result te otput ay not

look the same as it would if the buffer were not prematurely forced to eipty out.

Taking fll advantage of 'Information about formatting special forms. Sym-

bolics Common Lisp contains a tarcre iiiiiiil)er of secial forms, tat I-lave o be prettv
printed in special ways in adition to the tdard Common Lisp special forms In

Symbolics Common Lisp, XP takes ad-,,-antao�e of te fact tat te ZNVTE ditor Inain-

tains information about these forms in order to etermine how to pretty print them A

11111"M=

32 f9ly d e t ails

similar sharing of information between XP and the Lisp editor might be useful in other
environments as well.

Reprinting an abbreviated object. XP supports a special function that facilitates
the reprinting of the last abbreviated object. In Symbolics Common Lisp, xp::install
sets up the the key sequence <function> <resume> so that it trigaers, the reprinting in
full of the last abbreviated printina. This turns out to be very convenient. A similar
mechanism maht be useful in other environments as well.

No support for font variations. The pretty printing algorithm depends on exten-
sive calculations about how uch space strinas of characters will take tip when displayed.
These calculations are greatly simplified by assuming that every character will have the
same fixed width when displayed. Only newlines are treated specially.

It should be noted that (except for -T) the standard format directives all make the
same simplifying assumption. However, this assumption can lead to problems in some
situations. For example, it is inadvisable to use literal tab characters when pretty printing
and the output produced by XP looks quite strange when it is displayed using a variable
width font.

The above not withstanding, the fundamental agorithms used by xP could be ex-
tended to handle characters of variable width and characters whose width depends on
the position where they are displayed. In addition, the interface has been designed as
much as possible to be independent of this issue.

The only user-visible things that refer to actual lenaths are the variables print-
right-margin*, *default-right-margin*, *print-miser-width*, and the numeric argu-
ments to T, 'I, and -/tabular-style/ and their functional counterparts. All of these
measurements must be in the same units, but it does not matter a great deal what the
units are. A good choice would be something like the length of an 'W" in the current font.
This will work out right for fixed width fonts and pretty well for variable width ones. Pro-
grammers should be advised to avoid explicit lenorths-i.e., they should rely on streams
knowing how wide they are and use -O:I whenever possible to indicate indentations.

Doing Things Right

XP is the kind of program that cannot really be supported in a totally portable way in
Common Lisp. This is true both due to the various problems outlined above and because
there are a number of thinas where portability has only been achieved at the significant
sacrifice of efficiency. The riaht thina to do when incorporating XP into a Common Lisp
is not to merely load the system and use it, but rather to totally integrate it with the
way printino, is done.

Places where XP needs to be more tghtly 'Integrated with the primitive
printing facilities. There are a number of places were XP falls back o using the
standard printing facilities. The standard function tzrite is used to print objects for
whic tere is no special printing function in *print-dispatch*. The standard function
format is used to support complex format directives like -R, C, and -F. In both cases
this is done by havina the standard functions output into a string and then copying te
string into xP's iternal uffer.

.......... - p --

Doing Things Righ t 33

This is effective, but quite slow. As a result, printing with xP is noticeably slower
than printing with *print-pretty* nil. This is unfortunate, because as demonstrated by
PP 71, the algorithms underlying XP are sufficiently efficient that it is possible for pretty

printing to be virtually as fast as non-pretty printing. The only thing that is missing is
proper integration with the printing subprimitives.

To a certain extent, superior integration could have been achieved by duplicating

more of the basic printing code as part of XP. However, it would not be possible to

achieve perfect integration in a portable way, because Common Lisp does not provide

any way to get information out of the read table. As a result, write must be used to print

symbols. (As discussed above, XP ets around this problem to some extent by making a

few conservative assumptions about the read table.)

The right thing to do when incorporating XP into a Common Lisp is to modify xP

so that it directly calls the appropriate printing sub-priMitives, and modify the sub-

primitives so that they put their output directly 'Into XP's internal buffer.

Places where the primitive printing facilities need to be more tightly 'in-
tegrated with XP. To get XP to really take over for all pretty printing, it needs to be

installed in such a way that it is always used. The rght way to do this is to insert a call

to it deep 'in the standard printing code at the point where the variable *print-pretty*
is tested.

In addition, all of the functions that make use of f ormat strings (e.g., error) should be

extended so that they can make use of and the special pretty printing functions.

Beyond this, there is a more subtle problem. Internally, xP operates in two stages.

The first stage supports dispatching through *print-dispatch* along with various kinds

of abbreviation. This dispatchina is accessed'via the directive -W and the function write.
The second stage performs the actual dynamic formatting decisions.

The second stage essentially operates as a special kind of output stream. This stream

receives output characters and commands related to logical blocks and conditional new-

lines. After deciding where to 'insert line breaks, the output is sent on to the ordinary

stream that is the eventual destination of the output. This organization 'is largely hidden.
However, it becomes apparent in one key situation.

When writing special printing fnctions (i.e., to be used with def ine-print-dispatch,
def struct, or -/... /) it is permissible to use any kind of printing function. However,

these functions are called with special xP streams as arguments rather than ordinary

streams. (This is essential, because xP ust be able to catch all output before it gets

to the real output strearn.) As a result, all of the standard printing functions (e.g.,

print, terpri, f orcg-output leave to be odified so that they will operate correctly

when passed a special XP stream.

Alternativelv the fundamental concept of what an output stream is can be altered

so that every stream is capable of spporting the operations of the second stage of

XP. This approach was taken b PP, and worked very well. A particular advantac e

of this is that it allows proper negration of P with fnctions like with-open-f ile and

with-output-to-string. t7riforttmately, it is ipossible to create a new kind of sream. in

a portable manner, because Common Lisp does not provide any appropriate primitives.

Using XP to the full. Because the capabilities of XP go way beyond typical pretty

34 ['11V details.�i

printers, XP can be used in many ways that typical pretty printers cannot. As a result.
It is useful to extend a Common Lisp so that it takes better advantage of prett3l printing
To start with, since (when properly integrated) XP is just as fast as a non-pretty printer
their is no reason not to have the default value of *print-pretty* be T.

Beyond this, any kinds of output done by te system itself should be Upgraded to
take advantage of xP. As an example, in Symbolics Common Lisp, t Ihe trace facilities can
be used to print out information about the arguments a function is called with whenever
it is called. This output is produced using standard f ormat control strings and always
prints all the arguments on one line. If the ara-tunents are large, this output ends up
being more or less unreadable. The Symbolics version of xp: install replaces the trace
printer with a new function that takes full avantage of xp. There are dozens of other
places where such changes could profitably be ade.

0 .*.�".-- I -I -I-- -1- -� � I

35

Bibliography

[1] Goldstein I., ""Pretty Printing, Converting List to Linear Structure", NIT/AI,NW-'--)'79j
February 1973.

[21 Hearn A.C. and Norman A.C. A One-Pass Pretty Printer, Report UUICSS-79-11'241
Univ of Utah, Salt Lake City tah, 1979.

[31 Oppen D., "Prettyprinting", 1,,IC�11 TOPLAS, 2(4):-465-483, October 1980.
[41 Steele .L.Jr-, Common Lisp: the Language, Digital Press, Maynard A, 1984.
[51 Waters R.C., Gprint A Lisp Pretty Printer Providing Extensive [Tser

Format-Control IVIechanisins, �;iIIVAIM-611, October 1981.
(Revised version MIT'AIM-611a. September 982.)

[61 Waters R.C., User Format Control in a Lisp Prettyprinter", A01 TOPLAS,
15(4):513-1531, October 1983.

[71 Waters R.C., PP A Lisp Pretty Printing System, MIT /AUM-816, December 1984.
X Lisp Machine Documentation for Genera 7, Symbolics, Cambridue MA. 1986.

36 Historical Note

Historical Note

The original #print system was written in MacLisp in 1977. The primary motivation
behind #print was producing a pretty printer ignificantly faster than the Goldstein
pretty printer 1] then in use. By means of the same basic algorithms that are still in use

L Zn

in XP #print succeeded in being almost as fast as ordinary printina. In addition to using
fundamentally the same algorithms as XP, #print followed the same basic approach of
having pretty printing control strings for specifying how to control t.-he dynamic layout of
output and mechanisms for associating pretty Drinting functions with types of ob ects.
However, the interface was markedly different 'in two respects.

First, the pretty printing control strings used by #print were developed before format
came into wide use. Although fundamentally similar to f ormat control strings, they
looked very different, because they treated unmarked characters as directives instead of
literal characters to be printed out. Literal output had to be specified by enclosing it
in apostrophes. The pretty printing control strings were also described in a confusing
way that exposed unnecessarily much of the underlying alaorithm. Second, the mecha-
nisms used by #print to associate pretty printing functions with types of objects were
significantly more cumbersome and less powerful than those supported by xP.

#print was released for general use in the MIT Ai Laboratory in January of 1978.
However, probably because satisfactory documentation was never produced, #print was
not extensively used by anyone other than the author.

In early 1980, #print was cleaned up and re-released under the name Gprint. The
primary change was that, Gprint extended the power of (and further complicated) the
mechanisms for associating pretty printing functions with types of objects. In late 981,
full documentation was prepared and Gprint beaan to reach a wide audience.

In the spring and summer of 1982, Gprint was converted to run on the Symbolics
Lisp Machine. After a delay of a year or so, Gprint was adopted as the standard pretty
printer on the Symbolics Lisp Machine, in which roleit is still being used today. However,
Symbolics decided not to publicize the interface that can be used to define new ways of
pretty printing things. In the summer of 1983, DEC converted Gprint into their Common
Lisp and adopted it and its interface as official parts of their Common Lisp.

In 1984 Gprint was totally rewritten in Symbolics Lisp Machine Lisp and reemerged
as pp 7 The key advance was that PP unified the concepts of f ormat control strings and
pretty printing control strings, recasting everything 'in format's syntax. From the point
of view of people who understand f ormat, this simplified things tremendously. PP also
somewhat simplified the echanisms for associating pretty printing functions with types
of ob.ects b eliminating the least used features. In the fall of 1985, DEC pgraded their
Common Lisp to include PP and its interface instead of Gprint.

In 1988, PP was totally rewritten in ompletely portable Common Lisp ad re-emerged
as XP. XP's ajor contribution is that, by taking an entirely different approach, it

greatly simplifies the echanisms for associatin(y pretty printing functions with types of

objects ad inakes thein even more powerful then te echanisms supported by Gprint.

Since September 1988, XP has been in experimental use as the pretty printer in c%,iu

Common Lisp. Currently, X and its interface are beinor considered by the Common Lisp

standardization committee for adoption as a formal part of Common Lisp.

37

Functional Summary and Index

The entries below describe the various functions, variables, and macros supported by
XP, showing their inputs and outputs, the pages where documentation can be found, and
one line descriptions. The next page summarizes the extensions to f ormat.

conditional-newline kind &optional (stream *standard-output*) nil

p. 20 Functional interface to *-.

copy-print-dispatch &optional (table *print-dispatch*) ==>- copy

p. 23 Copies a print dispatch table.

default-right-margin default value 70.
p 4 Default line width to use when pretty printing.

def ine-print-dispatch type-speci-fier options &body function =� T

p. 23 Defines a new print dispatch table entry.

cons &optional (car-typ T (cdr-type T)

p. 25 Type specifier that matches a cons if its car and cdr are of the indicated types.

f ill-style stream list &optional (colon? T atsign ? =�* nil

p. 22 Function underlying f ill-style/.

xp.-:install &key (:package *package*) (-.macro T (:shadow T (:remove nil) T
p. 1 Makes xP ready for use.

last-abbreviated-printing
p. 19 Variable recording last printing event that was abbreviated.

linear-style stream list &optional (colon? T atsign? ==> nil

p. 22 Function underlying /linear-style/.

logical-block-count &optional (stream *standard-output*) =�> nil

p. 21 Supports length abbreviation.

logical-block-indent relative-to n &optional (stream *standard-output*) nil

p. 20 Functional interface to ""I.

logical-block-pop args &optional (stream *standard-output*) =:> item

p. 21 Supports length and circularity abbreviation.

logical-block-tab kind colnum colinc &optional stream *standa'rd-output*) * nil

p. 20 Functional interface to -T.
print-lines default value nil

p 3 Variable limiting the total number of lines pretty printed.

print-miser-width default value 40.

p 3 ariable specifying when pretty printing should switch to space saving mode.

print-right-margin default value nil

p 4 Variable specifying the line width to use when pretty printing.

print-dispatch default value causes standard pretty printing

p 3 Variable containing the current print dispatch table cntrolling pretty printing.

tabular-style stream list &optional colon? T) atsign? (tabsize 16) nil
p. 22 Fction nderlying -/tabular-style/.0

within-logical-block (stream-symbol list &key : pref ix : per-line-pref ix : suf f ix)

&body body nil

p. 19 Functional interface to < . >.

L-��

38 Functional Summary and Index

(p 5 Functional format control string.

The directive -W (write object p 4 uses the function write to output the correspond-
ing format argument without forcing the setting of any output control variables.

MW (p 4 Prints an argument following all output control variables.
_:W (p 4 Forces pretty printing.
_QW (p 4 Suppresses length and depth abbreviation.

There are three special directives for printing lists. Each of them prints parentheses
around the output when used with the colon modifier.

'/f ill-style/ (p. 16) Prints as many elements as possible on each line.
-/linear-style/ (p. 16) Prints elements all on one line or one to a line.
Mc/tabular-style/ (p. 17) Prints elements in a table, with column spacing c.

The directive <prefix- body-; sufhx-:> (logical block, p 7 iterates over a list argu-
ment using body to print the elements of the list in a logical block. The prefix and suffix
are printed before and after the block respectively.

> (p 7 Denotes a logical block and descends into a list argument.
"' > (p 7 Operates on all the remaining arguments.

< body - : > (p 9 P refix and sffix default to C' and respectively.
,V<body-:�> (p 9 Body printed to fill the line width.
-<Prefix-�.... > (p 9 Prefix printed on each line.

The indentation in a logical block is initially set to the column position of the first
character in the block. The directive -I (set 'Indentation, p. 13) is used to alter the
indentation within a logical block. If omitted, the parameter defaults to zero. When a
logical block is printed 'in miser style, all instances of -I are ignored.

A1nI (p. 13) Indentation set to position of first character in block plus .
*Ill: I (p. 13) Indentation set to position of drective plus n.

The directive -_ conditional newline, p. 10) specifies a place where a newline can be
inserted in a logical block. For a discussion of line breaks inserted by other means than

see page 12.

(p. 10) Linear-style conditional newline.
(P. 11) Fill-style conditional newline.

mo_ (p. 10) Miser-style conditional newline.
^1:0- (p. 12) iMandatory-style conditional newline.

The directive -T has augmented capabilities.

-:T (p. 14) Tab relative to containing section.

