MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

Al Memo No. 1102a August 1989

XP
A Common Lisp Pretty Printing System

by
Richard C. Waters

Abstract

XP provides efficient and flexible support for pretty printing in Common
Lisp. Its single greatest advantage is that it allows the full benefits of pretty
printing to be obtained when printing data structures, as well as when printing
program code.

XP is efficient, because it is based on a linear time algorithm that uses only
a small fixed amount of storage. XP is flexible, because users can control the
exact form of the output via a set of special format directives. XP can operate
on arbitrary data structures, because facilities are provided for specifying
pretty printing methods for any type of object.

XP also modifies the way abbreviation based on length, nesting depth,
and circularity is supported so that they automatically apply to user-defined
functions that perform output—e.g., print functions for structures. In addi-
tion, a new abbreviation mechanism is introduced that can be used to limit
the total number of lines printed.

Copyright © Massachusetts Institute of Technology, 1989

This report describes research done at the Artificial Intelligence Laboratory of the Mas-
sachusetts Institute of Technology. Support for the laboratory’s artificial intelligence research
has been provided in part by the National Science Foundation under grant IRI-8616644, in
part by the IBM Corporation, in part by the NYNEX Corporation, in part by the Siemens
corporation, in part by the Microelectronics and Computer Technology Corporation, and in
part by the Advanced Research Projects Agency of the Department of Defense under Office
of Naval Research contract N00014-88-K-0487. The views and conclusions contained in this
document are those of the author, and should not be interpreted as representing the policies,
neither expressed nor implied, of the sponsors.



Contents

1.Introduction . . ... ... ... ... ... .. ... 1
Setting Up XP . . . .. ... .. . . o L 2
2. Pretty Printing . . . .. ... .. ... ... . 0. 3
Additional Printer Control Variables . . . . . . .. .. .. 3
Extensions to Output Functions . . . . .. .. ... ... 5
3. Dynamic Control of the Arrangement of Qutput . . . . .. 7
Logical Blocks . . . . .. .. ... ... ... .. ... 8
Conditional Newlines . . . . .. ... ........... 11
Indentation . . . . . ... ... ... ... ... 14
Pretty Printing as Selection . . . . . ... ... .. .. .. 15
Tabbing Within a Section . . . . . .. .. ... .. .. .. 15
User-Defined Format Directives . . . . . .. .. ... .. 16
Abbreviation . . . . ... ... Lo 18
Functional Interface . . . . . .. ... ... ... ... .. 20
4. Pretty Printing Types of Objects . . . . . . ... ... ... 24
5.Second Order Details . . . .. ... .. ... ....... 29
Extended Features . . . . .. ... ... ... ....... 29
Ugly Facts About Portability . . . . . ... ... ..... 30
Doing Things Right . . . . . ... ... ... .. ..... 34
Historical Note . . . . .. .. .. ... ... .......... 37
Bibliography . . . . .. ... .. o oo oo 38
Functional Summary and Index . . . . . .. ... ... .... 39

Acknowledgments. A number of people have made important contributions to the
development of XP. K. Pitman, C. Rich, Y. Feldman, G. Steele, and D. Moon, as well
as J. Healy, R. Robbins, P. Anagnostopoulos, D. Chapman, and B. Morrison made sug-
gestions that led to a number of very significant improvements in XP. Particular thanks
are due to the ad hoc pretty printer subcommittee (S. Haflich, J. laubsch, S. Loose-
more, D. Pierson, and W. van Roggen) of the Common Lisp standardization committee
(X3J13), for their efforts in getting XP to the point where it could be incorporation into
the proposed Common Lisp standard.



1. Introduction

XP is a portable pretty printer for Common Lisp. As a pretty printer for Lisp code,
XP has the advantage that it is fast and allows the user to easily change the way code is
formatted. Beyond this, unlike most pretty printers, XP provides comprehensive facilities
for pretty printing data structures.

Four levels of use. XP can be used at four different levels. At the lowest (weakest)
level, you merely have to install XP as described below. This will give you the benefits
of more attractive and faster pretty printing. If this is all you want to do, you need not
read anything more than this introduction.

Moving to a slightly higher level, Section 2 describes several variables that can be
used to control XP and some simple additional functionalities provided by XP.

Section 3 exposes the heart of the approach taken by XP and describes how users can
control the layout of their output. Two interfaces are provided for this: one via a set of
format directives and one via a set of functions.

The highest level of using XP is discussed in Section 4. Facilities are provided for
specifying how particular types of objects should be pretty printed. These facilities can
be used to define (or redefine) the way program code and data structures are displayed.

Section 5 begins by describing a couple of advanced features of XP not discussed
in the first four sections. It then describes a number of shortcomings of XP that stem
from the fact that it is supported as a portable package of functions and macros rather
than being tightly integrated with a particular Common Lisp. A number of things
cannot be supported quite as they should be, because Common Lisp does not provide
all the necessary hooks. Section 5 concludes by describing how proper integration with
a Common Lisp implementation can be achieved.

XP son of PP [7] son of Gprint [5, 6] son of #print is the latest in a line of pretty
printers that goes back 12 years. All of these printers use essentially the same basic
algorithm and conceptual interface. The algorithm used by #print, Gprint, PP, and
XP has been independently developed by a number of people [2, 3] in addition to the
author. This paper does not go into a detailed discussion of the algorithm since it is fully
discussed elsewhere (see [3, 5]). However, it should be noted that the algorithm is an
inherently fast linear algorithm that uses very little storage. As a result, pretty printing
need not be significantly slower than ordinary printing.

In the Summer of 1989, the Common Lisp standardization committee (X3J13) decided
to adopt the XP interface as part of their proposed Common Lisp standard. As reflected
in this document (in comparison with the version of XP released in March, 1989 {8]) a
number of relatively minor changes had to be made in XP, in order for it to be accepted.
The exact interface as accepted by X3J13 is described in Sections 2-4. The extended
features in the beginning of Section 5 were not accepted by the committee.



2 Introduction

Setting Up XP

To use XP, the file containing it has to be loaded. At the MIT AI Laboratory, XP
resides in the file "b:>1mlib>xp.1lisp". Compiled versions exist for Symbolics and Lucid
(Sun) Common Lisp.

The source for XP can be obtained over the INTERNET by using FTP. Connection
should be made to the TRIX.AI.MIT.EDU machine. Login as ‘anonymous’ and copy the
files shown below. It is advisable to run the tests in xptest.lisp after compiling XP for
the first time on a new system. A comment at the beginning of the file describes how to
run the tests.

files on TRIX.AI.MIT.EDU, (INTERNET number 128.52.32.6)

/com/ftp/pub/xp/xp.1lisp source code
/com/ftp/pub/xp/xptest.lisp tests
/com/ftp/pub/xp/xpdoc.txt brief documentation

As XP is being made available free of charge, it is being distributed as is, with no
warranty of any kind either expressed or implied including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose, and further including
no warranty as to conformity with this manual or any other literature that may be
issued from time to time. In addition, if you wish to use XP for anything other than
your own experimental use, you will have to get a license from MIT. Information about
obtaining a non-exclusive, royalty-free license can be obtained by sending a message to
“dick@ai.mit.edu”.

xp::install &key (:pkg *packagex) (:macro nil) (:shadow T) (:remove nil) = T

Calling this function sets up XP for use in the package :pkg. The argument :pkg can
either be a package, a package name, or a symbol whose name is the name of a package.
It defaults to the current package. The examples in this manual assume that the form
(xp::install) has been evaluated.

The package "XP" is used in :pkg. If :macro is not nil, the # macro character
syntax #"..." (p. 29) is set up. If :shadow is not nil, the symbols xp: :write, xp: :print,
Xp::prini, xp::princ, xp: :pprint, xp::format, xp: :terpri, xp: :fresh-line, xp::write-
line, xp::write-string, xp::write-char, xp::write-to-string, xp::princ-to-string,
xp::prinl-to-string, xp::finish-output, xp::force-output, xp::clear-output, and
xp: :defstruct are shadowing imported into :pkg. This introduces these functions into
:pkg in place of the standard printing functions. If :shadow is nil you will have to refer
to these functions with explicit package prefixes whenever you wish to print something
using XP.

If :remove is not nil, the effects of having previously installed XP are undone. In
particular, the package is unused and any shadowing is undone. However, any changes
to the readtable are left in place.



2. Pretty Printing

Additional Printer Control Variables

XP supports all the standard printer control variables (see [4]). In addition, it supports
several new control variables that are relevant to its printing method. None of these new
variables has any effect when *print-pretty* is nil.

*print-pprint-dispatch* default value causes standard pretty printing

This variable holds a pprint dispatch table (see Section 4) that controls the way
pretty printing is performed. It is initialized to a value that causes traditional Lisp
pretty printing. Altering this table, or setting *print-pprint-dispatch* to a different
table alters the style of pretty printing.

*print-right-margin* default value nil

When this variable is nil, XP queries the output stream in an attempt to find out how
much space is available for printing. If this variable is not nil, its value is used as the
right margin to be used when pretty printing. By introducing line breaks, Xp attempts
to prevent any line of output from going beyond *print-right-margin*.

The left margin for printing is set to the column position where the output begins (or
0 if this position cannot be determined). Except for unconditional newlines (see page 13)
and negative indentation (see page 14), XP will not allow anything but white space to
appear to the left of the left margin.

*print-miser-widthx default value 40

A fundamental problem with pretty printing arises when printing deeply nested struc-
tures. As line breaks have to be inserted at deeper and deeper levels of nesting, the
indentation gets greater and greater. This causes the line width available for printing to
get smaller and smaller until it is no longer possible to print substructures in the space
available.

An approach to dealing with this problem, which has been used at least since the
original Goldstein pretty printer [1], is to introduce a special compact kind of layout
(called ‘miser’ style) and to use this style once the line width begins to get small. The
key idea behind miser style is that by trading off readability for compactness, it reduces
the width necessary for printing a structure and limits the increase in indentation when
further descending into the structure.

XP switches to an extra compact style of output whenever the width available for
printing a substructure is less than or equal to *print-miser-width*. If *print-miser-
width* is given the value nil, miser style is never used.

A constant default value of 40 for *print-miser-width*, irrespective of the right
margin, is used because the point at which miser style should be triggered does not
depend on the total line width, but rather on the length of the minimal unbreakable
units in the output being printed. When pretty printing programs, the size of these
units depends on the lengths of the symbols in the program. Experience suggests that



4 Pretty Printing

*print-miser-width* should be set at from two to four times the length of the typical
symbol.

*print-lines* default value nil

When not nil, this variable controls the number of lines that will be printed by a single
pretty printing event. If an attempt is made to pretty print more than *print-linesx
lines, “ ..” is printed at the end of the last line followed by all of the suffixes (closing
delimiters) that are pending to be printed. Pretty printing is then halted.

(pprint ’(progn (setq a1 b 2 c 3 d 4)))

With *print-lines* 3 and line width 25 prints:

(PROGN (SETQ A 1
B 2
c3..))

(The symbol “..” is printed to ensure that a reader error will occur if the output
is later read. A symbol different than “...” is used to indicate that a different kind of
abbreviation has occurred.)

Experience has shown that abbreviation based on the number of lines printed can be
much more useful than the traditional depth and length abbreviation mechanisms. This
is particularly true when the user wants to limit output to a small space. To do this with
depth and length abbreviation, the length and depth have to be limited to very small
values such as 3 or 4. This often has the unfortunate effect of producing output that
consists almost totally of “#”s and “...”s grouped in parentheses. In contrast, limiting
the total number of lines printed to 3 or 2, or even 1 produces legible output. Seeing the
first few lines of output is usually more informative than seeing only the top level skeletal
structure of the output. (The function pp (p. 29) can be used to reprint an abbreviated
object in full.)

*print-shared* default value nil

This variable is not part of current Common Lisp, but is slated to become part of the
new Common Lisp standard. Inasmuch as this is the case, support for it is provided as
part of XP. If *print-circle* is not nil, then the value of *print-shared* is consulted
to determine whether #n# markers are used to indicate sharing as well as circularities.
They are used to indicate sharing if and only if *print-shared# is not nil.

(pprint ’(setq a #1=(car x) b #1i#))
With *print-circle* T and *print-shared* T prints:
(SETQ A #1=(CAR X) B #1#)

With *print-circlex T and *print-shared* nil prints:
(SETQ A (CAR X) B (CAR X))

The variable *print-shared* is given a default value of nil, because experience sug-
gests that using #n# markers to indicate sharing often reduces the readability of output.
However, it is interesting to note that this is actually more computationally expensive
then running with *print-shared* T. The best thing of all in most situations is to run
with *print-circle* nil and use *print-lines* to prevent runaway printing.



Extensions to Qutput Functions 5

Extensions to Output Functions

XP alters the standard printing functions (see the description of xp: :install) so that
they operate via XP when (and only when) *print-pretty* is not nil. In addition, XP
provides some additional functionalities

write object &key :dispatch :right-margin :lines :miser-width ... => object
The list of keywords accepted by the standard output function write is extended by
adding four more keywords corresponding to the first four control variables above.

“W

provides a new format directive W, which bares the same basic relationship to write
that S and ~A bare to prini and princ. In particular, “W prints the corresponding
argument obeying every printer control variable, rather than overriding the value of
*print-escape*. In addition, ~W interacts correctly with depth abbreviation, rather than
resetting the depth counter to zero. To get the best results when using XP you should
use "W whenever possible instead of ~S or ~A.

Unlike ~S and ~A, “W does not accept parameters. If given the colon modifier, "W
binds *print-pretty* to T. If given the atsign modifier, “W binds *print-level* and
*print-length* to nil.

formatter control-string = function

The control strings used by format are essentially programs that perform printing.
Given that almost all of these strings are constants, there is no reason why they cannot be
compiled into highly efficient code. In fact, most languages other than Lisp have always
compiled their format-like constructs. However, every implementation of Common Lisp
known to the author operates on format control strings in a purely interpretive manner.

XP supports a macro (formatter) that makes it possible to obtain the efficiency of
using a function to perform output without loosing the compactness of format strings.
The control-string is identical in every respect to a format control string. The macro
formatter expands into an equivalent function quoted lambda that performs the indicated
printing. The argument signature of this 1ambda has the following form.

formatter-function stream &rest args = unused-args

The first argument is the stream to send the output to. The remaining arguments are
the values to be printed. The function the macro formatter expands into returns any
unused tail of the arguments it receives as its value.

In support of the above, format is extended so that it accepts functions as its second
argument as well as strings. The directives “? and ~{~} with no body are also extended
so that they accept functions as well as control strings. (This recovers the functionality
of the original MacLisp format directive ~Q.)

When a function is provided in any of these situations, it must be a function of the
form created by formatter. It is called with the appropriate output stream as its first
argument and data arguments as its remaining arguments. The function should perform
whatever output is necessary and return the unused tail of the arguments (if any). (This



6 Pretty Printing

return value is needed for the proper operation of the directives “@? and ~{~} with no
body.)

As an example of using formatter consider the following. Note also that formatter
is not limited to appearing only as the second argument to format. It can appear
anywhere—e.g., passed to some other function that will eventually pass it to format
or used for some totally different purpose.

(format T (formatter "~YPrices: “@{"S"~, ~}") 1.50 3.23 4.50) =
(format T #’(lambda (stream &rest args)
(terpri stream)
(vrite-string "Prices: " stream)
(loop (prinl (pop args) stream)
(if (null args) (return nil))
(write-string ", " stream))
args)
1.50 3.23 4.50)

Prints:
Prices: 1.5, 3.23, 4.5

Using compiled functional format control strings instead of interpreted ones approx-
imately triples the speed of XP when running on the Symbolics Lisp Machine. You are
strongly encouraged to use functional format control stings whenever possible. (Using
the syntax #“..." (p. 29) makes this particularly easy to do.)



3. Dynamic Control of the Arrangement of Output

Through the introduction of several format directives, XP allows the user to exercise
precise control over what should be done when a piece of output is too large to fit in
the line width available for displaying it. The discussion below assumes that the reader

has a basic understanding of the function format and the standard format directives, as
described in [4].

Basic concepts. Three concepts underlie the way XP supports the dynamic ar-
rangement of output—Iogical blocks, conditional newlines, and sections. The positions
of logical blocks and conditional newlines are specified by means of format directives. To-
gether, these directives divide the output as a whole into a hierarchy of sections within
sections.

The first line of Figure 3.1 shows a schematic piece of output. The characters in the
output are represented by “-”s. The positions of conditional newlines are indicated by
digits. The beginnings and ends of logical blocks are indicated by “<” and “>” respec-
tively.

The output as a whole is always treated as a logical block and forms one (outermost)
section. This section is indicated by the 0’s on the second line of Figure 3.1. Each
conditional newline defines two additional sections (one before it and one after it) and is
associated with a third (the section immediately containing it).

The section after a conditional newline consists of: all the output up to, but not
including, (a) the next conditional newline immediately contained in the same logical
block; or if (a) is not applicable, (b) the next newline that is at a lesser level of nesting
in logical blocks; or if (b) is not applicable, (c) the end of the output as a whole.

The section before a conditional newline consists of: all the output back to, but not
including, (a) the previous conditional newline that is immediately contained in the same
logical block; or if (a) is not applicable, (b) the beginning of the immediately containing
logical block. The last four lines in Figure 3.1 indicate the sections before and after the
four conditional newlines.

The section immediately containing a conditional newline is the shortest section that
contains the conditional newline in question. In Figure 3.1, the first conditional newline
is immediately contained in the section marked with 0’s, the second and third conditional
newlines are immediately contained in the section before the fourth conditional newline,
and the fourth conditional newline is immediately contained in the section after the first
conditional newline.

<=-1---¢=-=<K==2---3->-~-4-->->
000000000000000000000000000
11 11111111131111111111331111
22 222
333 3333
44444444444444 44444

Figure 3.1: Example of logical blocks, conditional newlines, and sections.



8 Dynamic Control of the Arrangement of Output

It also makes sense to talk about the section immediately containing a given logical
block—i.e., the shortest section containing the logical block. Note that this section
immediately contains every conditional newline that is immediately contained in the
block. In Figure 3.1, the outermost logical block is immediately contained in the section
marked with 0’s, the second logical block is immediately contained in the section before
the fourth conditional newline, and the innermost logical block is immediately contained
in the section after the first conditional newline.

Whenever possible, XP prints the entire contents of a given section on the same line.
However, if a section is too long to fit in the line width available, XP inserts line breaks
at one or more conditional newline positions within the section—printing the section on
more than one line. The pretty printing algorithm uses internal buffering of the output
so that it can determine which way to print a section. The algorithm is fast, because the
amount of lookahead required is strictly limited by the maximum line width available for
printing.

Logical Blocks

If - :> is used to terminate a “<... ">, the directive delimits a logical block. In addition,
the directive descends into the corresponding format argument (which should be a list).
(format T "+ "<Roads "<"W, “:_"W~:> ~:_ Town “<"W™:>~:> +"
’((elm cottonwood) (boston)))
With line width 50 prints:
+ Roads ELM, COTTONWOOD Town BOSTON +
With line width 25 prints:

+ Roads ELM, COTTONWOOD
Town BOSTON +

With line width 21 prints:

+ Roads ELM,
COTTONWOOD
Town BOSTON +

(As discussed in the next section, the directive ~:_ indicates a conditional newline.
An instance of ~:_ is replaced by a line break when the following section cannot fit on
the end of the current line. Whenever line breaks are introduced, indentation is also
introduced so that each line in a logical block begins in the same column as the logical
block as a whole.)

If the atsign modifier is used with “<...~:>, the directive operates on the list of
remaining format arguments, rather than on just on the next format argument. All of
the remaining arguments are always consumed by the “<...~:>, whether or not they are
actually used by the format string nested in the directive. The directive ~~ (termination
test) can be used to exit from ~<...~:> if the list being processed has been exhausted.

(format T "+ “@<Roads “<"W~™~, ~:_"W":> ~:_ Town “<"W~:>":> +"
?(elm) ’(boston))
With line width 21 prints:

+ Roads ELM
Town BOSTON +



Logical Blocks 9

The portion of a format control string enclosed in a “<...:> directive can be divided
into segments “<prefix~; body~;suffix~:> by ~; directives. It is an error for the enclosed
portion to be divided into more than three segments. If the portion is only divided into
two segments, the suffix defaults to the null string. If the portion consists of only a single
segment, both the prefix and the suffix default to the null string. The prefix and suffix
must both be constant strings. They cannot contain format directives. The body can be
any arbitrary format control string.

When a “<prefix~;body~;suffix~:> directive is processed, the prefix is printed out
just before the logical block begins and the suffix is printed out just after the logical
block ends. This behavior is the same as if the characters in the prefix and suffix simply
appeared before and after the “<...~:> directive, except for the way error situations
are handled and the way ~<...~:> interacts with depth and circularity abbreviation (see
page 18).

(format T "+ "<Roads ~<[*;*W “:_“W~;]1~:> ~:_ Town ~“<[";"W~;]~:>":> +"
' ((elm cottonwood) boston))
With line width 21 prints:

+ Roads [ELM
COTTONWOOD]
Town BOSTON +

An interesting additional feature of ~<...~:> is illustrated by the example above.
When a ~<...~:> directive is applied to an argument that is not a list, the directive
is ignored and the offending argument is printed using “W. Among other things, this
means that while the argument is printed, the prefix and suffix are not. The soft fail-
ure of “<...~”:> when presented with non-lists makes it possible to write robust format
strings that produce reasonable output for a wide range of possible arguments. This is
particularly useful in debugging situations.

During the processing of the format string nested in ~<...~:>, arguments are taken
one by one from the list passed to “<...~:>. If an attempt is made to access an argument
at a time when the remaining portion of this argument list is not a cons, then “. ”
is inserted in the output, "W is used to print out the remaining argument list, and the
processing of the logical block is terminated, except for printing the suffix (if any). This
makes it easier to write format strings that are robust in the face of malformed argument
lists. (Note that ~~ exits only when the remaining argument list is nil.)

(format T "+ “<Roads ~“<[*;"W~~ ~:_"W~;]~:> ~:_ Town "<["; "W~ ;]":>7:> +%
((elm . cottonwood) boston))
With line width 21 prints:

+ Roads [ELM
. COTTONWOOD]
Town BOSTON +



10 Dynamic Control of the Arrangement of Output

If the colon modifier is used with ~<...~:>, the prefix and suffix default to "(" and
) (respectively) instead of to the null string. Note that the prefix and suffix are printed
out even when the argument corresponding to “<...~:> is an empty list.

(format T "+ “<Roads “:<"W “:_"W":> ~:_ Town “:<"""W~:>":> +"
»((elm cottonwood) ()))
With line width 21 prints:

+ Roads (ELM
COTTONWOOD)
Town () +

If the directive ~@; is used to terminate the prefix in a “<...~:> directive, the prefix is
treated as a per-line prefix. A per-line prefix is printed at the beginning of every line in
the logical block, rather than just before the start of the block as a whole. This is done
in such a way that the prefixes on subsequent lines are directly below the occurrence of
the prefix on the first line.

(format T "~<;;; “@;Roads "<= "Q;"W, “:_"W”:> ~:_ Town "<"W":>7:>"
’((elm cottonwood) (boston)))
With line width 50 prints:
;;; Roads = ELM, COTTONWOOD Town BOSTON

With line width 25 prints:

;3; Roads ELM,
HE COTTONWOOD
;33 Town BOSTON

If a ~<...~:> directive is terminated with ~:@>, then a ~:_ is automatically inserted
after each group of blanks immediately contained in the body (except for blanks after a
~<newline> directive). This makes it easy to achieve the equivalent of paragraph filling.

(format T ""<":("W") street goes to ~:("W").~:@" ’(main boston)) =
(format T ""<":("W") ~:_street ~:_goes ":_to “:_":("W").":>"
>’ (main boston))
With line width 12 prints:

Main street
goes to
Boston.

To a considerable extent, the basic form of the directive “<...~> is incompatible with
the dynamic control of the arrangement of output by “W, ~_, “<...~:> “I and “:T. As a
result, it is an error for any of these directives to be nested within ~<...~>. (Note that
in standard format, it makes little sense to have anything that can cause a line break
within a “<...~> and [4] does not define what would happen if this were the case.)

Beyond this, it is also an error for the “<...~:;...~> form of “<...~> to be used at
all in conjunction with any of these directives. This is a functionality that is rendered
obsolete by per-line prefixes in “<...~:>.



Conditional Newlines 11

Conditional Newlines

The format directive ~_ is used to specify conditional newlines. By means of the colon
and atsign modifiers, the directive can be used to specify four different criteria for the
dynamic insertion of line breaks: linear-style, fill-style, miser-style, and mandatory-style.

By default, whenever a line break is inserted by a conditional newline, indentation is
also introduced so that the following line begins in the same column as the first character
in the immediately containing logical block. This default can be changed by using the
directive “I (p. 14).

Linear-style conditional newlines. Without any modifiers, “_ specifies linear-
style insertion of line breaks. This style calls for the subsections of a logical block to be
printed either all on one line or each on a separate line.

Linear-style conditional newlines are replaced by line breaks if and only if the im-
mediately containing section cannot be printed on one line. As soon as the line width
available becomes less than the length of a given section, every linear-style conditional
newline in it is replaced by a line break.

(format T "(LIST “@<*“W “_“W ~“_“W- :>)" ’first ’second ’third)
With line width > 25 prints:
(LIST FIRST SECOND THIRD)

With line width < 25 prints:

(LIST FIRST
SECOND
THIRD)

Miser-style conditional newlines. If the atsign modifier is used with ~_, the
directive specifies miser-style insertion of line breaks. Miser-style conditional newlines
are replaced by line breaks if and only if miser style is in effect in the immediately
enclosing logical block and the immediately containing section cannot be printed on one
line. Miser style is in effect for a given logical block if and only if the the starting column
of the logical block is less than or equal to *print-miser-width* columns from the end of
the line. (Note that the “(” in the example below is not in the logical block, but rather
before it.)

(format T "~ :Q<LIST ~@_."W ~“Q_“W ~@_"W~:>" ’first ’second ’third)
With line width 10 and *print-miser-width* < 9 prints:
(LIST FIRST SECOND THIRD)

With line width 10 and *print-miser-width* > 9 prints:

(LIST
FIRST
SECOND
THIRD)

Even in miser style, the pretty printing algorithm is not guaranteed to succeed in
keeping the output within the line width available. In particular, line breaks are never
inserted except at conditional newline positions. As a result, a given output requires a



12 Dynamic Control of the Arrangement of Output

certain minimum amount of line width to print it. If the amount of line width available
is less than this amount, characters are printed beyond the end of the line.

(Gprint [5] supported an additional mechanism for dealing with deeply nested struc-
tures. When indentation reduced the line width to a small percentage of its initial value,
major program structures (such as prog and let) were radically shifted to the left by re-
ducing the indentation to nearly zero. This violated standard Lisp pretty printing style,
but significantly increased the line width available for printing. Unfortunately, experi-
ence showed that, though this was very useful in some situations, it was, in general, more
confusing than helpful.)

Fill-style conditional newlines. If the colon modifier is used with ~_, the directive
specifies fill-style insertion of line breaks. This style calls for the subsections of a section
to be printed with as many as possible on each line.

Fill-style conditional newlines are replaced by line breaks if and only if either (a)
the following section cannot be printed on the end of the current line, (b) the preceding
section was not printed on a single line, or (c) the immediately containing section cannot
be printed on one line and miser style is in effect in the immediately containing logical
block. If a logical block is broken up into a number of subsections by fill-style conditional
newlines, the basic effect is that the logical block is printed with as many subsections as
possible on each line. However, if miser style is in effect, fill-style conditional newlines
act like linear-style conditional newlines.

For instance, consider the example below. The format control string shown uses the
standard directives “@{...~} (iterate over arguments) and -~ (terminate iteration) to
decompose the list argument into pairs. Each pair in the list is itself decomposed into

two parts using a “<...~:> directive. A space and a ~:_ are placed after each pair except
the last.

(format T "(LET ~:<~@{~:<"W “_"W~:>"~ ~:_~}~:>~ .y

*((x 4) (*print-length* nil) (z 2) (llst nil)))

With line width 35 prints:

(LET ({(X 4) (*PRINT-PRETTY* NIL)
(Z 2) (LIST NIL))
L)

With line width 22 prints:

(LET ((X 4)
(*PRINT-LENGTH*
NIL)
(z 2)
(LIST NIL))
)

Note that when the line width is 35, only one line break (before “(Z 2) ”) has to be
introduced. Once this is done, “(Z 2) ” and “(LIST NIL))” can both fit on the next line.
Also note that when the line width is 25, there is a line break after “NIL) ”, even though
“(Z 2) ” would fit on the end of the previous line. The line break is introduced, due to
criteria (b) in the definition above. This criteria is used, because many people judge that
output of the following form violates the basic aesthetics of Lisp pretty printing.



Conditional Newlines 13

(LET ((X 4)
(*PRINT-LENGTHx*
NIL) (Z 2)

(LIST NIL))
.

It is often useful to mix different kinds of conditional newlines together in a single
logical block. In general, this works well without any conflicts arising between the ways
the various conditional newlines work. However, it is not a good idea to have a miser-
style conditional newline immediately after a fill-style conditional newline. The problem
is that the miser-style conditional newline will terminate the section following the fill-style
conditional newline. As a result, no account will be taken of what follows the miser-style
conditional newline when deciding whether or not to insert a line break at the fill-style
conditional newline. This can cause the output after the miser-style conditional newline
to extend beyond the end of the line.

Mandatory-style conditional newlines. If the colon and atsign modifiers are
both used with ~_, the directive specifies mandatory insertion of a line break. Among
other things, this implies that none of the containing sections can be printed on a single
line. This will trigger the insertion of line breaks at linear-style conditional newlines
in these sections. With regard to indentation, mandatory-style conditional newlines are
treated just like any other kind of conditional newline. This makes them different from
unconditional newlines.

Unconditional newlines. There are at least six ways to introduce a newline into
the output without using “_. You can use the directives “% and & You can include a
newline character in a format string. You can call terpri or print. You can print a string
that contains a newline. Each of these methods produces an unconditional newline that
must always appear in the output. Like a mandatory conditional newline, this prevents
any of the containing sections from being printed on one line.

It is not completely obvious how unconditional newlines should be handled. There
are two very suggestive cases, which unfortunately contradict each other. First, suppose
a program containing a string constant containing a newline character is printed out and
then read back in. To ensure that the result of the read will be equal to the original
program, it is important that indentation not be inserted after the newline character in
the string. On the other hand, suppose that the same program is being printed into
a file by a format string specifying a per-line prefix of “;;;”, with the intention that
the program appear in the output as a comment. To ensure that this comment will not
interfere with subsequent reading from the file, it is important that the prefix be printed
when the newline in the string is printed.

In an attempt to satisfy the spirit of both of the cases above, XP applies the following
heuristic. Indentation is used only if a newline is created with ~_.

(format T "(LIST “Q<"W “_"W~:>)" *'first "string on
two lines")

With line width 100 prints:

(LIST FIRST
"string on
two lines")



14 Dynamic Control of the Arrangement of Output

However, any per-line prefixes (and any indentation preceding them) are always printed
no matter how a newline originates.

(format T "~Q<;;; ~Q;(LIST ~@<~W ~_"W~:>)~:>" ’first "string on

two lines")

With line width 100 prints:

533 (LIST FIRST
HHH "string on
;;; two lines")

Discarding trailing spaces. Conditional newline directives are typically preceded
by some amount of blank space. This is done so that the subsections of a section will
be visually separated when they are printed on a single line. However, without anything
more being said, this would lead to the printing of unnecessary blank spaces at the end
of most lines when line breaks are inserted. In the interest of efficiency, XP suppresses
the printing of blanks at the end of a line if (and only if) the line break was caused by
a ~_ directive. For instance, there are no blanks at the end of any of the lines in the
examples above, except that, if there are blanks after the word “on” in the string in the
two unconditional newline examples, these blanks appear in the output.

Indentation

By default, the second and subsequent output lines corresponding to a logical block
are indented so that they line up vertically under the first character in the block. The
format directive I makes it possible to specify a different indentation.

The directive ~nI specifies that the indentation within the immediately containing
logical block should be set to the column position of the first character in the block
plus n. If omitted, n defaults to zero. The parameter can be negative, which will have
the effect of moving the indentation point to the left of the first character in the block.
However, the total indentation cannot be moved left of the beginning of the line or left
of the end of the rightmost per-line prefix.

The directive ~n:I is exactly the same as “nI except that it operates relative to the
position in the output of the directive itself, rather than relative to the position of the
first character in the block.

As an example of using ~I, consider the following: If the line width available is 25,
the ~_ directive is replaced by a line break. The ~1I directive specifies that the statement
in the body of the defun should be printed at a relative indentation of 1 in the logical
block. If the line width is 15, the ~:_ is also replaced by a line break. The ~:I directive
before the ~W printing the function name causes the argument list to be lined up under the
function name. The column position corresponding to the ~:I is determined dynamically
as the output is printed.

(format T "~:<"W “@_~:I"W ~:_"W ~1I"_"W~:>"
*(defun prod (x y) (* x y)))
With line width 50 prints:
(DEFUN PROD (X Y) (* X Y))

With line width 25 prints:



Pretty Printing as Selection 15

(DEFUN PROD (X Y)
(* X Y))
With line width 15 prints:

(DEFUN PROD
Xy
(* X Y))

Changes in indentation caused by a ~I directive do not take effect until after the
next line break. As a result, it is important that the ~I directives in the example above
precede the ~_ directives they are supposed to affect. It should also be noted that, a ~I
directive only affects the indentation in the immediately containing logical block.

In miser style, all “I directives are ignored, thereby forcing the lines corresponding to
the logical block to line up under the first character in the block.

With line width 15 and *print-miser-width* 20 prints:

(DEFUN
PROD
Xy
(x X Y))

Pretty Printing as Selection

Stepping back a moment, it is useful to reflect on how the format directives above
interact to support pretty printing. The “<...~:> and ~_ directives in a format control
string divide the output up into a hierarchy of sections within sections. The “_ and
“I directives simultaneously specify three ways (on one line, on multiple lines, and in
miser style) for printing each section. The job of the pretty printer boils down to se-
lecting (based on the length of the section, the line width available, and the value of
*print-miser-width*) which of the three ways is appropriate for printing each section.

The format directives have been designed so that it is relatively easy to specify three
different ways to print a logical block in a single format control string. In particular,
except for line breaks, white space, (and per-line prefixes), the characters to be printed
are exactly the same in each of the three styles. The ~_ and ~I directives specify how
the logical block sections are to be arranged when printed on multiple lines and in miser
style. ‘

Many other kinds of pretty printing directives could have been supported—for exam-
ple, arbitrary sections of text that are output only when a section is printed on multiple
lines. XP supports only the limited set of directives above, because experience has shown
them to be a good compromise between the requirements of expressive power, easy un-
derstandability, and efficiency.

Tabbing Within a Section

The standard format directive ~T is extended so that it supports the colon modifier in
addition to the atsign modifier. If the colon modifier is specified, the tabbing computation
is done relative to the beginning of the immediately containing section, rather than



16 Dynamic Control of the Arrangement of Output

with respect to the beginning of the line. (When this computation is performed, any
unconditional newlines in the section are ignored.) As an example of using ~:T, consider
the following. Each street name is followed by a ~8:T, which ensures that the total width
taken up will be a multiple of 8. Fill-style conditional newlines are used to put as many
streets as possible on each line.

(format T "~:<Roads ":I"Q_~Q@{"W~""8:T":_~}":>"
’(elm main maple center))
With line width 25 prints:

Roads ELM MAIN
MAPLE  CENTER

The fact that ~:T operates solely within the immediately containing section means
that the number of spaces to insert is independent of whatever indentation is in effect.
In the example above, a column spacing of 8 is used, but the entire table is shifted over
6 columns. (Note the way the “@_ delimits the beginning of the section containing the
first road.)

(The fact that ~:T operates solely within the immediately containing section and ig-
nores unconditional newlines means that the amount of space to insert can be determined
before deciding which (if any) conditional newlines have to be replaced with line breaks.
This is essential for the efficient operation of the pretty printing algorithm.)

When the normal directive “T (without a colon) is processed, tabbing is computed
relative to the beginning of the line and all conditional newlines are ignored. (Again, this
is important so that the number of spaces to insert can be determined before making any
decisions about conditional newlines.)

As a practical matter, one should not use “T after a conditional newline nor ~:T after
an unconditional newline.

User-Defined Format Directives

XP provides a mechanism for allowing the user to define new format directives. In
a somewhat simplified form, this revives a feature of format that was left out when
Common Lisp was initially developed.

XP allows a format string to contain a directive of the form ~/name/. When this is
the case, it is assumed that a function named name has been defined. This function must
accept the pattern of arguments shown below.

name stream arg colon? atsign? &rest parameters = ignored

The colon modifier, the atsign modifier, and arbitrarily many parameters can be
specified with the ~/name/ directive. This information, along with the output stream
and one argument from the current argument list, are passed to the function name. The
input colon?is T if and only if the colon modifier was specified. The input atsign? is T if
and only if the atsign modifier was specified. The function name should perform whatever
operations are required to print arg into stream. Any value returned by the function is
ignored.



User-Defined Format Directives 17

Packages. A key problem with ~/name/ directives derives from the fact that, as
written by the user, name is a string, not a symbol. This string has to be converted into
a symbol to identify the function. The name can be any arbitrary string that does not
contain a “/”. All of the characters in name are treated as if they were upper case. If
name contains a “:” or “::”, then everything up to but not including the first “:” or
“::” is taken to be a string that names a package. Everything after the first “:” or “::”
(if any) is taken to be a string that names a symbol. The function corresponding to a
“/name/ directive is obtained by looking up the symbol that has the indicated name in
the indicated package. If name does not contain a “:” or “::”, then the whole name
string is looked up in the user package.

In Common Lisp, symbols without explicit package prefixes are usually placed in the
package that is contained in the variable *package* at the moment when the symbol
is first read. To continue this policy, name should be placed in the package that is
contained in the variable *package* at the moment when the format string is first read.
Unfortunately, strings do not contain any record of the package they were read into. As
a result, a fixed default package has to be used instead.

Special format directives for lists. XP provides three special format directives for
printing lists. These are accessed using the mechanisms for user-defined format directives
described above.

The directive ~/pprint-linear/ prints out the elements of a list either all on one line

or each on a separate line. parentheses are printed around the list if the colon modifier
is specified.

(defun pprint-linear (stream list &optional (colon? T) atsign?)
(declare (ignore atsign?))
(if colon?
(format stream "~:<~@{"W~~ “_"}":>" list)
(format stream "~<"Q{"W~"~ ~_~"}":>" list)))

(format T "~:/pprint-linear/" ’(one two three))

With line width 15 prints:
(ONE TWO THREE)

With line width 14 prints:

(ONE
WO
THREE)

The directive ~/pprint-£ill/ prints out the elements of a list with as many elements
as possible on each line. Except for the fact that it uses ~:_ instead of ~_, it is identical
to “/pprint-linear/.

(format T "~/pprint-£ill/" ’(one two three four five))
With line width 25 prints:
ONE TWO THREE FOUR FIVE

With line width 15 prints:

ONE TWO THREE
FOUR FIVE



18 Dynamic Control of the Arrangement of Output

The directive ~/pprint-tabular/ is similar to “/pprint-fill/, except that it prints
the elements of the list so that they line up in a table. In addition to the colon modifier,
~/pprint-tabular/ takes a parameter (default 16) that specifies the width of columns in
the table. (The definition of pprint-tabular is shown on page 22.)

(format T "~8:/pprint-tabular/" ’(one two three four five))
With line width 20 prints:

(ONE TWO
THREE FOUR
FIVE)

Abbreviation

XP supports abbreviation controlled by the variables *print-level*, *print-lengthx,
*print-circle#, and *print-shared*. In addition, (see Section 2) XP supports a new
abbreviation mechanism that limits the total number of lines printed. All five mechanisms
are supported in such a way that they automatically apply to user-defined functions that
perform output.

Depth abbreviation. XP obeys *print-levelx in its internal operation. In addition,
it makes it very easy to write format control strings that obey *print-level*. This
is done by basing depth abbreviation on the concept of logical blocks. Whenever a
“<...7:> directive is encountered at a dynamic nesting depth in logical blocks greater
than *print-level*, “#” is printed instead of the block. In addition, the argument (or for
~@<...~":> arguments) that would have been consumed by the directive are skipped.

The following example illustrates how “<...~:> supports depth abbreviation. The
most important feature of the example is that it shows that depth abbreviation is con-
trolled by the dynamic nesting of ~<...~:> directives, not their static nesting. In the
second output shown, the statically outermost instance if “<...~:> in ~/pprint-linear/
(p. 17) is at a dynamic nesting depth of 3. (Note that since there is an implicit log-
ical block dynamically wrapped around the entire output, the dynamically outermost
instance of “<...~:> is at a dynamic nesting depth of 1.)

(format T "+ “:<"W “:<"W “:/pprint-linear/~:>~:> +" (1 (2 (3))))
With *print-level* nil prints:

+ (1 (2 (3))) +
With *print-level* 2 prints:

+ (1 (2#) +

Length abbreviation. XP obeys #*print-length* in its internal operation. In ad-
dition, it makes it very easy to write format control strings that obey *print-lengthx.
This is done by basing length abbreviation on the concept of logical blocks.

“<...7:> provides automatic support for length abbreviation. If *print-length* is
not nil, a count is kept of the number of arguments used within the “<...~:>. If this
count ever reaches *print-length*, “...” is inserted in the output and the processing
of the logical block is terminated, except for printing the suffix (if any). As with depth
abbreviation, the processing depends on dynamic relationships, not static ones.



Abbreviation 19

(format T "+ “:<"@{"W"~ “}~:> +" (1 2 3 4 5))
With *print-length* nil prints:

+ (12345) +
With *print-length* 2 prints:

+(12...)+

Circularity abbreviation. XP obeys *print-circle* and *print-shared* in its
internal operation. In addition, it makes it very easy to write format control strings
that obey *print-circle* and *print-shared*. This is done by supporting circularity
abbreviation through the combined actions of “W and ~<...~:>.

In situations where *print-circle* is not nil, the following extra processing is per-
formed. When "W or “<...~:> is applied to an object that has previously been encoun-
tered, an appropriate #n# marker is printed out instead of printing the argument.

In addition, if an attempt is made to access an argument from the list passed to
“<...”:>, at a time when the remaining portion of this list has already been encountered
during the printing process, “. #n#” is inserted in the output and the processing of the
logical block is terminated, except for printing the suffix (if any). This catches instances
of cdr circularity in lists. The circularity checking described above is not applied if a
~@<...”:> directive is encountered at top level in a format string. This ensures that
circularity detection is applied only to data lists, not to format argument lists.

(format T "+ ~:<~@{"W"~ ~}=:> +" *#1=(1 2 #1# 3 . #1#))

With *print-circle* T prints:

+ #1=(1 2 #1# 3 . #1%) +

With *print-circlex T and *print-length#* 2 prints:
+(12...)+

Circularity detection is an inherently slow process. In particular, two entire passes
have to be made over the output: one to determine what #n= markers should be printed
and another to perform the actual printing. All and all, setting *print-circle* to T
more than doubles the time required for printing using XP and should be avoided unless
strictly necessary. In the interest of efficiency, XP does not print circularity abbreviation
markers in situations where other abbreviation methods hide the circularity. This is
illustrated in the last part of the example above.

For a format string to correctly support circularity abbreviation, every part of the
object being printed must be seen by an occurrence of “W or ~<...~:>. (If some part is
skipped, XP will fail to detect circularities involving that part.) (The above criteria are
also required for depth and length abbreviation to be handled in a completely correct
way.)

In addition to the arguments of “W and ~<...~:> the arguments of the standard print-
ing functions such as write, print, pprint, print1, and pprint, as well as the arguments
of the standard format directives such as, ~A, and =S are all checked (when necessary)
for circularity. However, such checking is not applied to the arguments of the functions
write-line, write-string, and write-char or to the literal text output by format. A
consequence of this is that you must use one of the latter functions if you want to print
some literal text in the output that is not supposed to be checked for circularity or
sharing.



20 Dynamic Control of the Arrangement of Output

Functional Interface

The primary interface to XP’s operations for dynamically determining the arrange-
ment of output is provided through format. This is done, because format strings are
typically the most convenient way of interacting with Xp. However, XP’s operations have
nothing inherently to do with format per se. In particular, they can also be accessed via
the six functions and macros below.

pprint-logical-block (stream-symbol list &key :prefix :per-line-prefix :suffix)
&gbody body => nil

In the manner of “<...~:>, this macro causes printing to be grouped into a logical
block. The value nil is always returned.

The argument stream-symbol must be a symbol. If it is nil, it is treated the
same as if it were *standard-output*. If it is T, it is treated the same as if it were
*terminal-io*. The run-time value of stream-symbol must be a stream (or nil meaning
*standard-output* or T meaning *terminal-io*). The logical block is printed into this
destination stream.

Within the body, stream-symbol is bound to a pretty printing stream that supports
dynamic decisions about the arrangement of output and then forwards the output to the
destination stream. All and only the output sent to stream-symbol is treated as being in
the logical block. (It is an error to send any output directly to the underlying destination
stream.)

The :suffix, :prefix, and :per-line-prefix must all be expressions that (at run
time) evaluate to strings. The argument :suffix (which defaults to the null string)
specifies a suffix that is printed just after the logical block. The argument :prefix
specifies a prefix to be printed before the beginning of the logical block. If the argu-
ment :per-line-prefix is supplied, it specifies a prefix that is printed before the block
and at the beginning of each new line in the block. It is an error for :prefix and
:pre-line-prefix to both be supplied. If neither is supplied, a :prefix of the null string
1s assumed.

The argument Iist is interpreted as being a list that the body is responsible for printing
(see pprint-exit-if-list-exhausted and pprint-pop). If list is not a list, it is printed
using write on stream-symbol and the body is skipped along with the printing of the
prefix and suffix. If *print-circle# is not nil and list is a cons that has already been
printed by or within a dynamically containing logical block, then an appropriate #n#
marker is printed on stream-symbol and the body is skipped along with the printing of
the prefix and suffix. (If the body is not responsible for printing a list, then the behavior
above can be turned off by supplying nil for the list argument.)

If *print-level* is not nil and the logical block is at a dynamic nesting depth of
greater than *print-level#* in logical blocks, “#” is printed on stream-symbol and the
body is skipped along with the printing of the prefix and suffix.

The body can contain any arbitrary Lisp forms. All the standard printing functions
(e.g., write, princ, terpri) can be used to print output into stream-symbol. Within a
logical block, these functions interact correctly with *print-circle* and *print-depthx.

A consequence of the two-pass approach to the detection of circularity and sharing is



Functional Interface 21

that the body of a pprint-logical-block must not perform any side-effects on the sur-
rounding environment. This includes not modifying any variables that are bound outside
of its scope. Obeying this restriction is facilitated by using pprint-pop, instead of an or-
dinary pop when traversing a list being printed by the body of a pprint-logical-block.)

From the discussion above, it can be seen that pprint-logical-block supports all of
the functionality of ~<...~:> except for the automatic introduction of fill-style conditional
newlines supported by “<...~:@>. This feature is omitted, because it is a transformation
on format strings rather than a printing operation.

® pprint-exit-if-list-exhausted = nil

The function pprint-exit-if-list-exhausted tests whether or not the list passed
to pprint-logical-block has been exhausted (see pprint-pop). If this list has been
reduced to nil, pprint-exit-if-list-exhausted terminates the execution of the imme-
diately containing pprint-logical-block except for the printing of the suffix. Otherwise
pprint-exit-if-list-exhausted returns nil. An error message is issued if pprint-exit-
if-list-exhausted is used anywhere other than syntactically nested within a call on
pprint-logical-block. It is undefined what happens if pprint-exit-if-list-exhausted
is executed outside of the dynamic extent of this pprint-logical-block.

¢ pprint-pop => item

The function pprint-pop pops elements one at a time off the list passed to pprint-
logical-block obeying *print-length*, *print-circle*, and *print-shared*. An error
message 1s issued if it is used anywhere other than syntactically nested within a call on
pprint-logical-block. It is undefined what happens if pprint-pop is executed outside
of the dynamic extent of this pprint-logical-block.

Each time pprint-pop is called, it pops the next value off the list passed to pprint-
logical-block and returns it. However, before doing this, it performs three tests. If the
remaining list is not a list (i.e., a cons or nil), “. ” is printed followed by the remaining
list. (This makes it easier to write printing functions that are robust in the face of
malformed arguments.) If *print-length#* is nil and pprint-pop has already been called
*print-length* times within the immediately containing logical block, “...” is printed.
(This makes it easy to write printing functions that properly handle *print-lengthx*.)
If *print-circle* (and possibly *print-shared#) is not nil, and the remaining list is a
circular (or shared) reference, then “. ” is printed followed by an appropriate #n# marker.
(This catches instances of cdr circularity and sharing in lists.)

If either of the three conditions above occurs, the indicated output is printed on the
pretty printing stream created by the immediately containing pprint-logical-block and
the execution of the immediately containing pprint-logical-block is terminated except
for the printing of the suffix.

If pprint-logical-block is given a list argument of nil—because it is not processing a
list—pprint-pop can still be used to obtain support for *print-length#* (see the example
function pprint-vector below). In this situation, the first and third tests above are
disabled and pprint-pop always returns nil.

® pprint-newline kind &optional (stream *standard-output*) => nil

The function pprint-newline supports the functionality of “_. The stream argument



22 Dynamic Control of the Arrangement of Output

(which defaults to *standard-output*) follows the standard conventions for stream ar-
‘guments to printing functions (i.e., nil can be used to mean *standard-output* and
T can be used to mean *terminal-io*). If stream is a pretty print stream bound by
within-logical-block, a conditional newline is sent to stream. Otherwise, conditional-
newline has no effect. The value nil is always returned.

The kind argument specifies the style of conditional newline. It must be one of :1inear
for linear-style (~_), :£i11 for fill-style (*:_), :miser for miser style (“¢_), or :mandatory
for mandatory style (~:@_).

pprint-indent relative-to n &optional (stream *standard-output*) => nil

The function pprint-indent supports the functionality of “I. The stream argument
(which defaults to *standard-outputx) follows the standard conventions for stream ar-
guments to printing functions. If stream is a pretty print stream bound by within-
logical-block, pprint-indent specifies the indentation within the innermost enclosing
logical block. Otherwise, pprint-indent has no effect. The value nil is always returned.

The argument n specifies the amount of indentation. If relative-to is :block, this
indentation is relative to the start of the enclosing block (as for ~I). Alternatively, if
relative-to is :current, the indentation is relative to the current output position in the
immediately containing section (as for ~:I). It is an error for relative-to to take on any
other value.

pprint-tab kind colnum colinc &optional (stream *standard-output*) => nil

The function pprint-tab supports the functionality of “T. The stream argument
(which defaults to *standard-output#) follows the standard conventions for stream argu-
ments to printing functions. If stream is a pretty print stream bound by within-logical-
block, tabbing is performed. Otherwise, pprint-tab has no effect. The value nil is al-
ways returned.

The arguments colnum and colinc correspond to the two numeric parameters to “T.
The kind argument specifies the style of tabbing. It must be one of :1ine (tab as by ~T),
:section (tab as by “:T), :1ine-relative (tab as by ~@T), or :section-relative (tab as
by ~:@T).

As an example of using the functions above, consider that pprint-tabular is defined as
follows. Using pprint-tab in the definition makes it easy to communicate the parameter
tabsize to the algorithm controlling the dynamic arrangement of output. By means of
the list argument of pprint-logical-block and the macro pprint-pop, the definition is
robust in the face of malformed lists and supports *print-length*, *print-levelx, and
*print-circlex.



Functional Interface 23

(defun pprint-tabular (s list &optional (colon? T) atsign?
(tabsize nil))
(declare (ignore atsign?))
(if (null tabsize) (setq tabsize 16))
(pprint-logical-block (s list :prefix (if colon? "(" "")
:suffix (if colon? ")" ""))
(pprint-exit-if-list-exhausted)
(loop (write (pprint-pop) :stream s)
(pprint-exit-if-list-exhausted)
(write-char #\space s)
(pprint-tab :section-relative O tabsize s)
(pprint-newline :£ill s))))

The function below prints a vector using #(...) notation. A list argument of nil for
pprint-logical-block is used, because the structure being printed is not a list. Here the
functional interface to XP is appropriate, because format control strings do not provide
any way to traverse a vector.

(defun pprint-vector (v *standard-output#*)
(pprint-logical-block (nil nil :prefix "#(" :suffix ")")
(let ((end (length v)) (i 0))
(when (plusp end)
(loop (pprint-pop)

(write (aref v i))
(if (= (incf i) end) (return nil))
(vrite-char #\space)
(pprint-newline :£il1))))))

e pprint-fill stream list &optional (colon? T) atsign? => nil
¢ pprint-linear stream list &optional (colon? T) atsign? => nil
e pprint-tabular stream list &optional (colon? T) atsign? (tabsize 16) => nil

The directives ~/pprint-£ill/, “/pprint-linear/, and “/pprint-tabular/ (p. 17)
are supported by the three functions above. These functions can also be called directly
by the user. Each function prints parentheses around the output if and only if colon?
(default T) is not nil. Each function ignores its atsign? argument and returns nil. Each
function handles abbreviation and circularity detection correctly, and uses write to print
list when given a non-list argument.

The function pprint-linear prints a list either all on one line, or with each element on
a separate line. The function pprint-£ill prints a list with as many elements as possible
on each line. The function pprint-tabular is the same as pprint-£ill except that it
prints the elements so that they line up in columns. This function takes an additional
argument tabsize (default 16) that specifies the column spacing.



Ugly Facts About Portability 33

supported by XP. However, in order to make sure that merely installing XP will not
break any currently running code, XP converts format strings to functions only if they
contain one or more of XP’s special directives. If a format string does not contain any of
XP’s special directives, it is left as a string and the standard function format is used to
process it.

Third, the dual approach of using XP for some format strings and standard format
for others has some implications with regard to the directive 7 and the usage ~{~} with
no body. If these forms exist in a format string that does not contain any of XP’s special
directives, then the control arguments they receive must be format strings rather than
functions. On the other hand, if they exist in a format string that contains any of XP’s
special directives then the control arguments they receive must either by functions or
format strings that can be successfully converted to functions by XP.

Beyond the problems above, there are several points where the documentation in [4]
is not entirely clear, and about which different implementations of Common Lisp seem
to disagree. XP may not be doing the right thing in these situations. In particular:

How exactly does @* act in a “{..."} and ~@{...~}? Is it relative to the arguments
being processed by the whole loop, or relative to the arguments being process by the
current step of the loop? XP assumes the former.

There is no detailed grammar given for how a directive can be specified. In particular,
can a colon or atsign modifier be specified before all the parameters have been specified?
XP assumes not.

What is supposed to happen to the argument list when a cycle of ~{...~} is pre-
maturely terminated by a ~~ directive? In particular, are the arguments that have been
processed supposed to have been removed or not? In the interest of simplicity, XP assumes
they should be removed.

Is =~ supposed to operate identically when accessed via “{~} with no body and a ~@?
directive? XP assumes that it is. (It would be quite difficult for XP to support things any
other way.)

Assumptions about the read table. It was possible to more than double the
speed of XP by assuming that the characters “a-z”, “aA-2”, “¥”, “4” “<” “»" and “-”
always have the same syntax as defined in the initial read table. This assumption would
not be necessary if Common Lisp provided any quick way to determine what the syntax
of a character is.

The delay caused by buffering. As part of its operation, XP buffers up output
characters before actually printing them into the appropriate stream. The fundamental
source of the efficiency of the pretty printing algorithm is that things are designed so
that the buffer never has to contain more than one line width worth of output. The
algorithm sends output to the underlying stream one line width at a time. The buffer
is not guaranteed to be completely empty until the printing is completed. Thus there is
typically a delay between the time characters are put in the buffer (e.g., by a call on some
printing function in the pretty printing function for some type of object) and the time
they appear in the output stream. This can be confusing if a process which is performing
pretty printing is interrupted (e.g., during the debugging of a pretty printing function).

The functions finish-output and force-output can be used to force the internal



24 Pretty Printing Types of Objects
4. Pretty Printing Types of Objects

As discussed in Section 2, the pretty printing performed by XP is directed by the
value of *print-pprint-dispatch*. The value of this variable is a pprint dispatch table.
This table is initialized with a number of entries that specify how to pretty print all the
built-in Common Lisp macros and special forms. You can tailor the pretty printer to
your own needs by adding new entries into the table and/or replacing existing entries.
Multiple styles of pretty printing can be supported by constructing several tables and
switching between them.

Pprint dispatch tables are mappings from keys to pairs of values. The keys are type
specifiers. The values are functions and numerical priorities. Basic insertion and retrieval
is done based on the keys with the equality of keys being tested by equal. The function
to use when pretty printing an object is chosen by finding the highest priority function
from *print-pprint-dispatch# that is associated with a type specifier that matches the
object.

copy-pprint-dispatch Zoptional (table *print-pprint-dispatch*) => copy

A copy is made of table, which defaults to the current pprint dispatch table. If table
is nil, a copy is made of the standard pprint dispatch table initially defined by xp.

pprint-dispatch object &optional (table *print-pprint-dispatch#)
=> function in-table-p

This retrieves the highest priority function from a pprint table that is associated with
a type specifier in the table that matches object. The function is chosen by finding all the
type specifiers in table that match the object and selecting the highest priority function
associated with any of these type specifiers. If there is more than one highest priority
function, an arbitrary choice is made. If no type specifiers match the object, a function
is returned that prints object with *print-pretty* bound to nil.

As a second return value, pprint-dispatch returns a flag that is T if a matching type
specifier was found in table and nil if not.

The table argument (which defaults to *print-pprint-dispatch*) must be a pprint
dispatch table. The table argument can also be nil, in which case retrieval is done in
the initial value of *print-pprint-dispatch+.

When #print-pretty* is T, (write object :stream s) is equivalent to

(funcall (pprint-dispatch object) s object).

set-pprint-dispatch type-specifier function
&optional (priority 0) (table *print-pprint-dispatch*) => nil
This puts an entry into a pprint dispatch table and returns nil. The type-specifier
must be a valid type specifier and is the key of the entry. The first action of set-pprint-
dispatch is to remove any pre-existing entry associated with type-specifier. This guar-
antees that there will never be two entries associated with the same type specifier in a
given pprint dispatch table. Equality of type specifiers is tested by equal. Two values are



26 Pretty Printing Types of Objects

(setq *print-pprint-dispatch* (copy-pprint-dispatch nil))

(set-pprint-dispatch ’ratio
#’ (lambda (s obj)
(format s "#.(/ "W ~“W)"
(numerator obj) (denominator obj))))

(set-pprint-dispatch ’(and ratio (satisfies minusp))
#’> (lambda (s obj)
(format s "#.(- (/ "W “W))"
(- (numerator obj)) (denominator obj)))
5)

(pprint ’(1/3 -2/3)) prints: (#.(/ 1 3) #.(- (/ 2 3)))

The following forms illustrate the definition of pretty printing functions for types of
Lisp code. The first form specifies that lists beginning with cond are printed the same
way as function calls except that the clauses are always printed in linear style, rather
than in the format suggested by their cars. The second form specifies that lists beginning
with setq are printed with two arguments on each line. The third form illustrates how
to specify the traditional method for printing quoted objects using “*” syntax. Note
the care taken to ensure that data lists that happen to begin with quote will be printed
readably. The last form specifies that lists beginning with the symbol my-1let should
print the same way that lists beginning with let print when the initial pprint dispatch
table is in effect.

(set-pprint-dispatch ’(cons (member cond))

(formatter "*:<"W"~ ~:I7@_"Q":/pprint-linear/~"~ "_"":>"))
(set-pprint-dispatch ’(cons (member setq))

(formatter "“:<"W™" ":IQ_"Q"W"" “:_"W"" "_"":>"))

(set-pprint-dispatch ’(cons (member quote))
#° (lambda (s list)
(if (and (consp (cdr list)) (null (cddr list)))
(format s "’~W" (cadr list))
(pprint-£ill s list))))

(set-pprint-dispatch ’(cons (member my-let))
(pprint-dispatch ’(let) nil))

The next example specifies a default method for printing lists that do not corre-
spond to function calls. Note that, as shown in the definition of pprint-tabular (p. 22),
pprint-linear, pprint-fill, and pprint-tabular are all defined with optional colon?
and atsign? arguments so that they can be used as pprint dispatch functions as well as
~/.../ functions.

(set-pprint-dispatch ’(cons (not (and symbol (satisfies fboundp))))
#’pprint-fill -5)

(pprint (0O bcdef ghijk))

With *print-pretty* T and line width 9 prints:

(Obcd
efgh
ij k)



27

Pretty printing structures. An important use of XP is to print data structures.
In fact, typical Lisp interactions call for much more printing of data than printing of
programs. Pretty printing can do just as much to enhance the readability of this output
as it can to enhance the readability of code. As shown below, pretty printing functions
for structures that have been defined without the :type option can be specified with
reference to their types.

(defstruct family mom kids)
(set-pprint-dispatch ’family
#’ (lambda (s f)
(format s "~Q<#<~;"W and ~“2I~_~:/pprint-fill/~;>~:>"
(family-mom f) (family-kids £))))
(write (list ’principal-family
(make-family :mom “Lucy"
:kids ’#1=("Mark" "Bob" #1# "Bill" . "Dan"))))
With *print-pretty* T, line width 23, and *print-lines* 3 prints:
(PRINCIPAL-FAMILY
#<"Lucy" and
("Mark" "Bob" ..)>)
With *print-pretty* T, *print-level* 3, and *print-length* 3 prints:
(PRINCIPAL-FAMILY #<"Lucy" and ("Mark" "Bob" # ...)>)
With *print-pretty* T, *print-escape* nil, and *print-circle* T prints:
(PRINCIPAL-FAMILY #<Lucy and #1=(Mark Bob #1# Bill . Dan)>)

A key thing to notice about the pretty printing function above is that without the
programmer having to take any explicit action, it tolerates a malformed kids list and
correctly follows the printer control variables *print-lines*, *print-level*, *print-
length*, *print-escape* and *print-circle*. This should be contrasted with Common
Lisp’s current support for structure print self functions, where it is difficult to handle
*print-level* and *print-length* correctly and impossible to handle *print-circlex
correctly.

There is clearly a close relationship between XP’s pretty printing functions for struc-
tures and the standard concept of a print function for a structure. However, there is a
fundamental difference in approach. XP stores the function in a pprint dispatch table
rather than directly with the structure. This makes it possible to simultaneously support
several different styles of printing by maintaining several different dispatch tables and
to switch rapidly between them. However, it has the disadvantage that pretty printing
functions are only used when *print-pretty* is not nil. This could have the effect of
forcing you to define a pretty printing function and a print function for the same struc-
ture merely to ensure that the structure is always printed the same way. To avoid this
problem, XP uses the print function for a structure when no pretty printing function is
available.

Efficiency. Given only what is said above, the process of determining the printing
functions to be used for the various parts of an object to be printed would be horrendously
ineflicient, because every part of the object would have to be compared against every entry



28 Pretty Printing Types of Objects

in the pprint dispatch table. XP avoids this problem by speeding up the selection process
in two ways.

A hash table is used to very rapidly compare an object against every entry with a
type specifier in the pprint dispatch table that has the form (cons (member symbol)).
A second hash table is used to rapidly compare objects with type specifiers that are the
types of structures defined without the :type option. It is advisable for you to make as
many pprint dispatching entries as possible fit into these two categories.

Another thing to note is that XP has been designed so that pprint-dispatch will
be very eflicient, since it is called on every part of every object printed. In particular,
whenever trade-offs are possible, the efficiency of set-pprint-dispatch is sacrificed to
improve the efficiency of pprint-dispatch. One way this is done is to convert each
type-specifier passed to set-pprint-dispatch into an equivalent function which is then
compiled. This allows pprint-dispatch to compare objects against type specifiers by
calling compiled functions rather than relying on typep. However, the need to perform
these transformations can make set-pprint-dispatch very slow. You can ensure that a
special function will not have to be created or compiled by using type specifiers of the
two types described in the last paragraph, or of the form (satisfies pred), where pred
is already a compiled function.



29

5. Second Order Details

This section begins by describing some features of XP that are not part of the proposed
Common Lisp standard. It then discusses some of the problems involved with supporting
XP in a truly portable fashion. The discussion above deliberately glosses over these
problems on the theory that there is no fundamental need for them to exist and they
would not exist if XP were implemented as part of Common Lisp, rather than as a separate
package. The last subsection discusses how these problems could be corrected if some
time were taken to integrate XP more tightly with a given Common Lisp implementation.

Extended Features

Reprinting an abbreviated object. XP keeps track of the last pretty printing event
that lead to abbreviation due to *print-level*, *print-length#*, or *print-lines*. A
hook, is provided for obtaining this information. Using this hook, mechanisms can easily
be implemented for reprinting abbreviated objects in full.

*last-abbreviated-printing*

This variable records the last printing event where abbreviation occurred. Funcalling
its value (e.g., after turning off abbreviation) causes the printing to happen again.

pp &optional object (stream *standard-output*) =>

This function pretty prints object on stream with *print-circle* bound to T and with
*print-lines*, *print-length#*, *print-level*, *print-shared*, and *print-sharedx
bound to nil. It is convenient to use occasionally when operating in an environment
where one or more of these abbreviation variables have non-null values. If object is
omitted, it defaults to the object saved in *last-abbreviated-printing*. No values are
returned.

In Symbolics Common Lisp, xp::install sets up the the key sequence <function>
<resume> so that it triggers the reprinting in full of the last abbreviated printing (via
pp). This turns out to be very convenient. A similar mechanism might be useful in other
environments as well.

*default-right-margin* default value 70

When *default-right-margin* is nil, XP queries the output stream, to determine
the width available for printing. However, there are some situations (e.g., printing to a
string) where the stream has no inherent width limits. In this situation, the right margin
is set to the value of *default-right-margin*, which must be an integer.

#"..." = function

The # reader macro character syntax #"..." provides a compact syntax for the macro
formatter as shown below. For this syntax to be enabled, you must call xp::install
with a non-null :macro argument.

#'..." = (formatter "...")



30 ' Second Order Details

In addition, #"..." supports a special feature not supported by formatter. If ~/name/
appears in #"...", and no explicit package prefix is specified, the package defaults to the
value of *package* at the moment the #"..." was read, rather than to the user package.

This is in line with the way the packages for symbols default in general. For instance,

foo:(f #""A~/f/") = (foo:f (formatter "~A~/foo:f/"))
while

foo:(f (formatter "~A~/f/")) = (foo:f (formatter "~A~/user:f/"))

Ugly Facts About Portability

XP is implemented in fully portable Common Lisp. However, a number of compro-
mises had to be made for this to be true. This section discusses these problems in detail
and explains how they have been dealt with in Symbolics Common Lisp [9]. It is hoped
that they can be dealt with as easily in other implementations of Common Lisp.

Insufficient integration with non-pretty printing. XP never comes into play
unless *print-pretty* is not nil, (formatter "...") is encountered, or a format string
is evaluated that contains one of xp’s special format directives. This is done as a matter
of safety and so that XP will operate purely as an add-on system. However, it has
drawbacks. For example, the variable *print-right-margin* only has an effect when
XP is in operation. Similarly, *last-abbreviated-printing#* only gets set when XP is
in operation. If XP were combined into a Common Lisp implementation, it would be
natural to combine it directly into the standard output routines, and support variables
like #*print-right-margin* and *last-abbreviated-printing* all of the time.

Getting XP to take effect. By far the biggest problem is that Common Lisp has
no standard mechanism for allowing a new pretty printer to be specified. The function
xp::install uses shadowing to redefine the standard Common Lisp printing functions.
However, this is of somewhat limited utility for several reasons.

First, shadowing fundamental functions like print and defstruct is a dangerous prac-
tice. In particular, while it can work when it is done by one subsystem, it is almost never
going to work if two subsystems try to do it.

Second, shadowing only effects programs that are read into the package where XP is
installed after XP has been installed. Among other things, this means that it will not
change the printing that is initiated by the Lisp system itself. For example, it will not
change the printing done by the top level read-eval-print loop. You can change this easily
enough, but that leaves a host of other places where the system initiates output, such as
various things printed by the debugger.

You could try to install XP more firmly by altering the function cells of the standard
printing functions. However, this is an exceptionally dangerous thing to do and is quite
likely to break the system. (To start with, it will break XP.)

In any event, clobbering these function cells would not fix the problem, because many
Lisp implementations do output by calling primitive output functions that are not part of



Ugly Facts About Portability 31

the standard set of Common Lisp output functions. As a result, clobbering the standard
functions still would not fix all output.

A better answer is to have a hook in the Lisp system that is prepared to accept a
new pretty printer. Symbolics Common Lisp has such a hook in the form of the vari-
able scl:*print-pretty-printer*. The symbolics Common Lisp version of the function
xp: :install sets this variable to a value that causes XP to be used for all pretty printing.

xp::*allow-errors* default value T

An interesting aspect of the function installed on scl:*print-pretty-printerx* is that
it traps any errors that occur when printing is done. This is very useful when such errors
are happening while you are trying to debug something else. However, trapping such
errors can be very annoying when it is a set-pprint-dispatch function or something like
that that is being debugged. You can turn off the error trapping feature by setting the
variable xp: :*allow-errors* to T.

Obtaining information from output streams. To operate as intended, XP needs
to be able to get two pieces of information from an output stream before starting to print
into it. This information is obtained by calling the following two functions.

xp::output-width &optional (output-stream *standard-output*) => width

Returns the maximum number of characters that can be printed on a single line
without causing truncation or wraparound when printing to output-stream, or nil if this
cannot be computed.

xp::output-position &optional (output-stream *standard-output*) => position

Returns the number of characters printed so far on the current output line in output-
stream, or nil if this cannot be computed.

Unfortunately, although every implementation of Common Lisp probably supports
internal functions providing this information, there are currently no standard Common
Lisp functions yielding this information. XP contains appropriate definitions of the func-
tions above for several different implementations of Common Lisp; however, in other
implementations it is reduced to using default (useless) definitions of these two functions
that always return nil. If you are operating in one of these other implementations (you
can tell by looking at the beginning of the XP file) you should provide better implemen-
tations for these functions.

Imperfect integration with structures. To operate as intended, XP needs to be
able to determine which types are structure types. This is done by calling the following
function.

xp::structure~-type-p type = boolean

Returns non-nil if and only if type is a structure type defined by defstruct without
the :type option, and nil otherwise.

Unfortunately, although every implementation of Common Lisp probably supports an
internal function providing this information, there is currently no standard Common Lisp



32 Second Order Details

function yielding this information. XP contains appropriate definitions of the functions
above for several different implementations of Common Lisp; however, in other imple-
mentations it is reduced to pessimistically assuming that the only structures are ones
defined using xp: :defstruct (which is used to shadow lisp:defstruct if xp::install is
called with :shadow T). If you are operating in one of these other implementations (you
can tell by looking at the beginning of the XP file) you should provide an implementation
for xp: :structure-type-p.

Another potential problem is that XP assumes that if a structure is defined using XP’s
shadowed version of defstruct, then the structure’s print function (if any) is defined
using the XP’s shadowed versions of the various printing functions. As a result, XP does
not hesitate to call such a print function with one of its pretty printing streams as an
argument. Since it is possible for the assumption to be false, this can lead to problems.

Limitations on the definition of new type specifiers. Due to the extreme
restrictions Common Lisp places on the ways complex type specifiers can be constructed,
there is no implementation independent way to support the extended definition of the
type specifier cons as a first class type specifier, even though it does not violate the
‘spirit’ of what can and cannot be a type specifier. As a consequence of this limitation,
the extend form of cons can only be used in conjunction with set-pprint-dispatch. This
could easily be remedied if XP were incorporated directly into Common Lisp.

Imperfect integration with format. XP supports 99% of the functionality of
format, but not all of it. In particular, XP takes pains to fully support format as described
in [4]. However, there is one place where XP falls short of this goal.

As discussed above, the standard format directive “<... > is more or less incompatible
with “<...~:> and the other pretty printing directives. However, it is permissible to have a
garden variety instance of “<...~> nested in a format string that also contains some pretty
printing directives. In this situation, XP uses the standard function format to process
the part of the format string containing the -<...~>. Unfortunately, this only works
when it can be determined exactly how many arguments will be used by the ~<...~>.
As a result, XP is forced to require that “<...~> cannot contain complex directives like
“e{..."}, “~, and “* or anything similar. This problem could be straightforwardly fixed
if XP duplicated all of the code in the standard function format that supports “<...~>
instead of merely using the standard function format.

Another area of difficulty concerns the fact that XP is oriented around supporting for-
mating functions (e.g., created by (formatter "...")) rather than format control strings.
Nevertheless, in the interest of upward compatibility, XP allows format strings to be used.
However, there are three complications with this.

First, to avoid having to implement an interpreter for format strings as will as a
compiler for (formatter "..."), XP converts each format string that contains any of XP’s
special directives into a function the first time it is encountered. This works well as long
as format strings are not modified by side-effect. The caching of converted format control
strings can be turned off by setting the variable xp: :*format-string-cache* to nil.

Second, some implementations of Common Lisp support format directives beyond the
ones defined in [4] or support additional features of the standard format directives. No
attempt is made to support this functionality in conjunction with the special directives



Ugly Facts About Portability 33

supported by XP. However, in order to make sure that merely installing XP will not
break any currently running code, XP converts format strings to functions only if they
contain one or more of XP’s special directives. If a format string does not contain any of
XP’s special directives, it is left as a string and the standard function format is used to
process it.

Third, the dual approach of using XP for some format strings and standard format
for others has some implications with regard to the directive “7 and the usage ~{*} with
no body. If these forms exist in a format string that does not contain any of XP’s special
directives, then the control arguments they receive must be format strings rather than
functions. On the other hand, if they exist in a format string that contains any of XP’s
special directives then the control arguments they receive must either by functions or
format strings that can be successfully converted to functions by XP.

Beyond the problems above, there are several points where the documentation in [4]
is not entirely clear, and about which different implementations of Common Lisp seem
to disagree. XP may not be doing the right thing in these situations. In particular:

How exactly does “@* act in a ~{...~} and ~@{...~}? Is it relative to the arguments
being processed by the whole loop, or relative to the arguments being process by the
current step of the loop? XP assumes the former.

There is no detailed grammar given for how a directive can be specified. In particular,
can a colon or atsign modifier be specified before all the parameters have been specified?
XP assumes not.

What is supposed to happen to the argument list when a cycle of ~{...~} is pre-
maturely terminated by a =~ directive? In particular, are the arguments that have been
processed supposed to have been removed or not? In the interest of simplicity, XP assumes
they should be removed.

Is ~~ supposed to operate identically when accessed via ~{~} with no body and a ~@?
directive? XP assumes that it is. (It would be quite difficult for XP to support things any
other way.)

Assumptions about the read table. It was possible to more than double the
speed of XP by assuming that the characters “a-z”, “A-z”, “*”, “4” “¢” 7" and “-”
always have the same syntax as defined in the initial read table. This assumption would
not be necessary if Common Lisp provided any quick way to determine what the syntax
of a character is.

The delay caused by buffering. As part of its operation, XP buffers up output
characters before actually printing them into the appropriate stream. The fundamental
source of the efficiency of the pretty printing algorithm is that things are designed so
that the buffer never has to contain more than one line width worth of output. The
algorithm sends output to the underlying stream one line width at a time. The buffer
is not guaranteed to be completely empty until the printing is completed. Thus there is
typically a delay between the time characters are put in the buffer (e.g., by a call on some
printing function in the pretty printing function for some type of object) and the time
they appear in the output stream. This can be confusing if a process which is performing
pretty printing is interrupted (e.g., during the debugging of a pretty printing function).

The functions finish-output and force-output can be used to force the internal



34 Second Order Details

buffer to empty out. However, to maintain internal consistency in the pretty printing
algorithm, all of the logical blocks that have been started but not yet completed are
printed as if they are not able to fit on a single line. As a result, the output may not
look the same as it would if the buffer were not prematurely forced to empty out.

Taking full advantage of information about formatting special forms. Sym-
bolics Common Lisp contains a large number of special forms that have to be pretty
printed in special ways in addition to the standard Common Lisp special forms. In
Symbolics Common Lisp, XP takes advantage of the fact that the ZWIE editor main-
tains information about these forms in order to determine how to pretty print them. A
similar sharing of information between XP and the Lisp editor might be useful in other
environments as well.

No support for font variations. The pretty printing algorithm depends on exten-
sive calculations about how much space strings of characters will take up when displayed.
These calculations are greatly simplified by assuming that every character will have the
same fixed width when displayed. Only newlines are treated specially.

It should be noted that (except for ~T) the standard format directives all make the
same simplifying assumption. However, this assumption can lead to problems in some
situations. For example, it is inadvisable to use literal tab characters when pretty printing
and the output produced by XP looks quite strange when it is displayed using a variable
width font.

The above not withstanding, the fundamental algorithms used by XP could be ex-
tended to handle characters of variable width and characters whose width depends on
the position where they are displayed. In addition, the interface has been designed as
much as possible to be independent of this issue.

The only user-visible things that refer to actual lengths are the variables *print-
right-marginx, *default-right-margin*, *print-miser-width*, and the numeric argu-
ments to “T, “I, and ~/pprint-tabular/ and their functional counterparts. All of these
measurements must be in the same units, but it does not matter a great deal what the
units are. A good choice would be something like the length of an “m” in the current font.
This will work out right for fixed width fonts and pretty well for variable width ones. Pro-
grammers should be advised to avoid explicit lengths—i.e., they should rely on streams
knowing how wide they are and use ~0:I whenever possible to indicate indentations.

Doing Things Right

XP is the kind of program that cannot really be supported in a totally portable way in
Common Lisp. This is true both due to the various problems outlined above and because
there are a number of things where portability has only been achieved at the significant
sacrifice of efficiency. The right thing to do when incorporating XP into a Common Lisp
is not to merely load the system and use it, but rather to totally integrate it with the
way printing is done.

Places where XP needs to be more tightly integrated with the primitive
printing facilities. There are a number of places where XP falls back on using the
standard printing facilities. The standard function write is used to print objects for



Doing Things Right 35

which there is no special printing function in *print-pprint-dispatch*. The standard
function format is used to support complex format directives like R, ~C, and “F. In both
cases, this is done by having the standard functions output into a string and then copying
the string into XP’s internal buffer.

This is effective, but quite slow. As a result, printing with XP is noticeably slower
than printing with *print-pretty* nil. This is unfortunate, because as demonstrated by
PP [7], the algorithms underlying XP are sufficiently efficient that it is possible for pretty
printing to be virtually as fast as non-pretty printing. The only thing that is missing is
proper integration with the printing subprimitives.

To a certain extent, superior integration could have been achieved by duplicating
more of the basic printing code as part of XP. However, it would not be possible to
achieve perfect integration in a portable way, because Common Lisp does not provide
any way to get information out of the read table. As a result, write must be used to print
symbols. (As discussed above, XP gets around this problem to some extent by making a
few conservative assumptions about the read table.)

The right thing to do when incorporating XP into a Common Lisp is to modify XP
so that it directly calls the appropriate printing sub-primitives and modify the sub-
primitives so that they put their output directly into XP’s internal buffer.

Places where the primitive printing facilities need to be more tightly in-
tegrated with XP. To get XP to really take over for all pretty printing, it needs to be
installed in such a way that it is always used. The right way to do this is to insert a call
to it deep in the standard printing code at the point where the variable *print-pretty
is tested.

In addition, all of the functions that make use of format strings (e.g., error) should be
extended so that they can make use of (formatter "...") and the special pretty printing
functions.

Beyond this, there is a more subtle problem. Internally, XP operates in two stages.
The first stage supports dispatching through *print-pprint-dispatch# along with var-
ious kinds of abbreviation. This dispatching is accessed via the directive "W and the
function write. The second stage performs the actual dynamic formatting decisions.

The second stage essentially operates as a special kind of output stream. This stream
receives output characters and commands related to logical blocks and conditional new-
lines. After deciding where to insert line breaks, the output is sent on to the ordinary
stream that is the eventual destination of the output. This organization is largely hidden.
However, it becomes apparent in one key situation.

When writing special printing functions (i.e., to be used with set-pprint-dispatch,
defstruct, or ~/.../) it is permissible to use any kind of printing function. However,
these functions are called with special XP streams as arguments rather than ordinary
streams. (This is essential, because XP must be able to catch all output before it gets
to the real output stream.) As a result, all of the standard printing functions (e.g.,
print, terpri, force-output) have to be modified so that they will operate correctly
when passed a special XP stream.

Alternatively, the fundamental concept of what an output stream is can be altered
so that every stream is capable of supporting the operations of the second stage of
XP. This approach was taken by PP, and worked very well. A particular advantage



36 Second Order Details

of this is that it allows proper integration of XP with functions like with-open-file and
with-output-to-string. Unfortunately, it is impossible to create a new kind of stream in
a portable manner, because Common Lisp does not provide any appropriate primitives.

Using XP to the full. Because the capabilities of XP go way beyond typical pretty
printers, XP can be used in many ways that typical pretty printers cannot. As a result.
It is useful to extend a Common Lisp so that it takes better advantage of pretty printing,.
To start with, since (when properly integrated) XP is just as fast as a non-pretty printer
their is no reason not to have the default value of *print-pretty* be T.

Beyond this, many kinds of output done by the system itself should be upgraded to
take advantage of XP. As an example, in Symbolics Common Lisp, the trace facilities can
be used to print out information about the arguments a function is called with whenever
it is called. This output is produced using standard format control strings and always
prints all the arguments on one line. If the arguments are large, this output ends up
being more or less unreadable. The Symbolics version of xp: :install replaces the trace
printer with a new function that takes full advantage of xp. There are dozens of other
places where such changes could profitably be made.



37

Historical Note

The original #print system was written in MacLisp in 1977. The primary motivation
behind #print was producing a pretty printer significantly faster than the Goldstein
pretty printer [1] then in use. By means of the same basic algorithms that are still in use
in XP, #print succeeded in being almost as fast as ordinary printing. In addition to using
fundamentally the same algorithms as XP, #print followed the same basic approach of
having pretty printing control strings for specifying how to control the dynamic layout of
output and mechanisms for associating pretty printing functions with types of objects.
However, the interface was markedly different in two respects.

First, the pretty printing control strings used by #print were developed before format
came into wide use. Although fundamentally similar to format control strings, they
looked very different, because they treated unmarked characters as directives instead of
literal characters to be printed out. Literal output had to be specified by enclosing it
in apostrophes. The pretty printing control strings were also described in a confusing
way that exposed unnecessarily much of the underlying algorithm. Second, the mecha-
nisms used by #print to associate pretty printing functions with types of objects were
significantly more cumbersome and less powerful than those supported by XP.

#print was released for general use in the MIT AI Laboratory in January of 1978.
However, probably because satisfactory documentation was never produced, #print was
not extensively used by anyone other than the author.

In early 1980, #print was cleaned up and re-released under the name Gprint. The
primary change was that, Gprint extended the power of (and further complicated) the
mechanisms for associating pretty printing functions with types of objects. In late 1981,
full documentation was prepared [5] and Gprint began to reach a wide audience.

In the spring and summer of 1982, Gprint was converted to run on the Symbolics
Lisp Machine. After a delay of a year or so, Gprint was adopted as the standard pretty
printer on the Symbolics Lisp Machine, in which role it is still being used today. However,
Symbolics decided not to publicize the interface that can be used to define new ways of
pretty printing things. In the summer of 1983, DEC converted Gprint into their Common
Lisp and adopted it and its interface as official parts of their Common Lisp.

In 1984, Gprint was totally rewritten in Symbolics Lisp Machine Lisp and re-emerged
as PP [7]. The key advance was that PP unified the concepts of format control strings
and pretty printing control strings, recasting everything in format’s syntax. From the
point of view of people who understand format, this simplified things tremendously. PP
also somewhat simplified the mechanisms for associating pretty printing functions with
types of objects by eliminating the least used features. In the fall of 1985, DEC upgraded
their Common Lisp to include PP and its interface instead of Gprint.

In 1988, PP was totally rewritten in completely portable Common Lisp and re-emerged
as XP [8]. XP’s major contribution is that, by taking an entirely different approach, it
greatly simplifies the mechanisms for associating pretty printing functions with types of
objects and makes them even more powerful then the mechanisms supported by Gprint.
Since September 1988, XP has been in experimental use as the pretty printer in CMU
Common Lisp.

Starting in the winter of 1988-89, discussions began with the Common Lisp stan-



38 Bibliography

dardization committee (X3J13) about the possibility of incorporating XP as part of their
proposed standard. A number of relatively minor abjections were raised by various mem-
bers of the committee that necessitated changes in XP. However, in the summer of 1989,
XP was accepted as part of the new standard.

The relevance of XP is not restricted to Common Lisp. Many of the ideas discussed in
this paper have a wider area of applicability. For instance, the mechanisms for allowing
the user to exercise control over the dynamic arrangement of output could be incorpo-
rated into almost any programming language (e.g., into the formatted output statements
of Fortran or PL/I). Similarly, the mechanisms for linking special pretty printing func-
tions with various types of objects could be introduced into almost any programming
environment, given the same kind of type information from the compiler that a good
debugger requires.

Bibliography

[1] Goldstein I., “Pretty Printing, Converting List to Linear Structure”, MIT/AIM-279,
February 1973.

[2] Hearn A.C. and Norman A.C., A One-Pass Pretty Printer, Report UUCS-79-112,
Univ of Utah, Salt Lake City Utah, 1979.

(3] Oppen D., “Prettyprinting”, ACM TOPLAS, 2(4):465-483, October 1980.
[4] Steele G.L.Jr., Common Lisp: the Language, Digital Press, Maynard MA, 1984.

5] Waters R.C., Gprint: A Lisp Pretty Printer Providing Extensive User
g
Format-Control Mechanisms, MIT/AIM-611, October 1981.
(Revised version MIT/AIM-611a, September 1982.)

[6] Waters R.C., “User Format Control in a Lisp Prettyprinter”, ACM TOPLAS,
5(4):513-531, October 1983.

[7] Waters R.C., PP: A Lisp Pretty Printing System, MIT/AIM-816, December 1984.

[8] Waters R.C., XP: A Common Lisp Pretty Printing System, MIT/AIM-1102, March
1989.

[9] Lisp Machine Documentation for Genera 7.0, Symbolics, Cambridge MA, 1986.



39

Functional Summary and Index

copy-pprint-dispatch &optional (table *print-pprint-dispatch*) => copy
p. 24 Copies a pprint dispatch table.
*default-right-margin* default value 70
p- 29 Default line width to use when pretty printing.
formatter control-string = function
p- 5 Macro that transforms a format control string into a function.
xp::install &key (:pkg *package*) (:macro nil) (:shadow T) (:remove nil) => T
p. 2 Makes XP ready for use.
*last-abbreviated-printing*
p. 29 Variable recording last printing event that was abbreviated.
PP &optional object (stream *standard-outputx) =>
p. 29 Pretty prints an object without abbreviation.
pprint-fill stream list &optional (colon? T) atsign? => nil
p. 23 Function underlying ~/pprint-£ill/.
pprint-dispatch object &optional table = function in-table-p
p- 24 Retrieves the pprint function for object from a pprint dispatch table.
pprint-exit-if-list-exhausted =3 nil
p- 21 Supports length and circularity abbreviation.
pprint-indent relative-to n Zoptional (stream *standard-output*) => nil
p. 22 Functional interface to ~1I.
pprint-linear stream list &optional (colon? T) atsign? => nil
p. 23 Function underlying ~/pprint-linear/.
pprint-logical-block (sl &key :prefix :per-line-prefix :suffix) &body b => nil
p. 20 Functional interface to ~<... " :>.
pprint-newline kind &optional (stream *standard-output*) => nil
p. 21 Functional interface to ~_.
pprint-pop = item
p. 21 Supports length and circularity abbreviation.
pprint-tab kind colnum colinc &optional (stream *standard-output*) => nil
p. 22 Functional interface to ~T.
pprint-tabular stream list &optional (colon? T) atsign? (tabsize 16) => nil
p. 23 Function underlying ~/pprint-tabular/.
*print-lines* default value nil
p- 4 Variable limiting the total number of lines pretty printed.
*print-miser-width* default value 40
p. 3 Variable specifying when pretty printing should switch to space saving mode.
*print-pprint-dispatch* default value causes standard pretty printing
p. 3 Variable containing the current pprint dispatch table controlling pretty printing.
*print-right-margin* default value nil
p- 3 Variable specifying the line width to use when pretty printing.
set-pprint-dispatch type function &optional priority table = nil
p- 24 Sets a pprint dispatch table entry.



40 Functional Summary and Index

#"..." (p. 29) Functional format control string.

The directive “W (write object p. 5) uses the function write to output the correspond-
ing format argument without forcing the setting of any output control variables.

“W (p. 5) Prints an argument following all output control variables.
~:W (p. 5) Forces pretty printing.
“@W (p. 5) Suppresses length and depth abbreviation.

There are three special directives for printing lists. Each of them prints parentheses
around the output when used with the colon modifier.

“/pprint-£ill/ (p. 17) Prints as many elements as possible on each line.
~/pprint-linear/ (p. 17) Prints elements all on one line or one to a line.
“c/pprint-tabular/ (p. 18) Prints elements in a table with column spacing c.

The directive “<prefix~; body~ ; suffix~ :> (logical block, p. 8) iterates over a list argu-
ment using body to print the elements of the list in a logical block. The prefix and suffix
are printed before and after the block respectively.

“<...":> (p. 8) Denotes a logical block and descends into a list argument.
"@<...~:> (p. 8) Operates on all the remaining arguments.

“:<body~:> (p. 10) Prefix and suffix default to “(” and “)” respectively.
“<body~:@> (p. 10) Body printed to fill the line width.

“<prefix~@;...":> (p. 10) Prefix printed on each line.

The indentation in a logical block is initially set to the column position of the first
character in the block. The directive ~I (set indentation, p. 14) is used to alter the
indentation within a logical block. If omitted, the parameter defaults to zero. When a
logical block is printed in miser style, all instances of ~I are ignored.

“nI (p. 14) Indentation set to position of first character in block plus n.
“n:I (p. 14) Indentation set to position of directive plus n.

The directive ~_ (conditional newline, p. 11) specifies a place where a newline can be
inserted in a logical block. For a discussion of line breaks inserted by other means than
~_, see page 13.

“_ (p. 11) Linear-style conditional newline.

~:_ (p. 12) Fill-style conditional newline.

~@_ (p. 11) Miser-style conditional newline.

=:@_ (p. 13) Mandatory-style conditional newline.

The directive “T has augmented capabilities.

=:T (p. 15) Tab relative to containing section.






UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE fWhen Dets Entered)

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

'. REPORT NUMBER

ATl Memo 1102

2. GOVY ACCESSION NO.

AD- A0315

3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle) .
XP: A Common Lisp Pretty Printing System

S. TYPE OF REPORT 8 PERIOD COVERED
memorandum

§. PERFORMING ORG. REPORY NUMBER

7. AUTHOR(e)
Richard C. Waters

8. CONTRACT OR GRANT NUMBER(s)

N00014-88-K-0487

9. PERFORMING ORGANIZATION NAME AND ADDRESS
Artificial Intelligence'Laboratory
545 Technology Square
Cambridge, MA 02139

. PROGRAM E{E

M MENT PROJECT, TASK
AREA & WORK UN

IT NUMBERS

1. CONTROLLING OFFICE NAME AND ADORESS

12. REPORT DATE

Information Systems
Arlington, VA 22217

Advanced Research Projects Agency March 1989
1400 Wilson Blvd. 13. NUMBER OF PAGES
Arlington, VA 22209 40

14, MON!TPRING AGENCY NAME & ADDRESS(/f difterent lrom Controlling Ollice) 18. SECURITY CLASS. (of thie report)
Office of Naval Research UNCLASSIFIED

18a. DECLASSIFICATION/DOWNGRADING

SCHEDULE

. DISTRIBUTION STATEMENT (of thie Report)

Distribution is unlimited

17. OISTRIBUTION STATEMENT (of the abetract entered in Block 20, I different from Report)

. SUPPLEMENTARY NOTES

None

. KEY WORDS (Continue on teverse side Il necessary and Identily by block number)
LISP
pretty printing
abbreviated output

formatted output

20. ABSTRACT (Continue on reveree elde Il necessary and identily by biock number)

program code.

XP provides efficient and flexible support for pretty printing in Common
Lisp. Its single greatest advantage is that it allows the full benefits of pretty
printing to be obtained when printing data structures, as well as when printing

XP is efficient, because it is based on a linear time algorithm that uses only
a small fixed amount of storage. Xp is flexible, because users can control the

DD , 53R 1473

EDITION OF 1 NOV €3 1S OBSOLETE
S/N 0:02-014-6601 |

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Deats Bnterec




“ 2'7 »ﬁmf‘“t Ioe ]
e g a0 [ e

on arbitrary dm utmctm, beem Wﬂ m wi&ed for speafymg 47
pretty printing methods for any iype-of abject. -
XP also modifies the way sbbreviation based on length, nestmg depth,

W:“
k3
ai
bod
1)

]

: functions that perform output—e.g., print fanctions-for structures. In addi- fnta
| tion, a new abbreviation mechanism is introdwced that can:-be used to:limit
- the tota.l number of hnes pnnted

LR Tl RO g A

]
[
{

-

LI L

e

o e ot et 2t

TR g i
e e o vyl
e
i [AE 3
}w.. wm U PR e i e . e e
t R R T A T T 4 e @f et pn 1< n,-r-e\!iwmti é ‘~‘E¥ L e Re Y
:
T rans : Bt eas o ¥
: 219
frommncess S U w s e . E e N
A2 T R ) : ol ;
: L
i
H
L OV O USRSV UL SRS e PR e [
(rox#® wim W) Tudeel VAT wu Ty 70
Bagtarring 25 .0rimbieded
H
3
3
B e i S v i N 98 AT S o e e 1 SR " - ‘oo h e e - ...w.»,i
Wreer A osot te il 3 0% RS wL Doadlow RRRLiEBs ev Yo UMY A TR e I

o
[ 3]

and circularity is supported so that they automatically spply to user-defined r\.mm: Fecs

34
i
T o e e g Ay i A 5 A 5B s
H % R ak *’wﬂ gom e e M *hbe Leide o5 BT TPOR IRt 3 8!
i - .
: TR 80 TR
3
H KN B o 5
51 ; ;
§ ‘ §

i
3

i L B 150 R 05 e 5 e ¢ e it

SCTTTINE THE I DYTOPR

5 B AT i W € A 0 Y

e (1R RIG 0TI M




Scanning Agent Identification Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the M.L.T
Libraries. Technical support for this project was
also provided by the M.L.T. Laboratory for
Computer Sciences.

darptrgt.wpw Rev. 9/94



