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1 Introduction

This paper presents a concurrent implementation of the programming language Guarded
Horn Clauses, abbreviated GHC. GHC is a general-purpose concurrent logic programming
language [Ued86]. It has a clean, simple semantics based upon unification and choice
nondeterminism.

This interpreter is, to the best of our knowledge, the only implementation of GHC which
is object-oriented. Unlike typical implementations of GHC written in logic programming
languages, this interpreter is written in the Actor language Acore [Man87). Acore is a
concurrent, object-oriented language designed for open systems.

Further, previous GHC implementations have relied upon the closed-world assumption,
which states that all information necessary for a computation is known at the time of its
invocation. Anything which is not known and cannot be derived from existing information
is assumed to be false. In contrast, our implementation does not make this assumption.
It is an open system in the sense that program clauses can be added dynamically as a
computation unfolds [Hew85]. This allows new information to be introduced and used as it
becomes available. Thus a program which relies on information which is not immediately
available does not fail, but instead suspends, waiting for the arrival of this information.

Finally, this interpreter is one of the few complete implementations of full GHC; most
previous work has focused on the flat subset of GHC (FGHC), which allows no user-defined
predicates in guard clauses. Full GHC is considerably more difficult to implement due to
the complex and subtle interactions of GHC’s rules of suspension.

1.1 Goals
1.1.1 Actor Programming Methodology

Our primary motivation was to probe the strengths and weaknesses of the Actor lan-
guage Acore as a platform for developing sophisticated programs. We chose to implement
a concurrent interpreter for GHC because this large, complex application provided a rich
testbed for exploring Actor programming methodology.

Our work explores the challenges of programming in a model which significantly differs
from conventional sequential and parallel models. The Actor model is characterized by
asynchrony and nondeterminism, factors which alter the way a programmer must reason
about computations. The interpreter exploits many actor concepts and techniques which
are useful in such an environment.

As of this writing, the GHC interpreter is one of the largest, most sophisticated pro-
grams written in Acore. Developing the interpreter provided us with extensive experience
using asynchronous message-passing, behavior replacement, forwarding actors, speculative
concurrency, and resource encapsulation with sponsors.

1.1.2 A Pedagogical Investigation of GHC

Implementing GHC in an object-oriented langnage provides those familiar with ob ject-
oriented programming languages with an explicit representation of GHC constructs and



control flow. In logic-based interpreters, a great deal is left implicit in the declarative
style of the implementation language. Newcomers to logic programming may find that this
presents a barrier to understanding the mechanisms of GHC.

This interpreter was also intended to be more expressive than existing GHC interpreters
in two ways. First, the interpreter implements full GHC, instead of its more limited flat
subset, FGHC. Second, by implementing GHC in a language designed to support open
systems, we allow programmers to avoid the limitations of the closed-world assumption.

The interpreter is a pedagogical investigation of the mapping of GHC constructs onto
the Actor model. Our interpreter is designed to expose maximal parallelism by adopting
a very fine-grained model of concurrency. Because we opted for simplicity over efficiency,
the interpreter is inefficient in both time and space. A discussion of possible optimizations
is given in the Future Work section.

1.2 Roadmap

The next two sections present quick overviews of our source and destination languages,
GHC and Acore. Section 4 details the implementation of the interpreter, focusing first
on the unification structure and then on the control structure. Section 5 contains ideas
for future optimizations of the interpreter. Appendix A gives specifications for the behav-
iors of the actors used in our implementation. Finally, Appendix B outlines problems we
encountered in using Acore, and suggests several improvements.



2 A Brief Overview of GHC

This section presents a terse description of GHC. For more details, consult [Ued87] and
[Ued86)]. The reader already familiar with GHC may wish to skip to the next section.

2.1 Procedures, Programs, and Horn Clauses

A GHC program is a set of Guarded Horn Clauses, which are either goal clauses or
program clauses. In GHC a goal clause is written

i Gl,...,Gn.
and program clauses have the form
H:-Gy,...,Gn | B1,...,By,. (m,n > 0).

A goal clause is a conjunction of goals (i.e., Gy A --- A G, where n > 1), that is used
to start a computation by invoking program clauses. Each goal is a term of the form
p(X1,...,Xk), where k& > 0.

The program clauses in GHC are sets of subgoals which satisfy a particular goal. In the
program clause above, H is the head, the G; are the guard goals, | is the commit operator,
and the B; are the body goals. Logically, the program clause means that the conjunction of
the goals G1,...,Gm, B1,..., By, implies the goal H. The trivial clause true is often used
to express an empty clause.

A GHC computation is invoked by a request to resolve a goal clause. The system
attempts to satisfy the goal clause via resolution — matching program clauses are used to
reduce the goals into a number of subgoals, with the eventual aim of deriving the empty
clause, true. In essence, an original “caller” goal is reduced into the body goals of a matching
program clause. This process is repeated recursively until the computation “bottoms out”
at primitive goals that either succeed or fail.

The extra-logical commit operator is used to control subgoal resolution in a GHC pro-
gram. In a procedural interpretation, commit resembles an if-then structure. For example,

fac(X,)Y):— X =0]Y = 1.

can be interpreted as: if X unifies with 0 then unify Y with 1. Unlike a procedural ‘if’,
there is no ‘else’ case, i.e., if the goal X = 0 is not satisfied, then the guard will not commit
and the body will not export any bindings. If a procedure has multiple clauses they will
execute concurrently. The first clause whose guards are satisfied commits, aborting the
execution of the other active clauses. This non-backtracking interpretation distinguishes
GHC from theorem provers such as Prolog.

2.2 Terms and Values

A goal is a formula in the Horn clause logic. A formula may be a variable symbol such
as p or ¢ (known as an atomic formula), or may be constructed by applying a predicate



symbol to a set of terms, such as p(Xj,...,X;). Each term may itself be an atomic
formula or consist of a predicate or function symbol applied to a set of terms!; GHC is a
compositional logic. Each term is assigned a value according to the semantics of GHC and
a set of constraints expressed by program clauses.

An unbound variable does not have a value initially assigned to it. Its value is deter-
mined by its unification history, i.e., the serialization of all unifications on that variable.
For example, the serialization A = B, B = 1 gives A the value 1, but C = D ensures only
that C' and D will have the same value, if any.

Compound terms in argument positions are not solved as goals by application of program
clauses. Instead, they act as data structures, each having itself as a value. For example,

:— cdr(cons(1, cons(2,3)), Result).
cdr(cons(A,B),C) :— true | C = B.

unifies Result with the data structure cons(2,3) even though cons may not yet (or ever)
have any defining program clauses.

The value of a function application, f(Xi,...,X,), is determined by calling the function
f on the value of the arguments X,...,X,. A function call with no arguments is a constant
and yields itself as a value. The only non-constant functions in GHC are system defined.
System functions, such as the arithmetic operators +, —, , and /, are used to implement
primitives that return values.

GHC also contains some system defined predicates [Ued86]. These goals take a special
infix syntax, as opposed to user-defined goals which are typically written p(E4,...,E,).
Although Ueda is able to derive the rest of these predicates from the primitive unify predi-
cate (=) by using an infinite number of program clauses, in practice they must be provided
by the language implementation. Much of the expressive power of GHC stems from the
subtle interactions of these system predicates.

[ Primitive | Meaning |
[ =" [ Unifies LHS with RHS
= Unifies LHS with value of RHS

== Unifies value of LHS with value of RHS
<> Succeeds iff value of LHS does not unify with value of RHS.
= Succeeds iff value of LHS unifies with value of RHS or any of its successors.

= Succeeds iff value of LHS unifies with value of RHS or any of its predecessors.
< Succeeds iff value of LHS unifies with any successor to value of RHS.

> Succeeds iff value of LHS unifies with any predecessor of value of RHS.

2.3 Parallelism

GHC was designed as a simple, general-purpose, inherently parallel programming lan-
guage. Here inherently parallel means a programming language which is by nature parallel—
instead of providing primitives which allow for ezplicit parallelism on top of an inherently
sequential language, rules or primitives are provided to control implicit parallelism only

1By convention, variables are capitalized, and constants (functions and data structures) are lowercase.
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when necessary. Examples of languages which utilize explicit parallelism are MultiLisp
[Hal85], which employs futures to achieve concurrency, and Argus [Lis83], which provides
constructs such as guardians and coenter statements for concurrent actions and processes.
- Examples of implicitly parallel languages include Acore [Man87], Id [Nik87], and Flat Con-
current Prolog [Sha87].

The resolution of non-guarded Horn clauses is implicitly parallel in two different re-
spects. First, there is OR parallelism between the clauses of a procedure. At least one of
the clauses that match the goal must satisfy its guard for a successful goal resolution. The
semantics of the procedure do not explicitly suggest which clause to fire. Secondly, AND
parallelism exists between the goals in a clause. All of the clause’s goals must succeed for
the clause to succeed, but again, no order is implied.

Guarded Horn Clauses place further restrictions on OR-parallelism. In GHC, it is only
possible for one clause in a procedure to commit. This should be contrasted with Prolog,
whose backtracking control structure guarantees that all clauses will eventually fire.2

This non-backtracking restriction makes GHC easier to implement efficiently, but in-
complete as a theorem prover. Since only one OR-parallel path is taken, it is possible
to bind a logic variable so that it will appear the same to everyone that has access to
it. Concurrent logic programming languages which allow multiple paths usually require
an environment mechanism in which the value of a variable is chosen by the branch of
computation that is taken. GHC has no need for such a mechanism.

Since a logic variable can only be assigned a value once, the process of choosing the
OR-parallel branch to follow cannot be allowed to affect this value. Therefore, observable
bindings in GHC program can only be made after a clause commits, and the OR-parallel

branch is chosen. GHC avoids exporting bindings through its two rules of suspension,
[Ued86):

(a) The guard of a clause can never export any binding to (or, make any
binding which is observable from) the caller of that clause, and

(b) The body of a clause cannot export any binding to (or, make any binding
which is observable from) the guard of that clause before that clause is
selected for commitment.

The rules of suspension also have an important effect on the AND-parallelism of GHC.
Any uncommitted goal that attempts to export a binding must suspend until the binding
is made through a branch of computation which has already committed. Conceptually,
AND-parallel branches of computation will suspend until enough variables are instantiated
by other branches to choose a single correct branch of computation.

As an example of the effect of these rules, consider the following example, which appears
in [Ued86]:

= p(X),q(X).
pY) (= Y =0k | true.
¢q(Z) :— true | Z = ok.

2However, in Prolog implementations which support the cut operator, backtracking can be explicitly
circumvented.



The top level goal p(X),¢(X) will succeed, but along the way we see an excellent
example of the interplay of the rules of suspension.

1. Both subgoals execute in parallel. However, p(X ) must suspend: the binding Y = ok
in the guard would export a binding for X, which would violate the first rule of
suspension.

2. The guard of ¢(X), on the other hand, is the trivial true, and thus ¢(X) commits
and can export the binding Z = ok from its body.

3. This binding in turn binds X to ok via the intervening variable Z. This does not
violate the second rule of suspension, since ¢(X) has committed, and therefore its
body may export bindings.

4. At this point p(X) can unsuspend since its guard goal Y = ok no longer exports a new
binding through X. Y has been bound to ok above, and the unification is reduced to
a simple equality check.

5. The trivial body goal ¢rue succeeds, and the goal p(X) succeeds.

6. Since each goal in the top-level clause has been satisfied, the top-level clause is satisfied
and computation halts.3

Care must be taken in defining the guard of a GHC clause. One view of unification
is that it is the process of substituting another object for a logic variable. The inverse
operation, which Ueda defines as anti-substitution [Ued86] should not affect the semantics
of the clause.

For example, given some goal p(ok), we can make an equivalent conjunction through
anti-substitution: replacing the term ok by the fresh variable T and conjoining the goal
ok =T to the goal p(T'). The clauses p(ok) and p(T), ok = T are equivalent.

Because of the anti-substitutability property, the head must be considered to be a part
of the guard, and variables appearing in the head are subject to the same restrictions as
variables appearing in the guard. For example, the following clauses are equivalent:*

p(a,b) :— true | true.

p(A4,0) :— A=a | true.

p(a,B) :— B=1b | true.

p(A,B) :— A=a,B=0b | true.
as are:

fact(0,Y) :-= true |Y =1.

fact(X,Y) :(~ X=0 |Y=1.

® Additional examples involving the rules of suspension can be found in [Ued86].

“These examples are relevant to our implementation because we syntactically desugar predicates out of
clause heads. This ensures that heads contain only distinct variables, and facilitates a more convenient
implementation of the first rule of suspension.



However, since the head of a GHC clause is part of the guard,

fact(0,1) : true|true. - m
fack(X, Y)~-x==e,ysn~w- (2)
are equivalent to each other, but net mmdﬁu__,_; ding
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3 Relevant Acore Concepts

In this section, we will discuss our approach to implementing GHC in Acore. We intro-
duce necessary Acore concepts, describe the difference between templates and activations,
and then outline the relevant acquaintances and behaviors of the actors we use.

The following sections present an extremely terse introduction to the Actor model and
the Acore programming language. An introduction to Acore programming is presented in
[Man90]. For additional information, the reader is urged to consult [Agh86] and [Man87].
A detailed description of the actor behaviors used in this system can be found in Appendix
A.

3.1 Actors: Behaviors and Acquaintances

Acore is an ob ject-oriented programming language, and as such, many of its constructs
correspond to those in other languages. Objects are called actors. An actor is defined by
specifying a behavior and a set of acquaintances. A behavior is a set of handlers, which
correspond to methods. Every actor has the ability to replace its current behavior with a
new behavior.® Acore acquaintances correspond to instance variables (such as in Smalltalk)
or slots (such as in CLOS). An actor’s acquaintances are those other actors to whom the
actor may send messages. Acore also provides complaints, which correspond to exceptions
in other languages.

3.2 Message Passing

Unlike message passing in many object-oriented languages based on call-return seman-
tics, Acore messages are asynchronous and delivered in a nondeterministic order. Consider
an actor Ay which sends two messages M; and M, to another actor A;. M, may be sent
without waiting for a response to M, and in fact A; may even receive My before M.

3.3 Actor Locking

Message handlers atomically lock all of an actor’s acquaintances when an incoming
message is accepted for processing. No other handlers may begin execution while the actor
is locked. Each message handler defined for an actor’s behavior is specified to be either
serialized or unserialized. An unserialized handler is not permitted to modify an actor’s
state, and thus immediately unlocks the actor. A serialized handler unlocks the actor only
after a ready or replace expression specifying the next state of the actor (i.e. the new
values for its behavior and acquaintances) has been executed. Additional expressions may
follow the execution of the ready or replace, but they are evaluated using the old values
of the actor’s acquaintances. This allows actors to exploit concurrency by pipelining the
processing of messages.

*Smalltalk-80 provides a similar method defined on class Object called become: [Gol83].

10



3.4 Sponsors, Ticks, and Stifling

Sponsors are the Acore encapsulation of resource allocation [Man87). Every message
has as one of its acquaintances its sponsor, from whom it must periodically request “ticks.”
Ticks are the basic unit of processing in the Acore world: it costs one tick to send a message.
When a transaction runs out of ticks, it must request more from its sponsor. Sponsors are
arranged hierarchically with the end-user at the top: when the top-level sponsor runs out
of ticks, it must request more from the end-user. If a transaction is denied more ticks by
its sponsor, its execution is terminated.

3.5 Forwarding Actors

A commonly used Acore behavior is that of a forwarding actor. Forwarding actors
forward all messages they receive to their forwardee. Forwarding actors are used heavily in
our implementation of unification (see Section 4.1).

3.6 Diagramming Actor Computations

Throughout this paper, we present various examples in the form of actor event diagrams
[Agh86]. The format of these diagrams is fairly simple. Each actor depicted in a diagram is
represented by a vertical line, its lifeline. Time, in relation to an actor, continues downward
along its lifeline. Messages between actors are represented as arrows between lifelines. The
content of the message appears at the origin of the arrow in the form :keyword arguments.

Only the messages and actors that are directly involved in an example are shown in
the diagram. Our lifelines are simplified and serve only as actor abstractions, informally
presenting an intuitive depiction of actor interactions.

11



4 Mapping GHC into Acore

In this section we present our implementation of GHC, focusing on the manner in which
GHC constructs can be represented using the Actor model.

4.1 Unification and the Rules of Suspension
4.1.1 Unification Algorithm

A central issue in any GHC implementation is its unification algorithm, and the Actor
model permits an elegant implementation of unification. Since all GHC data types in our
implementation are actors, we perform the unification of two actors by changing one actor
into a forwarding actor to the other. To an observer, the two actors are effectively the same
actor, since an observer cannot distinguish a forwarding actor from its forwardee. Further,
the forwardee cannot tell whether it has received a message directly from the sender or via
a forwarder.

Unfortunately, this implementation of unification is directional. In the next two sections,
therefore, we will refer to the actor handling the unification as the “source”, and the other
as the “target.”

A simple example will clarify the consequences of our directional unification scheme. We
may legally unify an unbound variable Foo to a constant bar, as diagrammed in Figure 1a,
but the converse is illegal: unifying bar to Foo has the effect of changing it from a constant
to an uninstantiated variable. Our unification algorithm must differentiate between the two
and perform the unification only from Foo to bar, no matter which of the two initially
received the :unify message. This reversal is diagrammed in Figure 1b.

If both objects have been bound to constants, then the unification succeeds only if the
two objects are equivalent. Figure 1c diagrams a failing unification. For compound terms,
we simply check that their names are identical and then recursively unify their arguments.

One obvious problem with this unification algorithm is the possibility of extremely long
forwarding chains. To eliminate this problem in most cases, we never forward to another
forwarder, but always to the target’s forwardee.

4.1.2 A Problem with Unification

A complication occurs in our unification algorithm when actor locking is taken into
account.® Consider the following GHC program:

:— A=B,B=A.

Figure 2 diagrams the message sends that result from a naive interpretation of our
directional unification algorithm. The message :unify A will be sent to the unbound
variable actor B, and :unify B will be sent to the unbound variable A. The first of these
goals to execute will work perfectly. One of the unbound variables will become a forwarder

®See Appendix B.3 for a more detailed discussion of Actor locking.
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Foo bar Foo bar foo bar

:unify bar ;unify Foo :unify foo
:type-of :type-of & ,
:type-o
:const ’bar :unbound
:const *foo
ireplace :unify bar

orwardey bar

Jfail

etc...
:succeed

4) B) C)

Figure 1: Examples of unification operations. We maintain the GHC convention that
capitalization represents a variable. Notice that the direction of the unification must be
switched in B.

to the other. However, notice that the second goal will do the same thing. We will thus be
left with a forwarding cycle. Any messages sent to either of these “variables” will become
trapped in a loop.

To remedy this problem, a variable actor must not be allowed to unify with itself. A
simple equality check is insufficient, however, due to the semantics of actor locking. Since an
unbound variable’s behavior may be replaced by a forwarding behavior during unification,
the unification handler must lock the actor to prevent the processing of other messages.
Even a simple check must be expressed as a message-send to the actor. Thus, if a variable
actor is actually unifying to itself, this message will be buffered until the actor is unlocked.
Since the unlocking can only occur after a successful check, the unification will result in
deadlock.

In order to alleviate this problem, we exploit the concept of actor identifications. Each
actor must have a unique id in the system. All actor ids are completely ordered. Since logic
variables are represented by actors, the creation of a variable will automatically yield a
unique actor identification number. When unifying two unbound variables, we always for-
ward in the direction of ascending id ordering. This eliminates the possibility of forwarding

13



A B
‘unify B :unify A

—_ P——

g I9premiof
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:anything

:anything ‘/

:anything

:anything

Figure 2: An example of a forwarding cycle.

cycles.”

4.1.3 Implementation of the Rules of Suspension

The rules of suspension specify that certain variables may not export bindings, and
that therefore certain unifications must suspend until the bindings in question are legal. To
implement this we differentiate between normal and suspended variables. The protocol for
suspended variables is different than that for normal variables. There are two methods for
unifying suspended variables, the normal :unify and a special :passive-unify. A passive-
unify is a directional unification. That is, it cannot export a binding from the source to the
target, but it can import such unifications from target to source.

We use suspended variables in the head of a clause to prevent the export of illegal
bindings, as required by the rules of suspension.® Likewise, when we run the bodies of
clauses concurrently, we must make all variables shared by guard and body suspended,
since the second rule of suspension states that the body must not export bindings to the
guard.

When a suspended variable is passive-unified to a constant, we proceed as if the variable
were not suspended, since the unification cannot export a binding which is visible to the
outside world, as in Figure 3a.?

"This may not be a feasible solution for future actor systems that may not have unique actor ids.

8Static analysis techniques could avoid suspending any variables which can be determined to be nonex-
porting. See Section 5 for further discussion.

®A new name for the suspended variable was GENSYMed when its enclosing clause or goal activated, and
therefore the variable is not visible to the outside world. See Figure 10.
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:passive-unify d :passive-unify D
:type-of type-of

:const °’d :unbound
5",:3 :buffer
T (:passive-uyify
58 cd
o >
A) B)

Figure 3: Some examples of passive-unification. C is a suspended variable, D is unbound,
and b is a constant. In A the target is a constant, so we can proceed as in normal unification.
In B, however, the passive-unification message is buffered on the unbound variable D. This
message will be resent when D becomes bound. The passive-unification will then continue
as in A.

When the target of the unification is unbound, however, we cannot perform a normal
unification. This would introduce the possibility of instantiating the target variable through
the suspended variable. To solve this problem, the target variable buffers the :passive-
unify message, as shown in Figure 3b. When that target variable is instantiated, it re-sends
the :passive-unify messages it has in its buffer. Since the target variable is now a constant,
we may perform a normal unification.

4.1.4 Unification and Compound Terms

The unification and passive-unification of compound terms is a straightforward exten-
sion of the methods above. Unification of a compound term to a variable is reversed: the
:unify or :passive-unify message is sent to the variable instead of the term. Unifica-

15



tion between two compound terms fails if their names and arities are not the same. If
they are the same, we recursively unify corresponding arguments, failing as soon as any
sub-unification fails, succeeding only after all succeed.

Passive-unifying a suspended variable to a compound term is slightly more complex.
Since a :unify sent to the term will be rerouted to the variable as outlined above, and since
directly unifying the suspended variable to the compound term involves the same problems
as unifying to an uninstantiated variable, we must adopt a new approach.

When passive-unified to a compound term, a suspended variable replaces itself with a
new term having the same name and arity as the target. The arguments of the new term,
however, are all suspended variables. These arguments are then passive-unified to their
counterparts in the target term.10

When a clause commits, bindings made in the body may be exported. At this time
all suspended variables should become normal variables, and their bindings should become
permanent. To accomplish this, we send an :unsuspend message to each suspended vari-
able in the body.!! When suspended variables receive this message, they become normal
variables and their suspended bindings become visible to the world.

4.2 Control Structure

The following simple factorial program will serve to demonstrate our control structure:

fact(0,Y):—true |Y = 1. (4)
fact(X,Y):—= X > 0| fact(X - 1,2),Y := X * Z. (5)
:— fact(A,B),A = 5. (6)

The structure of a running GHC program takes on the form of an AND-OR tree. The
root branching in the tree is always an AN D-branching corresponding to the AND of top-
level goals, such as those in (6). Each of these goals will succeed if any of its procedure’s
clauses succeeds. Thus each goal defines an OR-branching of degree equal to the number
of clauses in its procedure.!? Each clause introduces an AND-branching, which succeeds
only if all of its goals succeed. Thus successive levels of goals and clauses combine to form
an AND-OR tree.

To control the computational explosion of the tree, GHC prunes all but one clause at
each OR branching in the tree. This occurs when a clause commits: when all of its guard
goals have succeeded. Conceptually, a clause which commits must be the correct path to
the success of the goal. All competing clauses may be discarded.

Our implementation of the control structure is quite straightforward. We use two behav-
iors to control the two types of branching in GHC. For each procedure used when resolving
a goal, we create a procedure actor. A procedure actor is responsible for the resolution of

1%This method is easily understood but inefficient. See Section 5 on Future Work for further discussion.

' We send the runsuspend message only to the body variables since the semantics of GHC do not permit
guard clauses to export bindings.

12Primitive goals form leaves.
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AND level:

Top level goal clause facn2,2),
OR level: facH(2,2),
fact goal / \
AND level:
fact clauses facn2,2), Jac2,Z)4
. /q>\
L]
L]
2=0 2>0 1,Z Y:=7Z*X
(fails) faci1,2)¢
fac(1,2), Jac(1,Z)
. .
L] L]

Figure 4: AND-OR branchings in the tree for the factorial 5 example. Subscripts correspond
to equation labels from the example above.

1. For each clause:

(a) Create a new sponsor for the clause to run under.
(b) Create a new clause actor to handle this clause resolution.

(c) Start execution of the clause by the method outlined in figure 7.
2. Upon receiving a :request-commit message from one of these clauses:

(a) Stop computation in the other clauses by stifling their sponsors.

(b) Send a :committed message to the calling clause.

3. Propagate any :fail or :succeed messages to the calling clause.
Figure 5: Pseudocode for a procedure actor during goal resolution.

the clauses which define the procedure. Pseudo-code describing procedure actor behavior
is detailed in figure 5, and an example run appears in Figure 6.

For each clause in a procedure, we create a clause actor. A clause actor attempts to
compute the AND of its guard and body predicates. Each of these predicates is in turn
either a user-defined procedure or one of the primitives listed in section 2.2. If the predicate
is a primitive, the tree has bottomed out in a leaf node, from which a :fail or :done message
will be returned. Pseudocode describing clause actor behavior may be found in Figure 7,
and a sample run appears in 8.

At the top level is a goal-handler actor, a specialized clause actor which prints the
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‘create sponsor
‘create sponsor
/ :activate C2 A
4 >
:request-commit A
]
:commit
/ :stifle
_\
:committed D
done \
. \
:done [T (10 clause)
— |
\'N (to clause)
Sponsor Clause Procedure Clause  Sponsor
St C1 P c2 S2

Figure 6: An example of a procedure with two clauses. In this case, the clause repre-
sented by C; and S, has requested a commit first. Therefore, operation on clause C; was
terminated by stifling the sponsor §5.

1. For each subgoal:

(a) Create a new procedure actor to handle this goal resolution.

(b) :passive-unify the head of the new procedure to the corresponding arguments in the
goal.

(¢) Start resolution of the procedure by the method outlined in figure 5.

2. Upon receiving :committed messages from all the guard procedures, signal :request-
commit to the calling procedure.

3. Upon receiving a :done message from every subprocedure, signal :done to the calling proce-
dure.

4. Upon receiving a :fail message from any of the subprocedures: If the :request-commit signal
has already been sent, signal :fail to the calling procedure, else stifle the sponsor associated
with this clause.

Figure 7: Pseudocode for a clause actor during goal resolution.
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:aclivate
procedure :activate
procedure
Va
:committed N
i :committed
il
request-commit
:done \
—— . (to procedure)
:done
el
:done
\\‘ (to pl'owdufe)
Procedure Clause Procedure
P1 C1 P2

Figure 8: An example of an executing clause activation. Notice that the clause received
:committeds from both its component procedures before requesting a commit. The same
is true for :done messages.

success or failure of the AND of its instantiated goals to a terminal output stream.

Notice that during the recursive resolution of a procedure or clause actor, several actors
of the other type must be created. In order to facilitate the creation of these actors we
introduce clause and procedure template actors.

Procedure templates are created at parse time from syntactic information about each of
the clauses making up that procedure. This information is in the form of clause templates.
The clause templates, in turn, keep track of which goals are necessary to the success of the
goal. The pseudocode for procedure and clause actor creation is shown in Figures 9 and 10
respectively.

We employ sponsors to handle the computational pruning mentioned above. Each time
a new clause is used, we create a new sponsor to manage its computational resources.
Because this sponsor creation occurs during resolution, the sponsor’s parent will be the
procedure’s sponsor, and thus our sponsors are arranged hierarchically. Moving up the tree
reveals that a hierarchy of sponsors are actually created during the resolution of parent
clauses. Looking again at Figure 4, we see that nodes fact(2,Z)4 and fact(2,F)s both
create sponsors. The parent sponsor of fact(1,2)4 and fact(1,Z)s is the one created by
fact(2,Z)s. This is crucial because if we wish to stifle fact(2,Z)s we must be sure all
sub-processing will also be stifled. This is guaranteed by sponsor semantics.
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1. Create a procedure actor (with no subclauses).

2. For each clause template:

(a) Create a new clause actor by the method outlined in figure 10.

(b) Add the new clause actor to the new procedure.

Figure 9: Pseudocode for the creation of a new procedure activation from a procedure
template.

1. Create a clause actor (with no subgoals), along with the local and suspended variables needed
for the execution.

2. For each goal:

(a) Lookup the correct procedure template for the resolution of this goal.
(b) Use it to create a new procedure actor by the method in figure 9.

(c) Add the new procedure actor to the new clause.

Figure 10: Pseudocode for the creation of a new clause activation from a clause template.

4.3 Example

Now that the different aspects of our interpreter have been presented, we will work
through a detailed example designed to illustrate how they interact to interpret a GHC
program.

In working through these examples, Figures 11 and 12 should be helpful. Figure 11
contains an actor event diagram which shows the execution of the unification structure
for this example. Figure 12 is another event diagram showing the control structure. In
order to keep the diagrams readable, they diverge slightly from the actual execution of the
interpreter. The true goals and the guard variable Z;,,,4 have been omitted.'® The body
variable Z,4, is abbreviated by Z, in the figures. In addition, only the message sends
relevant to GHC have been mapped.

We will revisit Ueda’s example which we first saw in Section 2.3, stepping through the
pseudocode for our clause and procedure actor behaviors as we simulate the resolution of
the top level goal. Since this is a relatively simple example, we will assume a worst-case
arrival ordering on unification messages in order to display how our implementation avoids
violating Ueda’s rules of suspension.

= p(X), 9(X).
p(Y) :— Y =ok | true.
¢«Z) :— true | Z = ok.

13Note that these can be eliminated by static evaluation.
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Figure 11: The actor event diagram for the unification structure. Actors whose lifelines
appear only in Figure 12 will be referred to by a label of the form (actor name).
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Figure 12: The actor event diagram for the control structure. Actors whose lifelines appear

only in Figure 11 will be referred to by a label of the form (actor name).

We begin by creating procedure actors for the goals p(X) and ¢(X), per Figure 9. These
goals are executed concurrently, but let us look at p(X ) first. We activate the clause for p(Y')
and create a suspended variable Y. We :passive-unify it to X. Since X is uninstantiated,
it buffers the :passive-unify message. Now the guard goal, Y = ok is executed, and the
message (-unify ok) is sent to Y. Since Y is a suspended variable, it buffers the message,
waiting to be instantiated. Thus the guard goal Y = ok, which would export a binding
for X, is effectively suspended. This illustrates our implementation of the first rule of

suspension.
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We now turn to the resolution of ¢(X), assuming for our worst-case purposes that it
has not yet begun. First we activate the clause for ¢(Z) and create a suspended variable
Zguard, and :passive-unify it to X as above. The guard and the body execute in parallel,
and thus we must be careful that unification of Z in the body does not export a binding
to the Z in the guard. To accomplish this, we create a new suspended variable Z,q, and
:passive-unify it to X as above. The :passive-unify for both Zgy.rq and Zy,q, are buffered
by X.

At this time we execute the guard and body concurrently. The guard succeeds on the
trivial true and sends a :request-commit to the clause actor. The clause commits, and Zyody
is unsuspended, causing it to unify with X. At this point, the body goal unifies Z,q, to ok.
Since Zyoay is unsuspended, this results in true unification (otherwise it would be buffered
until the unsuspension occurred), causing both Zyoqy and X to unify to ok. When X is
instantiated, it unbuffers its stored messages, causing Zgyq.rq to unify with ok.

The instantiation of X also unbuffers the message waiting to :passive-unify Y to X.
Since X is now a constant, Y is bound directly to that constant, and the unification of Y
to ok succeeds since X is already bound to ok. The clause now commits and the body—the
trivial true—succeeds as well.

Thus the top-level goal succeeds and returns a success message indicating the new bind-
ing for X. Our worst-case examination of the resolution of the top-level goal is complete.
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5 Future Work

Because of time constraints, we were forced to leave several ideas related to the efficiency
of our interpreter unimplemented. This section discusses three of those ideas and describes
possible approaches to their implementation.

5.1 Elimination of Suspended Variables

The rules of suspension cannot be implemented without some form of suspended vari-
able. Unfortunately, one of our most costly operations is the passive-unification of a sus-
pended variable. An obvious optimization of our interpreter, therefore, would be to elimi-
nate as many suspended variables as possible.

Our current implementation of lists is as nested terms.!* Further, since our unifica-
tion algorithm performs a recursive unification of suspended variables to terms,!® passive-
unifying a suspended variable to a list can become extremely costly. Lists would clearly be
better implemented as some flat structure.

A second way to eliminate suspended variables is to keep track of which predicates
export bindings. As an example, notice that

X>Y (7)
will bind neither X nor Y, while

X=Y (8)
could bind both X and Y, and

X:=Y (9)

could bind only X.
Now examine the following factorial clause:

fact(X,Y): - X ==0|Y =1 (10)

Notice that there is no way X will be bound in this clause. In this case we can optimize
our unification: we can avoid creating a new suspended variable to avoid exporting a binding
through X. Unfortunately, with an open world assumption, we cannot generalize this
technique easily. For example, it would be highly desirable to declare an entire procedure
non-exporting, and since we can declare individual clause guards non-exporting, this would
seem a logical extension. However, to do this we must have examined all of its clauses, and
since clauses may be added dynamically in an open-world model, this is impossible.

Since GHC is not generally implemented using an open world database, it may be
reasonable to abandon the open world property in favor of improved efficiency. This would
of course depend on the target application.

*In fact, our notation for [a b c] is cons(a, cons(d, cons(c, null))).

15See Section 4.1.4 for more details. A brief example will make the inefliciency painfully obvious: We
wish to unify suspended variable S; to a simple list cons(a, cons(b, null)). This involves replacing S; with a
new predicate cons(Sz, S3), passive-unifying Sz to e, and then unifying S3 with the predicate cons(b, null).
To unify S3 we must repeat the process just outlined. In general, we must recurse at every level of nesting.
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5.2 Speculative Concurrency

GHC is an inherently parallel programming language, and as such, allows a fully concur-
rent implementation to evaluate the bodies of clauses even before they have been selected
for commitment. However, only one clause body will ultimately be selected for commit-
ment from among the clauses of a procedure. A satisfactory trade-off between the resources
wasted on clause bodies never selected for commitment and productive concurrency must
be made.

Deciding when to evaluate the bodies of clauses before they have been selected for
commitment is a complex question. It is certainly desirable to get a head-start on the
evaluation of the clause body to which we will ultimately commit. However, we must weigh
the resources wasted on “garbage” computation against the benefits of greater concurrency
along the critical path. While there is no clear universal answer at this time, specific
situations may be more easily analyzed.

The branching factor in the computational tree is directly related to the number of
clauses in a procedure. Therefore the proportion of wasted resources in a procedure with
few clauses could be low. On the other hand, procedures with many clauses may waste
a great deal of resources, since many branches could be explored before committing to a
single branch.1®

We must consider, however, the computational resources at hand. In some cases, it may
be to our advantage to run the bodies of procedures with many clauses concurrently simply
because we have many idle processors. A more sophisticated strategy may dynamically
choose to allow speculative concurrency when a sufficient number of processors are avail-
able. This approach would be similar to the “throttling” of loop unfoldings used to control
parallelism in dataflow architectures [Arv88]. Another strategy may adapt resource usage
to specific procedures based on a strategy similar to trace scheduling [Ell85). Under such
a strategy, the amount of speculative concurrency invoked would be adapted dynamically:
for example, a procedure with a base case clause and several recursive case clauses may
commit to the recursive case clauses far more frequently than the base case. A clever dy-
namic scheduler could choose to race the recursive case clauses concurrently while avoiding
premature execution of the base case.

5.3 Decentralization

Our control structure seems to be very decentralized. Clauses only communicate with
procedures one level above and one below in the and-or tree, and their inter-procedure com-
munication is also localized. The unification structure, however, needs some improvement.

We currently implement unification through forwarding. If several goals use the same
variable during a computation, messages to this variable are sent to the same object. This
is obviously a significant problem with respect to centralization. It is probably necessary,

16 Further, the Actor mail system abstraction does not guarantee that the message to commit to a partic-
ular clause will be received soon after it is sent. Thus many useless branches of the computation tree might
be explored to an arbitrary depth before one is selected for commitment. This is true even in the case where
the branch sponsor is stified, since the arrival of the stifle message may be delayed for an indeterminate
length of time. See B.2 for more on this subject.
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6 Conclusion

We have developed a working interpreter for full GHC using the Actor language Acore.
Our interpreter is more expressive than previous implementations, avoiding the closed-
world assumption and the restrictions disallowing user-defined predicates in guard clauses
imposed by FGHC.

We also believe our implementation provides a unique view of GHC. Its object-oriented
design provides a mapping of GHC concepts onto an ob ject-oriented model, thereby allowing
the examination of GHC constructs in an object-oriented framework.

In the course of our work, we have discovered several areas in which Acore could be
improved. We have suggested specific improvements in Acore’s exception handling, spon-
sorship constructs, locking mechanisms, and data abstraction facilities.

Nevertheless, Acore provided a powerful set of mechanisms well-suited to the rapid
prototyping of a straightforward implementation of GHC. In particular, Acore’s implicit
concurrency and its notions of sponsorship and forwarding enabled us to create a simple
mapping of GHC constructs onto actor behaviors. The implicit concurrency of the actor
model made a highly concurrent implementation possible. Actor notions of message for-
warding and behavior replacement were important in the development of our unification
scheme. In addition, Acore’s sponsorship mechanism for managing computational resources
allowed us to perform effective pruning of active computations using a distributed control
structure.
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A Actor Behaviors Used To Implement GHC

This section provides a “reference-manual” to the types of actors we used in our imple-
mentation of GHC.

A.1 Templates and Activations

One facet of a truly concurrent implementation of GHC is that at any time there may be
multiple instantiations of individual GHC objects, e.g., a recursive call to Fact will activate
several distinct copies of the clauses defined for procedure Fact. For this reason we make
a distinction between templates, which are objects created at parse-time, and activations,
which are instances of those templates created at run-time. When a template receives an
:activate message, it returns a new object with the same structure as itself but with newly
GENSYMed variables. This prevents interactions between multiple instantiations of a single
template.

Another reason for making this distinction is that in an open system, clauses may be
added to procedures at any time.

A.2 Common Handlers

Variable, constant, predicate, and function activations accept the following messages:
o (zunify GHC-actor) Returns ’succeed if unification is successful, or *fail otherwise.

¢ (tunify-to GHC-actor) Used by the unbound variable handler to check if the unifica-
tion will result in a forwarding loop, as explained in Section 4.1.2. The receiver of this
message will know!” that an unbound variable is trying to unify to it. It must then
take steps to accomplish this unification. This is done through :safe-unify below.

o (:safe-unify GHC-actor) Unifies self and GHC-actor. Assumes that the resulting
forwarding link cannot create a forwarding cycle.1®

o (:passive-unify GHC-actor) Suspended variables perform special “passive” unifica-
tion as explained in Section 4.1.4. All GHC actors except suspended variables may
ignore :passive-unify messages because:

(1) The initial generation of :passive-unify messages occurs during clause head-
resolution, and

(2) The only other way :passive-unify can be sent is by an :unbuffer operation
on a variable. In this case, we are guaranteed that this variable is the same as
the waiting-on acquaintance of the generating suspended variable. Therefore, if the

"However, this is not known with certainty. See Section 4.1.2 on why this is not absolutely known.

'®An aside on the length of forwarding chains: It is interesting to note that the GHC actor received as
an argument was guaranteed not to be a forwarder at the time the message was sent. This is because the
message was sent by the actor itself, not a forwarder that leads to it. Therefore, assuming some measure
of fairness (and some fairness is actually guaranteed by the rules of suspension), the forwarding chains that
are created will not be extremely long.
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receiver of a :passive-unify message is not a suspended variable, we know that it
used to be one and that it has since been unified with the target of the buffered
:passive-unify message.

All activation-type actors accept the following messages:
¢ (:print-value) Returns a symbolic representation of self.

¢ (:buffer message) Variables buffer message, pending later unbuffering. Predicates,
functions, and constants don’t actually buffer message, but immediately cause it to
be sent.

¢ (:buffer-until-unsuspended message) Suspended variables buffer message, pending
later unbuffering. Variables, predicates, functions, and constants don’t actually buffer
message, but immediately cause it to be sent.

A.3 Constants

Constant actors have a single acquaintance, value. They accept only the :value selector
message.

A.4 Predicates and Functions
Predicate actors exist in two forms: templates and activations.
Predicate templates have no interesting handlers. They have the following acquaintances:

e procedure-template If this is a user-defined predicate, this is the name of the procedure
template which defines the predicate. If this is a built-in predicate, this is the actual
primitive actor which defines the predicate.

o argument-templates A list of templates for the arguments to the predicate.
Predicate activations have the following acquaintances and handlers:

o procedure-template As explained above.
¢ argument-activations The activations of the argument templates.

¢ (:activate-suspended target) This message creates a new predicate activation whose
arguments are all suspended variables. This is used only when a suspended variable
is passive-unifying to a predicate. See Section 4.1.3.

¢ (:unsuspend) This message unsuspends any suspended variables the predicate may
have as arguments (possibly as a result of an :activate-suspended message.)

Function actors also may be templates or activations. However, unlike predicates, they
may not be user-defined. In all other respects they conform to the above specification for
predicate actors.
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A5

Procedures

Procedures exist in four forms: template, ezecuting, committed, and terminated. The last
three forms trace the progression of a procedure from its initial activation as an ezecuting-
procedure, to a committed-procedure as it commits to one of its clauses, and finally to a
terminated-procedure when all of its subcomputations are complete.

Template-procedures have the following acquaintances and handlers:

clause-templates The templates for the clauses in the procedure.

activations A list of current activations of this template so that executing procedures
may be informed of newly added clauses. This is necessary due to the open nature of
our implementation.

(:resolve term) Creates an executing procedure and begins reducing the guards for
each clause. See Figure 4.

(:add-clause clause) Adds a new clause template for clause to the set of clauses.
Informs any activations of the procedure of the new clause.

(:remove-activation activation) Removes the terminated activation activation from
the list of activations kept by the procedure.

Ezecuting-procedures are those procedures currently resolving themselves against a given
predicate. They have the following acquaintances and handlers:

procedure-template A handle on the parent template.
predicate The predicate that we are resolving against.

sponsors A list of sponsors which are funding clause reductions. Used when we commit
to a particular clause and wish to stifle all the others.

(;:add-clause clause) Adds a new clause. Invoked by parent template when new
clauses are added to the template definition.

(:request-commit) Invoked by a subclause which has satisfied its guard. Stifles all
other clauses, and then replaces self with a committed-procedure.

Committed-procedures are those procedures which have committed to one of their subclauses
and are now monitoring the state of the computation. They accept the following messages:

(:fail) Invoked by a failing clause. Propagated back up the AND-OR tree.

(:done) Invoked by a clause whose sub-computations are all complete. After prop-
agating this message back up the AND-OR tree, replaces self with a terminated-
procedure
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Terminated-procedures are those procedures which were previously committed and whose
subcomputations have all terminated. Terminated procedures ignore all messages they
receive. These procedures exist only as a defensive programming measure, for two reasons:

e Stifled processes don’t die immediately, and therefore clauses may still send messages
even after they are stifled.

¢ The mail system may arbitrarily delay messages, and therefore a message may arrive

long after it was sent.

A.6 Clauses

Clauses, like procedures, exist in template, ezecuting, committed, and terminated forms.
The semantics of each form are the same as those of the corresponding procedure forms.

Clause templates have the following acquaintances and handlers:

e variable-templates A list of variable templates for the variables in this clause. They
are GENSYMed on clause activation.

o guard-templates A list of the guard goals.
o body-templates A list of the body goals.

¢ (:reduce-guard predicate) Creates an activation of this clause. See Figure 10.

Ezecuting-clauses have the following acquaintances and handlers:
o variables A list of variable activations.

¢ commit-count The number of guard goals yet to commit before the clause may com-
mit. Initially equal to the number of guard goals.

¢ done-count The number of guard and body goals yet to signal :done before the clause
may consider its computation complete and send a :done message to its procedure.
Initially equal to the total number of guard and body goals.

¢ (:committed) Sent by a guard goal which has committed. Decrements commit-
count. If commit-count reaches zero, the clause sends a :commit-request to its
procedure, and if it is acknowledged, replaces self with a committed-clause.

¢ (:done) Sent by a subgoal (guard or body) all of whose computations are complete.
Decrements the done-count. If done-count reaches zero, the clause propagates the
:done message up the AND-OR tree and replaces self with a terminated-clause.

¢ (:fail) Sent by a subgoal which has failed. If sent by a guard-goal, the clause stifles
itself.

Committed-clauses have the following acquaintances and handlers:
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e done-count As above.

¢ (:done) Decrements done-count. If it reaches zero, propagates the :done message up
the AND-OR tree and replaces self with a terminated-clause.

o (:fail) Propagates the :fail message up the AND-OR tree.

Terminated-clauses have no interesting acquaintances or handlers. They ignore all messages
and serve the same function as terminated-procedures, above.

A.7 Variables

There are two types of variables: unbound-variablesand suspended-variables. A suspended-
var is tentatively bound to its waiting-on acquaintance, buffering all messages except
:passive-unify and :unsuspend. It will unsuspend when either of the following occurs:

¢ (1) Our clause commits and explicitly send an :unsuspend message, or

* (2) waiting-on is either partially or fully instantiated, causing us to retry the unifica-
tion.

Unbound-variables are variables which have not yet been the target of any unification. Their
acquaintances and handlers are:

o name-symbol The symbolic name of the variable, in a form suitable for terminal
output.

o messages A list of buffered messages.

Suspended-variables are those variables which, if unified, might export bindings in violation
of the rules of suspension. They have the following acquaintances and handlers:

o name-symbol As above.

¢ waiting-on The actor that the suspended-variable is passively bound to, and therefore
upon whose instantiation the suspended-variable is waiting.

e messages As above.
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B Difficulties with Acore

The design, development, and debugging of the GHC interpreter took place using the the
Actor language Acore as implemented at the MIT Artificial Intelligence Laboratory. The
GHC interpreter is one of the largest, most complicated programs written in Acore to date.
As a result of our extensive experience with Acore and its environment, we have reached
several conclusions regarding the present implementation and possible improvements. Since
Acore is an evolving, experimental language, our suggestions may be of immediate practical
use.

B.1 Exception Handling
Acore signals exceptions by sending complaints, as described in [Man87, p.204]:

... the handling of the complaint is specified by the closest lexically enclosing
let-ezcept which handles the complaint generated. It is an error for a complaint
to be generated in a context with no exception handler to handle it, so most
contexts should provide at least a default otherwise exception handler. For
example, the default request handlers with expression bodies provide default
exception handling; the expression context it provides is one place where a
default (forward the complaint to the customer) makes sense.

Note, (1) that complaints are dynamically propagated up the chain of customers which
begins at the customer for the current request, and (2) that it is an error” to fail to
provide a handler. However, is-request handlers and procedures defined with defproce-
dure do not propagate complaints up the customer chain. Unfortunately, it is extremely
inconvenient to manually wrap a let-except form around every usage of procedures and is-
requests. Even worse, many of the Acore CommonLib [Rei87) routines define or use these
forms. For example, Acore apply is defined using a defequate-procedure, and com-
plaints generated during apply result in disaster. We actually experienced this problem in
the course of developing our interpreter. Our “fix” is more of a kludge than a solution: we
avoid misbehaving CommonLib routines and define a macro complaint-request as a syn-
tactic sugar for wrapping let-excepts around every is-request form. The proper solution
to this, aside from modifying the Acore language, is to rewrite parts of the CommonLib
to avoid forms which are dangerous with respect to complaint-handling. Another option
is to change the definition of defprocedure and is-request to propagate complaints up
the customer chain. Finally, all lexical blocks could be required, as contexts, to propagate
complaints (and assume the behavior of with-exceptions, below).

There is another problem with sponsors which is more serious. The lifetime of a let-
except handler ends when values are returned for the new let-bindings. However, it is
quite possible that a complaint could be generated after the binding values are returned
and the let-except handler has disappeared! In this case there will be no handler for the
complaint, and disaster ensues. This is a significant problem since an Acore expression may
“return” before it is fully executed—the use of futures in let-except bindings is a good
example of such an expression.
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We propose one possible solution to all of the above problems concerning exception-
handling using Acore complaints. It seems clear that an exception-handler should persist
at least as long as the expressions it contains. Starting with this assumption, and noting
also that raising and catching exceptions may be useful outside the context of a let-except
form, we suggest the introduction of a new form, with-exceptions, with the following
syntax:

(with-exceptions
(ezpresston-body)
(except-when {((:keyword (valA valB ...)}) commands ... )}*))

The semantics of this form are that all unhandled complaints generated during the
execution of erpression-body (including any generated by any computation which it may
spawn) will be examined and possibly handled by the the commands specified in the ap-
propriate except-when arm. If the :keyword in some except-when arm matches the
keyword name of the generated complaint, then that complaint’s arguments (if any) are
bound to (valA valB ... ) and commands ... are executed. Note that it is possible for mul-
tiple complaints to be raised and handled during the execution of expression-body. Nested
with-exception handlers form nested enclosing scopes through which complaints are prop-
agated. It would be fairly straightforward to implement with-exception handlers using
the following scheme:

Associate with every request message an ezception-handler actor which is passed as an
argument in the same way that customer, sponsor, and reply-keyword are currently passed
in requests. This exception-handler actor should contain the code for the except-when
handlers and a pointer to its enclosing exception-handler. Exception-handler actors should
persist until the computations which they enclose have completely terminated, at which
point they may be garbage-collected.

In fact, it may prove useful to encapsulate all of the information associated with a
message send into a single actor which obeys an abstract protocol. For example, an actor
with acquaintances (sponsor customer reply-keyword ezception-handler) could be used in
place of separate actors in :request messages. Such an actor would respond to selectors
such as :sponsor and :reply-keyword, etc. The advantage of this approach is that the
information associated with a message send could more easily be changed by Acore language
developers and sophisticated users. As long as the actor used could respond to the abstract
protocol for simple message sends, additional messages could be recognized which allow for
more complex behavior. For example, our GHC interpreter could have defined the useful
exception-handling mechanism described above using such a scheme.

B.2 Resource Encapsulation with Sponsors

We have encountered several problems with sponsors as implemented in the current
release of Acore and the CommonLib. Our implementation relies heavily on the ability
to stifle sponsors in order to abort computations. Unfortunately, complaints are used as
the mechanism through which computations are aborted. Since there are currently several
problems with Acore complaint handling (as detailed above), sponsors do not work correctly
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in the current release. Even after the language implementers helped fix simple-sponsor in
the CommonLib, incorrect results were still observed. Since correctly functioning sponsors
are crucial to our GHC implementation, this impeded our progress significantly. Our short-
term solution to this problem was to define our own types of sponsors called hierarchical-
sponsors which may achieve a lower concurrency than simple-sponsors, but are at least
correct. Qur implementation can trivially be adapted to use simple-sponsors once the
CommonLib implementation has been fully debugged.

Other more abstract, implementation-independent issues should also be addressed. For
example, it should be noted that a computation is not immediately terminated as soon as
its sponsor receives a :stifle message. This is because the computation can proceed until
its current supply of ticks (granted from a previous request) runs out. Only then will it
request more ticks from its sponsor and receive a :sponsorship-denied complaint. This is
inefficient, and could become a serious efficiency problem if a large tick quantum is granted
when more ticks are requested. A simple solution would be to define this quantum to consist
of only a single tick, but this is unacceptable since the overhead of the sponsorship scheme
would dominate the computation and cripple the progress of “real” work. Perhaps a better
solution would be for each sponsor to keep a list of its subsponsors (currently only a link
to one’s parent sponsor is maintained), which it could recursively stifle upon reception of a
:stifle message.

In any case, however, there is always the possibility that residual “junk” messages may
be floating around in the mail system even after a :stifle message has been sent. This
is due to the nondeterministic arrival ordering in the Actor model of computation. Since
messages may be delayed an arbitrary length of time before being delivered, a computation
may generate an arbitrary number of messages between the time that a :stifle message
is sent and received. This forces Acore programmers to adopt a defensive programming
style which must explicitly handle unwanted messages from dying actors. Unfortunately,
this seems unavoidable since it is a consequence of the underlying Actor model and not a
modifiable part of the Acore language definition.

B.3 Locking and Serialization

Another concrete problem which we encountered in our implementation is the granu-
larity of actor locking in Acore. Acore handlers can be either serialized or unserialized.
An unserialized handler cannot change its actor’s state and therefore does not need to
lock its actor. This allows the actor to immediately begin concurrent processing of another
incoming message. On the other hand, a serialized handler locks its actor, buffering any
incoming messages until the handler completes its state change via the execution of a ready
or :replace, which update its actor’s acquaintances and behavior script.

We feel that this binary partitioning of handlers into serialized and unserialized is
too coarse. Some specific problems with this approach are:

¢ It precludes orthogonal state-changing operations from running concurrently. This
can be viewed as both a semantic burden for the programmer and an efficiency issue.
For example, suppose an actor has two acquaintances, A and B. During the exe-
cution of a serialized handler set-A which changes A, it would be perfectly correct
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to concurrently execute an unserialized handler get-B which is a selector defined to
examine the value of B. The Acore compiler could find most if not all of these cases
by performing a compile-time analysis of the acquaintances actually changed by a
handler. Of course, there should also be some manual override mechanism whereby
a programmer could explicitly specify that certain handlers should not be run con-
currently even if it is possible to do so—perhaps one really shouldn’t look at B while
changing A in a particular application. For example the Interact metacircular inter-
preter for Acore was forced to resort to using the low-level system-request primitive
which explicitly ignores locking. We consider this to be a rather serious problem which
should be addressed by the Acore language implementors.

e An Acore programmer can’t write a recursive serialized handler, or even a serialized
handler which invokes other handlers defined in the same behavior. Therefore, a
serialized handler which wants to achieve this functionality must do everything in-
line itself or rely upon external functions defined with deffunction. This is very
annoying.

A good discussion of problems related to synchronization and serialization in concur-
rent object-oriented languages is presented in [Bri87]. A variety of attempts to overcome
these problems include the waiting-mode mechanism of ABCL/1 [Yon87], and the explicit
manipulation of an actor’s message queue in Vulcan [Kah87]. Another approach to locking
which is common in Algol-like languages such as Mesa is to use monitors [Lam80] to achieve
concurrency and avoid inconsistency.

A final locking problem occurs during unhandled complaints: If a serialized handler
receives an unhandled complaint, it correctly propagates that complaint up the customer
chain, but it fails to unlock the actor locked by the serialized handler.

B.4 Sharing Mechanisms

A sharing mechanism such as inheritance is an important feature found in almost all
modern object-oriented languages. Such a mechanism is conspicuously absent in Acore.
While it is true that there is nothing to prevent an Acore programmer from explicitly cod-
ing inheritance by delegation, there is nothing to facilitate such an endeavor. Although
we recognize that supporting inheritance is not simple, we feel that the Acore language
definition should explicitly support some sharing mechanism and provide convenient syn-
tactic forms for it. A good overview of inheritance schemes for concurrent ob ject-oriented
languages can be found in [Bri87].

B.5 Data Abstraction

The actor model provides a very clean, clear encapsulation of abstract data types and the
operations which these support. Nevertheless, it would be nice to allow Acore programmers
to declare the scope of each handler as opaque (private, invisible, internal) or visible (public,
exported, external). An opaque handler could only accept requests from self (and perhaps
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its subclasses if inheritance is implemented), while a visible handler could accept requests
from any actor. A similar form of abstraction is available in CLU [Lis86] and Argus [Lis83].

B.6

The Acore Environment

We have several brief comments regarding the current Acore environment at the MIT
Artificial Intelligence Laboratory.

The entire system is very slow. This is a consequence of multiple layers of interpre-
tation (Acore to PRACT to Lisp) on serial machines (Symbolics 3600s).

The CommonLib Acore Library [Rei87] is not very robust. In particular, we ex-
perienced problems with the definitions of simple-sponsor and hash-table. The
problem with sponsors involved the correct propagation of complaints, and a failure
to properly handle the case in which a sponsor is stifled in the middle of a request for
more sponsor ticks. The problem with hash tables involved differences between Lisp
and Acore cons cells/actors and their hashed values.

Many useful primitive functions are not provided by the CommonLib, forcing Acore
programmers to escape into the underlying Lisp environment via #L or #I forms. A
good example of a non-existent Acore function that is extremely useful is an Acore
analogue of the si:equal-hash (or sxhash) function provided by Lisp.

The current documentation is incomplete and often incorrect. Examples of this in-
clude the fact that the actor equality primitive is eq? and not the documented == as
well as the fact that the documented select macro is broken.

A common problem while developingin Acore is not knowing which actors are “hung.”
Debugging would be much easier if Traveler provided a way to display actors that
don’t respond after a certain timeout.
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