MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

and
CENTER FOR BIOLOGICAL INFORMATION PROCESSING
WHITAKER COLLEGE
A.I. Memo No.1114 June 1989

C.B.L.P. Paper No. 35

Parallel and deterministic algorithms for MRFs:
surface reconstruction and integration

Davi Geiger and Federico Girosi

Abstract

In recent years many researchers have investigated the use of Markov random fields
(MRFs) for computer vision. They can be applied for example in the output of the vi-
sual processes to reconstruct surfaces from sparse and noisy depth data, or to integrate
early vision processes to label physical discontinuities. Drawbacks of MRFs models
have been the computational complexity of the implementation and the difficulty in
estimating the parameters of the model.

In this paper we derive deterministic approximations to MRFs models. One of the
considered models is shown to give in a natural way the graduate non convexity (GNC)
algorithm proposed by Blake and Zisserman. This model can be applied to smooth
a field preserving its discontinuities. A new model is then proposed: it allows the
gradient of the field to be enhanced at the discontinuities and smoothed elsewhere. All
the theoretical results are obtained in the framework of the mean field theory, that is
a well known statistical mechanics technique. A fast, parallel and iterative algorithm
to solve the deterministic equations of the two models is presented, together with
experiments on synthetic and real images. The algorithm is applied to the problem of
surface reconstruction is in the case of sparse data. We also describe a fast algorithm
that solves the problem of aligning the discontinuities of different visual models with
intensity edges via integration.
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1 Introduction

In order to give a viewer information about a three dimensional scene many
algorithms have been developed on several early vision processes, such as edge
detection, stereopsis, motion, texture, and color . This information refers to
properties of the scene as shape, distance, color, shade or motion, and it is
usually noisy and sparse: more processing is then necessary to extract the
relevant information and fill in sparse data. In recent years many researchers
[9][12][6] [4][5] have investigated the use of Markov Random Fields (MRFs)
for early vision. MRFs models can generally be used for the reconstruction
of a function starting from a set of noisy sparse data, such as intensity,
stereo, or motion data. They have also been used to integrate early vision
processes to label physical discontinuities. Two fields are usually required
in the MRFs formulation of a problem: one represents the function that
has to be reconstructed, and the other is associated to its discontinuities.
The essence of the MRFs model is that the probability distribution of the
configuration of the fields, given a set of data, is given as a Gibbs distribution.
The model is then specified by an “energy function”, that can be modeled to
embody the a priori information about the system. In the standard approach
an estimate of the field and its discontinuities is given by the configuration
that maximizes the probability distribution, or equivalently that minimizes
the energy function. Since the discontinuity field is a discrete valued field (it
assumes only the values 0 or 1) this becomes a combinatorial optimization
problem, that can be solved by methods of the Monte Carlo type (simulated
annealing[10], for example).

The MRFs formulation is appealing because describes a system by local in-
teractions and allows to capture many features of the system of interest by
simply adding appropriate terms in the energy function. However, it has two
main drawbacks: the amount of computer time needed for the implementa-
tion and the difficulty in estimating the parameters that control the relative
weight of the various terms of the energy function.

In this paper we propose a deterministic approach to MRFs models. It
consists in explicitly writing down a set of equations from which we can
compute estimates of the mean values of the field f and the line process.
We study two MRFs models, the second being an extension of the first, and
we show that in each case the deterministic equations lead to a fast, parallel
and iterative algorithm that can be used to obtain estimates of the fields
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everywhere.

A natural framework for this approach is the equilibrium statistical me-
chanics, since it deals with systems with many degrees of freedom described
by Gibbs probability distributions. In principle, statistical mechanics allows
us to derive the mean statistical values of the field (mean field equations) as
explicit functions of the data and the parameters of the model: an algorithm
implementing this would consist just of one step. Since the analytical com-
putations required to obtain these explicit expressions are usually too hard,
some approximations have to be made. We use the mean field approzimation,
a well known statistical mechanics tool, to obtain an approximated solution,
that is given in implicit form by a set of non linear equations. We call these
equation deterministic to underline the deterministic character of the whole
procedure.

We concentrate our attention on the partition function Z , that is the sum of
the probability distribution over all the possible field configurations, since it is
known to contain all the information about the system. The idea underlying
our approach is first to eliminate the line process degrees of freedom from Z:
we will show that in so doing the effect of their interaction with the field can
be simulated by a temperature dependent “effective potential” that depends
only upon f. Its use is fundamental in the derivation of the deterministic
equations, and gives useful insights on the role and the significance of the
parameters.

An advantage of such an approach is that the solution of the deterministic
equations is faster than the Monte Carlo techniques, fully parallelizable and
feasible of implementation on analog networks. The possibility of writing a
set of equations is also useful for a better understanding of the nature of the
solution and of the parameters of the model.

We discuss two different MRFs models. The energy function of the first
model has been already studied by several authors[2][11][13][12]. It is inter-
esting to notice that the GNC algorithm, proposed by Blake and Zisserman
(2] in ad hoc manner, arises naturally in the framework of statistical mechan-
ics. This estabilish a connection between MRFs and deterministic algorithm
already used in vision.

In the second model we define an energy function with an extra term, that
establishes an interaction between the line process at neighborhood sites.
This interaction can stimulate the creation of a line at a particular site if
a line at a neighborhood site has been created. This term allows the data
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to be smoothed and, at the same time, the contrast at the discontinuities
to be enhanced. Typical edge detection features like hysteresis, threshold
and suprathreshold, which do not arise from the previous energy function,
will arise naturally from the model. We point out that this model is a gen-
eralization of the previous one, that can be recovered by simply setting an
appropriate parameter to zero.

These two methods can be applied to dense data and, with small modi-

fication, to sparse data as well. The problem of surface reconstruction (and
image restoration) from sparse data is addressed and an algorithm to perform
these tasks is obtained and implemented. We also outline an algorithm that
solves the problem of aligning the discontinuities of different visual models
with intensity edges via integration.
The paper is organized in the following way: Chapter 2 presents an overview
of MRFs in vision. Chapter 3 discusses the deterministic approximation of
MRFs for the three energy functions mentioned above. Chapter 4 shows
how to estimate the parameters of the models. In Chapter 5 some results are
described. Chapter 6 discusses applications for sparse data and integration
of visual modules with intensity. Chapter 7 concludes the paper.

2 MRFs for smoothing fields and detecting
discontinuities

Here we briefly summarize how MRFs have been used in computer vision. A
more extensive discussion is given in Geman and Geman [9], Marroquin[12],
Chou[4], Gamble and Poggio[6], Gamble, Geiger, Poggio, Weinshall [5].
Consider the problem of approximating a surface given sparse and noisy
depth data, on a regular 2D lattice of sites. We think the surface as a field
(surface-field) defined in the regular lattice, such that the value of this field
at each site of the lattice is given by the surface height at this site. The
Markov property asserts that the probability of a certain value of the field at
any given site in the lattice depends only upon neighboring sites. According
to the Clifford-Hammersley theorem, the prior probability of a state of the
field f has the Gibbs form:

P(f) = Zife'ﬂU(f) (2.1)



where f is the field, e.g. the surface-field, Zjy is the partition function, U(f) =
2i Ei(f) is an energy function that can be computed as the sum of local
contributions from each lattice site 7, and 3 is a parameter that is called the
inverse of the natural temperature of the field. If a sparse observation ¢ for
any given surface-field f is given and a model of the noise is available then
one knows the conditional probability P(g|f). Bayes theorem then allows to
write the posterior distribution:

Plf)P(f) _ __1_e—ﬁE(f|g)
Plg) ~ Z '

As a simple example, when the surfaces (surface-fields) are expected to be
smooth and the noise is Gaussian, the energy is given by

P(flg) = (2.2)

E(flg) = Y _ln(fi— g)* + a3 (fi — £)3, (2.3)
i JeN;

where 4; = 1 or 0 depending on whether data are available or not and WV is
a set of sites in an arbitrary neighborhood of the site i. The maximum of
the posterior distribution or other related estimates of the “true” data-field
value can not be computed analytically, but sample distributions of the field
with the probability distribution of (2.2) can be obtained using Monte Carlo
techniques such as the Metropolis algorithm [14]. These algorithms sample
the space of possible values of the surface-field according to the probability
distribution P(f|g).
One of the main attractions of MRFs models is that they can deal directly
with discontinuities. Geman and Geman [9] introduced the idea of another
field, the line process, located on the dual lattice, and representing explic-
itly the presence or absence of discontinuities that break the smoothness
assumption (2.2). The dual lattice is another lattice coupled with the data
field lattice such that for each site of the data field lattice there are two sites
of the dual lattice, one site corresponding to the vertical line and the other
one to the horizontal line. The associated prior energy then becomes:

E(f,) =3 (fi— f;)P (1= 1) + 3 Ve(ly) (2.5)
JeN; C

where [;; is the element of the binary field [ located between site 2,7. The term

Ve(lij), where C is a clique defined by the neighborhood system of the line



process (binary field), reflects the fact that certain configurations of the line
process are more likely to occur than others. Depth discontinuities are usually
continuous and non-intersecting, and rarely consist of isolated points. These
properties of physical discontinuities can be enforced locally by defining an
appropriate set of energy values Vi (l;;) for different configurations of the
line process ([9], [13],[6].) In our models the cliques will be simplified to the
nearest neighbors.

Two basic problems have arisen in using MRFs to solve vision problems. The
first one is the amount of computer time used in the Metropolis algorithm
or in simulated annealing [10]. The second problem is to how estimate the
parameters of the energy function since they have been estimated in an ad
hoc manner.

We propose to approximate the solution of the problem formulated in the
MRFs frame with its “average solution.” The mean-field theory (which is
explained in the next chapter) allows us to find deterministic equations ana-
lytically for MRFs whose solution approximates the solution of the statistical
problem.

3 A deterministic approximation of MRFs

3.1 The Line Process for two dimensions

The line process was described in chapter 2 for the one dimensional case.
Now we generalize it to two dimensions. In this case we define a horizontal
line process h;; and a vertical line process v;;. The line process h;; connects
the site (z,5) to the site (3,5 — 1), while vij connects the site (4,7) to the
site (¢ — 1, 7). This is illustrated in figure 1. It is important to notice that
the horizontal line process is determined by the gradient of the field in the
vertical direction, and the vertical line process is determined by the gradient
of the field in the horizontal direction. In this way we can reduce the two
dimensional problem to two one dimensional problems, provided that the
horizontal and vertical line processes do not interact. At the end we can add
both line processes to get the edge map. This approach will be exploited in
the next chapters. We point out that the fields fijy hij and v;; are defined
in the same lattice instead of having fij in one lattice and h;;, v;; in a dual
lattice.
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Figure 1: The surface field f, the horizontal line process h and the vertical
line process v are represented in two sites, (4,5) and (i+2, j+2), of the lattice.
There are three fields defined in each site of the lattice as opposed to having
one field in a lattice and the other two fields in a dual lattice.



3.2 The Weak Membrane energy

Or how to smooth the field but not at the discontinuities

The Weak Membrane energy is given by

El(f, h, ’0) = Efg(f) + Ef[(f, h,'l)) -+ El(h, ’U) (31)

where

Es(f) = Z (fij = 9i3)° (3.1a)

Eu(f,h,v) = o} [(fij = fii-) (1 = hig) + (fuj — fic15)*(1 = vij)] (3.10)

Ey(h,v) =5 (hij; + vij) (3.1¢)
i
and o and v are positive valued parameters.

The first term, as in the previous case, enforces closeness to the data
and the second one contains the interaction between the field and the line
processes: if the horizontal or vertical gradient is very high at site (7, )
the corresponding line process will be very likely to be active (hij = 1 or
v;,; = 1), to make energy decrease and signal a discontinuity. The third term
takes into account the price we pay each time we create a discontinuity and
is necessary to prevent the creation of discontinuities everywhere.

3.3 Mean field theory and Weak Membrane

We assume that there is uncertainty in the model and then the statistical
framework can be used to incorporate the uncertainty as described by (2.1).
Using mean field theory it can be shown (see Appendix A) that

19F
2 9g;

where F' = —-%an is the free energy. Z is the partition function defined as

fii =95 — (3.2)



7 = Z e—PE(S)
{f}

where 3°(;4 means the sum over all the possible configurations {f} of the
system.

The computation of the partition function is equivalent, in this case, to the
evaluation of a multi-dimensional integral which can not be explicitly solved,
due to the interaction between all the variables. Even if an exact solution
can not be found, we can still obtain a good solution making use of the so
called mean field approzimation. The mean-field approximation is a general
tool used in statistical mechanics that consists in substituting the interaction
among the fields at different locations by the interaction of the field at each
site with the mean field value at different locations (see appendix A)

After this step the partition function factors into the product of single-site
partition functions, that can usually be computed

zm =TI e

+ {f}

Now the partition function, and then the free energy are functions of the
mean values of the fields, which are still unknown. These values, however,
are usually related to the derivatives of the free energy with respect to some
external field, as in (3.2). Substituting the free energy with its mean-field
approximation, we obtain a set of implicit and self-consistent equations for
the fields, usually called mean-field equations. In this sense the mean-field
equations give a deterministic solution to the MRFs problem, since they
relate explicitly the mean values of the field to the data. They could be
implemented by a deterministic network.

In the case of (3.1) the partition function becomes

7 = Z e—ﬁZ;,j[(fi,j—yi,j)2+a(A£"j2+A}’yj2)] Z e—ﬁZ‘-J[h,‘lef‘vj+u.',jG;’,j] (3.3)
{f} {h,v}

h A2 . 2 h
where Gi'; = v — aA}”, GYj =7 — by Al = fij — fisr; and Ay =
fig — fij-1.



3.3.1 Averaging Out the Line Process

The contribution of the line process to the partition function can be exactly
computed. Indeed the line process term in (3.3) is the partition function
of two spin systems (h and v) in an external field (G* and G*) with no
interaction between neighboring sites. Then each spin contributes to the
partition function independently from the others and its contribution is (1+

e™? Gﬁi) for the horizontal field and a similar factor for the vertical one. The
partition function can then be rewritten as

7 = Z e—ﬁ E"j[(fi,j—y,‘,j)2+a(A3j2+A:',j2)] H(l + e—ﬁG’s”j)(l + e—ﬁG}’,J-) (34) )
{f} i

The capability of computing the line process contribution to Z allows us to
obtain a solution for the mean values of the fields A and v once a solution for
the field is provided. As an intermediate step, after some algebra derived in
appendix B we obtain

- 1 _
hi,j =< m > and v;; =< m > (3.5)

where < ... > means the statistical mean value. In order to get a deterministic
solution for the line process we need to do some approximations. We will
assume then that we can neglect the statistical fluctuations of the field and
so we replace the value of the field in (3.5) with its mean value. This is in
essence the mean-field approximation.

B = 1 d .= 1
W 4 eBl-alfii=Fic5)?) and. Yij = 1 + ePlv—alfi;=Fi,j-1)?)

(3.6).

In the zero temperature limit (8 — oo) (3.6) becomes the Heaviside function
(1 or 0) and. the interpretation is simple: when the horizontal or vertical
gradient (f;; — fi;j—1 or fi; — fi_1;) are larger than a threshold (\/g) a
vertical or horizontal discontinuity is created, since the price to smooth the
function at that site is too high. This leads to a clear interpretation of the
parameter v, as it will be discussed in section 4.2.

We notice that (3.6) can account for diagonal lines. We show with the

example of a rectangle in a square lattice (see figure 2a). The threshold ( \/g)
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Figure 2: a) At the discontinuity, Af‘,jz = (B - A)? and AY;> = 0. A
chain of horizontal line processes are created for (2 < (B—A)?). b) At the
discontinuity, Af‘f = (B — A)? and AY;*> = (B — A)?. A chain of horizontal
and vertical line processes are created for (1 < (B — A)?).

to create a discontinuity line is invariant under rotations of the rectangle with
respect to the lattice (see figure 2b). The diagonal line is perceived from a
chain of horizontal and vertical lines (like a stair case). The important result
obtained from (3.6) is that although the total line created in figure 2b is v/2
times bigger than in figure 2a the threshold to create a line has been kept
the same.

3.3.2 The Effective Potential

We discuss how the interaction of the field f with itself has changed after
the line process has been eliminated from the partition function. From (3.4)
we notice that the partition function can be rewritten as

7 = Z e~ P Esg(+Eess(f))
{7}
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Figure 3: The effective potential is shown as a function ofAf‘j. (For illustra-
tion we set Ay; =0.) a) For f =0.002. b) Zero temperature limit (3 — 00).

where

Ei(f) =S (Al 4 AY 2 — lln[(l + 7P, (14 e7P%))
ff gy J

i ' B
and Ejy(f) is given by (3.1a).
This is the partition function of a system composed of one continuous valued
field, whose energy is Ej, + E.ss. We interpret this result as the effect
of the interaction of the line processes with the field f. This effect can
be simulated by modifying appropriately the interaction of the field with
itself, substituting the smoothing term in the energy function with a new
temperature dependent potential.
In figure 3 the effective potential is depicted for different temperatures. It
simulates the effect of the line processes on the field f. Notice that the energy
function is still the sum of local interactions between first neighbors. For the
zero temperature limit one can see in figure 3 that the smoothing term is
active only when the gradient is smaller than a threshold, proportional to
the ratio between v and a. When the temperature is different from zero the
border (threshold) of the smoothing region is no longer well defined due to
thermal noise. It corresponds to an adaptive threshold that depends on the
temperature.
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3.3.3 A Deterministic Solution for f

The introduction of the effective potential allows us to obtain a set of de-
terministic equations for the field f. The mean field theory, as explained
in section 3.1, can be applied to the partition function of equation (3.4) to
obtain a set of mean-field equations depending on the temperature. In terms
of statistical mechanics the data term plus the effective potential represent
the free energy of the system. The mean field solutions are obtained by min-
imizing the free energy. The set of deterministic equations can be written
as

2
afi,j

and after some computation

(Egg + Eess(£)) =0

fii= gii—alfiy— Fijm1)(1 = 3) + o fijyr — fii) (L= j11)
—a(fij = fic15) (1 = i) + a(fisr; — Fi;)(1 = Rigy ) (3.7)

where h; ; and ©;; are given by formula 3.6.

Equation (3.7) gives the field at site ¢,j as the sum of data at the same
site, plus an average of the field at its neighbor sites. This average takes in
account the difference between the neighbors. The larger is the difference,
the smaller is the contribution to the average. This is captured by the term
(1—1;;), where [; ; is the line process. At the zero temperature limit (B — o0)
the line process becomes 1 or 0 and then only terms smaller than a threshold
must be taken in account for the average. This interpretation helps us in
understanding the role of the @ and v parameters, as it will be discussed in
chapter 4. Notice that the form of (3.7) is suitable for the application of a
fast, parallel and iterative scheme of solution.

3.3.4 The Effective Potential and the Graduate Non Convexity
Algorithm

We have to point out that this energy function has been studied by Blake
and Zisserman [2], in the context of edge detection and surface interpolation.
They do not derive the results from the MRFs formulation but they simply
minimize the Weak Membrane energy function. From a statistical mechanics
point of view the mean-field solution does not minimize the energy function,
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but this becomes true in the zero temperature limit, so their approach must
be recovered from the MRFs formulation in this limit. This is indeed the
case, and it is easy to show that the effective potential becomes the Blake
and Zisserman potential when 3 goes to infinity. In order to obtain the min-
imum of the energy function F,; Blake and Zisserman introduce the GNC
(Graduate Non Convexity) algorithm, which is different from our determin-
istic scheme, but can be embedded in the MRFs framework in a natural way.
Let us review briefly the GNC algorithm. The main problem with the Weak
Membrane Energy is that is not a convex function and a gradient descent
method can not be applied to obtain the minimum because one could be
trapped in a local minimum. In order to solve this problem Blake and Zis-
serman introduce a family of energy functions E(), depending continuously
on a parameter p, pe[0,1], such that E®) is convex, E©® = E, and E® are
non convex for pe[0, 1). Gradient descent is successively applied to the energy
function E® for a prescribed decreasing sequence of values of p starting from
p =1, and this procedure is proved to converge for a class of given data. The
construction of the family of energy functions E®)is ad hoc and uses piece-
wise polynomials. In our framework, a family of energy functions with such
properties is naturally given by E.; f(T) where T is the temperature of the
system. The GNC algorithm can then be interpreted as the tracking of the
minimum of the energy function as the temperature is lowered to zero (like
a deterministic annealing). In this way the approach of Blake and Zisserman
can be viewed as a deterministic solution of the MRFs problem, even if it
does not fully exploit the possibility of obtaining deterministic equations for
the surface and discontinuity fields. The results obtained by applying this
method to edge detection, for example, are good, and a pattern of meaningful
discontinuities can usually be recovered [2]. However, sometimes the full set
of discontinuities is not obtained: when the gradient of the image brightness
is under the threshold, a discontinuity may not be detected, even though it
would be necessary, for example, to close a contour.
If interaction between lines (self interaction of the line-field) is introduced in
the energy function this problem can be overcome, as we discuss next.
Figure 4 summarizes the procedure used before to obtain deterministic
algorithms from the statistical methods.
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SKETCH OF THE METHOD

Construct Energy function ' Bulld a statistical model
(B depends on f and 1) Probabllity P = e "PE(T]) /7

Compute Z —__’ Mean field equations for f and 1

More precisely ,

Compute Z and Mean field equations

1. Sum P over } 2. Sum over f, but it is hard
Obtain EG(f) and So, find f that minimize E(f)
obtain mean fleld equation for 1 (mean fleld approximation)

Aditional feature: Deterministic annealing (increase b)

Figure 4: Overview of the method

14




3.4 Improving the weak membrane model

Or how to smooth the field while enhancing the differences at the discontinu-
ities

So far we have not exploited an important physical constraint of images,
namely the smoothness of the discontinuity field. Isolated discontinuities are
very unlikely to occur and, on the contrary, the presence of a discontinuity at
a site makes more likely the presence of a discontinuity at a neighboring site.
This smoothness constraint on the discontinuity field can be incorporated in
the model by simply adding a new term to the energy function. Thus, the
total energy becomes

E,=E, + Ey

where E; is given by (3.1) and we define the new term

By = —ey D [hijhijio1 + vijvioa,]
tJ
and € is a new parameter whose exact meaning and estimation will be ex-
plained in the next section. To make more evident the meaning of the new
term we notice that

Ev+ Eu =3 71 = 26)(hY; +vi;] + exl(hi — hijo1)* + (vi; — vii13)?] (3.8)

i

where E; is given by (3.1c). From (3.8) it is clear that € is related to the degree
of smoothness of the discontinuity field and so must be a positive number.
In order to keep positive the price we pay for creating a discontinuity and
to prevent the line processes from being active everywhere, € has to be less
than 1.

We notice here that this model is a simplified version of other possible po-
tentials. In particular, the neighbor size considered here is at most of two
pixels where Gamble & Poggio (1987) for example, have discussed more so-
phisticated cliques composed of larger neighbors.
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3.4.1 Averaging Out the Line Process

Again, as in the Weak Membrane energy case we calculate the contribution
of the line process in the partition function. The partition function can be
written as

Z = 215 e_ﬁzi,j[(fi.a'—ge,,')z+a(A§»’j2+A;;'jz)]X

hi j_1+hi $— ,1'+"A;t ul
=B 5lhi (Gl ey SIELMEEL ) oy (G —ey =it ))

X Z{h,v} e (39)

where the Gs have been defined in section 3.3. We rewrite the line process
term by substituting h; ;(G; — eyh; j_,) by hij(GE; — e’yﬁ*t#-‘dﬂl) Notice
that this change is just a rearrangement of the terms on the sum over 2,7 and
therefore does not change the value of Z. We also notice that the line process
term of (3.9) is the partition function of many one-dimensional Ising spin
models in an external field. For a constant external field an exact solution
can be obtained by the method of the transfer matrix (see Parisi [15]). This
method can be still applied to our case (not constant external field), giving
a compact expression for the partition function. However, the expression we
obtain is highly non local for the field f and not useful for fast computations.
Because of it we apply the mean field approximation and replace h;;_, by
h,',j_l, h,',j+1 by h,"j.;.l y Vio1,j by vi_1,j, and Vig1,; by Vig1,; in (3.9). Notice
that at this step the mean field approximations refer to the line process and
not to the field f (that is kept “frozen”). The sum over the line process
configurations (3.9) can then be computed, giving

Zmi-hv E{f} e P 2o (fis=gii)+a(al 21y 7)) y
X Hij(]. + e—ﬁ(Gz"',j_‘-'Y—"hi' .—lth‘ A ))(1 + 6—3(G}”j-—c'y—-—lL°"'l ";"-’_-_tl Z))

The partition function is now similar to the previous one (3.4) and the zero-
temperature mean-field equations for the line process field can then be de-
rived in the same approximation:

}_zi,j—l + Bi,j+1) and

7%',:' = Uﬁ(a(ﬁ',]‘ - fi,j—l)2 — v+ ey 5

Vi1, + 5z'+1,j)

7 F v
Ui; = opla(fi; — ficrj)? = v+ ey 3 (3.10)
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where 05(z) = iz is the sigmoid function. Notice that now equations
(3.10) form a set of non linear equations and the solution for the line process
is not as simple as before.

3.4.2 Hysteresis, Suprathreshold and Threshold

The solution obtained in (3.10) for the line process can deal with the prob-
lem of “streaking”. Streaking is the breaking up of an edge contour caused
by fluctuations above and below a threshold along a contour [3]. This is a
common problem with thresholded detectors, in particular with the scheme
implemented by the Weak Membrane energy. For the third energy the thresh-
olding is done with hysteresis. This is the way that Canny’s detector works
[3]. The hysteresis phenomenon is evident in (3.10). With the creation of a
horizontal line at a neighbor site, say {i,j —1} (h;;_; = 1), the energy neces-
sary for creating a line at a site {¢,;} decreases by <. On the other hand, if
two lines are created at {i,j — 1} and {i,j + 1} then the energy decreases by
€7. A low threshold (threshold) and a high threshold (suprathreshold) arise
naturally. The suprathreshold for creating a line is given by 1< (-A_f‘;)z, in
this case a line is always created. In the same way the lowest threshold is
given by Z(1 —¢€) < (A};)? < 2, in this case a horizontal line will be created
at site {¢, j} if a horizontal line has been created in the sites {i,j — 1} and
{t,5 +1}.

At higher temperatures the threshold and suprathreshold are not so well -
defined, and what we have are adaptive thresholds that depend on the values
of the field. These points will become clearer when we discuss the effective
potential.

We point out that some hysteresis may occur on the Weak Membrane en-
ergy. However it will happen just on special cases and without much of
control. A consistent framework to enhance and smooth images requires at
least two thresholds. The Weak Membrane energy is a one-threshold model
and therefore can not fully exhibit hysteresis.

3.4.3 The Effective Potential

By analogy to section 3.3, the effective potential is given by
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An exact computation by means of the transfer matrix method shows that
this potential is highly non local and its practical use is limited. What we
will do next is to use approximation techniques to obtain a potential that is
local , up to the first neighbors.

Without losing any generality we now dismiss the contribution of the vertical
process since it is independent of the horizontal process contribution. In
order to obtain an expression for E.s; in terms of the gradient field A, we
investigate (3.10). Since the discontinuity field is smooth we first approximate

the term -E—'*-"—‘;—B"-'-*—l by h;; and (3.10) at the zero temperature becomes
hij = 0(a(fig = fij—1)® = 7 + evha;) (3.12)

The solution of (3.12) depends on the value of AR fii—Ffii_1)? as follows
g »J +J

4

0 if (AR <2(1-¢)

hij =< 0or1 if g(l_e)s(A_%)zsg

\

1 if (AE)?>2

These results are illustrated in figure 5. We notice that in the region 1(1 -
€) < (A%)? < 2 both solutions are possible , thus reflecting a weakness in
the assumption we made. A possible way to obtain a unique solution is to
consider an average of the two solutions such that the higher the gradient of
[, the higher is the value of h (more likely for creating a line). We interpret
the values of & between 1 and 0 as the likelihood of creating a line. We ap-
proximate the solution of the mean field equation for h;; at any temperature
(B) by the analytical expression

1
h,"j = -

By

1

(A2 — ——In(1 4 P05y 4 gL in(l+e™)  (3.13)

a
v

18



L 5 by,

Figure 5: The three figures illustrate the solution of (3.12) according to dif-
ferent values of the gradient field f (A:‘J) a)The line process is on (h;; = 1)
b) Two solution (three solution for temperature different then zero) c¢) Shows
the solution of no line-process (hi; = 0)

0.0

Figure 6: h;; as a function of the gradient field (Af‘]) Two solutions of
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Figure 7: The third energy potential for 8 = 0.002 and different values for the
parameter €. a) Fore = 0.9 b) For ¢ = 0 the potential becomes the effective
potential of the Weak Membrane energy.

that has the desired property and should be a reasonable guess for the de-
pendence of h;; on the gradient of the field f.

Figure 6 shows two solutions of (3.13) for different temperatures. Substitut-
ing the value of h;; given by (3.13) in (3.11) we then obtain the third energy
potential, that is plotted in Figure 7 for some values of 8 and e.

The effect of the third energy potential on the mean field f can be understood
by analyzing the “force” (derivative) of the potential (see Figure 8). The
third energy effect can be described as follows:

1. Smooth the field for small values of the gradient ((AL)? < (Ag)?).
(Positive derivative of the potential.)

2. Enhance the discontinuity for (A¢)? < (AL)?2 < L, in other words,
forcing the value of the field at a site to be pulled away from the value
of the field at the considered neighbors. (Negative derivative of the
potential.)

3. Neither smoothing nor enhancing the field for (A%)? > 2. (The
derivative of the potential is zero.)

We point out that the third energy potential derived above is a local approx-
imation of the mean field approximation over the discontinuity field.
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Figure 8: The third energy force for B= 0.002 and different values of the
parameter € a)For €=0.9 . b) For ¢ = 0 the force is the same as for the Weak
Membrane energy.

3.4.4 A deterministic solution for f

Here again the same arguments of section 3.3.3 apply to obtain a determin-
istic solution for the field f. After some computations we then obtain:

fii= gij—olY;(1-v,)+ al?ipa(l = Dijy1)
—aAli(1 = hij) + @Al (1 = ki)
+aeAl ki jog(v — a(AL;)?)

—tg bJ A
- af_A_?,iHhi.jHUB(V :ﬁ(AZjH)z)
+ael};5i,;05(7 — o(AY;)?)
— aeAY ;119 j4108(7 — a(AYi11)%) (3.14)

4 Parameters

The parameters a, v, € and # must be estimated in order to develop an

algorithm that smoothes, enhances and finds the discontinuities of the given
data-field.

4.1 The parameter o

The parameter o controls the balance between the “trust” in the data and
the smoothing term. The noisier are the data the less you want to “trust” it
so « is larger, the less noisy are the data the more you “trust” it so a should
be smaller. To estimate o various mathematical methods are available. The
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generalized cross validation method introduced by Wahba [17] and the stan-
dard regularization method described by Tikhonov [16, 1] were studied by
Geiger and Poggio [7] to estimate a. The standard regularization method
gives [7] an equation relating o with the signal-to-noise ratio that for the
continuous case is

I L ei ettt = [ [ et S i )

where S(w, v) is the spectral density (power spectrum) of the signal f(z,y)
and N(w, v) is the spectral density of the noise v(z,y), assuming that v(z,y)
is stationary.

When an estimation of the noise is not available, it is necessary to use
the generalized cross validation method (GCV). GCV states that the opti-
mal value of a can be obtained by minimizing the functional (here in one
dimension)

2yl 20l 12)

n iz (1 - am(a))?

where f, ,(%;) is the smoothed solution given by (3.4),

wr(@) = (1 — ape())/(1 — Zau(a

and ag(@) = 35(fn,a)(te)-
For the purpose of smoothing images both methods give about the same

values of « [7]. Better results should be obtained if the estimation of « is
done locally (for a small neighborhood).

4.2 The parameter v

From (3.6) one can see that \/g is the threshold for creating a line in the

Weak Membrane energy. Let’s call ¢ the value \/g From the expression of
the effective potential we notice that if the gradient A fij 1s above £ there is
no smoothing and if the gradient is below ¢ then smoothing is applied. The
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parameter { defines the resolution of the system and we explain this with
two examples.

In the first example suppose we are working with the stereo module, so
the data field is a depth-field. In this case £ is the threshold for the changes
in depth to be called a depth discontinuity. This value is determined ac-
cording to the resolution of the stereo system available and/or to the desired
resolution that one is interested.

In the second example the field is the intensity data and the parameter ¢
represents the threshold for detecting edges. This value is somehow arbitrary,
and probably context dependent. A variation of £ = 16 units to ¢ = 32
units for an 8-bit array image is likely to be in agreement with the human
threshold. The exact value of ¢ depends on the attention of the observer
and/or the sensitivity of the system.

For the second energy the absolute threshold to create an edge is also
given by {. However when there is support from neighbor edges this threshold
can be lowered to ¢ x (1/(1 —€) (see (3.10)). This suggests setting v so to
guarantee that the highest noise gap is smoothed (we are assuming that noise
gaps are isolated features). In this case the e parameter will be set to assure
that at the edges the images will not be smoothed but perhaps enhanced. In
this case the value of ¢ = 30 may be desired for an 8-bit array.

4.3 The parameter €

The parameter ¢ allows the energy to be more general by controlling the
amount of propagation of the line. So, once a line is created, the price to pay
for creating another line next to it will be lowered by the amount of ~ve. In
other words, from (3.11) one can see that the difference in the energy for when
a line has been created and when no line has been created at pixel (1 — 1, j),
is given by ye. This is what characterizes the threshold and suprathreshold

or the hysteresis phenomena [3]. The threshold is given by \/1‘2—_‘1 and the

suprathreshold by \/g— . The parameter € varies from 0 to 1.0 and when is zero
reduces the third energy to the Weak Membrane energy. When € = 1.0 lines
are created everywhere, since once a line is created there is no cost in creating
another one and then it propagates indefinitely (to the image limits). How
much does one want to propagate a line? How much should the difference
between the threshold and the suprathreshold be? Which exact value of ¢
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should be chosen? According to the discussion above about 4 we conclude
that € should be chosen (assuming we already have a and 7) to guarantee

that ﬁla;‘l is below the desired edge threshold. Again it depends on what
one wants to do with the data. For detecting edges of objects in a scene one
wants to have high suprathreshold and threshold (usually object boundaries
exhibit high gradients) and ¢ large (bigger than 0.5) so that all the object
boundaries are detected, included the exceptional boundary pixels with a
smaller gradient.

4.4 The parameter 3

The parameter 8 controls the uncertainty of the model. The smaller is B8
the more inaccurate is the model. This suggests that for solving the mean
field equations a rough solution can be obtained for a small value of 3 (high
uncertainty) and thereafter we can increase 8 (small uncertainty) to obtain
more accurate solutions. This can be called deterministic annealing.

We also notice that # multiply the first term on (3.1) to give

BE(f) =3 B(fis — 9i5)°

which suggests that the inverse of 3 gives the standard deviation of the noise.
We keep in mind that 8 also multiplies the other parameters of the model
and therefore by estimating B by the amount of noise the estimation of the
other parameters have to be scaled by this factor.

5 Results

5.1 Implementation

For the implementation the zero temperature limit equations have provided
results as good as the deterministic annealing with a faster computational
time. We do not have proof of convergence but only suggestive experimental
results.

In order to find the mean field solution for the third energy, we solved (3.14)
together with (3.10) in a coupled and iterative way. More precisely:

For simplicity, let’s write (3.14) as
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fii = F(gijs Figs Fimvgy Fojmts Fivngs Figats Bisgs hicajy 0, vijo1)
and (3.10) as

hij = H(fiz, fij-1,hijo1, hijer)  vig = V(Fijy fictjs Vie1, Vier,j)

The algorithm solves these equations iteratively by updating (for the parallel
case) in the following way

it = = w[F0 = FGis Fls s Pl By vl )]| (510)

and

RS = H(f £l hljon hipn)  and o' = VIR, f1 ol o )
where w controls the rate of change and the index n indicates the step of the
iterative process.
For a serial implementation we first update the even sites (like the white
squares in a chess board) and then the odd sites (like the black squares).
Typically the algorithm has converged in 10 iterations which takes about 1
minute for images of 64 x 64 pixels on a Symbolics 3600.

5.2 Synthetic Images

We first tested the algorithm on a synthetic step edge image with noise added.
This is a good test-image since locally many edges on real images are of this
type.

The step edge image is an 8-bit array of 64 x 64 pixels with a step intensity
of 140 units (see Figure 9a). White noise, with standard deviation 30, is
added to the step edge (see Figure 9b). We apply the algorithm described by
(5.1) to reconstruct the original image. First we use € = 0, in order to have
the Weak Membrane energy. We set o = 4 (typical smoothing parameter)
and v = 24000 (so that we do not smooth the edge). The result after 20
iterations is shown in Figure 9c. We notice that the step edge starts to be
smoothed before all the noise has been smoothed. In Figure 9d we set ¢ to be
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0.9 and v = 45000, and the result is more striking. Because we set the ratio
Z to be higher than that, all the noise has been smoothed away. However, at
the edge there is support from the neighbor edges to lower the threshold to a
factor (1 —e€) = 0.1. Therefore the noise is suppressed and the edges are not
smoothed but on the contrary are enhanced. We conclude that for a noisy
step edge, the third energy is able of retrieving and enhancing the edge (see
figure 9 1d) while the Weak Membrane energy retrieves the edge with worse
performance (see figure 9c).

5.3 Real Images

When we apply the second energy algorithm to a real still life image the
result is an enhancement of specular edges, shadow edges and some other
contours while smoothing out the noise (see Figure 10). This result is ob-
tained consistentently in all the images we used and also with other fields
besides intensity, e.g. “color” images. In our case “Color” images are 8-bit
images representing the ratio between the red array and the sum of red and
green arrays.

6 Surface reconstruction and alignment via
integration

6.1 Sparse Data and Surface Reconstruction

Until now we dealt with dense data defined on allthe sites of the lattice.
This is not always the case, especially if the field is the output of a stereo or
motion module. In that case data are given on a subset of the lattice sites
and the data-field interaction term (E;,) in the energy function has to be
modified in the following way

Epg =3 (fis = 93)" = 2_(fus — 9i) s
i i\

Here v;; is a flag that is one if a datum is given at site (4,5) and 0
otherwise. This slight modification has no effect on the theoretical results,
and only some changes take place in the deterministic equations for the
surface field: the term enforcing closeness to data disappears when a datum
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Figure 9: a) Step edge with 140 grey value units for the step. 1b) White
noise with standard deviation 30 grey value units has been added. c) The
noisy image after 20 iterations for a = 4, v = 24000, € = 0. d) The noisy
images after 20 iteration for a = 4, v = 45000, ¢ = 0.9
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Figure 10: a) Still life image 128 x 128 pizels. b) The image smoothed with
€ = 0.5, 7y = 1400 and a = 4 for 9 iterations c) The line process field (without
thinning).

is not given at a site. We rewrite here the deterministic solution for the field
[ in the case of the Weak Membrane Energy, since the third energy equations
are modified in the same way. In the case of sparse data (3.7) becomes then

fimii = 9igmig — a(fuj — Fujma)(1 — i) + a(fijer = fi)(1 = i js1)
—a(fij — fic1, )X = ki) + a(fixr; — Fi))(1 = Riga)

To apply this algorithm one needs first to fill in the data. We chose to fill
in the data by averaging next neighbors and applying the algorithm at the
same time. So at each step of the algorithm each lattice site is visited: if
there is no field value the average neighbor value is taken; otherwise we apply
the above algorithm. We notice that no action is taken if at a particular site
there is no field value and no neighbor field value.

From one face image we produced sparse data by randomly suppressing 70
% of the data (see Figure 11). We then applied the third energy algorithm
to sparse data. The parameters were kept the same as the other real image.
The reconstruction from sparse data can be applied to depth data in which
case it is usually called surface reconstruction. We used a stereo algorithm
based on zero crossings to obtain depth data from the image shown below.
Then we applied the algorithm to reconstruct the depth surface. The param-
eters were different according to the criteria for depth discontinuity.
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Figure 11: a) A face image of 8-bits and 128 X 128 pizels. b) Randomly
chosen 70 % of the original image. For display the other 30% are filled with
white dots. ¢) The algorithm described above is applied to smooth and fill in
at the same time with € = 0.9, v = 1400 and a = 4 for 70 iterations.
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Figure 12: a) The left image (8-bits and 128 x 128 pizels). b) The right
image of the same scene c) Sparse depth data obtained by the stereo algorithm
based on zero crossing. Intensity represents depth values. d) The algorithm
is applied with € = 0.0, v = 400 and a = 4 to reconstruct the surface. e)
Canny edges for figure a). f) The alignment algorithm is applied with the
same parameters as d) and 6 = 384. Depth discontinuities aligned with the
intensity edges are obtained.
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6.2 Alignment of visual modules with intensity edges

The integration of different visual modules to improve the detection of the
discontinuities can also be addressed in this scheme. As suggested by Gamble
& Poggio [6] , we can add the term & (v;j+hi;)(1—e;;) to the Weak Membrane
Energy or the second energy. Here e;; is an external field, for example the
edge map that is coupled with the stereo field. For implementation purposes
the only consequence of adding this term is the change of the global parameter
7 into the local parameter 4}; = v — 6(1 — e;;). R. Thau implemented
this scheme in the Connection Machine using Canny’s intensity edges for
eij. We first took a pair of images (Figure 12) and used a stereo algorithm
to find depth at the zero crossing positions. We then used the algorithm
to reconstruct depth everywhere and detect depth discontinuities. As we
expected depth discontinuities are aligned with the intensity edges.

7 Conclusion

We have used statistical mechanics tools to derive deterministic approxi-
mations of Markov random fields models. In particular we have studied an
energy model that is suitable for image reconstruction or any field reconstruc-
tion. The model has been developed to include the following characteristics:

e the surface field is smoothed when its gradient is not too high,

e contrast will be enhanced where a discontinuity occurs (if it is not too
large already),

e the discontinuity field is likely to be smooth (isolated discontinuities
are inhibited),

e hysteresis and adaptive multiple threshold arise naturally from the
model.

e three parameters are needed to specify the model,

e when one of the parameters (¢) is set to zero the weak membrane energy
is recovered.

¢ An understanding of the role of the parameters is possible,
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o The model can deal with sparse data and alignment of the discontinu-
ities of different modules with the intensity edges.

We have shown that the deterministic algorithm of GNC can be regarded
as an approximation of the gradient descent method with a deterministic
annealing schedule to solve the mean field equations. This suggests a unified
framework to connect different methods used on image segmentation, restora-
tion and surface reconstruction. We will show in another paper[8] that several
deterministic algorithms for image segmentation and reconstruction are ap-
proximations of two methods to solve the mean field equations: the gradient
descent method discussed in this paper and the parameter space method
discussed in [8]. We derived a deterministic solution for the mean values of
the surface and discontinuity fields, consisting of a system of coupled non-
linear equations. An algorithm has been implemented to obtain a solution
for this system: it is fully parallelizable, iterative and recursive, allowing effi-
cient computation. It would be interesting to analyze other approximations
or extensions of this model. For example, a model that includes interac-
tion between the horizontal and vertical line processes could be developed to
inhibit self-intersections of the discontinuity field. A term like h;(1 — v;)
may be sufficient. An analysis of convergence of the algorithm would also be
important.
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Appendix A
Given an energy function of the form

E(f) = Z{(fi -9+ [ZI\;‘ V(fi, [i)l}

where N; is the set of neighbor sites of 7, V(f;, f;) is an interaction potential
and g; is an external field (data), the partition function is given by

7 = Z e~ PBE(f)
f

where the 3°; means a sum over all the possible configurations of the system,
that is a multidimensional integral over all the variables f;, in this case. The
mean field equation for f; is given by

= 1 - A (fimgi)? vy
fk = -'Z—Z fke ﬁ(z'{(f' g‘) +Zj€Ni V(f"fj)}) (Al)
f

From this definition, and the definition of the partition function Z , the
following equality is derived:

107 —
=== — _98(f. —
Z dor B(frx — gx) (A2)
Defining as usual the free energy F as F = ——%an we can now obtain, from
(A2)
= 19F
=gk — =5 A
fe=g9x =3 0r (A3)

In the case of energy E the mean-field approximation consists in replacing
the fields at the neighbor sites with their statistical mean value f;. Therefore
the mean-field approximation E™f to the energy function becomes

EY() = SAUs = 9 + X VI o)

This is a good approximation of the original energy when the fluctuations of
the field f are small, which is the case in our experiments.
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Appendix B
In this appendix we will derive an expression for the mean value of the A
and v fields of a system described by the Weak Membrane Energy

El(fa hav) = Efg(f) + Efl(f’ h,v) + El(ha ’U).
Noticing that

Ey(f,h,v) = Zthh + v;;G7 ;]

where the energy function FE; has been defined in section 1, the partition
function can be written as

7z = Ze‘ﬁEl(.f) E C-ﬁZi,j[h""GﬁJ""U""G:,*"].
{1} {hw}

Let us consider just the field . By definition the mean value &, ; is

hij = _Ee—ﬁEl(f) Z hije =837, ;[hi Gl j4vi ;G 1 (B1)
{f} {hw}
Then we can rewrite (B1) in the following way:
= TS 2 (B2)
R A Gt
where
Zn(f) =) e TPLs s hea Gl iG]
{hv}

Zny tepresents the contribution of the line process to the partition function
of the whole system for each fixed configuration of the field f and can be
seen as the partition function of the line process system when the field f is
kept “frozen”. We notice that the line process system is simply a classical,
non-interactive spin system in an external field. Since there is not interaction
between the spin variables, Z;,(f) can be easily computed, giving

Zno(f) =TI + e™#90)(1 4 e77%%).
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We can now define the free energy of this spin system by the usual relation

Zho(f) = e~ PFno(f)

and substituting in (B2) we obtain the following equation

- 1 0
hi: == —BlEL(f)+Fho(£)] Fp,(f). B3
W Z % e aG:,;J h (f) ( )

Before proceeding further we now notice that, having defined Fj,(f), the
partition function of the whole system can now be rewritten as

7 — Z e BlEL(N)+Fro(f)]
{7}
This can be regarded as the partition function of a system, composed just by
the field f, whose energy function is Ey(f) + F,(f). Now, indicating with

< ... > the statistical mean value over all the possible configurations of this
system, (B3) can be rewritten now in the following way:

7 OFh(f)
hi =< ggr >
and then
. 1 B4
i =< Tooaer, (B4)

A similar expression holds for ¥; ;. The meaning of these equations is the

following: if the field f is kept “frozen” the mean value of the horizontal

line process is simply %ﬁg_ﬁ, but to obtain the true mean value h; ; we have
12V

to average ?g—glg(;l over all the possible configurations of the field f, whose
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probability distribution is given by

elEr(H+Fru ()]
Z

where the term Fj,,(f) is due to the interaction of the line process with the

field f.

P(f) =
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