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Abstract

The Object-oriented Reuse Tool (oRT) provides support for the reuse of ob ject-oriented software
by maintaining a library of reusable classes, recording information about reusability, allowing
easy exploration of library entries, and providing an extensible approach to facilitating reuse in
a software development environment.

ORT takes advantage of opportunities provided by the object-oriented style of programming
that are unavailable in reuse schemes for conventjonal programming languages. It also records
information useful in assessing the reusability of library entries and in relating these entries to
each other.

In the early design phases of object-oriented development, ORT facilitates reuse by providing
a flexible way to navigate the classes recorded in a library and the information associated with
them. It thereby aids in the process of refining a design to maximally reuse existing classes.

The implementation of ORT is extensible. A collection of other useful tools has been iden-
tified. These tools can be directly implemented within the existing architecture and would
compose the remainder of a practical system useful in increasing the amount of reuse in an
ob ject-oriented software development environment.
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1. Overview

Two of the most prevalent technologies involved in attempting to support software reuse,
libraries and object-oriented programming, are combined by the Object-oriented Reuse
Tool (ORT). ORT assists in managing a library of reusable software components developed
under the object-oriented programming paradigm.

The software library approach, although already realized in many environments, war-
rants further investigation. This common approach can be improved upon with more
sophisticated storage, search, and retrieval tools, which can automate much of the effort
required to use a software library. Library-based programming offers little flexibility in
expression, since the user is constrained to use only the entries in the library. However,
much benefit is derived from its ability to suggest completed software works as building
blocks for future work.

The object-oriented programming style is recognized as providing benefit in producing
reusable software designs and implementations [33, 11]. This technology offers great
flexibility in the expression of potentially reusable components, but offers little to assist
reuse of such components.

Figure 1-1 illustrates these two technologies (software library and object-oriented con-
b
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Figure 1-1: Characterization of reusability technologies.



struction) in the perspective of the many popular strategies used to attack the reusability
problem. This diagram® roughly illustrates the spectrum that must be made in choosing
between the currently available technologies: as reuse techniques become more powerful,
they loose generality. For example, high-level languages and assembly languages are the
most general forms of programming expression but offer little support for reuse. At the
other end of the tradeoff, application generators are very powerful mechanisms for reusing
the information needed to program in an application environment, but are so customized
to the environment that they are not applicable outside their narrow domain.

An entry for ORT has been placed in Figure 1-1. Note that, relative to the traditional
procedural library, ORT gains in both generality and power. ORT gains in generality be-
cause classes are more combinable than traditional procedural components, thus offering
higher expressibility. It gains in power because of both the usefulness of the information
ORT stores as well as the flexible interface ORT provides to access this information.

1.1 Software Libraries

Software engineers should, to be maximally effective, have access to a library of
tested and debugged software components as well as information associated with their
development and use. As more development occurs, such a library becomes increasingly
effective as its base of entries grows.

Software library systems should not just be considered as tools to assist in the im-
plementation of a system; they are design tools as well. For reuse to occur using a
library-based technology, effort must be expended very early in the design process to
insure that consideration is made of library entries that can be used in the implementa-
tion of such a design. One can not specify the design of an entire system top down and
expect to reuse a significant amount of previous work. Rather, effort should be made
from the beginning of the design process to insure maximal reuse. The design, therefore,
must involve some bottom-up techniques based on existing components. Otherwise, any
reuse that happens will occur only by accident or only at the lowest levels, where many
programmers are taught to use the same abstractions.

Assuming that the quality of entries is kept at a high level by an ongoing editorial
process, a library can improve a design by suggesting standard solutions to problems that
have already been solved. If a design decision does not provide a better solution than
does an entry in the library, then examination of that entry in the design process can
implicitly suggest an improvement to this decision. This can result in standardization
over all projects that use the library.

In addition to the direct reuse of library entries, limited modification and subsequent
use of existing components, or leveraging, also occurs. The practice of leveraging, or “copy
and edit”, is well known to experienced programmers, because software reuse without

This diagram is an adaptation of a similar diagram published by Ted Biggerstaff and Charles Richter
[5]. It is not based on actual data, but rather on the observation that there is a basic dilemma between
generality of application and payoff.



some modification rarely happens. A strong distinction is made by many organizations
between strict reuse (i.e. no modification) and leveraging. This distinction is motivated
by the risk that is taken in modifying any piece of software, since new defects are easily
introduced.

However, the leveraging of code can, in many respects, be viewed as reuse of software
at some level and thus any mechanism that supports unmodified reuse can also be used to
support leveraging (i.e. if one reuses a component, it must first be found; if one leverages
a component, it must also be found before modifications can be made). Additionally, the
modifications required to suit the reuser, if done properly, may increase the generality
of a component. This would produce a more valuable component to be entered into the
library. For the purposes of this document, therefore, the distinction between reuse and
leveraging is not significant.

The classification scheme used in a library system dramatically effects the retrieval
process; it controls how like things are grouped together. A faceted classification method
groups things by more flexible viewpoints or dimensions than does a traditional enumer-
ative method (e.g., the Dewey decimal classification system) [34]. A multi-faceted clas-
sification system offers multiple dimensions along which a component can be selected,
offering great flexibility, assuming that the facets and vocabulary terms are chosen with
care. Such a system might generate many relevant entries on a given query, as well as
many semi-relevant entries that, once examined, might contribute to the understanding
of the system being designed.

1.2 Object-Oriented Development

In the object-oriented methodology of programming, an object is a self-contained
entity with its own private data and a set of operations used to manipulate that data.
Objects are instances, or particular values, of classes, which are, in one perspective,
abstract data types. A class defines the data and set of operations for all objects of its
type. It is therefore the basic unit of construction when writing object-oriented programs.

For the remainder of this document, the reusable software components being dis-
cussed are definitions of classes of objects and are usually referred to as “classes” (or
“entries” when the statement applies to software library systems in general). Classes
have associated with them features, a term used here in place of the collection of more
language-dependent terms such as methods, instance variables, messages, member func-
tions, data members, procedures, and the like. A feature is a generic piece of public
knowledge associated with a class and can be a piece of data, a function, or a procedure.
In this document, class names are words consisting only of letters, the first of which is
upper-case (e.g., LinkedList), and features are words consisting only of letters, the first
of which is lower-case (e.g., isEmpty).

ORT focuses on the object-oriented style of programming and the modes of reuse that
derive from it. This is because the utilization of such a style increases the probability of
producing reusable designs and code, which in turn increases the effectiveness of attempts
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at collecting software components for future reuse.

Object-oriented programming helps produce reusable software, because it encourages
data abstraction (providing modularity) and parameterization, desirable qualities for
reusable components, and prevents the undesirable distribution of information through-
out a program. Additionally, object-oriented programming provides a formal way to in-
herit features between classes. Inheritance is an efficient method of leveraging code while
incurring significantly less risk of introducing additional defects than with the “copy and
edit” technique. Risk is avoided because no modification of the original code is required
and many details of the original implementation are hidden from the reuser. Finally,
object-oriented programming allows for highly combinable components, but with loose
coupling between them when combined. Because programming with objects is often more
natural than with procedure or function calls, it is usually easier to express a system in
terms of classes. Object-oriented languages afford the ability to bind a function definition
at run-time based on an object’s class. This allows loosely-coupled components, because
objects need not know as much about each other.

In almost any object-oriented programming environment, a collection of often-used,
basic classes are developed to support programming-in-the-small. These generic classes
are reasonably standardized data-structures and are generally well understood by those
with a computer science background. Typical examples are array, queue, and hash table.
Generic classes are so well understood and becoming so widely available that they are now
considered to be part of the programming environment itself (i.e. a necessary extension
of the language).

An object-oriented programming style can be practiced in almost any programming
language, but object-oriented programming languages more directly support this style
than do conventional procedure- or function-based languages. There are many true
object-oriented languages in use today, but there is no clear consensus on which will
gain the most use. Because of this uncertainty and the fact that many class designs can
be translated from one language to another with reasonable ease, ORT was built to be
language independent, so as to remain flexible in this respect.

1.3 ORT

ORT combines two technologies, libraries and object-oriented programming, to pro-
vide library-based support for the object-oriented style of programming, in which a high
reuse potential can be exploited. ORT manages interactions with a central repository of
information about past software development activities. This repository forms a collec-
tive base of knowledge upon which a software engineer can draw to obtain classes used
in previous efforts in object-oriented development.

Beside providing a library system focused on object-oriented components, ORT pro-
vides three additional major benefits:

1. ORT collects important information about reusability not usually stored in software
libraries.



2. ORT allows a flexible way to navigate the information stored in the library.

3. ORT provides an extensible architecture on which to build other, related tools.

1.3.1 Information About Reusability

There are three basic roles information stored in the ORT library plays. The first role
is as an indicator of how applicable an entry is to reuse. This information describes what
the entry is, what it does, and how it is used. This type of information is common to
most software libraries. The second role of this information, seldom realized in software
libraries, describes relationships between entries. The third role of information in the
ORT library, not usually realized anywhere, is to describe, regardless of how semantically
appropriate an entry might be, its general quality and adaptability. The second and
third types are considered to be new information with respect to conventional software
library practice.

Aside from the information describing classes, their features, and their implementa-
tions, ORT keeps track of relationships between entries based on the dependency and
inheritance hierarchies. If a potential reuser is interested in the details of a class, then
he or she may also be interested in classes adjacent to it in either of these hierarchies.
When reuse of this class occurs, many classes lower in the dependency and inheritance
hierarchies are likely to be reused as well. ORT allows the user to examine these classes
quickly, thus encouraging larger-grain reuse. If a class is interesting to the user, then
classes based on this class (i.e. classes above this class in either hierarchy) may also be
interesting, so traversals up the hierarchies can be made as well.

There are additional class relationships provided by the reuse process itself, because
classes are developed based on library entries and subsequently added to the library as
well. Examining these relationships allows the evolution of object-oriented software to
be tracked. This is useful in assessing the benefit of domain analysis activities and in
obtaining newer versions of abstractions quickly. All of these relationships provide the
ability to move from class to class in the library in a nonlinear fashion, similar in manner
to the browsing functionality in a hypertext system [10].

The data model of the ORT library also allows for the collection of information that
can assist in the assessment of the characteristics relating to the reusability of the stored
components. In particular, the history of successful and unsuccessful usage attempts on
a component is recorded. Additional information used to classify, comment on, and for-
mally review entries is stored in the library. Finally, code metrics (e.g., size, complexity)
are recorded. All this data supports the activity of judging whether or not a given class is
appropriate for reuse (regardless of its semantic applicability). This judgment is crucial
to effective reuse and must be made quickly but correctly.

Aside from correctly deciding when not to reuse a component, it is also important
to correctly decide which component to reuse. Faced with two or more slightly differing
alternatives, the decision of which to reuse should often not be based solely on which

5



entry most closely approximates the desired entry, but also which entry has been shown
to be more robust, adaptable, well documented, and, in general, reusable.

1.3.2 Navigation

ORT provides the ability to quickly locate information in the library. This capability
is provided in two modes: querying and browsing. Querying allows the user to enter the
library and quickly approach the most relevant entries. Queries specify a collection of
relevant classes that are placed in an initial class browser. Browsing allows users to find
classes they did not realize were interesting. Sometimes a problematic initial description
of what is desired generates near misses that can be corrected by browsing along the
links provided by class relationships.

Users can move from one collection of classes to others based on class relationships.
Users can also browse off into reusability information associated with a particular class.
Further, users can re-enter the query mode to refine the latest query and thus iterate the
process.

1.3.3 Extensibility

ORT can be considered part of a framework of tools that is only partially implemented.
To be practically useful in an actual object-oriented software development environment,
a more complete set of tools, depicted in Figure 1-2, must be provided to help maintain
the library and take full advantage of the information contained in it.

The library is implemented with a database that includes the information described
above. Extensibility of this database definition is important, because the understanding
of what information is useful to encourage effective reuse is likely to improve in the
future. Along with the database, a set of database interface classes has been implemented
(ORT itself is written in an object-oriented programming style), which interface the user
applications to the database in an abstract manner.

Extensions to ORT, based on the current architecture, have also been designed. These
extensions, described in Section 8.1, consist of tools not considered as interesting to
prototype at this time. Such tools include a tool to automate entry of information
embedded in code into the library, as well as some stand-alone tools that perform more
specific functions or provide summaries of library contents. These tools compliment the
current functionality of ORT and provide a framework which would include some way of
editing the library.

Since library editing tools were considered appropriate to help in the prototyping of
ORT itself, two additional tools, CHECKOUT and CHECKIN, were implemented as well.
Beside affording high-level transactions with the library, these tools provide a locking
mechanism to allow multiple users to simultaneously modify contents of the library.
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1.4 Roadmap

Chapter 2 states the problems plaguing software reuse, explaining why it is not more
prevalent. An attempt is also made to counter each problem with a reasonable solution
to suggest that, despite the many inhibitions to reuse, providing more tool support is a
reasonable approach to improving the situation.

Chapter 3 describes in more detail the approach taken by ORT. It describes both the
theory behind the design and the specific functionality the tools must provide in order to
be effective. The approach breaks down into two basic steps: assessing reusability and
finding relevant components.

Chapter 4 discusses the technique used to describe reusable components and depicts
the Class Description, the basic unit of storage in the library.

Chapter 5 presents the design of the interface between the software engineer and the
library.

Chapter 6 demonstrates how ORT is useful in an object-oriented software development
environment by presenting an example scenario of its use in the refinement of a sample
design.

Chapter 7 details the actual implementation of ORT. The technical details of the
underlying database, the extensible architecture, and the non-obvious implementation
issues are discussed.

Finally, Chapter 8, discusses possible further work and puts the work that has been
completed in perspective. Limitations of the approach, logical extensions to the approach,
alternative paths of exploration, and the applicability of ORT to software development
methodologies that are not strictly object-oriented are discussed.



2. Problem Statement

It is well recognized that one of the most influential productivity factors in software devel-
opment lies in the personal productivity of the software engineers doing the development
[6]. A great deal of engineer-time is spent producing the custom software components
needed to implement conventional designs. Still more time is expended on testing, de-
bugging, documenting, and maintaining these new components. Clearly, minimizing this
effort where possible would boost software productivity.

Since it is generally accepted that software reuse efforts can make a valuable con-
tribution toward providing safe, verifiable, efficient, and reliable software that can be
delivered in a timely manner [20], it is rather striking to note that the amount of code
currently reused in industry is quite small. It is estimated that less than 5% of the code
produced in an average software development environment is reused [13]. However, even
ad hoc reuse of the software components generated in the process of completing projects
may eventually provide a 25% increase in programmer productivity and would payoff the
invested effort in two to five years [5]. In some cases, 40-60% of code was found to be
repeated in more than one application [21] and reuse factors as high as 85% have been
reported [20].

So as not to suggest that the problems implied in Chapter 1 are the only causes for
lack of reuse, a more complete description of such causes is presented here. Given the
great potential and such little actual benefit, it is important to identify the reasons why
reuse is not more commonplace in today’s industry. Certainly, the idea of reuse is not
new; it has existed ever since there have been computers to program, dating back to
1950 with FORTRAN subroutine libraries. Additionally, published work on the subject
appeared as early as 1967 with Mcllroy’s proposed software component’s catalog [31].
Since then, limited-domain applications have shown excellent success [18, 29], but the
general practice of software reuse has yet to pervade the industry and fulfill its potential.

There is not a great deal of reusable code hidden somehow in today’s software develop-
ment institutions. Rather, the problem is a basic lack of truly reusable designs and code.
Although writing reusable software is quite time-consuming and costly, a methodology
for writing and using reusable software must be encouraged if significant productivity
gains are to be realized.

Opposing this challenge, many discouraging factors are collective cause for the lack
of software reuse in industry today. Each of these problems is presented below along
with a counter-argument, as best our current understanding can offer, to suggest that the
problem is not insurmountable. The first two of these problems are, in fact, non-technical
and thus not addressed by ORT at all. However, they are included for completeness; the
solution to the problems ORT does address would be meaningless if the other problems
were insurmountable.



2.1 Economics

The economic motivations of software production are probably the most influential
inhibitors of software reuse. Simply put, much more resources are required to produce
and maintain reusable software than to produce minimally functional software. There
are several sub-problems:

1. Producing reusable software is difficult. In order to maintain the aggressive
schedules motivated by commercial competition, software frequently gets released
in a state that does not well serve future attempts to reuse it. Additionally, it never
gets reworked later for the purposes of making it more reusable because no direct
financial benefit is seen in this activity. These facts are seldom directly stated by
those involved in software production, but with no financial incentive, why should
anyone expect this investment of extra resources to be worthwhile?

Solution: This phenomenon demonstrates the fact that there is still much progress
to be made in the management of software projects; we are now only beginning to
understand some of the issues involved. Specifically, if reuse was demonstrated to
be economically effective, then its advantages in productivity would motivate the
production of more reusable code. To be sure, reuse will become increasingly eco-
nomically effective and commercially necessary as time progresses [26]. Therefore,
this situation is not a cause for the lack of reuse, but due to a lack of vision for it.

2. Commercial competition inhibits cooperation. The copyright limitations,
non-disclosure agreements, liabilities, and contractual considerations that result
from commercial competition all inhibit the collaborations necessary for large-scale
reuse. This is no small problem, as there are an increasing number of software
development collaborations between industrial entities where third party efforts
are incorporated into products to be sold. This form of reuse shows great hope,
but introduces numerous other problems as well. For example, if a package of
software components useful in the commercial or public domains must be withheld
from distribution due to some proprietary information contained within, then the
entire industry (save the originator) is effectively detained by an unproductive
partitioning of software development knowledge.

Solution: Software components should be viewed as a capital investment, a com-
modity that can be bought and sold much the same as are hardware components.
Object-oriented programming makes this a particularly attractive business because:

(a) Quality work can be advertised by distribution of the class interface specifica-
tion, much the same as hardware IC’s are advertised by their “data sheets.”

(b) Classes are usually standalone entities, encapsulated for semantic portability

and information hiding, or part of a hierarchy disjoint from other sets of
components
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2.2

(c) Modification of the code for the class is usually not necessary in instances
where inheritance can occur.

Eventually, the associated legal issues can hopefully be settled when it becomes
more widely accepted that selling quality software components is a business like
many others. Many facets of legal responsibility for software quality and safety
are being identified. Eventually, the legal issues of support for purchased software
components must be formalized just as is being done for finished software products.

Those involved in software development are often too quick to attempt to build from
scratch something that is commercially available. The decision between buying
and building should almost always be to buy because of the great costs hidden in
development and, in particular, maintenance of software.

The Economic Function of Software Development Firms is to Program.
It is currently believed that the value added by software development firms is
in the art of providing a unique high-technology solution to their customers and
that new, creative software will always be required. The limits on the domain of
previously-produced code will always constrain the ability to reuse previous work
in new software efforts. Thus, the art of programming is the function of a software
engineer.

Solution: As time passes, reusable code will cover more and more domains of
programming. Therefore, the need for custom software will decrease with time. As
stores of truly reusable classes are built and the practicality of object-oriented pro-
gramming becomes more clear, a library-based tool can help minimize duplicated
effort. This, of course, can only be done after a long-term investment has been
made to assemble a critical mass of reusable library classes, an unavoidable cost
in this approach to software reuse. Evolution of the “right” sets of intermediate
abstractions will take time. As this occurs, the advantages of productivity will
outweigh the “fun” of doing it all manually. In particular, it is expected that a
shift in mentality will occur when software developers realize that the value they
add is actually in the understanding of their user’s problems and, on a high-level,
how these problems should be solved.

There is No Reuse-Oriented Mindset

There are some prevailing attitudes that encourage programmers to “do it them-
selves.

” Even if reuse was easy, the reward system in today’s industry encourages en-

gineers to build from scratch rather than use someone else’s work [37]. Additionally,
experienced engineers sometimes become quite cynical of the concept of reusability be-
cause they have no doubt been “burned” in previous unsuccessful attempts to either
create reusable software or reuse seemingly reusable software.
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Programmers have most likely attempted to reuse software ever since programming
was first practiced [31]. However, many of these efforts were not successful because our
understanding of programming technology has changed so often. For example, years
of work are cast aside each time a “better” programming language or environment is
invented. Very seldom, if ever, has an innovative language definition been advertised
as having a large base of pre-existing software upon which to build. Rather, language
designers have either (1) forced a clean break to a new environment because no effec-
tive translation mechanism was delivered, or (2) provided downward compatibility that
usually makes the language only a more complex version of an earlier one. Language
designers envision people programming in a language rather than into a language.

Solution: These attitudinal trends, the Not-Invented-Here syndrome and the ten-
dency to dispose of older programs due to (sometimes superficial) inadequacies, are major
psychological foes of reuse, but are beginning to subside. There is an increasing awareness
of reuse; those building software are more consciously striving towards, though usually
not attaining, reusable constructions [24].

Changes of this nature usually come very slowly. Productivity measurements oriented
toward production, not efficient delivery of quality code, impair the motivation for reuse
as well. For example, managers are sometimes preoccupied with measures of code pro-
duction per man-month. Essentially, this reward structure must be changed from the
top levels of management down to the programmer.

Attitudes of both programmers and managers are hoped to be sufficiently mature and
progressive so that this reuse inhibitor will have a decreasing effect in the future. These
attitudes will change when it becomes obvious that they must in order to continue to
improve our software productivity. Hopefully, the rising object-oriented programming
trend, if it does nothing else, will help encourage the reuse mindset.

Software Manager’s Reusability Theme

Ask not

how many lines of code did you write today?
but rather,

how few lines of code did you need to write today?

— Reid Smith

2.3 What Does “Reusability” Mean?

A formal definition of reusability does not exist. It would be hard enough to build
reusable classes even if reusability was completely understood technically. However, the
assessment of reusability is not widely understood, especially in cases where this requires
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DEPENDENT INDEPENDENT
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ADAPTABILITY

PROXIMITY ADAPTABILITY

Figure 2-1: Decomposition of “Reusability”

a fair amount of domain-specific knowledge to make such a judgment. If managers strive

for their programmers to produce reusable software, their programmers must understand
what qualities are desired.

Solution: There is, as yet, no formal definition of the term “reusability.” However,
Figure 2-1 suggests an intuitive decomposition of its definition into the context-dependent
and the context-independent.

Certainly, part of the definition is sensitive to the context in which you are attempting
to reuse. Judgments of applicability (or usefulness) can only be made properly by the
reuser at the time of the decision to reuse or not. It is therefore important to document
the function of the library entries in preparation for the comparison to a potential reuser’s
needs.

The context-dependent reusability information can be further broken down into se-
mantic proximity, or how “close” the entry is to what is actually desired, and semantic
adaptability, or how easily the semantics allow the entry to be modified to what is desired.
For example, a directed graph and a tree are similar semantically, and, because of their
common foundation in graph theory, are also considered to be semantically adaptable
with respect to one another.

A library should also contain entries believed to be widely applicable. These usually
embody some useful piece of domain knowledge or at least display some conceptual value.
Something outside of the implementation and design makes the class a generally useful
concept to capture. For example, generic classes, by definition, are considered to fall into
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this category.

Widely applicable classes can be identified by one of two methods, one formal and
one informal. With the formal method, a library editorial committee would study ex-
isting programming and domain knowledge to identify useful classes for publication to
a software production community. With an informal, survival-of-the-fittest method, ad
hoc reuse would occur with little or no formal approval needed for entry into the library;
anyone can add to the repository should they feel inclined. A history of reuse attempts
is kept so that the most reusable entries can be identified and less useful classes can be
pruned from the library. This type of maintenance process would then empirically yield
widely applicable classes. Combinations of these two methods can also be employed.

The other part of the definition of reusability, as denoted in figure 2-1, has nothing to
do with how applicable an entry is, but rather its usability. A class’ usability is governed
by its quality and the adaptability of both its design and implementation. Measurement
and verification of design and implementation quality are current areas of research.

The context-independent reusability information can be broken up between design
and implementation. For example, a component may be designed by a truly world class
designer, but be implemented by a novice programmer. A reuser would like to be able
to establish which aspects of the class are considered to adaptable and of high quality.
Indications of the good design might be the intuitiveness of the documentation or a com-
ment about the class’ design by another programmer. Indications of poor implementation
might be code metric measurements or poor test results.

As is discussed later, a proper solution involves both (1) establishing what information
is relevant to each of the four “leaves” in figure 2-1 and (2) storing, maintaining, and
presenting this information via tool support.

2.4 Reusable Designs are Rare

Software systems do not get reused. Rather, portions of systems get reused or lever-
aged. Unfortunately, no good representation for design exists that fosters reuse; tech-
niques for generating reusable designs (designs containing reusable components, combi-
nations of components, and sub-systems) are not well understood yet. However, it is
at these high levels of granularity that the real payoff of reuse can occur. Therefore,
reusability must be a deliberate and explicit design goal for any appreciable amount of
code to be reused.

Much of the problem in creating reusable software is the lack of a way to properly
write interface specifications. Object-oriented programming attempts to tackle this prob-
lem, by making programmers represent things abstractly and construct public interfaces
to these abstract objects. However, a standard accepted methodology to specify the
“correct” interfaces without a number of iterative trials does not exist.

This issue is further complicated in cases when no real embodiment of the design
exists, save that which is embedded in code. For example, an algorithm developed in
a prototype environment might be very useful in a production environment that uses a
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different programming language. If the reusable part of the work, the design itself, is
not explicitly documented, then the software engineer must “back out” the code into
a general-purpose design before proceeding. This is a difficult task of “code evolution”
with implementations not sensitive to issues of reusability and is even more difficult and
error-prone than leveraging.

Solution: Progress is being made in the area of developing proper architectures
that partition systems into reusable subsystems. Because this progress towards good
system architectures is slow, alternatives should be considered. One alternative, a reverse
approach, is to look at the types of parts that are reused from system to system, and see
what types of systems can be built from them. Cataloging components for ad hoc reuse,
especially from reuse-conscious designs, and collecting information on what actually did
and did not get reused is a logical way to realize this approach.

Software engineers are, in general, becoming better accustomed to more standardized,
clean abstraction barriers within systems so that changes can be partitioned and do not
incur far-reaching side-effects. There is a growing movement to capture system-dependent
details in implementations that satisfy a standard interface specification. An excellent
example of this is the X Window System [17], which provides hardware- and network-
transparent services to applications by appropriately-defined interfaces.

The challenge of building extensible and properly modularized abstractions is very
real. As mentioned previously, this goal is more realizable in the development of object-
oriented systems. Because the objects the system manipulates are generally more stable
and better understood than the functions the system performs, object-oriented techniques
generally provide more extensibility. However, only a relatively small number of systems
implemented in an object-oriented technology have been commercially developed and are
now ready to be extended or maintained, so little verification of this fact can be provided
at this time.

2.5 Component Selection and Retrieval

Reusable components must be easily retrievable and selectable from the countless
numbers that may eventually exist. For reuse to be effective, it must clearly require less
effort to attempt reuse than to write the desired code. To reuse, one must (1) understand
the code, (2) decide whether to actually reuse it or not, and (3) modify or inherit from it
as needed. This mandates an effective library classification scheme and a good method
of suggesting the characteristics of the desired component.

Solution: The retrieval and selection process has become better understood of late;
numerous such schemes have been devised and shown to work and are now being evaluated
over the longer term [34, 20]. More progress can be made, however, in helping to assess
reusability once candidates for reuse have been identified. Higher rewards can be realized
in the reuse of entire classes rather than simpler functions or subroutines.
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2.6 Building Large Systems from Small Building Blocks

A fully parameterized set of reusable classes, if it existed and were used, could cause
undue inefliciency and complexity. Construction of many layers of overly-generalized
software, each of which performs only one small, discrete function, can result in a rather
slow and sometimes overly-complex system. The classes can also impose their struc-
ture on the programmers using them, possibly limiting the programmers in expressing
themselves.

Solution: This is really two related problems, one of efficiency in production and
execution of software and one of controlling the complexity imposed on the programmer.

This efficiency problem can hopefully be rectified by advances in object-oriented lan-
guage compilers that can bind together as much object code as possible at compile-time
and heavily optimize the result, while allowing small, incremental changes to be easily
made. Additionally, hardware price/performance ratios continue to drop. Computer sci-
entists traditionally sacrifice frugal resource utilization for complexity management and
productivity enhancements, just as hardware engineers often use standard parts at the
expense of “wasting” circuitry in digital design. There may be limits to the practicality
this philosophy, but for now it is a true fact of life.

The real problem is understanding all of the small pieces of a system and how they
interact. Tool support can play a large role in assisting the programmer with the man-
agement of this information. The imposition of the structure of the class collection has
already begun. In fact, the increasingly-popular object-oriented methodology is intended
to impose a new data-directed style of thinking upon the programmer. In the focused
view of software reuse discussed by this document, this imposition is a necessary part of
proper (in the object-oriented sense of the word) programming, because it centers the
organization of the system around a more natural representation of “real-world” objects.

2.7 Summary

The conclusion to be drawn from this exposition on inhibitors of reuse is that, al-
though there may be some non-technical problems at work that contribute to the lack
of software reuse, there are also problems that can be solved with technical progress. To
summarize, the issues discussed can be grouped under two major meta-problems:

1. The lack of motivation and limited ability to produce truly reusable code.

2. The need to facilitate reuse, assuming reusable code exists.

Encouragement of reusable software production, usually considered a managerial
problem, requires technical support to clearly define what reusability means, so that
programmers have a more concrete methodology and a set of standards in mind when
encouraged to produce it. Clear benefits of reuse must be demonstrated to motivate the
managers as well as the programmers. Programmers should be encouraged to prepare
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an assessment of reusability upon submittal of their classes to the library forcing them
to think about the reusability of their code and the ramifications of their decisions upon
potential reusers of it. Programmers should also be equipped with the proper tools to
produce more reusable software.

Facilitation of reuse, as mentioned previously, is now beginning to be accomplished
through the use of interactive tools such as ORT. However, further progress can be made,
especially in conjunction with object-oriented programming. Potential improvements can
provide a more sophisticated selection and retrieval process, discussed in later chapters.
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3. Approach

The types of reuse ORT targets are specific not only in nature (object-oriented), but in
granularity as well. Aside from the reuse of personnel with the appropriate knowledge
and experience to increase software productivity, there appear to be four levels of reuse
in software development:

1. Programming Knowledge Reuse

The reuse of ideas, concepts, knowledge and programming clichés represent the low-
est level of reuse. Techniques that codify the activities of a programmer, attempting
to duplicate human problem-solving [35], can boast a very large, long-term pay-
off, but much work still remains before a useful “automated programmer” can be
realized.

2. Low-Level Component Reuse

The reuse of individual software components (i.e. the leaves of a module-dependency
diagram) represents a more common level of reuse. These components are some-
times readily reusable because they are common between projects, generic in func-
tion to the domain of interest, and easy to understand and use. Reuse already
occurs, to some extent, at this level because programmers understand this type
of reuse well and the need for its management is minimal. It can, of course, be
encouraged and facilitated by a library-based tool, but nearly any simple reposi-
tory (e.g., a file cabinet of documentation and code listings with index tabs) might
suffice. The payoff of this type of reuse quickly reaches a limit difficult to exceed,
caused largely by (1) designs that dictate custom components rather than utilizing
existing ones and (2) top-down designs which yield tall dependency hierarchies of
components, whose leaves are highly context-dependent.

3. Aggregated Reuse

The reuse of intermediate level objects and aggregate collections of interrelated
objects appears to be the most interesting level of reuse. At this level, the best
compromise between commonality and reward-level occurs. Although reuse occurs
to some degree at this level, it is severely hampered by many issues discussed
in the previous chapter. Aggregated reuse shows the most immediate promise of
improvement; ORT is therefore proposed to encourage and facilitate reuse here.
Although reuse at these higher-levels is not as well understood, the benefit in
automation is much greater here because the complexity of object relationships
must be managed. This complexity is not found at lower levels of reuse. The
classes can be presented in such a way so that they may be understood quickly by
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a potential reuser, who may wish to reuse existing collections of objects, or combine
existing objects in new ways.

4. Design Reuse

The reuse of subsystem and package designs is the most powerful level of software
reuse. At this level, it is the high level interfaces that are important to the reuser,
not how they are supported. Design reuse provides a much richer approach to
building systems and collections of systems effectively than do current design tech-
niques. Little reuse can occur between dissimilar projects, but the rewards are high
in the cases where it is possible. To foster such cases, design-for-reuse efforts must
determine how to provide a common base on which many systems can be easily
built. Theses efforts typically result in the embodiment of domain knowledge in a
platform of software design, implementation, and documentation.

3.1 Realizing Aggregated Reuse with ORT

Those involved in software development have long hoped to realize a process by which
non-trivial software components could be produced and effectively reused in future soft-
ware products. The two main problems involved in developing such a process are:

1. How do you make software components more reusable?

2. How do you maximally reuse these components in subsequent software develop-
ment?

3.1.1 How ORT Helps

In ORT, the first problem is approached by recording information about reusability
that is useful to the user during the component selection process. This provides a platform
on which those using ORT can build a better working definition of reusability. This forces
the reusability of a class to be considered “up front” so that changes can be made to
improve its reuse potential before it becomes a stable library entry. The description of
this information about reusability is the subject of the following chapter.

The second problem is approached by assisting in the retrieval of software components
relevant to a design and providing easy access to the relationships between components
in the library (e.g., classes that have previously been used in conjunction with an “inter-
esting” class). Assuming that there are relevant classes in the library to find, the process
of finding them can be expedited by the use of ORT. This is the subject of Chapter 5.

3.1.2 How ORT Does Not Help

It is also useful to state where ORT does not attempt to assist in solving the two above
problems.
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e Producing and assuring high-quality entries.

ORT does not perform software synthesis nor does it critique class designs and
implementations. Rather, it is a tool that can be used by those who care enough
about software reusability to produce reusable classes and have an editorial process
(most likely a review committee) to monitor the quality of an ORT library. In such
an environment, ORT can remove some of the drudgery associated with software
reuse and enhance the process with automation and mass-storage management.

e Making library entries easy to configure together.

Although programming in the object-oriented model assists in this endeavor, ORT
makes no attempt to help make its entries more uniform or configurable with respect
to one another. It would be appropriate to continually ensure that library entries
are kept consistent and easily-combinable.

e Continually improving library entries.

Although ORT affords the ability to find components and record improvements and
enhancements of them, it can not actually improve the components in its library.

3.2 Assessing the Reusability of Classes

In constructing a library filled with reusable code, some effort must be made to
insure that its entries are of sufficient quality (or at least known quality). Potential
reusers will peruse the contents of this “software component warehouse” in search of a
reasonable solution to the current problem, and, therefore, the quality of relevant classes
is of paramount interest to them.

The information recorded by ORT is based upon the model presented in Figure 2-1.
The particular information chosen to be recorded in the library is the subject of the
following chapter.

Further complexity is added to the process of reusability assessment by the fact that
the definitions of some characteristics are not universal to all potential reusers. “Fuzzy”
terms should be customized to the individual’s level of experience, knowledge of the
application domain, and personal opinions [34]. For example, a novice programmer might
consider a certain program to be much “larger” than would an experienced programmer
and have higher expectations for the level of documentation required to properly submit
it for general reuse. As will be shown in Chapter 5, users are given a large amount of
control over how querying this information is accomplished.

3.3 Retrieving Software Modules

A potential reuser would like to build a system he or she does not completely under-
stand yet and would, as quickly as possible, like to build this from parts that may or
may not exist. In short, finding appropriate reusable components is difficult.
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ORT’s method of selection and retrieval has two phases: querying and browsing. The
first phase consists of developing a query that describes components of interest. In this
phase, it is important that the user formalize exactly what is desired. The result of the
querying phase gives the browsing process somewhere to begin other than at the highest
level of abstraction over the library contents.

In the browsing phase, truly relevant candidates for reuse can be uncovered. It is
unlikely that effective browsing should begin with a collection of all the classes in the
library. Rather, the browse should be focused as quickly as possible. The method of
focusing the browse must be flexible. Browsing in separate “domain spaces” has been
demonstrated [2]. However, the categorization of classes is inherently flawed because
(1) classifications can not be universally agreed upon and (2) categories evolve as pro-
gramming domains are explored [34]. The querying phase implemented by ORT offers
a much more flexible notion of partitioning the contents of the library into interesting
possibilities and uninteresting ones.

Once ORT executes a query, a set of matching entries can be examined using ORT
Browsers. ORT Browsers are autonomous X-Window user-interface objects that allow
the user to examine a collection of entries and execute commands relative to them. The
initial ORT Browser generated by the querying phase contains classes from the library
that match the query. ORT Browsers can generate other ORT Browsers, allowing users
to follow relationships like links in a hypertext database. For example, if a user is
interested in the classes upon which an interesting class depends, he or she would select
the class of interest, then hit the “DEPENDS ON” key to produce another Browser
Widget containing all the classes in the library upon which the implementation of that
class depends.

A more complete description of querying and browsing with ORT is contained in
Chapter 5 and a demonstration is presented in Chapter 6.
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4. Describing a Reusable Class

The most critical design decision of ORT is the choice of the data contained in the library.
The model of this data crucially determines the library’s ability to store and organize the
many different types of information about software development activities. This chapter
presents a number of different views of this data.

A wide range of approaches can be considered in organizing this data. At one end of
the spectrum, the library can be merely a collection of files and directories, possibly dis-
tributed across machines, but made to appear centralized with commonplace networking
tools. This technique is easily implemented and, in fact, already employed at places in
industry where attempts to collect useful software components have been made. How-
ever, this technique lacks a mechanism to realize relationships between the various pieces
of information, save for the large-grain organization of file naming and even higher grain
directory structure.

At the other end of the spectrum, a full-fledged hypertext representation offers great
benefit as a very general solution. It can provide the ability to link related pieces of
information, browse across the library’s information in an unstructured manner, provide
an effective interface to the user, and do so with a high degree of versatility. However,
this solution also has problems: software engineers would be faced with a learning curve
to use hypertext as well as a training curve, because without structure imposed upon the
use of such a system, it would quickly become ineffective due to lack of organization.

The approach selected in representing the data lies between these two extremes. It
captures the flavor of the hypertext solution in that (1) data elements are considered
objects that have relationships to other types of objects and (2) there are links that
connect pieces of information together. However, the ORT implementation is based upon
a much more stable and well understood technology.

The ORT library is highly structured to promote a single, clear view of its contents.
This structure is imposed by having a few well-defined types of objects and links rather
than the conventional, less-structured hypertext organization. Object-oriented program-
ming and software reuse are still active research topics. Therefore, the structure, though
static for a given instantiation of ORT, has the ability to be easily changed, meaning
that the understanding of the data can evolve over time. The way in which this is
accomplished will be discussed in later chapters.

4.1 An Initial View of Class Descriptions

Information about a class in the ORT library is organized into a structure called the
Class Description. The Class Description is the main type of element in the library and
represents a class that can be reused in some way. The Class Description can be viewed in
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terms of the model of reusability presented earlier (see Figure 2-1), where all the informa-
tion relevant to the reusability of a library component can be grouped in four categories:
semantic proximity, semantic adaptability, design quality, and implementation quality.
Each of these four areas are addressed by the structure of the Class Description, as is
described below.

4.1.1 Semantic Proximity

The only reliable technique available to assess semantic proximity is to allow the
user to compare Class Descriptions in the library with conceptual ideas about what
is desired. Automation of this process is much too ambitious a goal for this project.
However, assistance can be provided in this effort by augmenting the user’s abilities with
a storage and presentation tool. To do this, results of software development must be
described in the library in such a way as to promote the comparisons that must be made.
This is not a radical concept, since any library must, at the minimum, be able to describe
its contents.

The results of object-oriented software development can be organized into six major
categories, as shown below:

More Difficult/Lower Yield: [ Less Difficult/Higher Yield:

¢ Requirements Documentation | e Descriptions of Class Behavior

e System Design Documentation | e Class Interface Specifications

o Class Implementations (i.e. code)
o Test Suites (i.e. plans and code)

The categories of reusable information on the left (above) are not incorporated into
the Class Description because of both the difficulty involved as well as the lack of obvi-
ous benefit. They are difficult because requirements and system design documents often
include diagrams, report layouts, and screen designs. Such information is not only de-
manding to store in a library, but even harder to select and retrieve in a reasonable way.
These two categories are also considered to be, in general, much less structured collec-
tions of information with a reuse potential heavily restricted by their level of similarity
between projects. Therefore, ORT does not attempt to facilitate reuse of this type of
information.

The other four categories of reusable information can be considered to be associated
with at least one class. In some cases, the information is shared between classes (e.g., por-
tions of class interface specifications are shared between classes that are related through
inheritance). Therefore, these four types of information are incorporated into the Class
Description. The description of the class is stored in three forms: the full textual descrip-
tion of the class, a shorter description limited to 100 characters or less which summarizes
the role the class plays in a software system, and a collection of keywords that can be
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used for retrievals based on the class description. The description of the class interface
specification is stored by linking a class to a set of features, described later. The code
and test suites are linked to a class by storing file names in the library, allowing access
to the class implementation (and verification thereof) from within ORT.

4.1.2 Semantic Adaptability

Information used in judging semantic adaptability overlaps, to a degree, with that
used in judging semantic proximity. However, the user is relied upon even more heavily
because he or she must provide a perspective on the semantic “terrain” between that
which is desired and classes contained in the library.

A truly reusable class should be capable of adapting to express many semantically
differing classes. Save for two pieces of information, however, little information can be
stored in a Class Description to suggest the degree to which this is true for the class it
represents. First, comments about the class are stored; the author or authors of the class
are, in theory, the best authorities on what the class can be expected to represent. Thus,
a comment is solicited from them upon submittal of the Class Description. The views
of those who designed and implemented the class may be useful in judging semantic
adaptability when browsing the library. Second, class invariants are stored in a field
separate from the description of the class. Invariants are important because they describe
conditions which are always true with respect to the class representation. When making
a semantic translation of a class design, a shift in constraints may occur. The invariants
of a class suggest what these constraints are and allow the ORT user to observe whether
or not these constraints conflict with the new application of the class.

4.1.3 Design Quality and Adaptability

Because the ORT library contains only object-oriented software components, worries
about side-effects, encapsulation, and modularity are minimized. However, the user must
be assured of design quality quickly or discouraged from reuse before too much investment
is made in investigating a class.

Information that helps in this assessment serves two purposes: that which demon-
strates that the design is well thought-out and that which helps to convey the class
interface (i.e. how to use the class). First, some indication should be provided to suggest
that the class has a formal basis and has been verified to work. The class description and
invariants help in this effort, as do comments from those performing quality assurance
tests. Additionally, the relationships between classes, as described earlier, help convey
a larger design picture which the potential reuser can evaluate. Second, feature descrip-
tions, if well written, can convey to the user how the class is used, because the interface
is the only way the programmer interacts with a class. Thus, the features exhaustively
document, using names, parameters, and descriptive text, the use of the class.
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4.1.4 Implementation Quality and Adaptability

The assessment of the class implementation is assisted in three ways. First, a direct
assessment of the class implementation can be made be examination of the code, allowing
the potential reuser to examine the actual modifiability of the source. Second, summaries
concerning the state of verification can assist in the assessment of implementation quality.
Finally, measurements of code metrics can also suggest potential problems, should they
exist, in the implementation.

4.2 The Contents of Class Descriptions

This section contains a more complete view of the Class Description. An entity-
attribute-relationship model of the Class Description is depicted in Figure 4-1. An ac-
companying textual description, centered around the entities in the figure, follows:

1. Class — The nucleus of information in the Class Description contains basic, central
information about the class itself:

e Class name.
e Alternate class names (aliases).

e Class revision — compatible with external version control systems, if used to
manage the actual code files.

e Revision time - the time the above revision was made to the implementation.

e Submitter — the name of the person who last submitted the Class Description
to the library.

e Checked out — a lock to inhibit simultaneous edits on the Class Description.
This attribute contains the user name of the person applying the lock, other-
wise this attribute is empty.

e Checked out time — valid only if the previous field is non-empty.

e Short description — A one-line summary description of the role the class is
intended to play in a software system.

e Long description — The class design documentation of unlimited length, de-
scribing the role and overall behavior of the class.

e Code metrics — Metrics associated with implementations of classes give some
numerical estimations of intuitive attributes that are perceived to be graduated
across a spectrum. These are often based on code size, measured in Non-
Commented Source Statements (NCSS) and consist of:
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e size (NCSS) e McCabe “composite” complexity

e # outstanding defects e Defect Density (#/NCSS)

o # defect repairs ¢ Mean-Time-To-Repair (days)

e # outstanding enhancement requests o # lines of documentation/NCSS
o size of test code (NCSS) e # functions/NCSS

e portability information — A description of the environment needed to take
advantage of any code associated with this class (i.e. language, compiler,

Machine, OS)

e invariants — Textual information describing semantic invariants of the class.
These could be considered part of the long description, but are separated to
focus special attention on them, as they can be beneficial in asserting the
correctness of a class implementation. This text could contain prepositions
meaningful to some external specification tool.

o type of entry — The type of class description entry this is:

U: unsubmitted - automated data-entry tools would produce this type of
entry, which could be converted to type S via an interactive approval
process.

S: submitted

2. “Depends_On” Relationship — This binary relationship connects pairs of classes
and makes up the dependency hierarchy of modules within an object-oriented soft-
ware system. A Class Description documents a class specification and an accompa-
nying implementation. Should this implementation be updated, causing the class
revision to be updated, a new, different Class Description is created. Therefore,
a class statically depends on any number of other class definitions, which, ideally,
have corresponding Class Descriptions entered into the library as well. A class A
depends on another class B if an object of type B appears in the specification or
implementation of those features defined by A.

3. Features — All data, procedural, and functional aspects of a class are considered
class features. Essentially, this is the description of the public interface, or protocol,
of the class. Features are categorized into types, which are themselves defined in the
library. Though feature types may evolve as our understanding of object-oriented
programming increases, the current break-down exists as follows.

(a) Data

(

(c) Destructor
(d) Mutator

b) Constructor
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(e) Observer
(f) Observing Constructor

(g) Observing Mutator
(h) Other

The distinction between a feature implemented as data and as a function is subtle.
The main difference is that functions take parameters, which have an associated
name and type. Therefore, the function and function parameter entities are added
to the model to appropriately record this information. A data entity takes no
such parameters. Each feature is defined in one class (a class “has” a feature).
The hierarchy of inheritances is recorded on a per-feature basis so as to not exclude
languages in which classes can selectively export inherited features (e.g., Eiffel [33]).
Each feature has a name and a description that serves as documentation. All
features have a type, including procedures that return void. This data-type or
return value (depending on the feature type), if represented with a Class Description
currently in the library, can be accessed via the “is_of _type” relation.

. Usage History — Information concerning the history of the use and reuse of a
component can be quite valuable for a number of reasons. First, if a number
of software engineers have chosen to use a class, then it must be worth at least
considering. Second, if an engineer considers using a class and finds some serious
deficiency, he or she should be able to summarize these negative findings in the
library to save the same time of consideration that might be taken by others. Should
this deficiency be corrected in another version of the class, a reference can be made
to another Class Description in the library. Regardless of any other information that
can suggest qualities relating to reusability, this history can empirically demonstrate
reusability (or lack thereof). Third, this usage history can provide the names of
programmers that should be contacted in the event of an update due to a “bug-fix”
or enhancement. This provides an incentive to register reuse efforts in the library, as
this will allow eventual notification of relevant changes. Fourth, The usage history
serves as a collection of examples on how the class is used, which can be important
for programmers who learn well by example.

The basic unit of history is a usage attempt, which can be successful or unsuccessful.
A successful usage attempt has some attributes associated with it. These include
the name of the reuser, the date, a subjective rating on the ease of reuse, how much
modification was required and why it was needed, a set of clients that utilize the

class in that specific application, and a set of heirs that inherit properties of the
class in that application.

An unsuccessful usage attempt documents potential reasons why someone might not
want to use a class. Sometimes engineers are “burned” when class implementations
initially seem useful and reasonably robust, but are found to be not so after much
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wasted effort. To avoid this, it is encouraged that anyone checking out information
about a class later record whether the class was useful or not (an electronic-mail
reminder system could be implemented as a periodic system task (e.g., with cron(1))
that would send out messages to those who have not yet reported what actually
happened, a reply to which could be parsed and stored in the library).

A major problem with this approach is the assumption that it makes about the
enforcement of appropriate levels of documentation. In a sense, it becomes the
software engineer’s duty to report his or her activities to the ORT library, so that
others do not waste time figuring out things that have been already analyzed. As
with many approaches to reuse, apathy is the worst enemy. If ORT is ignored by
some, its utility to others is reduced. Direction from management must encourage
the extra effort to make reuse happen.

. Classification and Indexing Information — The classification scheme for class
descriptions is important in accessing collections of classes grouped semantically
in some way. This is accomplished by structured keyword accessing. Associated
with each keyword is a search field. This search field indicates the location in the
underlying database schema where the keyword was found. The search fields are

themselves stored in a special table in the database to afford flexibility as the model
evolves.

In addition to the finer-grain classification of keyword-indexing, a more general cat-
egorization can be made by storing category names as special types of keywords.
These categories can be instantiated as the collection grows and needs reorganiza-
tion. The motivation for categories comes from broader “What’s out there?” kind
of queries. For example, a user might ask to see everything under the category
“Graphics” and receive, among others, a Class Description for class Menu, which
might also have a keyword entry for the category “User Interface.”

. Files — Files used to implement and verify a class are also recorded in the Class
Description. Any number of file entities can be associated with a class. Each file
has associated with it a file-system-based path making it accessible to ORT. These
files have, as attributes, this path, a description of the file’s contents, and a file
type. Like the feature types described earlier, the file types are themselves stored
in the library to allow future evolution. In the current instantiation of the tool, the
following file types are pre-loaded as a basis for testing using classes implemented
in C++.

e Specification/Include File
e Source Code File

¢ Build Script/Makefile

e Documentation File
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Test Plan

Test Code

Test Results

Defect Report

Enhancement Request Report

e Unknown File Type

Access to code is of paramount importance to the reusers who are also the program-
mers responsible for integrating classes chosen from the library into a new software
system. Completed test plans and results give the reusers an idea of the level of
robustness they are assured. Also, test-related metrics can be computed (i.e. test
NCSS and class NCSS) that have been shown to correlate to defect population and
complexity [19]. The archiving of test plans assists in the testing of future similar
classes or in the testing of modified versions of the archived class.

. Reviews and Comments — The subjective opinion of software engineers con-
cerning classes they have studied is considered valuable information to store in the

library. It allows a “discussion” to form that is focused on the issues of making
specific classes more reusable.

This type of information manifests itself in reviews, consisting of a set of ratings
by a reviewer, and comments, which are textual pieces of information that can be
attached to a Class Description. The types of comments capable of being entered

are, in general, very loosely structured and can evolve as the system becomes better
understood.

Subjective quality opinions (rating of 1 to 10) can be recorded from those soft-
ware engineers deemed responsible for reviewing a class and its associated Class
Description entry. There are a number of relevant ratings:

e specificity e overall quality

e functionality documentation quality e documentation on how-to-use
e interface to other abstraction levels e support for debugging

e separation between code and specification e general readability of code

e generality of class e clarity of a semantic role

As mentioned earlier, it is also appropriate for the author to include an assessment
of portability, with particular attention paid to factors that make this semantic idea,
design, or implementation not reusable. Specific examples are: assumptions about
the execution environment, hardware performance, memory, garbage collection, and
architecture assumptions, and “tricks” that make it less portable in some way (e.g.,
machine dependencies). In theory, this author review could be extended to a full
set of subjective opinions by the author as well, however this may be impractical
and unnecessary because of the author’s inherent bias.
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8. Generic Parameters — Classes which are generic in function are often parame-
terized on some other type (or types) which further specifies the behavior of the
class. Such classes describe a common implementation of a data structure applied
to various types of objects, where this type is supplied as a parameter to the class.
Note that not all object-oriented programming languages support this capability.

Parameterization increases the reusability of a class because it defines a higher level
interface to data elements which can be specified by the reuser of the class. The
generic parameters of a class are therefore stored in the ORT library so that they
can be properly documented and matched against. Parameters are documented by
a name and a textual description. Because generic parameters are inherently poly-
morphic (i.e. the parameter can be bound to any class which satisfies the interface
required by the parameterized class), there is little information that can be matched
to a specific generic parameter. Their purpose is primarily for documentation of
the class, although queries in ORT do provide the ability to specify parameters.

The entity-attribute-relationship model in Figure 4-1 succinctly conveys the informa-
tion stored by ORT. However, it was deemed unreasonable to attempt to use an object-
oriented or entity-relationship database in the realization of this model. The problem
with either of these approaches is not their applicability, but rather their lack of prac-
ticality. Many such databases are special-purpose, unproven, and generally not widely
used as yet [15, 9].

Instead, the model has been translated into a relational model so that it may be im-
plemented using the ANSI/ISO-standardized Structured Query Language [12, 1], which is
better understood, more robust, extremely portable, and affords transparent performance
increases and distribution between hosts merely via upgrading to one of the enhanced
SQL products. Details concerning the SQL implementation are left to Chapter 7.

4.3 An Example Class Description

Before providing an example of a Class Description, yet another representation of its
contents must be introduced. The flat-file representation of a Class Description contains a
single class entity and all the information linked to it. It is a stream of characters, suitable
for storing in a file, in a simple report format. The purpose of the flat-file representation is
to provide a format in which Class Descriptions can be extracted from the library, edited
by the user for re-submittal, entered into the library, and moved between libraries. The
definition of the flat-file format is best described by example.

The following example is the flat-file version of the Class Description for a tree ab-
straction written in a version of C4++ with parameterization!. Note that the syntax of the
form is language-independent, save for the information about portability. Also note that
the information is partitioned into logical fields. As will be further explained later, these
are not individual data fields in the database, but groups of related information that are

1This class is based roughly on the tree class for Bertrand Meyer’s Eiffel [33].
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considered basic units of storage by the classes that interface ORT to the database. This

grouping of data is represented in flat-file format with a field header and trailer marking
the beginning and ending of fields.
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###########################&############################################
# Main Class Information: #
###################################t#t############*#####################

Class Name: Tree

Revision: 1.0
Revision Time (YYMMDD.HHMM): 891024.1022

Short Description(<100chars): Generic Tree abstraction.
Contact: morgan@wh.ai.mit.edu
Type 0f Entry: S

Total NCSS: 209

Lines 0f Documentation (for class): 54
McCabe Complexity (total): 15

Number of Class Functions: 8

0S ID: 10

Machine ID: 8
Compiler ID: 2
Project ID: 46

Number of Class Parameters: 1

FRHERRRRRRRRERRARRRRRRRBERRRRRRRRARRURRRRERRNRRRRRRRRR R RRRRRERRRRR RS
b e R S g 2 T ———
# Class Description: #
FHRRRRRBRRRRR R RBRRRRR BB RN R R R R AR R RRRRR R RRRRRRRA AR RS

Class Tree implements crude tree functionality and is intended to
be used as a base-class for more sophisticated and specialized
tree classes.

No distinction is made between trees and tree nodes. Each node
is a tree containing one or more elements of type T, the leaf type.

Each tree includes a ‘‘cursor’’ which may be moved by various
member functions. The action performed by some member functions
depends on the current position of the cursor relative. The node
where the cursor is currently positioned is called the current node.

######t#####t###########################################################
########################################################################
# Class Parameters: #
########################################################################

Parameter : T
The leaf-type of the tree.
######*#################################################################
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RERRERRBRBARRBBRRBBRRBRBBBRRBRRBRERBRRERBRERBRARRRER BN BRBRBURLRERBRRER
# Associated Files: #
REBERRRRRRARRBBURBABBRRRRURERRRRERRBRRBRRARRERARRERRRRRBRBRRBERRRRRRRRRR

FILE : Specification/Include File
/bfd/ort/files/generic/Tree/Tree.h

This is the standard C++ .h file. It can be multiply-included as
it is formatted:

#ifndef TREE_H

#define TREE_H
<specification of class>
#endif TREE_H

to insure that a compilation never sees the specification twice.

FILE : Source Code File
/vfd/ort/files/generic/Tree/Tree.c

This file contains the entire implementation of the class.

FILE : Test Code
/vfd/ort/files/generic/Tree/testTree.c

This file contains a simple test suite for class Tree.

RUBBRARRRERBRRBRREBEBRERRRRRERERERBERRRRRRRRRRRRRRRRRRBRRARARERERERERRRRS
HHBURRERERRBRBRRRBBERARERERRRBRRRRRRRERRRERERERBRRRRERERBBRRRRRERERER AR
# Class Features: #
#########a###x######a#########x#######################################x#

Feature : Constructor
Tree<:T:> : Tree<:T:>

()

Constructs a null tree (an empty root node only) with the cursor
on the root.

Feature : Constructor
Tree<:T:> : Tree<:T:>
( Tree<:T:> : t )

Constructs a new tree which is a shallow copy of t.

Feature : Observer
Tree<:T:> : value

)

Returns value of the current node (where cursor is currently
positioned). If current node is a leaf, return null.
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Feature : Observer
T : leafValue
(@)

Returns value of current node. If node is a leaf, return null.

Feature : Observing Mutator
Tree<:T:> : changeValue
( Tree<:T:> : t )

Changes current node to t, returning
the node’s former value (null if it was a leaf).

Feature : Mutator
void : addLeft
( Tree<:T:> : t )

Inserts t between the current node and its sibling to its left.
If no such sibling exists, then it is inserted before (to the left)
the current node.

Feature : Mutator
void : addRight
( Tree<:T:> : t )

Inserts t between the current node and its sibling to its right.
If no such sibling exists, then it is inserted after (to the right)
the current node.

Feature : Mutator
void : delete

¢

Deletes the current node and places the cursor on its parent.
If the current node is the root, then the result is the same
as Tree<:T:>().

Feature : Observer
int : arivy

)

Returns the number of children that the current node possesses.

Feature : Observing Mutator
Boolean : moveToChild
(int : n)

Moves the cursor to the nth child (from the left) of the
current node. Returns true on success, otherwise false.

Feature : Observing Mutator
Boolean : moveToParent

()

Moves the cursor to the parent of the current node. Returns
true on success, otherwise false.
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HRABRARRARARRERERRBRRRRRERRBERBRRURBERERERRRERRRRRERRRBRRRRERBRRRRRRRRRR
BHERURURERARERRBRRRRBRRRBRREBERBRRERERERRARERERRRRRRRBRRRRBRRRABRRRRN AR S
* Class Implementation Depends Upon: #
BHERHARRRBARRERBERBRRBRRERBLRBRRRRBRRRBERRBRRERRRRRRRERRRRRRRBRRRERRRRRRR

LinkedList 2.3
HUBUBRERERBBRBBRRRBBRRRBUHRBURBRRBRRRBRRBBRRBRRBARRRERBRRBBRRERBBRRB LR
HURRRBRERERRBBERRRBRRRARRARRBRERRRBRBRBRRBRARRRRB AR BRBERBRRERBRERBRR RS

# Class (Re)Use History: #
RABBRRBRABURBRBBRBRURBRBBURBFRRBERRBERRRBRRRRERRRABRRERBRRRABURERHRRRERE

Successful : 891025.0933

Contact : morganQ@wh.ai.mit.edu
Rating : 8
%Mod. : O

Original use of class by author to demonstrate.

BRERNERRBHRRBARRRBBRRBERRRBBRRRRBURRBRARRRRRRRRRRRRRRARRERERRERRRRARRARR
BHRBRRRRBRERRARRERRRREBERERARRRBRRERURRRRRRRERERRRERERARRRNRRRRRRRRERBUN
# Keywords: #
FRERURERERARBRABARARRRREBBBARRERRRARERARBERERUBRERARURBBRBVRRRBERERBRARY

Description : tree
Description : leaves
Description : leaf
Description : node
Description : cursor

Feature : tree
Feature : value
Feature : leafValue
Feature : changeValue
Feature : addLeft
Feature : addRight
Feature : delete
Feature : root
Feature : arity
Feature : moveToChild
Feature : child
Feature : moveToParent
Feature : parent
Feature : node
Feature : nth

HHRBRARARRBRRARVARBRRBRRRRBERBRRBERBRRBRRBRRUBRURRERVRRBRRBRRRRRBRRRRBYR
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####################################################*###############3###
# Reviews: #
########################################################################

Review : 890313.1411
Reviewer : cohn@hpwarl.wal.hp.com

Specificity : 2

Overall Quality : 8

Functionality Documentation Quality : 5
Documentation On How-To-Use : 3

Quality Of Interface To Other Abstraction Levels : 8
Support For Debugging : 6

Separation Between Code and Specification : 7
General Readability of Code : 9

Generality of Class : 8

Clarity of a Semantic Role : 9

#######################################################*################
########################################################################
# Comments: #
#######*#######################t########8#############*#########*#######

Comment : 890313.1411
Commenter : cohnChpwarl.wal.hp.com
Type : Review Comment

This is a reasonably well thought-out minimal tree abstraction. It is
simple and easy to learn, but lacks in general usefulness because of its
simplicity. What there is of it is well done, but a more extensive
interface may be appropriate 80 as not tax the programmer as much.

Needed functionality consists of the following features:

* A way to move the cursor right and left
* Observing functions like isRoot, isLeaf, etc.

* A way to mark a node and return to it after the cursor has been
moved

######################################t###*#####3#######3###############
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5. ORT

This chapter contains a description of the functionality which has been prototyped to
demonstrate the effectiveness of ORT. This consists principally of ORT itself, which pro-
vides the major benefit of the effort associated with entering the mass of information
described in the previous chapter. There is, however, some additional functionality, in
the form of two other tools, CHECKIN and CHECKOUT, which have been implemented to
facilitate the loading and editing of data in the library.

5.1 Querying with ORT

There are two basic approaches that can be used in querying. Either a query can be
an entire Class Description for a class desired by the user or it can be an expression of
only those class traits which the user cares to specify.

If the representation of the query uses a simple query language, then queries need
only contain the specification of properties desired by the user. The interface is greatly
simplified, because long forms of mostly blank entries can be replaced with simple boolean
expressions. Additionally, a query language can specify more clearly what is desired by
using set notation and explicit relational operators. The ideal solution may be to offer
both of these approaches to querying, but the query language approach was selected since
it is a more intuitive and takes advantage of ORT’s browsing capabilities by encouraging
vague queries.

ORT allows the user to specify a collection of library entries in a query language Q. Q
is a simple, specialized input language designed to allow characteristics of classes to be
specified as a standard boolean expression using the AND, OR, and NOT operators, as
well as explicit grouping with parentheses. Terms in this boolean expression are of the
form:

match_field relation value

where match_field, relation, and value are as specified below.

The match_field of an expression in @ specifies a single data element or a set of
data elements from the Class Description of classes which match for this term in the
expression. The possible match_field’s are a subset of the attribute fields in Figure 4-
1. Though more sophistication could be added, including, for example, the matching
of feature templates, these pieces of information are selected as the most effective in
specifying collections of relevant classes.

In the cases where match_field denotes a set of keywords, it corresponds to a col-
lection of classifying terms which have been chosen for a particular facet of the class.
Currently, two types of keywords can be specified with Q. These two keyword types cor-
respond to the search-fields “Short Description” and “Feature Description.” Keywords
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are segregated to focus the search process and give the keywords contextual meaning.
Other keyword types can be added by augmenting the language definition for Q. These
two types were chosen because, in the first case, they indicate the role of the class or the
concept that the class represents and, in the second case, they indicate what can be done
to a class, what properties a class possesses, or what functionality the class delivers.

A match_field can be one of the following:

e Portability constraints (i.e. machine, os, compiler, project) which correspond to
attributes of the class entity.

o desc_keys: The set of keywords selected from the description of the class. These
keywords are one type of keyword as defined by the entity in Figure 4-1 (i.e. the
search field is the description attribute for the class entity).

o feature_keys: The set of keywords selected from the description of a feature. These
keywords are used and treated similarly to, but separately from, the previous class
of keywords because the associated search field is the description.

e name: The class name attribute of the class entity or an alias for this name.
o contact: The contact attribute of the class entity.
o params: The set of generic parameters for the class (name attribute only).

o Class metric measurements (e.g., size, complezity) which are attributes of the class
entity.

e date: The date portion of the revision time attribute of the class entity.

o entrytype: The type of entry attribute of the class entity (either “submitted” or
“unsubmitted”, but almost always just “submitted”).

The relation is one of: =,<,>,<=,>=,elt of, or intersects, each of which has
the standard semantics. Note that the use of elf_o f is a shorthand for a set of clauses
combined with the OR operator.

The value in a @ expression can be a number (if the associated match_field con-
tains a metric), a date of the form MM/DD/YY (for the date match_field), or a
set expression, which is a set of alphanumeric character strings separated by commas
(e-.g., {mouse, cursor, sprite}).

An example of language Q is given in Figure 5-1. It contains the default query that
the user can edit by adding more specifics and deleting null clauses.

It should be noted that ORT has no true classification system. Rather than subscribing
to an arbitrary enumeration over the entire set of domains in which software is applied
and then forcing classes to be somehow pigeon-holed into a slot of this enumeration, ORT
takes a less structured, but more flexible approach. It is anticipated that most relevant
entries will be found through the use of keywords.

39



- /tmp/OrtQuer
u

% Default Query For ORT
"

QUERY:

entrytype elt_of {submitted)
and (
name elt_of {}
or params intersects {}
or (
date >= 01/01/87
and contact elt_of ()}
and complexity <= 15
and size <= 1060
and (
desc_keys intersects {}
or feature_keys intersects {}
)
and machine elt_of {3}
and os elt_of {sysV, bsd, Sun0S, HP-UX, Ultrix, Mach}
and compiler elt_of {C++2.0, C++1.2}
and project elt_of {3

)

- 18.44. 2 Orifuery (Tt il T oo o oo e

Figure 5-1: An example query.
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When the user invokes ORT, he or she is placed in an editing window in which a
default query, or query template, is pre-loaded. The desired query can then be developed
and saved in a temporary file pre-associated with the query. The user can then choose
to execute the query, re-edit the query, or quit ORT. If the query is valid, its execution
will place the user in the browsing phase, described in the next section. Otherwise, an
appropriate error message is issued and the user is placed back in the editor to correct
the @) expression.

The default query mentioned above is customizable. An example of such a query
is shown in Figure 5-1. Normally this query comes from a system-default file, which
can be customized to the needs of the users on the system. For example, the definition
of “too large” or “too complex” is essentially held by these defaults and will rarely get
changed. Additionally, portability constraints may be reasonably constant for those doing
development at a single site. The default query can be further customized on a per-user
basis by copying the system-default file into a user’s default file (called “.ort” in the user’s
home directory) and editing it to suit personal tastes.

5.2 Browsing with ORT

Browsing is based on the concept of ORT Browsers, which were introduced in Chap-
ter 3. The result of executing a valid Q expression is the primary class browser, from
which all other ORT Browsers are generated. These ORT Browsers are windows in the X
Window System [17], which has become a common part of current software development
environments. These windows (sometimes referred to as widgets in X-Window terminol-
ogy) contain four visual components: a title and header, a menu of entries, a scroll-bar,
and a set of eight buttons. An example of a class browser is shown in Figure 5-2 as it
might appear on most any vendor’s X-Window display terminal.

The browser title and header describe what the browser is and what the contents
of the menu are. The menu contains textual, one-line entries that display part or all
of the collection of entries associated with the browser. The scroll-bar is used to page
through the browser entries when they can not all be displayed at once. At all times,
there is a current selection, highlighted with color, which can be changed via paging or
by clicking the mouse on the desired entry. The buttons across the bottom of the window
are function keys F1 through F8. They can be activated via keyboard or by clicking the
mouse on them. These buttons model sof keys (commonly found on HP products). Soft
keys are keys which are always present, but whose function can be changed to suit the
context of the application.

There are a set of conventions associated with the functions available through ORT
Browser soft keys. The left-most key always provides context-sensitive help, describing
the functions of the keys and the purpose of the browser. The right-most key always
terminates the browser and, in the case of the primary browser, terminates the browsing
phase of ORT. The functions associated with the remaining soft keys usually generate
either a text viewing window containing the requested information or another Browser
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ODART Class Brouser
Class Name Revision Date  Keywords:
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Figure 5-2: A Class Browser running with other X-Window applications.
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Widget. In cases where more than six such functions are required, a “MORE KEYS”
key is provided next to the exit key which will map in other keys available to the user.
ORT Browsers come in four flavors:

1. Class Browser — Nodes in the search for relevant classes in the ORT library can be
represented by collections of classes, which are presented in class browsers. Users
may proceed from one node in the search tree to others by selecting a class and
an operation on that class (for example, “DEPENDS ON”, to generate all classes
needed to implement the selected class) to produce another class collection.

2. Feature Browser — Similarly to the Smalltalk browser [22], class features can be
browsed in ORT (although they can only be viewed, not modified). Feature Browsers
allow the user to browse this collection of features, which can be associated with a
class either by direct definition or inheritance.

3. History Browser — The history of successful and unsuccessful usage attempts
associated with a class can be examined through the use of a history browser.

4. File Browser - The files associated with the implementation and verification of
a class are directly accessible from within ORT. Interactions with the file system
are managed via a file browser, which allows files associated with a class to be
viewed, edited, or copied to a local location in the file system for subsequent reuse
or leverage.

One final function, accessible only from the primary class browser, is the ability to
revert back to the query that began the browse. Should the user deem a browse fruitless,
the “RE-QUERY?” key terminates the primary browser and allows the user to re-edit the
most recent query in hopes that there is some change that can be made to the query to
allow more relevant classes to be selected.

5.3 Library Maintenance Tools

Because of the large-scale transactions that must occur when entering a Class De-
scription into the library or editing its contents once there, two tools were developed
to facilitate such transactions during the prototyping and demonstration of ORT. These
tools, CHECKIN and CHECKOUT, allow form-based transactions to occur between the
library and the flat-file format (described in Chapter 4).

CHECKOUT invokes an unparsing process in which a Class Description is converted
from data stored in the library to flat-file format. The user can then add, modify, or
delete information under the constraints imposed by the format. Because the editing
process may take a number of hours or even days, a lock can be placed on the Class
Description (assuming it is not already locked) to prohibit simultaneous edits. At any
time, a Class Description may be checked out for examination purposes (i.e. with no

lock).
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CHECKIN invokes the complimentary parsing process on a flat-file, performing ap-
propriate error-checking before committing data to the database. Should the check-in
process be successful in parsing and in obtaining permission to store data to the library,
then a new Class Description is entered into the library as a newer version of an existing
one. In this way, version control is implemented on the documentation stored in the
library (for the same reasons as is currently done with source code files).

CHECKIN can fail to obtain permission to store a Class Description in the library
under two circumstances. If the user executing CHECKIN is not on an access-control list
for the ORT library, then modification of any part of the library is prohibited (the user
may not lock a Class Description either). The access-control list is intended to include
only those who are directly responsible for the maintenance of the library. This can be
a small, select editorial committee or a list of all software engineers developing object-
oriented software locally. The other situation in which CHECKIN will fail is that in which
a lock has been placed on the particular Class Description being stored by another user.
In such a case, the other user must first check-in his or her changes before anyone else can
check-in their changes. Presently, merging of different versions must be done manually
by editing flat-files.
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6. Demonstration of ORT

This chapter uses a scenario to illustrate how ORT can be used in an object-oriented
software development environment. It is important to note that the designer, not the
programmer, is the user of ORT. It is the designer who should not only be sensitive toward
maximizing reuse but also make the compromises in the design toward that end. It is not
appropriate for the implementor to re-think a design so that he or she can reuse more
code than the current design dictates, nor is it appropriate for the designer to construct
a design in a vacuum, free of the information presented and maintained by ORT.

The data-accessing capability of ORT is the payoff of much data-entry. The ability
to access information in a library requires much advance work. This effort results in a
set of important benefits not provided in traditional development methodologies. This
scenario demonstrates these benefits, listed below.

1. Assistance in Assessing Reusability.

A query submitted to ORT may result in the suggestion of many classes for potential
reuse. These classes will vary in their semantic proximity to what is actually de-
sired, their semantic adaptability, their design quality and adaptability, and their
implementation quality and adaptability. It is important to be able to quickly
determine which to reuse as well as whether to reuse. The following types of infor-
mation stored in the library help in assessing the reusability for this collection of
classes:

(a) judgments of portability

(b) measurements of code metrics
(c) history of reuse attempts

(d) commentary on reusability

(e) reviews by an editorial committee

2. Querying Stimulates Design Improvements.

Because of the keyword-based classification scheme, queries can lead to results
which stimulate the user to discover possible design improvements. This can occur
in two ways:

(a) A keyword representing a general concept can generate a collection of entries
that may expand the ideas present in the design. This introduces new ideas
into the design process early and encourages the designer to more carefully
choose terms and names.
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(b) Words that appear in the query can trigger the use of the correct generic
classes. Though any small collection of generic classes can be managed without
tools, quickly arriving at the correct ones is important. Using ORT, it is more
likely that generic classes will be selected based on the conceptual description
of the desired class than on the whim of the implementor. Examples of such
terms are: queue, key, mapping, mapped, and linked.

3. Non-local Browsing.

6.1

ORT offers many links to follow between its library entries. This means that there
are usually many ways in which to proceed at any given step in a browse. A
complicated browse can take the user conceptually far from where the original
query had intended. This expands the flexibility of the search for reusable classes
with ORT.

Identifying Possible Design Modifications.

To avoid back-tracking and designing-out reuse, the search for potentially reusable
components should occur while design changes necessary to incorporate relevant
library entries can still be made easily. ORT’s use can implicitly suggest such mod-
ifications. In fact, the overall goal of ORT is to suggest design changes in situations
where the design could be made slightly less elegant but more standardized, saving
substantial implementation time.

Aside from this overall benefit, there is a special case where significant added benefit
is realized. If ORT is being applied in a domain that is well understood by those
populating the library, then it is likely that the library holds a fair amount of
knowledge about programming in this domain. In such a case, the lack of results
of a query and browse session suggests to the user that the desired class may be
a poor choice of abstraction in this domain. Assuming that the editorial process
used to approve ORT library entries filters out poor abstractions, designers will not
find poor choices in the library. The lack of results should suggest to the user to
re-think the design and respond by either asserting that the new abstraction is truly
useful and worthy of original implementation work or by modifying the design to
use more standard components.

Initial Design Ideas

Designers evolve their notions of design in an incremental fashion, by first expressing

a broad framework, which is the most reusable part, and then filling in the details,
possibly reorganizing the broad framework somewhat in the process [5]. As a result,
careful attention should be paid to the level of detail provided in producing queries from
tentative design descriptions.

It is assumed that before the start of the scenario enough analysis and initial design

effort has been expended to produce the following informal and, as yet, “half-baked”
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description of a system’s top-level abstractions. The results, whether produced using a
state-of-the-art CASE design tool or merely “back-of-the-envelope” techniques, are in-
tended to represent a believable first pass at characterizing and decomposing the intended

system. The designer’s ideas, as they might appear in a design notebook or repository,
follow:

A new simulation system is desired to model the activities of an organi-
zation containing chains of command. Input events are introduced into the
organization, each of which can trigger any number of internal activities, as
well as any number of outputs. Rather than help describe the processes in an
organization, this system simulates the dynamic behavior of the organization
while it undergoes changes in structure. The motivation for building such a
program is to provide a tool to help train managers of organizations that can
be modeled effectively by this approach.

Organization: An organization is specified by: sources of input, types
of output, the components of the organization, and the chains of command
connecting these components. The chains of command are modeled using
a graph, where nodes represent the organization’s components and chains
are expressed as arcs between them. Activities within the organization are
modeled by events that pass between the nodes along arcs. The organization
abstraction represents the entire system; an execution of the program consists
merely of an organization creation, simulation, and destruction.

Node: A node in an organization can be a person, a processing service
(like a computer system), or a repository (like a filing cabinet). Nodes have
labels, describing what they are, and a function called processEvent, which
is written by the user and describes what the node does. Nodes also have
event input queues; only one event may be processed at a time, taking an
indeterminate period to complete. Upon dequeuing of an event, a node can
discard it, forward it to other nodes to which it is connected, or compute a
new set of events to originate.

Arc: An arc is a relationship between two nodes, one of which directly
precedes the other in some chain of command. Arcs transport events from an
originating node to a receiving node.

Input: An input source for an organization introduces events into an
organization. It is connected to nodes via arcs but can not be a receiving
node on any arc. Further, its processEvent feature is called every clock “tick”
by the simulation system, optionally emitting an event based on a user-defined
algorithm.

Output: An output destination for an organization collects events from
an organization. It is connected to nodes via arcs but may not be an origi-
nating node on any arc. Because they are outputs of the organization, events
are collected for examination by the user,
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6.2

Event: An event represents a transaction between two nodes. This ac-
tivity is governed by the processEvent function defined for the node. Events
have timers associated with them, so that the time it takes for them to be
processed can be computed. Events also have logs in which nodes can store
information destined for other nodes.

Menu: A menu-based user interface allows the user to control the orga-
nization. A menu structure containing the following capabilities is currently
anticipated:

e node: create, label, set processEvent function, delete, examine queue,
clear queue, activate, deactivate

e arc: create, label, set event originator, set event receiver

e quit: exit, print statistics and exit

The Contents of the ORT Library

For the purposes of this demonstration, there are only 31 entries currently in the
ORT library. Only a fraction of these entries are relevant to the organization simulation
system. The others must be filtered out, at least partially by ORT. The following is a
representative sample of the classes currently in the library.

Queue — A generic class representing the canonical queue data structure.

EventMgr — Part of a system used to manage resource allocation, this class cen-
tralizes and dispatches events from the system to the correct agents.

Graph ~ A class representing a simple graph, with nodes and arcs between them.
It has been found useful in building higher level classes based on graph theory.

DirectedGraph — An heir (sub-class) of Graph, this class replaces the notion of
undirected arcs with that of directed arcs.

DAG - An heir of DirectedGraph, with the added restriction that the directed arcs
can not form cycles.

DagWidget — A class based on DAG, but also a user-interface object, in that it
displays itself (i.e. a directed, acyclic graph) in its own X-Window.

Timer — A simple timer that can be started, stopped, reset, and read.

ErrorLog — An error log useful in products where system errors should be logged
for later examination.

Browser — A browser containing a menu, a menu scroll-bar to page items through
the menu, and a set of soft-keys. It manages user interactions and provides a
call-back mechanism to invoke user-supplied functions upon activation of soft-keys.
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e KeySet — A set of 8 keys that can be loaded into a Browser’s soft keys. It keeps
track of KeySet level help strings, individual key help strings, key labels, and key
codes.

As it happens, there is little chance for reuse of earlier work at the top level of
abstraction (the organization). This is not surprising, since this particular approach
toward simulation is not likely to have been implemented and entered into the ORT
library. The next few levels of abstraction (i.e. the rest of the vague ideas in the design
description), however, still offer promise for attempts to reuse previous work.

6.3 Querying and Browsing with ORT

In the scenario, the designer begins with the characterization of the intended system
based on the vague ideas shown above. The immediate goal is to quickly convert these
concepts into concrete classes that not only represent the “right” set of abstractions, but
can be implemented quickly thanks to reuse. It is unlikely, however, that each of the
informal abstractions will directly map to a class in the system being implemented. Each
idea is nevertheless converted into an ORT query to find classes similar to what the idea
represents.

Queries are submitted to ORT to help refine the set of desired classes into a design
that reuses entries in the library. This is done by using a query to generate an initial set
of classes from the library, then browsing until either an appropriate choice for reuse is
made, or it becomes evident that no such choice can be made.

The user begins by constructing a query for the first potential class in the design (see
Figure 6-1). As should be customary with ORT, care has been taken not to over-constrain
the search by changing too many terms in the standard @ expression. The standard
system-default and user-default .ort files contain very general, or lenient, Q) expressions.
The query for the “Node” abstraction is a modification of the user’s standard query, which
looks for classes written in C++ and run under some flavor of the Unix operating system
(this query template was shown in Figure 5-1). The changes involve adding keywords to
specify classes related to the user’s current understanding of “Node”.

Queries should be kept lenient, but not too lenient. Each query must contain some
restricting information or a search of the entire library would ensue. The designer should
describe, especially at the higher levels, the desired abstractions needed to model his
or her problem. The process of designing with maximal reuse should not break down
into the process of finding a problem for which a solution is known. Rather, original
implementation must be done at some level, but that implementation should be expedited
by maximizing intermediate- and fine-grain reuse.

The class browser shown in Figure 6-2 is generated from the query in Figure 6-1
and contains only a few matching classes. As might be expected, no truly applicable
classes match the concept of an organizational node. However, the user benefits in two
important ways.
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Ztip/0rtQue

entrytype elt_of {submitted)

name elt_of {Node)
or (
date >= 01/01/87
and complexity <= 15
and size <= 1000
and (

desc_keys intersects (node, graph, arc, component, person,
device, repository)
or feature_keys intersects {ProcessEvent, label, queue)
)
and os elt_of (sysV, bsd, Sun0S, HP-UX, Ultrix, Mach)
and compiler elt_of {C++2.6, C++1.2)
)

Inttialization complete. About to create InitialClasses.
eady to try this query? [ynqgl ]

D A R, RS B e PO S RSy

Figure 6-1: User edits query for “Node” abstraction.

First, some relevant ideas about what nodes can model in an organization (from a
computer-automation standpoint) are derived from this query. The user can make a
mental note that in the final system, a library of nodes should exist, some of which
represent things like printers, disk-drives, and other mass-storage devices. This is a
specific example of one of the general benefits of ORT described at the beginning of this
chapter. By querying a library of software components, a general term in the keyword
collection (i.e. “device”) generated classes which, by mere mention, have expanded the

current design. In other words, wrong choices may still be useful for other parts of the
design.

Second, a class has been suggested that can be useful in the implementation of class
Node, should it be necessary. Not surprisingly, a class Queue, written in C++, exists
in the ORT library. It was matched by ORT as a result of the inclusion of the keyword
“queue” in the “feature_keys” clause of the query. This is an example of the second ma jor
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ORT Class Browser

Class Name Revision Date Keyuwords:

Figure 6-2: Class browser containing relevant candidates for “Node”.

benefit of ORT, where a relevant generic class has been selected by converting the textual
description of “Node” into a set of keywords.

Before proceeding, the novice user utilizes the context-sensitive help facility. A help
window, shown in Figure 6-3, is generated to explain what the visible soft keys of the
primary class browser do. This was done by clicking the mouse on the the HELP soft
key.
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Figure 6-3: Help window for initial keys on the primary class browser.
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ORT Class Brouwser

‘Class Name Revision Date Keywords:

1}
L e T L e FEEE E R L LT L L LT
2% Main Class Information::

Class Queue Rev: 1 B96212.6680
A Queue is a parameterized rep. of an ordered group of objects.
Contact: chrisgRhpwarg

LR EE BB ER D LSRR EE R BT R R g T T T T e e
#t Class Description::

ORT History Brouwser

Class : Queue

Figure 6-4: Class Information and History Browser for class Queue.

Since the Queue class appears important, ORT is used to verify that Queue is reusable
in the context of the intended application. The user chooses the Queue entry, then
generates a class information viewing window (with the CLASS INFO key), producing
the second window, layered upon the first. Finally, the user generates a history browser
with the (RE)USE key, producing the top-most window. The result js shown in Figure
6-4.

The user finds that class Queue has been reused by a number of others. In the class
information window, which contains most of the information in the Class Description
not available via a browser, the user finds that care was in fact taken to implement and
document this class because it represents a generic, and therefore highly reusable, data

structure. As described in the first major benefit of ORT, the user has been assisted by
the library’s information concerning reusability.

Because no closely matching library entries were found on the “Node” browse, the
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user now realizes that Node must be implemented as a class. It also becomes apparent
that there is a common element between “Node” and “Output”: a queue of events.
Further, both “Node” and “Input” have user-definable procedure features which control
how events are manipulated by an organization. At this point, the user decides that
the various types of nodes should make up an inheritance hierarchy in which the most
generic “Node” functionality can be implemented in a base class Node and specific types
of classes can inherit from it, specializing parts of the interface as needed. The direct
heirs of Node would be InputNode, OutputNode, and ComponentNode. Nodes actually
used in a simulation would then, in this new scheme, be heirs of one of these three classes.
Despite these design changes stimulated by ORT, the user continues in the search for
more reusable classes before moving on to more advanced design stages, since additional
design changes may follow. The browsing phase of ORT is exited by removing all windows
(in this case, clicking on QUIT in the history browser, hitting ’q’ in the pager displaying
the class information, a finally hitting EXIT in the class browser). ORT is re-run with a
new query, this time in search of relevant classes for the “Arc” abstraction. The query,
shown in Figure 6-5, is constructed, using the keyword fields to specify the concept.
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entrytype elt_of {submitted)
(

name elt_of (Arc)
or params intersects [node]
or (

date >= 01/01/87
and size <= 1008
and (
desc_keys intersects {relationship, transport, event, node,
originating, receiving)
or feature_keys intersects {receiveEvent)
)

and os elt_of (sysV, bsd, Sun0S, HP-UX, Ultrix, Mach}
and compiler elt_of (C++2.8, C++1.2)
)

TR —— e o
finitialization complete. About to create InitialClasses.

Ready to try this query? Cynql |§

Figure 6-5: User edits query for “Arc” abstraction.

The resulting browser (which appears as the upper window of Figure 6-6) only con-
tains two classes: Link and Graph. The Link class, upon investigation (not shown), is
found to be part of Keith Gorlen’s C++ Classes [23]. It is a class “used to construct
LinkedLists” and is thus not applicable. The other entry in the class browser, however,
is of significance: Graph could be used to represent an “Organization”.

The user realizes that a DirectedGraph class would be more appropriate, since Events
move in only one direction between Nodes. To investigate this possibility, there are two
alternative approaches: (1) the user can use keys “MORE KEYS” and “RE-QUERY”
(currently not available) to adjust the original query or (2) the user can attempt to
find a DirectedGraph class via browsing. Since DirectedGraph is likely to be in the
same inheritance or dependency hierarchy as Graph, the user proceeds to investigate the
parents and heirs of class Graph.

Before continuing, however, it is useful to digress long enough to illustrate why the
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original query failed. It did not match DirectedGraph, which exists, because there was
no “graph” keyword and the description of DirectedGraph (from which these keywords
should be taken) is “...like a Graph, except that arcs have a direction associated with
them.” Thus, by adding the more general “graph” keyword to the “Arc” query shown
in Figure 6-5, more candidates for reuse could have been obtained.

Note that, essentially, the use of ORT has stimulated changes in the goals for reuse.
The designer now has a better idea of what an Organization is: a DirectedGraph of
Nodes. This is a specific example of the final ORT benefit described initially, identifying

possible design modifications, in that a lack of results implicitly caused the designer to
re-think the current design conceptualization.
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ORT Class Brouser

Class Name Revision Date Keywords:

ORT History Brouser
Class : Graph

Figure 6-6: The search for “DirectedGraph” (Part 1).

The user investigates “up” the hierarchies through use of the History Browser. All
uses of a class, via direct use or inheritance, are contained within the context of a reuse
of the class. However, what one project chooses to do with a class may not be what
another project does with it. Thus, heirs (sub-types of this class) and clients (those
depending on this class) can only be accessed through the history browser (see Figure
6-6), which is generated by selecting the entry for Graph in the class browser and clicking
on the (RE)USE key. A successful usage attempt can then be selected and the HEIRS
or CLIENTS key used to generate additional class browsers.
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ORT Class Browser

Class Name

Outstanding Defect Report -- Class DirectedGraph

* Defect: HMultiple links betwesn nodes are not possible.

Class : Graph Description:

[f two nodes A and B are part of a DirectedGraph and a directed
arc from A to B already exists, then an attempt to call
addArc(&A,&B) causes no discernable change to the DirectedGraph.

Instead, this call should place another directed arc between these
two nodes.

Class N

. Status: Open known problem
File H Filed-by: D. Hill
r— Date: 2/15/89

Figure 6-7: The search for “DirectedGraph” (Part 2).

As the user explores the uses and reuses of Graph, two very relevant classes are dis-
covered. The first is DirectedGraph, which is, in fact, exactly what the user thought
was appropriate. The user finds this class by selecting the usage attempt mentioning it
(see figure 6-6) and, because it inherits from Graph, hits the HEIRS key. This gener-
ates another class browser containing only DirectedGraph (the third window from the
bottom in Figure 6-7), which the user investigates to assess its reusability. The investi-
gation proceeds positively until the user decides to investigate the defect reports via a
file browser (the fourth window from the bottom in Figure 6-7). There, by examining a
file containing a defect summary (top window), the user finds that outstanding defects
exist for DirectedGraph and that they will most likely need to be fixed, in the user’s
assessment, before reuse of DirectedGraph can occur.
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ORT Class Brouser

Class Name Revision Date Keywords:

Oﬁf H{étéfglﬁf;ﬁ;ér
Class : Graph

" ORT Class Browser

Class Name Revision Date Keywords:

ORT Feature Brouwser

Class : DagWidget

Figure 6-8: The search for “DirectedGraph” (Part 3).

The second relevant class, DagWidget, was discovered as a result of the misgivings
the user had about the defects he discovered for class DirectedGraph. The exploration
of Directed Graph was backed out to the history browser for class Graph, at which point
the user selected a different successful reuse attempt and used the HEIRS key to discover
DagWidget, which incorporates even more desired functionality than DirectedGraph. It
is a C++ user interface class that inherits from DAG, a directed, acyclic graph abstraction
and also displays itself in an X-Window. Figure 6-8 shows the user discovering some of
the powerful features of this class in an ORT feature browser.

The user also discovers that DagWidget uses much X-Window-related code to realize
its implementation. This is done by generating another class browser with the “DE-
PENDS ON” key (not shown). Though the use of DagWidget entails the integration of
much more code than just the DagWidget class, the desired functionality is met (exceed-
ing previous expectations) with this example of aggregated reuse of a collection of related
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classes, both from the graph inheritance hierarchy and the X-Windows user-interface de-
pendency hierarchy.

For brevity, the description of a good deal of browsing has been left out. This browse
demonstrates the benefit of non-local browsing. “Arc” and DagWidget are related se-
mantically, but are relatively remote from each other with respect to the library. The
relationships stored in the library effectively connected them together via a series of
links. The user was able to investigate the links leading away from Graph until DagWid-

get was discovered and subsequently incorporated into the concrete design that follows
from ORT’s use.
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entrytype elt_of (submitted)
(

name elt_of {(Event}
or (
date >= 61/01/87
and (
desc_keys intersacts {event, data, task, activity, timed)
or feature_keys intersects (timer, log, history)

)

Initialization complete. Rbout to create InitialClasses.
eady to try this query? [ynqgl [

Figure 6-9: User edits query for “Event” abstraction.

The user continues the search for reusable classes by submitting a query for the
“Event” abstraction (see Figure 6-9). Since it is unlikely that the particular type of
organizational events needed here exist, the user opts to make the query as general as
possible. All portability constraints as well as the size and complexity limitations have
been removed. The motivation for searching the library in this way is to leverage from
past programming experience by finding any examples relating to types of events, the
processing of events, call-back mechanisms, and other related programming techniques.
With this technique, the user can potentially learn more about how an event-processing

system should be implemented. A reusable or leveragable class is sought, but is not
expected.
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ORT Class Brouwser

Class Name Revision Date - Keywords:

PR

Figure 6-10: Class Browser from “Event” query.

The very lenient query for “Event” does, in fact, produce some relevant results (see
Figure 6-10). The primary class browser contajns a few promising classes, Timer and
ErrorLog, which could definitely be useful in implementing an Event class. These classes
were matched because the original description of “Event” suggested that Events have a
timer and a log associated with them, which was later expressed in terms of keywords.
Only a small part of the exploration of these classes is shown: Figure 6-11 illustrates the
effects of hitting FEATURES while the selection in the class browser is for class Timer.
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ORT Class Brouser

Class Name Revision Date Keywords:

ORT Feature Brouwser

Figure 6-11: Examination of class Timer features.

After backtracking to the primary class browser (see Figure 6-10), the user finds
class EventMgr intriguing because it may be a different approach to simulation. Rather
than keeping track of a graph with events floating between nodes, an event manager
could simulate all the links transparently. However, upon further investigation of the
programming techniques used (see Figures 6-12 and 6-13, where the user selects this
class, clicks on FILES to obtain a file browser, then actually VIEWS some of the files),
class EventMgr was determined to be inappropriate for reuse. Aside from the semantic
distance between “Event” and EventMgr, a decision not to reuse can be made based solely
on the state of the implementation. Through the direct examination of a header file, the
user finds that EventMgr was never truly “factored out” of its original environment, so
any attempt to reuse it would entail a major implementation effort.
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ORT Class Brouwser

Class Name Revision Date Keywords:

ORT File Browser
File Browser - Class EventMgr

o oy yatsys

Figure 6-12: Examination of files associated with class EventMgr.

Finally, the user exits and tries one final query. The user-interface portion of the
program being designed requires menus, which the user has seen on many projects. The
user desires to reuse a specific Menu class which is most likely stored in the oRT library.
This class was built as part of a project which is called “Calypso”. As shown in Figure
6-14, the user constructs a very harshly-filtering query (most of the previous queries were
mild in this respect) to obtain that specific class, if it exists in the library.

After this query is executed, the intended class js found, as is shown in Figure 6-15.

The user ends the session with ORT by obtaining the code for this Menu class, This
is done by generating a file browser (shown in Figure 6-16) with the FILES key and then

using the SAVE key to save the files to another position in the file-system for integration
purposes.

The SAVE key can be configured to copy the file mentioned in the current selection of
the file browser to a standard location, specified by the ORTHOME environment variable,
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ORT Class Brouser

Class Name Revision ~ Date Keywords:

Bifndef EVENT_H
#define EVENT_H

Fl l/l ‘#!Il‘.*‘l!!l‘l“'i‘l!ll!'l“‘l!!"“*“l‘Il‘.‘l.".#l‘*lll"tl'*l!'.*
File Name: Event.h

Description: Event definition for EventMgr

Comment: The definition of Events are currently optimized for the
SIC. The intent, of course, is to eventually support abstract
events rather than only those hard-coded in this file. However,
this would require much more implementation work to be done
in EventMgrl.c and EventMgr2.c.

History: 18/13/88 Jack Florey Original Version
‘l*‘l‘l‘lll‘l‘ll*“'l#.l"‘l".ll‘l**'“'l*‘!.ﬂ.**l'l‘ll“*""‘t‘** */

struct SIC_ADTEventType {

int name_len;
char name[45];
int descRevision;
int revision_len;
char revision[18];

Figure 6-13: Examination of the event definition header file for EventMgr.
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entrytype elt_of {(submitted)

name elt_of {Menu}
or (
date >= 01/601/87

and desc_keys intersects {menu, selection, entries, user}
and feature_keys intersacts {entries, color)

and machine elt_of {HP350)

and os elt_of (HP-UX)

and compiler elt_of (C++1.2)

and project elt_of (Calypso)

)

4

R A B O ) B

Figure 6-14: User produces a harsh query in search of a specific class.
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ORT Class Browser

Class Name Revision Date Keywords:

Figure 6-15: Resulting class from the “Menu” query.
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ORT Class Brouwser
Class Name Revision Date Keywords:

ORT File Browser

File Browser - Class Menu

Figure 6-16: Obtaining code for class Menu.
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if set by the user. Otherwise, the file is copied to the current working directory of the
user where ORT was invoked.

This concludes the scenario demonstrating how ORT can be used to aid in the pro-
cess of finding the right components to reuse during the early design phases of object-
oriented development. The benefits stated at the beginning of the chapter have been
demonstrated by specific examples included in the scenario. The essential properties of
the ORT query/browse interface have also been demonstrated. At this point, a formal
design, including precise class specifications, can be written and implementation efforts
can proceed based on the information and files discovered using ORT. Note that the
use of ORT requires no specific methodology to perform requirements analysis or develop
initial design ideas, nor does it impose upon the programmer additional overhead in im-
plementation save for when it becomes time for Class Descriptions to be entered into the
library for the classes developed for the resulting simulation system.

69



7. Implementation

The implementation of ORT consists of three layers. At the lowest level, a relational
database implements a library of Class Descriptions and the storage of other, configurable
information. At the intermediate level of abstraction, a set of database interface classes
implement a uniform interface for all applications (i.e. tools) needing access to the library.
The top level contains the tools, ORT, CHECKIN, and CHECKOUT, that are built on this
intermediate level and are user applications of the ORT architecture.

As was described in Chapter 4, the sQL database standard was chosen to implement
the bottom layer of the implementation. For this task, HP’s version of sQL (HP SQL /HP-
UX) was chosen. The database interface classes and applications thereof were written in
an extended version of AT&T’s C++ [36] developed at the Waltham Division of Hewlett-
Packard. Thus, ORT currently runs only on the HP9000/300-series workstations. The
tools are designed to work with standard Unix system calls and have traditional Unix
command line interfaces. The user-interface of ORT uses X-Windows, because of its high
degree of acceptance in today’s workstation-based development environments.

7.1 The Underlying Database Definition

The library itself, in its most concise form, is expressed in terms of the entity-attribute-
relationship model (see Figure 4-1). This model was translated into an equivalent rela-
tional form expressed in Structured Query Language. The resulting SQL database def-
inition has also been augmented by a number of tables and declarations in order to
implement appropriate functionality at this bottom-most level.

7.1.1 The Translation Process

Little research has been done in the area of automating the translation process from
entity-relationship models to relational models. Methodologies, however, do exist for
translation in the opposite direction [7, 25]. There are some more-relevant methodologies
(3, 8] as well. The following procedure outlines the manual translation process used to
obtain SQL code for the library of Class Descriptions:

1. For each entity in the model, a relation is created containing only an integer identi-
fier. This index is used to access entities of this type by other entities in the system.
The resulting table definition of this relation is called an entity table.

2. Attributes of the corresponding entity are added to the entity table and are thus as-
signed a data type (like INTEGER or VARCHAR(40)). In cases where an attribute
is a text string of arbitrary length (e.g., the long class description), a separate table
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is defined containing three columns: (1) the text data field, defined to be as long
as permitted by the database implementation, (2) an integer data field used to
sequence “chunks” of text in the first field up to the amount required, and (3) an
integer field to link a set of entries back to the entity table from which it came.

3. Relationships between entities are implemented in one of two ways:

(a) If the relationship is of type “is_a”, then the two entities can be combined, if
deemed appropriate. For entities A, B,and C, if A “is.a” C and B “is.a” C
then a union entity, C’, can be defined so that, when translated to a table as
described in steps 1 and 2, the resulting table can be indexed and searched
efficiently on attributes common to both A and B (i.e. those of C).

(b) In all other cases, the integer identifier column added in step 1 is used by
creating the link as a column of the “originating entity” for the relationship.
This column is of type integer and contains, essentially, pointers into the other
table. For example, nearly all the tables are indexed on a single column, an
integer data field classID. The classID is unique for each Class Description
and serves to link many of the entities together, as do the links pointing away
from the class entity in Figure 4-1.

Finally, a “hack” was added to the resulting system to provide version control. Since
it is conceivable that an administrator of the library may want to use a previous version
of a Class Description, multiple versions are kept in the database and old versions must
be manually purged. The addition of one column to the Class entity table allows a
“description revision” to be kept. Uniqueness of a Class Description is therefore defined
by a triple, containing the class name, the implementation revision of the class, and the
Class Description revision.

7.1.2 Configurable Information in the Database

Additional tables were added for storage of configurable information. ORT accesses
these tables rather than using “hard-coded” constants. This also allows faster compar-
isons when searching for matching components, since, in all cases, a string is resolved to
an integer identifier (ID).

o Feature Types — A one-to-one mapping from a string to integer ID, enumerating
the types of features a class can have.

¢ File Types - A one-to-one mapping from a string to integer ID, enumerating the
types of features a class can have.

e Comment Types — A one-to-one mapping from a string to integer ID, enumerating
the types of comments that can and should be made about a class.
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e Search Field ID’s — A one-to-one mapping from integer ID to a table name and
column name in the database.

Further, the following set of tables also helps to map many different textual expres-
sions which mean the same thing to one identifier.

e Operating System ID’s — A set of many-to-one mappings from strings to integer ID
for efficiency in comparing OS dependencies.

® Machine ID’s - A set of many-to-one mappings from strings to integer ID for
efficiency in comparing hardware dependencies.

o Compiler ID’s — A set of many-to-one mappings from strings to integer ID for
efficiency in comparing language dependencies.

¢ Project ID’s — A set of many-to-one mappings from strings to integer ID for effi-
ciency in comparing project or environment dependencies.

7.1.3 The SQL Definition

A shell script was developed for the SQL definition that defines all the tables associ-
ated with the entity-attribute-relationship model of the Class Description. This script
generates the database and initializes it. Also, a number of other things are accomplished
by this process:

1. Multi-User Access: The database is configured to allow multiple concurrent
transactions, meaning that a number of users can run ORT in parallel. Locking on
write is therefore implemented at this level as well.

2. Indexing: To speed database transactions, integer ID columns of the entity tables
are made SQL indexes for that table so that links between entities can be followed
quickly.

3. Security: The access-control list for modifying the ORT library is implemented
at the sQL level by allowing anyone on a list of trusted individuals to modify the
database. Should one of the tools be run by someone not on this list, SQL will cause
a database write error.

7.2 The Database Interface Classes

The data in the Class Description are broken down into fields, or chunks of closely-
related data. There is a base class Field which contains the generic capability to access the
database using dynamically-prepared database commands. Class Field is also a template
for the actual field classes, each of which knows about only a portion of the database and

can manipulate that data in a variety of generic ways, as defined by class Field. This
architecture serves the following purposes:
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1. Each type of Field object can:

(a) Store its data to the database for a specified Class Description.

(b) Retrieve its data from the database for a specified Class Description.

(c) Display this data (useful for information not presented in a browser).

(d) Unparse this data.

(e) Parse this data.

(f) Format this data for hardcopy output (see Section 8.1.1 for more details).

2. The layering of this set of interface classes over the database hides details and
makes implementation of the tools much less tedious.

3. This set of classes provides an ob ject-oriented veneer over the underlying relational
database implementation.

4. Field classes can encode information present in the entity-relationship model that
is not easily expressed in sQL. For example, relationships are stored as integers;

the knowledge about what table this integer indexes into is more easily kept in the
field class.

5. When using this interface, the granularity of the operations on the contents of the
database is correct for the model ORT requires. For example, a Class Information
viewing window calls the display function on each of the fields not already capable
of being presented by some browser. Thus, transactions can be made at high-levels,
but in a selective manner.

6. The information stored in the additional tables (described in section 7.1.2) can be
automatically loaded into memory as part of the creation of a Field object. This
allows subsequent use of the information to occur at the same speed as if it were

hard-coded.

Developing database Field classes is more difficult than using a true Fourth-Generation
Language (4GL) tool to manage the necessary relational database interactions. How-
ever, a serious loss in flexibility must be taken with many currently-available 4GL’s.
Such tools will become increasingly sophisticated, as will entity-relationship and object-
oriented databases. A conversion to one of these platforms would be appropriate at a
later date.

On top of the collection of classes that inherit from class Field, there is class ClassDesc,
which is immediately called by the applications. This class is designed to model a Class
Description; it allows operations to be performed across collections of Fields representing
the contents of a Class Description. In the abstract, a ClassDesc object contains all the
data of a Class Description. What actually happens, however, is that operations on a
ClassDesc generally cause database operations.
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7.3 The Tools

The prototype tools that were implemented are ORT, CHECKIN, and CHECKOUT.

7.3.1 ORT

ORT provides the query/browse user interface and, as such, most of its implementation
is contained in the compiler for language @ and in a collection of browser classes.

The @ compiler is a stand-alone program which ORT runs after an input file has been
prepared. This input file is prepared by creating a temporary file containing a query
template and allowing the user to customize it. This query template comes from the
users .ort file, if it exists, or the system default file otherwise. Once this temporary file
exists, the user is placed in his or her editor (i.e. EDITOR environment variable) and
asked to prepare the file. Upon completion, the resulting query is run through the Q
compiler.

The implementation of the Q compiler consists primarily of an input file for lex and an
input file for yacc. Save for the initialization procedure and the error-reporting procedure,
the entire compiler is generated by these two Unix system tools. A textual query is built
up for output based on the query input by the user. Should an error be detected by the
compiler or in the output of the compiler, a message is generated and the user’s editor
is re-run.

The compiler output is part of an SQL query, which ORT then completes and executes.
ORT provides the portion defining what data is accessed, where it is retrieved to, and the
order in which it is retrieved. The remainder, provided in the compiler output language,
defines what tables are accessed, how they are joined for access, and what conditions
must be met for the select clause. These select conditions, because they are translated
from the original @ expression, can be of arbitrary length (ranging from as little as a
hundred characters to as much as a few thousand characters).

The list of classID’s resulting from the execution of this dynamically-prepared sqQL
query is then used to create the primary class browser. Once created, the remainder of
the execution of ORT consists of “running” this browser and destroying it after the user
initiates its termination. The other activities relating to a browser, like maintaining and
changing the current selection, paging entries after scroll-bar event, and executing soft
key commands, are handled internally while the run member function (a function feature
in C++) is executed.

Soft key commands can generate other browsers, which are “run” from the primary
browser. Each browser is spawned as a light-weight process (or thread) and runs inde-
pendently until it is no longer desired by the user. The soft key commands also provide
for regenerating another primary class browser during the browse. Thus, the RE-QUERY
key destroys the primary browser and runs the user’s editor on the temporary file used
as the previous Q input. The primary browser is then regenerated from a new, further-
modified query and browsing continues with the new browser as well as any existing
browsers derived from the old primary browser.
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To summarize the classes used to implement the browsing functionality, there are es-
sentially three levels of browsers in ORT. The lowest level consists of the Browser Widget,
which is the graphical object containing a menu, a scroll-bar, and a set of eight buttons
(or soft keys). A Browser Widget maintains the current selection by reacting to mouse-
clicks on the menu entries. It also pages entries into the menu and highlights the current
selection after a scroll-bar event. A Browser is generated by first creating a BrowserParm
(browser parameter) object. A browser parameter contains the configurable traits of a
Browser such as: arrangement and size of keys and menu entries, color scheme, and size
and position of the browser window on the display.

The intermediate level of the ORT user-interface consists of the ORT Browser, which
contains a graphical Browser object as well as the implementation of the functionality
needed to process soft key commands for ORT. The processKey member function is set
up as a call-back for soft key activations, from which the appropriate internal function
is dispatched when a key is depressed. A current KeySet, containing key labels, help
text, and key codes for a set of eight soft keys, is contained by the ORT Browser. The
context-sensitive help facility is provided by the ORT _Browser as well. The top level is a
collection of specializations of this general ORT_Browser. Inheriting from this class are
the classes ClassBrowser, FeatureBrowser, HistoryBrowser, and FileBrowser, which have
all been described previously.

7.3.2 CHECKIN and CHECKOUT

CHECKIN and CHECKOUT perform related operations. In the first case, a ClassDesc
object is created using a ClassDesc constructor that takes a file pointer and parses from
it to create a new ClassDesc, should the parse succeed. This constructor parses by
mapping the “parse” member function across a list of Field objects which it maintains
as the representation of flat-file format. Should any part of the parse fail, there can be
two courses of action taken, depending on how the program is run.

CHECKIN, when run from the command line, takes an optional file name argument.
If this argument is provided, then it is considered to be run interactively. Otherwise,
the input is assummed to come from standard input (so as to integrate with other tools
which might add further automation to loading the library). If the tool is being run
interactively, then the user is prompted to re-edit the file. In either case, an appropriate
error message is generated, along with a line number that locates the perceived error in
the file or input stream.

CHECKIN checks the “checked out” data field in the Class entity table to determine
if the parse function should be called. If it is different than the user’s login ID, then an
error is generated. If it is blank, the user is prompted for assurance that the data should
be updated. If the class is new (i.e. no class by that name and revision), then a new
chain of Class Descriptions is started for it.

CHECKOUT also creates a ClassDesc object as well. It uses another constructor used
to access the database and find a ClassDesc with a given name and revision (provided on
the command line), if it exists. The newest version of the Class Description is returned,
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which is then unparsed onto standard output. Command-line options control whether
a lock is attempted on the Class Description. If a lock is attempted and the Class
Description is not already checked out, then the “checked out” and “checked out time”
data fields are set to the user’s login ID and the current time.

CHECKIN and CHECKOUT use the ClassDesc member functions parse and unparse,
respectively. These call the parse and unparse member functions on a list of Field ob jects,
flatFileList, which denotes the order of the fields in the flat-file representation of a Class
Description. Each Field object, although using as much common Field functionality as
possible, re-implements the parse and unparse member functions to recognize and format,
respectively, the data for which they are responsible. Because of the simple format used
in the flat-file representation, the parsing is done via recursive-decent techniques and the
unparsing is done merely by formatting information so that it can be recognized by the
associated parse function.
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8. Conclusions

There are many things left to be done before ORT can be effectively used in an actual
software development environment. Most of this effort involves further development
upon the architecture developed for the purpose of prototyping ORT. Additional research
could add further value to ORT by embedding in it knowledge about, for example, class
composition. Despite the logical extensions that can be made to this work, there are
limitations inherent in the ORT approach. Conversely, there are benefits unique to the
approach as well.

8.1 Future Development

The following collection of extensions to the current implementation would round out
and complete a useful system for facilitating reuse in a modern ob ject-oriented software
development environment.

8.1.1 Hard Copy Documentation Generation

Currently, much of the documentation for classes js contained only in files which are
to be the input to some formatter, like IATEX or troff. If ORT were in use, however, this
would require documentation to be entered directly into the library as well.

There are certain undeniable benefits of having physical hard copy references to con-
sult, especially when they can be formatted in pleasant ways using existing technologies.
These benefits include: portability, ease of marking locations and adding information
via notes, highlighting, and “Post-its”, increased readability, high availability, and many
others. Certainly, it would not be appropriate to force software engineers to give up hard
copy documentation of these classes.

There is an alternative to requiring two different sets of documentation that must be
updated and kept consistent. CHECKOUT and the database field classes have already been
augmented with the appropriate structure to generate such formatter input-files, although
no specific functionality has been delivered. The assumption is that the information in
a Class Description can be, essentially, prepared adequately for the formatter in an
automated fashion. The remaining work is to populate code into the heirs of class Field
in order to allow a different type of output for the formatter of choice. This function
could then be invoked by another tool, or by a command line switch to CHECKOUT.

8.1.2 Automated Data-Entry Tools

The information in the ORT library must be entered manually, at considerable expense
to the software development process. Much of this information can be directly extracted
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from the implementation of a class. An automated entry tool could derive from the code
a set of database primitives which, when executed, would install this information into the
library, or update it after a class has been modified. This tool, though not implemented,
is based on known compiler and database technologies and would therefore not be difficult
to realize.

The acquisition of the data that can be derived from the implementation eliminates
the tedious entry of name, date, contact/author, code metrics, feature definitions (the
class interface), and other assorted pieces of information, dictated by the sophistication
of the tool and its use. The remainder of the information would later be entered using
the CHECKIN and CHECKOUT tools.

A reasonable implementation of this automated data-entry tool would be contingent
upon the ability to reuse the front end of the language compiler for use in parsing and
lexing the implementation files. Essentially, one would build a compiler whose output is
database storage rather than object code.

8.1.3 Direct Library Access/Update Tools

A set of specialized tools that can be used for quick, one-time access or update of
information in the database would be of great practical value. It is anticipated that
certamn capabilities, although already provided by ORT and the library-editing tools,
ought to be available as stand-alone functionality. These small sub-tools would help
avoid the sometimes cumbersome nature of the current ORT in cases where only a small
amount of information is modified or extracted.

Two examples of such library-accessing tools are (1) a tool that, provided with a class
name and revision, returns a list of all classes on which the implementation of that class
depends and (2) a tool which can accompany the use of CHECKIN, providing support for
finding synonyms (based on an on-line thesaurus) for keywords for the classification of a
class.

Two examples of library-modifying tools are those which allow direct entry of com-
ments or reviews for a class. Should a programmer arrive at significant realization about
a class, it should be made easy for him or her to add a comment to the library and
review what others have said about it as well. Reviews should be made by a set of in-
dividuals skilled in either the domain of the class or in programming in general. It may
be appropriate to implement a review-by-electronic-mail system to insure that reviews
are accomplished or it may also be appropriate to be able to directly add a review to an
existing Class Description.

8.1.4 Library Summary Tools

It is anticipated that the query/browse tool may not be sufficient to quickly convey
overall information relative to class definitions and interrelations. Supplemental tools
that generate graphical displays, plots, or print-outs would be beneficial in getting views
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for use when a larger-scope picture is desired. Certainly, both an inheritance and de-
pendency hierarchy display tool would be useful to graphically depict the architecture
of projects built on this object-oriented paradigm. It is also reasonable to desire other
summary-based tools useful for a variety of purposes, like project management sum-
maries, for example. There are many such tools in existence that could be ported to the
ORT framework.

8.1.5 Syntax-Directed Editing of Flat-Files and Queries

The editing that ORT and CHECKIN require are heavily laden with syntactic structure.
The flat-file format is essentially a form that could be more effectively filled out using an
editor that advanced the cursor to the next field (in the style of a block-mode terminal-
based application). Some text fields can be added to ad infinitum, so this technique must
be augmented by the concept of textual data fields without bounds.

Similarly, a Q expression mode for the user’s editor would afford the ability to catch
syntactic errors without having to run the compiler, just as syntactic knowledge of pro-
gramming languages allows editors to assist code production.

8.2 Further Research

There are a number of possible advances that require further research. The classifica-
tion scheme of any reuse library is crucial to its success. Though automation can do little
to increase the quality of the collections of keywords associated with Class Descriptions,
it can assist in the process of choosing keywords for a class. The other field of additional
research strives towards the goal of software synthesis by suggesting ways in which to
combine library components to achieve the desired component.

8.2.1 Assistance in Classification

ORT’s classification system relies on the proper choice of keywords in the classification
of components and in querying for them. Currently, keywords must be chosen and
entered manually as part of a Class Description. Keywords are intended to be derived
from textual fields in the Class Description. A logical extension would be to assist
the user by running this text through a filter that removes all trivial (like “the” and
“for”) and ambiguous (like “output” and “represent”) words and possibly performs some
substitutions based on a thesaurus of terms for classifying classes. The user could then
edit this collection of keywords before finally submitting the Class Description.

Additional keywords could be added during this process that are synonyms of existing
keywords. The resulting list would then need to be pruned by an individual or individuals
with some knowledge of library science, the domain of the class, and programming in
general.
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8.2.2 Desired Class Descriptions

One step towards synthesizing desired components is to effectively describe the de-
sired components. If the representation of a query were essentially the same as the
representation of a Class Description, then users would be encouraged to think about
and specify the many properties they desire in a class rather than submitting a more
lenient specification and then relying on browsing. This approach is particularly effective
in cases where exact matching is desired. For example, features can be defined to match
when the data type and formal parameter data types match the user’s specification of
features.

If ORT were to incorporate functionality to suggest class combinations as approxi-
mations of goals, more details about the user’s goal would help as well. By providing
the capability of matching a Class Description of type “query” (a new entry type), ORT
would effectively make the Class Description format be the formal class design result
sought by designers so that ORT can be used to approximate realizations of them.

8.2.3 Automated Composition

The composition activities of an ORT user can be expedited by suggesting some com-
binations of entries that approximate the description provided by the user. Although
adding this functionality would first entail research into the nature of programming-in-
the-large and how programmers glue chunks of programming knowledge together to make
systems, ORT provides a platform upon which automated object-oriented composition al-
gorithms can be prototyped.

Part of proper software development is to choose the correct parts when reusing
individual modules. If chosen correctly, a single combination of objects provides, in most
cases, more versatility and/or less development time than any other possible combination
that could be used. Although the guidelines used by programmers to choose certain
combinations over others is not well understood, finding many relevant possibilities to
choose from could help this process, especially if it can occur in an automated fashion,
relieving the programmer of tedium.

Unlike other methods, object-oriented methodologies provide their own composition
technology. The composition and decomposition of modules occurs in a controlled fash-
ion. This control is provided by the semantics imposed by object-oriented programming
languages.

Object-oriented design can be viewed as a software decomposition technique; it bases
the modular decomposition of a system on the relatively stable objects the system ma-
nipulates, not the functions the system performs, which may change in time and may not
be well-defined at project inception [32]. There may be methods whereby classes can be
derived from a combination of lower-level classes in a controlled manner, thus reversing
the decomposition process to some extent.

The three combinational techniques in object-oriented programming are:

1. Inheritance.
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2. Composition (i.e. filling slots in parameterized classes).

3. Containing objects as attributes (i.e. message passing or function call).

Formal understandings of each of these techniques may afford the ability to add value
to ORT via suggestions for possible combinations.

8.3 Related Work

A number of library-based systems have been implemented over the past four decades.
Recently, there have even been attempts to combine software library technology with
object-oriented technology (or at least abstract data types). These attempts generally
differ in three important ways from the approach described here:

1. Few provide direct support for those advantages that can be derived from the use of
an object-oriented programming methodology. For example, effort has been spent
recently on creating libraries of Ada modules. However, Ada is not an object-
oriented language. It offers only the capability to program with abstract data

types.

2. Little attempt has been made to collect, organize, and present the additional in-
formation (i.e. other than code) associated with the software development process
that ORT uses to help support the software reuse process.

3. Generally, only one half of the query/browse interface is provided to locate infor-
mation in the database: either exclusively querying or exclusively browsing.

The work most closely related to ORT is being done by Arapis and Kappel [2] at the
University of Geneva. Their approach of an Object Software Base (0sB) is similar to
that of ORT in many respects: language-independent storage of class representations in
a semantic-network used for future browsing. However, ORT differs in a two key ways.

First, the ORT library design differs from that of the OSB. ORT treats the classification
of entries in a more flexible, more finely-grained fashion. The multi-faceted classification
scheme in ORT is rather different from the large-grained categories used to group objects
in the 0sB. The 0SB scheme also makes no attempt to record the additional information
in ORT like the history of usage attempts on an entry or comments made by software
engineers about the class.

Second, the interface to the potential reuser is quite different in the 0SB. The interface
of the 0SB is based on the concepts of “working space” and “object class of interest.”
Rather than providing a querying interface, as ORT does, the user must decide which
working space is appropriate and then move from class to class within this collection to
find something of interest. In ORT, relationships between classes become links to follow in
the browse, which is begun much closer to the desired entries due to the initial querying.
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The Reusable Software Library (RSL) [14], is built primarily for the reuse of Ada pack-
ages and descriptions thereof in an Ada Program Design Language (PDL). A collection
of software attributes has been formalized to help in selection by querying. In addition, a
process involving entry-by-librarian and quality-assurance validation is at least designed.
Their plan is to eventually interface with a separate configuration management program
to obtain history and usage information, but this functionality is currently lacking, as is
the collection of comments on the database entries. The classification system is useful for
effective querying based on a “category code”, but no browsing capabilities are planned.

A database-storage system for object-based programming was designed by Beach
and others at HP-Laboratories [4]. Their object “Protocol Browser” makes a strong
distinction between the abstract protocol, or external interface, and the class implemen-
tation. It manipulates code and class protocols only and is used for program development
and consistency checking. Browsing is supported, but querying is not. Unfortunately,
the object-oriented database used to implement this browser poses serious performance
problems upon its practical usefulness.

The CATALOG Information Retrieval System [20] used within AT&T is a general
purpose database tool that has been adapted for software reuse. No object-oriented
approach is taken, nor is there much information to supplement the code. However,
there is a great deal of flexibility in the system, which offers a searching capability based
on querying using keywords and syntactic variations (e.g., sort, sorting, sorts). A module
prologue (or description) template has been developed to describe software components,
but little tool support has been implemented to enforce and/or automate the entry of
this information.

The classification and search mechanism built by Prieto-Diaz [34] provides a general
solution to the problem of finding reusable software components in a large collection.
However, no support for browsing is provided here either. Additionally, no support for
object-oriented software development is provided. There are a number of other similar
attempts at this sort of traditional software library system as well.

A few other systems have been built that rely on an enclosing custom environment.
For example, Kaiser and Garlan’s work [28] relies upon the fact that all software is written
in Meld, their custom object-oriented language. Some functionality in this area is also
planned in Bertrand Meyer’s Eiffel programming environment [33]. Additionally, the
Demeter system [30], the MOMO environment [16], and the Kaiser/Feiler architecture
based on SMILE [27] provide some integrated solutions in this area. ORT is a standalone
system and makes no assumption about the language or environment used.

8.4 Limitations of the ORT Approach

More specifically, there are inherent limitations to ORT that can not be avoided by

merely continuing development and research along these lines. Such deficiencies are
pointed out below:
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8.5

ORT helps very little without the aid of an editorial committee to monitor the
libraries contents or actually take over the job of (re)writing Class Descriptions.

As does most any attempt involving software libraries, ORT still requires the same
or more effort to program things the first time. In fact, more up-front effort should
usually be placed on software development techniques so that reuse can begin to
occur. More effort should also be expended to continually increase a component’s
reusability, since software is seldom, if ever, perfect.

The keyword-indexing approach of ORT is limited by the lack of constraints on
the vocabulary. Even if an accompanying thesaurus were added to ORT, there will
always be keyword matches that should have happened and did not, as well as
keyword matches that happened and should not hayve.

The definition of the Class Description is not entirely suited for non-object-oriented
software development. In reference to Figure 4-1, it can be seen that many parts of
the Class Description do not apply to (but do not interfere with) the use of ORT to
facilitate the reuse of traditional procedures and functions. These are the “Generic
Parameter” entity, the “Data” entity, and the “inherited from”, “has_parameter”,
and “has_heir” relationships. A function or procedure could be emulated by a Class
and a single Function Feature entity. Some syntactic substitutions would also be
required. The user-interface of ORT would require change and this emulation would
have to be installed before ORT could be adapted to more conventional libraries.

The approach makes little attempt to interpret the information stored in the li-
brary. If ORT were to be extended to directly aid in the process of re-engineering
existing software systems, it seems reasonable to expect the addition of some analy-
sis functionality as well as some higher-level representation for discussing a software
system made up of classes stored in the library.

Benefits of the ORT Approach

In closing, there are a number of benefits ORT provides to those wishing to take

software reuse seriously. The primary benefit of ORT is that it serves as a tool to aid in
producing designs which maximally reuse existing classes. The set of benefits described
and demonstrated in Chapter 6 are also significant:

1. Assistance in Assessing Reusability — Information in the library allows ORT users

to quickly assess characteristics relating to the reusability of a class.

2. Querying Stimulates Design Improvements — Ideas related to a desired concept can

be readily found in query results and may stimulate the user to improve the design.

3. Non-local Browsing — The flexibility of the search capabilities provided by ORT

increase the probability of finding relevant components.
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4.

Identifying Possible Design Modifications —~ The knowledge held by the ORT library
can implicitly suggest standard solutions to well thought-through problems and can
thus improve the set of classes used to construct a system.

Further, there are a number of benefits that are considered second-order or difficult
to demonstrate clearly. They are left for the reader to as a suggestion that ORT may
yield more promise as a practical tool for modern software development environments.

It may be human nature to resist exposing design ideas to others until they seem
well thought-out and complete. By this time, it is often too late to “submit” to
design changes to maximally reuse existing software. However, a designer may be
more effective if he or she can bounce possibly “half-baked” ideas off of ORT and
get feedback with respect to reuse potential while not “loosing face” to a colleague.

ORT can facilitate learning about system architecture and how to build good systems
by providing well-documented examples in its library.

ORT has the capability of becoming a medium in which software engineers can com-
municate and exchange information. This communication is focused tightly on the
individual products of the development process and directed towards maximizing
their quality and minimizing duplicated effort.

ORT provides the ability to collect and organize metrics concerning the design, doc-
umentation, coding, testing, and maintenance activities of a class. These metrics

can be computed and stored in a more structured and automated way than current
practice allows.

The use of ORT does not prohibit the user from also using other important software
development tools. ORT allows the orthogonal integration of a separate source
configuration management system and a separate defect-tracking system, because
a File entity in the model can any file in the same virtual file-system as ORT.

ORT provides a more structured environment to manage the documentation of
classes, including its storage, revision control, perusal, display, and printing.

The task of managing dependencies within different versions of sets of classes, a
cumbersome task in a paper documentation approach, is assisted by ORT.

The usage history of a Class Description can serve as a collection of examples of
how the associated class is used, which can be important to programmers who learn
well by example.

A usage history can also provide the names of programmers that should be con-
tacted in the event of an update due to a “bug-fix” or enhancement. This provides
an incentive to register reuse efforts in the library, as this will allow eventual noti-
fication of relevant changes.
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