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Abstract

We outline a multiprocessor architecture that uses modular arithmetic to im-
plement numerical computation with 900 bits of intermediate precision. A proposed
prototype, to be implemented with off-the-shelf parts, will perform high-precision
arithmetic as fast as some workstations and mini-computers can perform IEEE
double-precision arithmetic. We discuss how the structure of modular arithmetic
conveniently maps into a simple, pipelined multiprocessor architecture. We present
techniques we developed to overcome a few classical drawbacks of modular arith-
metic. Our architecture is suitable to and essential for the study of chaotic dynamical

systems.
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1. Introduction

We have designed and functionally simulated a multiprocessor architecture
which uses modular arithmetic to implement fast, extremely precise arithmetic opera-
tions. The structure of modular arithmetic exhibits immense parallelism, allowing an
implementation of high-precision fixed-point arithmetic that is comparable in speed to
the IEEE double-precision arithmetic (64 bits) provided by some of the floating-point
units in workstations and mini-computers. By implementing multiple fixed-point
number systems on top of a modular number system with 18 moduli ranging from

22 — 1 to 2%, we obtain over 900 bits of intermediate precision.

High-precision computation is essential in numerical studies of chaotic sys-
tems. The behaviour of these systems are extremely sensitive to their initial condi-
tions, rendering numerical simulation with low-precision arithmetic extremely difficult
and frequently useless. Chaos theory, combined with precise numerical simulation,
has been applied in orbital mechanics [Sussman 88|, and work is in progress on using
computation and chaotic phenomena in physical systems. These applications require
tremendous amounts of high-precision computation, which our architecture will ef-
fectively provide. We also believe that this architecture can be adapted to perform

efficient symbolic algebra and cryptography.

The idea of using the modular number system to speed up computer arith-
metic is not new. Extensive work was done in the 60’s to investigate its viability
[Szabo 67]. Even more effort was spent on digital signal processing applications
[Soderstrand 86]. However, owing to difficulties in performing division, sign detec-
tion, and magnitude comparison in this representation, modular arithmetic is seldom

used in general-purpose computer arithmetic.

Our approach of using medium-sized (< 64 hit) binary numbers to support
a 900 bit modular arithmetic system, which in turn implements high-precision fixed-
point arithmetic, allowed us to overcome some of the problems associated with mod-
ular arithmetic. The approximate magnitudes of the 900 bit numbers are tracked
by a conventional floating-point unit. This information can be used to reduce in the
number of normalizations.. The floating-point estimates produce initial guesses for a

Newton-Raphson division routine, and are used in rough magnitude comparisons.
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We start with a brief overview of modular arithmetic and how it is used to

implement efficient fixed-point arithmetic. We discuss how we avoid some intrinsic
pitfalls of modular arithmetic, and how modular arithmetic can be implemented on

pipelined, parallel hardware.

2. Modular Arithmetic

The modular arithmetic system is also known as the residue number system
(RNS). A number is represented by the remainders (digits) formed when it is divided
by a set of pairwise relatively prime numbers (moduli). For example, the integer 1750
is represented in an RNS with moduli {2,3,5,7} by the digits {1,2,2,3}. We refer to

an RNS number as a modnum.

2.1 Modular Arithmetic Operations

An RNS consisting of relatively prime moduli with product M can be used
to represent signed integers [(—M/2),(M/2) — 1].! Three basic arithmetic operations -
add, subtract, and multiply - on modnums can be implemented as digit-wise modular

operations. So, in an RNS with moduli {m(,_1), ..., m1,mo},
|{-"3(n—1), ---,-'El,-’lfo} op {y(n—l);"qyl»yo}lM
where |z|,, denotes z mod m, and op is +, —, and x yields

{lx(n—l) op y(n——l)lm(n-l))'-'a Izl op y1|m1$ |1"0 op yolmo}'

Digit-wise addition or subtraction modulo an RNS modulus (written as &
and ©) is easy because the “carry” is guaranteed to be less than the modulus. The
remainder of result can be computed in at most one more subtraction (called carry-
adjust). So, if 2 and y are mod m,

r+y if 24y < m;

* Om y:{z+y—m ifz+y>m.

Digit-wise modular multiplication (®) requires a full remaindering operation.
Efficient hardware implementation is possible if the moduli are restricted to numbers

of the forms 2¢ + 1, 2#, and 2° — 1. Using the casting out nines algorithm [Knuth 69,

1 As in two’s-complement a negative number X is represented as M + X.
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[ X|2» = X mod 27,
|X|2p_1 = (X mod 217) Dar_1 (X div 2p)’ and
|X|2p+1 = (X mod 2p) Oor41 (X div QP),

involving only bit extraction and simple digit-wise modular operations. Choosing
moduli of these forms also facilitates carry detection in modular addition and sub-

traction.

Therefore, simple modnum operations can be reduced to digit-wise operations
modulo the respective moduli with no information carried between the digits. This
lack of a carry chain eliminates the inherent sequentiality when operating on successive
digits in a weighted number system, allowing full parallelism in digit-wise operations.
Since digit-wise operations may occur concurrently, it is possible to implement, on
parallel hardware, modulo M arithmetic in the time required to perform modulo m
arithmetic. This makes modular arithmetic an attractive platform for implementing

high-precision, long word-length arithmetic on a multiprocessor.

2.2 Modnum Division

Although generalized division in the residue number system is complicated
and ill-defined, the particular case of division by a product of any of the moduli
is possible. When a division has remainder zero, it is equivalent to multiplying the
dividend by the divisor’s multiplicative inverse. Since each modulus is relatively prime
to all the other moduli, its multiplicative inverses modulo each of the other moduli
is defined.? Hence division by a product of moduli may be decomposed into a series
of multiplication of the dividend by the inverses of the divisor’s factors, provided we
guarantee, at each step, that the remainder is zero. For numbers in modular form, the
modnum digit at each modulus predicts the remainder when the modnum is divided
by that modulus. Therefore, to truncate the original dividend or each intermediate
quotient to a multiple of the next divisor modulus, we simply subtract® the entire

number by the value of the modnum digit at the divisor modulus.

Since each of the divisor’s factors has no multiplicative inverse modulo itself,

the quotient we form is in an RNS of only the non-divisor moduli. Unique repre-

2 They can be computed by the Euclid GCD algorithm.
3 We can also round up by adding the additive inverse.
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sentation is still guaranteed because the quotient has reduced range relative to the
dividend. The base extension process [Szabo 67] recovers the missing digits. The

algorithmic structure of this procedure resembles that of division.

Each step in modnum division starts with a modnum subtraction and a
modnum multiplication, and then one of the digits is broadcast to the other digit
positions for the next subtraction. The number of steps is equal to the number
of moduli. Simultaneously, the algorithm yields digits in a weighted, mired-radiz

representation, to allow sign detection and magnitude comparison.

The preceding section was meant merely as a reference for the following
chapters. Complete and vigorous treatments of modular algorithms can be found in

[Szabo 67] and [Knuth 69].

3. Implementing Fixed-point Arithmetic

Modnum additions, subtractions, multiplications, and scaling by products
of moduli are used to implement fixed-point arithmetic. A fixed-point number f is
represented by the modnum n, where n = fR. R is a fixed-point radix chosen to be a
product of moduli. Each “tick” in this representation is &. Multiple radix points can

be supported simultaneously to ensure precise representation over a wide range.

Fixed-point addition (and hence subtraction) is simply

fit fo—= (fi+ f2)(R) =mi+n
and therefore equivalent to a modnum addition. Fixed-point multiplication is

_ (n1 X nz)

2
fixfa—=(Hhx f)(R)=hH sz(%)— )

Division by R “normalizes” the fixed-point number to its previous representation, at
the expense of some precision. Since R is a product of moduli the division can be

done as previously described. In order to hold the quantity (m; x m,) before scaling,

M> fifoR? and so f < l/—;{‘i to prevent overflow.



3.1 Minimizing Normalization Operations

Normalizing after each multiplication is expensive. The number of normaliza-
tions can be reduced by delaying them until necessary. For example, when summing
a series of the form fr = fiifiz + forfor + ... + fa1 fn2 We can choose to sum the inter-
mediate products with the radix temporarily raised to R?. Only one normalization is

needed for the entire multiply-accumulate operation.

A major advantage is that computation proceeds before precision is lost
through normalization. We developed a scheme in which we track the approximate
value of our fixed-point numbers with floating-point numbers (flonums). Whenever we
perform a fixed-point operation, a corresponding flonum operation takes place, albeit
with less precision. An accurate copy of the floating-point approximation can be
constructed using the mixed-radix digits generated when normalizing products. The

flonum’s magnitude can be used to signal the need to normalize and avoid overflow.

Another trick is to pre-scale common factors. For example, if the expression
Y; = X; x K appears within a loop, K may be scaled once outside the loop, eliminating
the need to normalize within each iteration. If the approximate dynamic range and
inherent accuracy of relevant numbers are known, either @ priori or through the

flonum approximation, pre-scaling can be handled with little or no loss in precision.

These optimizations can be statically managed by the programmer. However,
we believe that automated optimization by a compiler is possible [Dally 89]. The
problems of computing with fixed-point numbers were familiar to programmers before
floating-point arithmetic was invented, and most of the solutions developed would

apply here.
3.2 Division, Comparisons, and Sign-detection

With fixed-point addition, subtraction, and multiplication, we can implement
fixed-point division (reciprocals) using the Newton-Raphson approximation method
[AMD 88]. Because this algorithm has quadratic convergence, we only need about
10 iterations to generate a 900 bit reciprocal even if we start with an initial guess
with one or two correct bits. Newton-Raphson approximation for other functions are

equally applicable.



We can quickly compute an approximate answer to the function we are com-
puting by performing floating-point arithmetic on tracking flonums. The answer is
used to index into a precomputed table mapping flonums to modnums. A common

table may be shared for all approximation methods.

The flonum approximation also allows gross magnitude comparisons to be
done. Close calls are resolved by conversion of the modnum to the mixed-radix

notation.

We can efficiently detect positive numbers close to zero. Since we ensure
that our residue representation is non-redundant and that the moduli are pairwise
relatively prime, the only case in which all the digits are equal is when modnum
n < min(my_y,...,m;,mo).* Since this condition can be checked digit-wise, it can be

done in parallel.®

4. The Modnuin Parallel Architecture

A block diagram of the Modnum multiprocessor is shown in Figure 1.

| .
| microcode bus
l address bus
J I
Y 4 ' A4 A4 A4 A4 vV Y N N
. ' .
bperations i bperations bperations Micro _
mod m | mod my mod m Flonum ontroller
|
N node n ' node | 4 node 0 4 trackin / control
¥ I Vv ¥ ) 9 Vv
I .
| communication/data bus

Figure 1: The Modnum Multiprocessor

The architecture specifies a number of digit nodes, each computing digit-wise

4 Proof: It is “obvious” that the digits are in fact equal when m is smaller than the small-
est moduli 1n,,;,, and since each number is uniquely represented and the representation is non-
redundant, it follows that the digits are equal if and only if n < mpyin.

5 Assuming the accumulation of each digit’s boolean result can be done at once, e.g. wire-
ANDed in hardware.



operations of one modulus. They communicate through a synchronous, shared bus.
Each node has modular arithmetic hardware, memory, and a sequencer, which exe-
cutes nanocode that is potentially different on each node. The digit-node sequencer

decodes microcode instructions fed from a central controller. In addition the con-

troller performs address computations and feeds the computed addresses to the digit
nodes. Also sitting on the shared bus is the tracking node — a floating-point unit that
snoops on the controller-supplied micro-instructions, memory addresscs, and bus com-
munication. It has its own nanocode to exercise proper control of its floating-point

hardware.

For the prototype, we will use 18 digit nodes, each with 32-bit datapaths cy-
cled twice to implement 64-bit arithmetic. Our chosen set of moduli ranges from 22°—1
to 2%, These choices can be changed conveniently by redoing field-programmable logic

devices.

4.1 Digit Node

Each node computes with one digit of the modular representation. Each

digit of a modnum is stored on the corresponding node.

| | — 1 . |
< [~ first operation
Low 32 bits
A ; ; T
Memory Register File Fetch |Operation| Carry Urite
Adjust |
I P> /tCarry-scled needed
I ' High 32 bits & Carry-cetect complete
[—-—éé——- Primary Adder Fetch |Operation gg;:Zt Write
> .
Carry-detect Logic (— Second operation Low 32 bits
32-bit Multipli >
1 TuTRiptier ; Fetch |Operation ggjr;ls/t Write J
~ ] [Const ] -
l \ Carry Adder /
! \ Carry-select Hux) .

7/

\ X

Memory Address Communication

Figure 2: The Datapath Pipeline

The datapath pipeline, shown in Figure 2, is optimized to perform modu-

lar addition and subtraction. A new nano-instruction commences every pipestage.
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The instruction and the least-significant 32-bit words (Isw) of the modnum operands
are fetched in the first stage (Fetch). Binary addition on the lsw’s happens during
Operation. The result Isw is compared with the modulus lsw in Carry-detect Logic.
Standard registered PAL’s perform this function while simultaneously latching the
result to maintain the pipeline. The next stage unconditionally generates a carry-
adjusted lsw. Meanwhile the most-significant words of the operands (msw) have been
fetched and have advanced to the Operation stage to yield the raw result msw. The full
carry-detection may then complete, just in time to select whether the raw-result lsw
or the carry-adjusted Isw gets written back to the register file. In the next nanocycle
the correct msw is similarly selected. The pipeline allows a new modnum addition or

subtraction to commence every 2 nanocycles.

A 32-bit CMOS multiplier performs 64-bit multiplication in 7 nanocycles.
The multiplier is connected to the arithmetic datapath (not shown in diagram) so as

to allow a new multiplication to commence every 4 nanocycles.

The entire datapath can be implemented with currently available, stock
TTL and CMOS parts. Standard binary arithmetic units, coupled with a few pro-
grammable logic devices, efficiently perform modular arithmetic. Each pipestage can

comfortably be completed in 80ns with the parts we have chosen.

4.2 Instruction Sequencing

The central controller supplies microcode to cause nanocode routines to be
executed on each node. This approach combines the benefits of SIMD and MIMD
architectures. Different nodes may have different nanocode. For example, the tracking
node runs nanocode that is quite different from that on digit nodes, and we can
program some digit nodes to perform two 32-bit operations with short moduli in the
time it takes other nodes to complete one 64-bit operation. Fixed-point operations
are sequenced as microcode instructions, while the modnum operations implementing
them are programmed in nanocode. Synchronization is ensured either by carefully

generated nanocode sequences of known length or by wired-ANDed status lines.

4.3 Communication

To perform scaling, one selected digit of each step’s result is broadcast to all

other nodes. This is done sequentially on the shared bus. Since ownership of the bus
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is pre-determined by the scaling algorithm, it can be software controlled and requires
no explicit arbitration. The controller can also access memory on a selected node and
grant it ownership of the bus. The tracking node may also own the bus, e.g. when it

has to broadcast a Newton-Raphson initial guess.

5. Performance Estimate

As discussed above, modnum (and hence fixed-point) additions and sub-
tractions can start every two 80ns nanocycles, so the peak execution rate for these
instructions is 61 million operations per second (MOPS). Primitive multiplies (with-
out normalization) start every four nanocycles, to yield 31 MOPS peak. The average
speed of the computer will depend on the number of normalizations required by the

application program and whether operations may be effectively pipelined.

6. Conclusions

We designed a multiprocessor architecture to perform high-precision arith-
metic very efficiently. We used the modular arithmetic representation, and developed
the novel method of floating-point tracking to avoid some of its inherent pitfalls. Our
architecture is suitable for implementation with currently available hardware, and the
resulting system will provide high-precision arithmetic with performance comparable
to common double-precision floating-point systems. Our system has immediate ap-
plications in the study of chaotic syétems. We expect further applications to develop

in symbolic algebra and cryptography.

7. Future and Relevant Work

We plan to have a prototype of this architecture implemented and tested by
September, 1989. At that point we wish to conduct performance measurements on
this architecture. We will continue to work on optimization techniques, and look into

formal studies of roundoff errors in our fixed-point arithmetic.

Although this architecture is expected to deliver satisfactory performance
for our initial applications, its implementation with off-the-shelf parts requires much
hardware. By implementing each digit board (sans memory) in a single VLSI chip, it

may be possible to implement an entire modnum machine on a single printed-circuit
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board. This board will be attractive as nodes in a multiprocessor, or as an accelerator

board for a conventional computer.

The design of this architecture is just a means to an end. The primary goal
of the project is to perform studies on chaotic systems. Not only will this computer be
used to perform detailed numerical studies of chaotic systems, it will also be valuable
for calibrating new simulation techniques using conventional arithmetic, and may

have some impact on the field of numerical analysis.

Number representations using continued fractions (and continued logarithms)
also promise to provide efficient arbitrary-precision arithmetic [Gosper PC]. Most re-
cently [Vuillemin 88] reports some breakthroughs in that area. The Schonage-Strassen
FFT multiplication algorithm is efficient for computing long word-length products.
Its implementation is probably most suited for massively parallel machines (such as
the Connection Machine) and word lengths a few orders of magnitude greater than

those we plan to implement.
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