MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

A.I. Memo 1136 August 1989

Computer Perception of Three-Dimensional
Objects

Thomas Marill

Abstract

We first pose the following problem: To develop a program which takes
line-drawings as input and constructs three-dimensional objects as out-
put; such that the output objects are the same as the ones we see when
we look at the input line-drawing. We then introduce the principle
of minimum standard-deviation of angles (MSDA) and discuss a pro-
gram based on MSDA. We present the results of testing this program
with a variety of line-drawings and show that the program constitutes
a solution to the stated problem over the range of line-drawings tested.
Finally, we relate this work to its historical antecedents in the psycho-
logical and computer-vision literature.

This report describes research done at the Artificial Intelligence Laboratory of the Massachusetts
Institue of Technology. Support for the laboratory’s artificial intelligence research is provided in
part by the Advanced Research Projects Agency of the Department of Defence under Office of
Naval Research contract N00014-85-K-0124.

1. Problem Definition.

1.1 Discussion.

How does a flat image on the retina lead to the perception of three-dimensional
objects? This is one of the central mysteries of vision, and it is the problem that
concerns us here.

We do not propose, however, to deal with retinal images in their full generality
(high-resolution, time-varying, in color). Instead, we note that the phenomenon of
three-dimensional perception holds for a class of very simple images, namely line-
drawings (“a noble class of pictures,” as Sugihara [1] calls them), and we will focus
on this class.

In fact, some studies (e.g., Roberts [2]) that start with inputs more complex
than line-drawings (grey-scale images) reduce these inputs to line-drawings in the
first stage of processing and then proceed to operate on these line-drawings.

To say that we wish to study three-dimensional perception in the context of
line-drawings does not constitute a problem definition, however. What exactly is
the problem to be solved?

We will take the position that what we seek is a program which, given a line-
drawing as input, constructs as output the same three-dimensional objects (if any)
as the ones we see when we look at the drawing.

For example, given the line-drawing in cell A of Figure 1, we would like our
program to construct a three-dimensional staircase object like the one we see; such
that after being rotated 20 degrees, the object produces the image in cell B of
Figure 1. (We present below a program that actually performs this task.)

This formulation places the problem in the province of computer vision (we
seek a machine implementation) but also puts the issue on a psychological basis
(the criterion of correctness is agreement with human vision). It follows that if we
achieve a solution to this problem, we will not be able to prove mathematically that
the solution is correct. (Only mathematical theorems are mathematically provable,
and our desired solution, as we have just formulated it, does not lend itself to being
expressed as a theorem.) We may also not be able to say why the solution works.

For this and other reasons many authors formulate the problem differently.

According to one school of thought, the problem is that of “recovering” the
three-dimensional objects that caused the image. Thus Charniak & McDermott [3]

3

write: “Unlike many problems in Al the vision problem may be stated with reason-
able precision: Given a two-dimensional image, infer the objects that produced it.”
The solution to this “recovery” problem is often felt to be a kind of inverse-optical
process.

There are several reasons we do not follow this recovery formulation. To begin
with, the problem so stated (at least as regards line-drawings and probably also as
regards any other form of visual input) is insoluble. Given any line-drawing there
is an infinite set of three-dimensional objects whose projection (either perspective
or orthographic) is identical to the drawing, and there is no way to know which
member of this set caused the image.

What is done, therefore, by writers who subscribe to the recovery formulation,
is to impose additional constraints until the problem definition becomes narrow
enough to yield results. For example, Huffman [4] and Clowes [5] investigate line-
drawings that are projections of objects in the “trihedral world” (where exactly
three planar surfaces meet at every corner). Mackworth [6] deals with line-drawings
that are correct orthographic projections of opaque polyhedra. Kanade [7] discusses
line-drawings that are projections of “origami world” objects. These authors are
able to obtain mathematical results in their restricted domains. Even in these
domains, however, the results afford only a partial solution, and the problem can
hardly be considered to have been solved. Most line-drawings, furthermore, do not
fall within these restricted domains.

Furthermore, even if we could somehow recover the three-dimensional object
that caused the image, it would not necessarily help: the object recovered might
be different from the object which is perceived when we look at the image. In
such a case the recovered object might well be considered, on intuitive grounds, to
constitute an unsatisfactory solution to the problem.

For example, consider a three-dimensional wire-frame object (call it OBJ ECT-X)
defined by four points and six lines. The points are given by the following Cartesian
coordinates.!

Points:

10ur notation for lists of numbers follows the LISP convention: lists are surrounded by
parentheses and the elements of the list are separated by spaces (no commas). Thus
the Cartesian coordinates of the point (2.3, 4.5) will be written as (2.3 4.5) and a list
consisting of two such points will be written ((2.3 4.5)(2.3 4.5)). This allows lists in the
printed text to agree exactly with inputs to and outputs from our program. In the case
of mathematical formulas we follow the usual mathematical conventions.

A: (-4.33 -1.56 10.0)

B: (1.79 -1.53 200.0)

C: (0.54 2.54 10.0)

D: (-0.14 -0.98 20.0)

The lines are: AB, AC, AD, BC, BD, CD.

The image of OBJECT-X (orthographic projection) is shown in Figure 2.

When we look at Figure 2, we see a tetrahedron with lines AB and AC roughly
equal in length. However, in OBJECT-X, line AB is actually 30 times as long as
line AC. Even if we were able correctly to recover OBJECT-X from the drawing, we
might object to the answer, since the recovered object does not agree with what
we plainly see. And it can reasonably be argued that when the object that caused
the image is different from the object that we see, it is the latter which represents
the desired solution. (If we did not take such a position, our robot systems might
end up seeing a world quite different from the world that we see).

So far we have discussed the “psychological” and the “recovery” schools of
thought. There is yet another school that differs from both of these. It is the
one embodied in the definition of vision given by Ballard & Brown [8]: “Visual
perception is the relation of visual input to previously existing models of the world.”

[Ballard & Brown’s emphasis].

This formulation leads to a well-defined, and, in principle, soluble, problem:
given a set of three-dimensional models and transformations on these models, to
find those particular models and transformations whose projection most closely
approximates the given image.

Many researchers have worked on “model-based vision.” For example, Lowe [9]
derived an iterative solution for the problem as formulated above and demonstrated
the applicability of this solution to simple polyhedral scenes.

It is clear, however, that the formulation in terms of models also leads to cases
in which what the system sees is different from what the human sees. In such a
case, as already discussed, one tends to prefer the human solution.

As a problem definition, the model-based approach has one further difficulty.
While formulating the vision problem in a reasonable way, it does so at the expense
of introducing a new problem that may be even harder to solve than the original
one, namely the problem of model acquisition (learning). As Ballard & Brown (8]
candidly put it, “Learning is missing from the list above [of topics to be discussed).

6

Disappointing as it is, at this writing the problem of learning is so difficult that we
can say very little about it in the domain of vision.”

In summary, then, we have discussed the question of problem definition, and we
have described three schools of thought. The first of these holds that the problem
is to produce the same solution as the human vision system. The second holds
that the task is to recover the object that caused the image. And the third holds
that, given a set of models and transformations, the problem is to find those models
and transformations that project to the image with the least error. We have given
reasons why we subscribe to the first of these.

1.2 Representation of Line-Drawings and Objects.

To be more precise about problem definition we need a formalism for the
representation of line-drawings and objects. The representation we will use for
line-drawings is illustrated in the following example.

LINE-DRAWING-Y
POINTS: ((3.00 7.15) (2.39 -6.27) (5.00 -9.27) (6.29 -3.0))
LINES: ((0 1) (1 2) (3 0))

This is interpreted to mean that LINE-DRAWING-Y consists of four points and
three lines. The four points are expressed as (z,y) Cartesian coordinates. The
lines are expressed as pairs (i,j), meaning that the i-th point is connected by a
straight-line segment to the j-th point (¢,5 = 0,1,2...). Thus the first line in LINE-
DRAWING-Y runs from point 0 (3.00 7.15) to point 1 (2.39 -6.27).

It should be emphasized that a line-drawing, as defined, is an arbitrary col-
lection of points and lines. We do not restrict attention to line-drawings that are
images of certain classes of objects. Our line-drawings, in fact, are not considered
to be images of anything. They are simply viewed as uninterpreted inputs to the
human vision system and to our program.

To each line-drawing expressed in the (“internal”) representation given above,
there is a unique “external” form: the actual lines and points drawn on a sheet of

paper.2 We use this “external” form in our illustrations.?

The way in which we will represent three-dimensional objects is identical to the
way we represent line-drawings except that points in objects have three coordinates
(z,y,z) instead of two. An object so represented agrees with our intuition of a “wire

frame”.4

Thus, OBJECT-X discussed above is formally represented as follows:

OBJECT-X
POINTS: ((-4.33 -1.56 10.0)(1.79 -1.53 200.0)(0.54 2.54 10.0)(-0.14 -0.98 20.0))
LINES: ((0 1) (02) (0 3) (12) (13)(23))

1.3 Problem definition.

In summary, we define our problem to be the following: To develop a program
which takes line-drawings as inputs and generates objects as outputs, where the
line-drawings and objects are represented as specified above; such that, for a given
line-drawing, the ouput agrees with the object that a person sees when he looks at
the line-drawing.

2The converse is not generally true. A given drawing on a sheet of paper may correspond
to several (internal) representations. If we start with an externally represented drawing,
an interpretive step may be needed to generate the internal representation.

3In these illustrations the coordinate axes are understood to be parallel to the edes of
the page; the scale and the location of the origin are not significant.

41t should be understood that an object so represented is explicitly in a particular lo-
cation in space. If we were to apply a rigid-body transformation to the points, the
“object” would change (even though the lengths of the lines and the magnitude of the
angles between the lines would remain invariant). It would be more correct to call
the entity represented an “object-in-a-particular-location”, though this would be too
awkward to be practical.

2. Principles of Operation.

In the present section we discuss the operation of a program (called the CONSTRUCT
program) that takes line-drawings as input and constructs objects as output. Ex-
amples of the operation of CONSTRUCT are presented in Section 3.

2.1 The Concept of Extension.

We will be using the concept of the extension of a line-drawing. By the or-
thographic extension of a line-drawing L we mean the set E of objects (the objects
being represented as discussed above) whose orthographic pro jection is equal to L.
(Similarly, by the perspective extension of a line-drawing L we mean the set E of
objects whose perspective projection is equal to L.) The extension of a line-drawing
is a set with an infinite number of members.

The concept of extension is useful in discussing the construction of objects
from line-drawings and other images.

2.2 The MSDA Principle.

The basic principle underlying the operation of the program is extremely sim-

ple: it is to minimize the standard-deviation of the angles in the constructed object.
We call this the MSDA principle.

Conceptually, we can think of the process as follows. Consider the orthographic
extension of the input line-drawing. For each object in this set determine all of its
(three-dimensional) angles. Attach to each object a figure-of-merit: the standard-
deviation of its angles. Finally, pick that object for which the figure-of-merit is
minimized. (If there is more than one object with minimum figure-of-merit in the
extension, pick any one of them.) This is the output.

2.3 Angles

9

It is necessary to look more closely at what we mean by angle. Consider a
point P in an object (the object being represented as discussed above). P will be
the terminus of n lines (n = 0,1,...). We form all pairs of lines at P and compute
an angle magnitude for each pair. Thus, if there are five lines at P, there will be
ten angles. If n < 2, there are no angles at P.

Suppose l; and l; are two lines at P. The magnitude of the angle between [;
and [; is obtained by first determining the two three-dimensional unit vectors u;
and uj, parallel to [; and lj, and then computing the angle o;; by the formula

aij = cos~1(u; - uj)

2.4 Representing Objects in the Extension of a Line-Drawing

Each object in the extension of the input line-drawing is uniquely determined
by an n-dimensional vector of numbers z : (20y +-+s Ziy -y Zn—1), Where 2; is the z-
coordinate of the i-th point in the object and n is the number of points in the
object.

Given the object, we can obviously write z. We can also go the other way:
given z (and the line-drawing) we can construct the object as follows. To each point
(zi,¥i) in the line-drawing, append the i-th element of z, z;, as the z-coordinate,
thereby forming (2;,yi,). The line-list remains unchanged. The result will be that
object in the extension of the line-drawing that corresponds to z. (This construction
follows from the definition of orthographic projection.)®

2.5 Hill-Climbing

Thus we see that if we are given a line-drawing L, we can represent each object
in the extension of L by a vector z. We can therefore compute the standard-
deviation of the angles (SDA) of the object for each vector z.

What we seek is the object with minimum SDA. We tackle this problem with
a hill-climbing search over the space of z. Such a search represents a heuristic

51t is also true that each object in the perspective extension of the input line-drawing is
uniquely determined by an n-dimensional vector z. However, the mapping from vector
to object is slightly more complicated.

10

approach to the problem; it is not guaranteed to find a global minimum, but may
return an SDA which is only locally minimized. (Furthermore, if there are actually
several vectors in the space with minimum SDA, the procedure will find one at
most.) Thus, hill-climbing is not infallible. (For a discussion of hill-climbing and
its hazard, see Winston [10].)

The input line-drawing is equivalent to the object corresponding to the zero
vector 0; that is, the line-drawing can be thought of as a flat object lying in the x-y
plane and thereby having all z-coordinates equal to zero. The search starts here;
i.e., the original value of the current vector is equal to 0.

At each stage of the search, the SDA of the current vector will have been
computed. The program now looks at the SDA of all the children of the current
vector. These children are all of the vectors one step-size away from the current
vector. If s is the step-size, and if the current vector is z : (20,2151 2n—1), then
the children of the current vector are:

(zo + 8,T1,.0yTn1)
(.’60 — 8,71, ...,xn_l)
(a}o,.’tl + 8, ...,:tn_l)

(zo,z1 — 8y Tn—1)

(20, T1, oy Tn-1 +8)

(20, T1yeeesTne1 — 8)

Each of these 2n children is assigned an SDA, and the child with minimum
SDA is selected as the new current vector (if there is more than one, the first of
these is selected). The process then repeats, until no further improvement in SDA
is obtained. The vector with the smallest SDA of those inspected is the result of
the process.

The above constitutes one “round” of hill-climbing. In the CONSTRUCT pro-
gram, there are three rounds, with step-size si, 32, and s3, where s; > s2 > s3.
Each round begins its search with the result of the preceding round.

The values of the s; have been determined experimentally, and are compiled
into the CONSTRUCT program to be 1, 0.5, and 0.1 respectively.

11

2.6 Performance

The hill-climbing procedure tends to be slow. The CONSTRUCT program, writ-
ten in Common LISP and running on a Symbolics computer, took an average of 30
seconds for the first eight examples of Section 3. (The fastest was 5 seconds and
the slowest was 57 seconds). The last example (Section 3.9, Figure 11) is somewhat
more complex, and took 320 seconds. Clearly, if the MSDA approach is to find
acceptance as a model of real-time vision, a faster technique for computing MSDA
will have to be found.

3. Examples.

3.1 Method of Presenting Examples. Example A. (Figure 3).

In the present section we discuss our method of presenting examples, and we
do so in the context of an actual example (Example A, illustrated in Figure 3).

We start with a line-drawing, which is shown in cell C of Fig 2.

LINE-DRAWING-A

POINTS: ((-2.89 -1.62) (0.57 -1.62) (0.92 2.32) (-2.54 2.32) (-0.92 -2.32) (2.54
-2.32) (2.89 1.62) (-0.57 1.62))

LINES: ((0 1) (12) (23) (30) (45) (56) (67) (74) (04) (15)(26) (37)))

When LINE-DRAWING-A is given to the CONSTRUCT program as input, the
program generates the following object as output:

OUTPUT-OBJECT-A

POINTS: ((-2.89 -1.62 0.0) (0.57 -1.62 2.0) (0.92 2.32 1.4) (-2.54 2.32 -0.6) (-0.92
-2.32 -3.5) (2.54 -2.32 -1.5) (2.89 1.62 -2.1) (-0.57 1.62 -4.1))

LINEs: ((01) (12) (23) (30) (45) (56) (67) (74) (04)(15)(26)(37))

Object rotated - 10 degrees

Object rotated O degrees
Input line-drawing

Object rotated +10 degrees

=

Object created by
CONSTRUCT program

Arbitrary comparison object

Figure 3.

Example A. See Section 3.1

12

13

OUTPUT-OBJECT-A is a cube (to within the precision of the program). A cube
is also the object we see when we look at the line-drawing in cell C of Figure 3.
Hence we say that the program has given the correct answer.

We can also visually determine the correctness of the program output by com-
paring the three cells in the left-hand column of Figure 3, which represent rotated
views of OUTPUT-OBJECT-A.

Cell C in Figure 3 shows the orthographic projection of OUTPUT-OBJECT-A
(rotated 0 degrees). This projection is identical to the input line-drawing, a fact
that follows directly from the principle of operation of the CONSTRUCT program
(see Section 2).

Figure 3 cell A is the orthographic projection of OUTPUT-OBJECT-A after this
object has been rotated -10 degrees.® Figure 3 cell E is the projection of OUTPUT-
OBJECT-A after this object has been rotated +10 degrees.

The object we see when we look at the drawings in cells A and E is the same
object as the one we see when we look at C (only rotated). This gives us confidence
that the program has produced the correct output object. Experience has shown
that an incorrect output is quickly detected visually by comparing C with A and
E.

This point is brought home to us when we look at the three cells in the right-
hand column of Figure 3. Since the human vision system is so extraordinarily good
at forming three-dimensional objects from line-drawings, it is hard for us to keep in
mind that there are other objects than the cube that also have C as their image. To
remind us of this point, we construct an arbitrary comparison object that projects
to the same line-drawing. The object is’

COMPARISON-OBJECT-A

POINTS: ((-2.89 -1.62 0.0) (0.57 -1.62 -2.0) (0.92 2.32 4.0) (-2.54 2.32 -6.0)
(-0.92 -2.32 8.0) (2.54 -2.32 -10.0) (2.89 1.62 12.0) (-0.57 1.62 -14.0))

LINES: ((01) (1 2) (23) (30) (45) (56) (67) (74) (04) (15)(26) (37)))

8Rotation is around a vertical axis through the center of the object. The center is at point
(TcyYe, 2c), where z¢ is the average z-coordinate of the object-points, yc the average
y-coordinate, and z. the average z-coordinate.

"Note that the output object and the comparison object differ only in their z-coordinates.
This is a consequence of the fact that they both have the same orthographic pro jection,
namely the input line-drawing.

Object rotated - 10 degrees

Object rotated O degrees
Input line-drawing

D

Object rotated +10 degrees

\/
/\

Object created by

CONSTRUCT program

Arbitrary comparison object

Figure 4.

Example B. See Section 3.2

14

15

The comparison object is shown in cell D and its rotations are shown in cells B
and F. If the CONSTRUCT program had generated COMPARISON-OBJECT-A instead
of OBJECT-A, the error would have been easy to detect visually.®

It is sometimes instructive to look at the angles, the standard-deviation of the
angles (SDA), and the line-lengths of the constructed object and of the comparison
object. These are given in the Appendix for the present example and all subsequent
examples.

To review: The three illustrations in the left-hand column (cells A, C, E)
represent three views of the three-dimensional object generated by the program.
The three illustrations in the right-hand column (cells B, D, F) represent three
views of an arbitrary three-dimensional comparison-object. Both objects have the
same orthographic projection (before rotation). This projection is shown in cells C
and D, and also constitutes the input to the CONSTRUCT program.

The object constructed by the program agrees with what we perceive when we
look at the input line-drawing.

3.2 Example B. (Figure 4).
The following input line-drawing is illustrated in Figure 4 cell C.
LINE-DRAWING-B

POINTS: ((-3.43 -1.01) (1.06 4.63) (-2.4 4.63) (-1.55 -2.38) (1.91 -2.38) (2.94
3.26) (-0.53 3.26))

LINES: (1 2) (2 0) (3 4) (4 5) (56) (6 3) (03) (15)(26))

The output from the program is as follows, and is illustrated in the left-hand
column of Figure 4.

OUTPUT-OBJECT-B

8There is still another technique for examining the output ob ject visually. This technique,
which is available to the experimenter but not to the reader of this paper, is to look
at a “movie” formed by a rapid sequence of images of the object as the object rotates
around its center.

Object rotated - 10 degrees

Object rotated 0 degrees
Input line-drawing

Object rotated +10 degrees

Object created by
CONSTRUCT program

Arbitrary comparison object

Figure 5.

Example C. See Section 3.3

16

17

POINTS: ((-3.43 -1.01 0.0) (1.06 4.63 0.2) (-2.4 4.63-1.9) (-1.55-2.38 -3.0) (1.91
2.38 -0.9) (2.94 3.26 -2.8) (-0.53 3.26 -4.9))

LINES: ((12) (20) (34)(45) (5 6) (6 3) (0 3) (1 5) (26))

This is a fairly strange object. It can be thought of (among other things) as a
rectangular prism with certain lines missing.®

We can determine the correctness of the output by looking at the left column
in Figure 4 (cells A, C, and E).

The comparison object is:

COMPARISON-OBJECT-B

POINTS: ((-3.43 -1.01 0.0) (1.06 4.63 -2.0) (-2.4 4.63 4.0) (-1.55 -2.38 -6.0) (1.91
-2.38 8.0) (2.94 3.26 -10.0) (-0.53 3.26 12.0))

LINES: ((1 2) (20) (34) (4 5) (56) (63) (03)(15)(26))

This comparison object is illustrated in the right-hand column of Figure 4.

3.3 Example C. (Figure 5).

In the two preceding examples the angles of the output object were right angles.
In the present example, illustrated in Figure 5, the program constructs an object
none of whose angles are right angles.

LINE-DRAWING-C
POINTS: ((0.0 0.0) (4.0 0.0) (2.0 3.46) (2.0 1.15))
LINES: ((01) (02)(03)(12)(1 3)(23))

The output object is a regular tetrahedron (which is also what we see when
we look at Figure 5 cell C:

9The lines that are missing are the ones that would fail to project to the image if the
object consisted of opaque surfaces. The object may therefore be thought of as having
hidden lines eliminated.

Object rotated - 10 degrees

Object rotated O degrees
Input line-drawing

Object rotated +10 degrees

|
\

Object created by
CONSTRUCT program

Arbitrary comparison object

Figure 6.

Example D. See Section 3.4

18

19

OUTPUT-OBJECT-C
POINTS: ((0.0 0.0 0.0) (4.0 0.0 0.0) (2.0 3.46 0.0) (2.0 1.15 -3.3))
LINES: ((0 1) (02) (03) (12)(13)(23))

The comparison-object is:

COMPARISON-OBJECT-C
POINTS: ((0.0 0.0 -10.0) (4.0 0.0 10.0) (2.0 3.46 20.0) (2.0 1.15 30.0))
LINES: ((0 1) (02) (0 3) (12) (13)(23))

3.4 Example D. (Figure 6).

In the previous examples, the angles of the constructed object were equal. In
the present example, illustrated in Figure 6, the program constructs an object with
unequal angles. '

LINE-DRAWING-D
POINTS: ((-4.33 -1.56) (1.79 -1.53) (0.54 2.54) (-0.14 -0.98))
LINES: ((0 1) (0 2) (0 3) (12) (13) (2 3)))

The output object is:

OUTPUT-OBJECT-D
POINTS: ((-4.33 -1.56 0.0) (1.79 -1.53 1.0) (0.54 2.54 -0.4) (-0.14 -0.98 -4.4))
LINES: ((0 1) (0 2) (03) (12) (13)(23))

The comparison-object is:

COMPARISON-OBJECT-D
POINTS: ((-4.33 -1.56 10.0) (1.79 -1.53 30.0) (0.54 2.54 40.0) (-0.14 -0.98 50.0))

Object rotated - 10 degrees

Object rotated O degrees
Input line-drawing

20

Object rotated +10 degrees

Object created by

CONSTRUCT program Arbitrary comparison object

Figure 7.

Example E. See Section 3.5

21

LINES: ((01) (02) (03)(12) (1 3) (23))

3.5 Example E. (Figure 7).

In the previous examples, the constructed objects were polyhedra (possibly
with “hidden lines eliminated”). In the present example, illustrated in Figure 7,
the program constructs an object which is not a polyhedron.

LINE-DRAWING-E

POINTS: ((-0.67 1.5) (3.67 1.07) (1.67 0.47) (-2.67 0.9) (-0.67 -0.47) (3.67 -0.9)
(1.67 -1.5) (-2.67 -1.07))

LINES: ((0 1) (12) (23) (30) (04) (15)(26) (3 7))

The output object is:

OUTPUT-OBJECT-E
POINTS: ((-0.67 1.5 0.0) (3.67 1.07 -2.7) (1.67 0.47 -5.7) (-2.67 0.9 -3.1) (-0.67
-0.47 0.4) (3.67 -0.9 -2.3) (1.67 -1.5 -5.3) (-2.67 -1.07 -2.7))

LINES: ((0 1) (12) (23) (30) (04) (15)(26) (3 7))

The comparison-object is:

COMPARISON-OBJECT-E

POINTS: ((-0.67 1.5 20.0) (3.67 1.07 0.0) (1.67 0.47 20.0) (-2.67 0.9 0.0) (-0.67
-0.47 0.0) (3.67 -0.9 5.0) (1.67 -1.5 -10.0) (-2.67 -1.07 8.0))

LINES: ((0 1) (12) (23) (30) (04) (15)(26)(37))

3.6 Example F. (Figure 8).

The present example is illustrated in Figure 8. The constructed object is a

truncated pyramid.

Object rotated - 10 degrees

Object rotated 0 degrees
Input line-drawing

Object rotated +10 degrees

Object created by
CONSTRUCT program

Arbitrary comparison object

Figure 8.

Example F. See Section 3.6

22

23

LINE-DRAWING-F

POINTS: ((-2.41 -3.41) (-0.41 -1.41) (3.0 -2.0) (1.0 -4.0) (-1.65 0.35) (-0.65 1.35)
(1.06 1.06) (0.06 0.06))

LINES: (0 1) (12) (23) (30) (45) (56) (67) (74) (04)(15)(26) (37)

The output object is:

OUTPUT-OBJECT-F

POINTS: ((-2.41 -3.41 0.0) (-0.41 -1.41 -2.3) (3.0 -2.0 -0.5) (1.0 -4.0 1.7) (-1.65
0.35 2.3) (-0.65 1.35 0.8) (1.06 1.06 1.9) (0.06 0.06 3.3))

LINEs: (01) (12) (23) (30) (45)(56) (67)(74) (04)(15)(26)(37)

The comparison-object is:

COMPARISON-OBJECT-F

POINTS: ((-2.41 -3.41 0.0) (-0.41 -1.41 -1.0) (3.0 -2.0 2.0) (1.0 -4.0-3.0) (-1.65
0.35 4.0) (-0.65 1.35 -5.0) (1.06 1.06 6.0) (0.06 0.06 -7.0))

LINEs: (0 1) (12) (23) (30) (45) (56) (67) (74)(04)(15)(26) (37)

3.7 Example G. (Figure 9).

The line-drawing used in this example (figure 9) is taken from Kanade [11]. It
is the image of an “origami-world” object and appears to be a perspective. It is an
interesting object in that the line-labelling schemes of Huffman [4] and Clowes [5]
will reject this drawing as being the image of an “mpossible object.”1°

LINE-DRAWING-G

10 A5 already mentioned (footnote 2), a given drawing on a sheet of paper may correspond
to several internal representations. In the present example there is a T-junction at point
4. This could be represented as three lines. Alternatively, following Roberts [2], one
can use the heuristic that collinear lines at a point are merged into one line, yielding a
single line at point 4. This is the approach taken here.

Object rotated - 10 degrees

Object rotated 0 degrees
Input line-drawing

Object rotated +10 degrees

Object created by
CONSTRUCT program

Arbitrary comparison object

24

Figure 9.

Example G. See Section 3.7

25

POINTS: ((-2.67 -0.47) (0.8 -2.47) (0.8 1.07) (-2.67 2.67) (2.33 1.55) (4.7 -0.7)
(4.7 2.33) (2.33 3.7))

LINES: ((03) (01) (12)(23)(15)(56)(26)(37) (7 4) (7 6))
The output object is:

OUTPUT-OBJECT-G

POINTS: ((-2.67 -0.47 0.0) (0.8 -2.47 -3.8) (0.8 1.07 -5.4) (-2.67 2.67 -1.5) (2.33
1.55 2.1) (4.7 -0.7 -0.9) (4.7 2.33 -2.3) (2.33 3.7 1.3))

LINES: ((03)(01)(12)(23)(15)(56)(26)(37) (7 4) (76))
The comparison-object is:

COMPARISON-OBJECT-G

POINTS: ((-2.67 -0.47 14.0) (0.8 -2.47 -2.0) (0.8 1.07 4.0) (-2.67 2.67 -6.0) (2.33
1.55 8.0) (4.7 -0.7 -10.0) (4.7 2.33 12.0) (2.33 3.7 -14.0))

LINES: ((0 3) (01) (1 2) (23) (15) (56) (26) (37)(74)(76))

3.8 Example H. (Figure 10).

In the preceding examples, each point in the line-drawing represented the ter-
minus of one, two, or three lines. Thus at each point in the constructed object
there were zero, one, or three angles. In the present examples there are four or five
lines at each point, hence six or ten angles. The constructed object has a total of
52 angles of a variety of sizes.

The example is illustrated in Figure 10.

LINE-DRAWING-H

POINTS: ((-2.51 -0.59 0.0) (0.9 1.03 0.0) (2.51 0.59 0.0) (-0.9 -1.03 0.0) (0.93
-2.57 0.0) (-0.93 2.57 0.0))

LINES: ((12) (23) (01) (03) (40) (41)(42) (43)(50)(51)(52) (583) (0

Object rotated - 10 degrees

Object rotated O degrees
Input line-drawing

Object rotated +10 degrees

26

Object created by
CONSTRUCT program

Arbitrary comparison object

Figure 10.

Example H. See Section 3.8

27

2)(13))

The output object is:

OUTPUT-OBJECT-H

POINTS: ((-2.51 -0.59 0.0) (0.9 1.03 -1.3) (2.51 0.59 2.1) (-0.9 -1.03 3.4) (0.93
-2.57 0.1) (-0.93 2.57 2.0))

LINES: (12) (23) (01) (03) (40) (41) (42)(43)(50) (51) (52) (53) (0
2) (13))

The comparison-object is:

COMPARISON-OBJECT-H

POINTS: ((-2.51 -0.59 25.0) (0.9 1.03 -25.0) (2.51 0.59 0.0) (-0.9 -1.03 25.0) (0.93
-2.57 0.0) (-0.93 2.57 0.0))

LiNEs: ((12) (23) (01)(03) (40)(41) (42) (43)(50)(51) (52) (53) (0
2) (13))

3.9 Example 1. (Figure 11).

The object constructed in the present example is somewhat more complex:
it has 39 angles, 21 lines, and represents a concave polyhedron with hidden lines
eliminated.

The example is illustrated in Figure 11.

LINE-DRAWING-1

POINTS: ((-2.4 -1.45) (0.14 2.07) (-0.71 1.71) (-0.71 0.9) (-1.56 0.54) (-1.56 -
0.28) (-2.4 -0.63) (0.78 -2.79) (3.32 -1.72) (3.32 0.73) (247 0.37) (247 -0.45) (1.63
-0.8) (1.63 -1.62) (0.78 -1.98))

LINES: (1 2) (2 3) (3 4) (4 5) (56) (6 0) (78) (89) (910) (10 11) (11 12) (12
13) (13 14) (14 7) (0 7) (1 9) (2 10) (3 11) (4 12) (5 13) (6 14))

Object rotated - 10 degrees

Object rotated 0 degrees
Input line-drawing

Object rotated +10 degrees

Object created by
CONSTRUCT program

Arbitrary comparison object

Figure 11.

Example 1. See Section 3.9

28

29

The output object is:

OUTPUT-OBJECT-I

POINTS: ((-2.4 -1.45 0.0) (0.14 2.07 1.3) (-0.71 1.71 0.3) (-0.71 0.9 0.7) (-1.56
0.54 -0.2) (-1.56 -0.28 0.3) (-2.4 -0.63 -0.5) (0.78 -2.79 -2.1) (3.32 -1.72 0.3) (3.32
0.73 -0.9) (2.47 0.37 -1.8) (2.47 -0.45 -1.3) (1.63 -0.8 -2.1) (1.63 -1.62 -1.6) (0.78
-1.98 -2.5))

LINEs: (1 2) (2 3) (34) (4 5) (5 6) (6 0) (7 8) (89) (910) (1011) (11 12) (12
13) (13 14) (14 7) (0 7) (1 9) (2 10) (3 11) (4 12) (5 18) (6 14))

The comparison-object is:

COMPARISON-OBJECT-1

POINTS: ((-2.4 -1.45 16.0) (0.14 2.07 -14.0) (-0.71 1.7 12.0) (-0.71 0.9 -10.0)
(-1.56 0.54 8.0) (-1.56 -0.28 -6.0) (-2.4 -0.63 4.0) (0.78 -2.79 -2.0) (3.32 -1.72 1.0)
(3.32 0.73 -3.0) (247 0.37 5.0) (2.47 -0.45 -7.0) (1.63 0.8 9.0) (1.63 -1.62 -11.0)
(0.78 -1.98 13.0))

LINES: ((12) (23) (34) (45) (56) (60) (78) (89) (9 10) (1011) (11 12) (12
13) (13 14) (14 7) (0 7) (1 9) (2 10) (3 11) (4 12) (5 13) (6 14))

4. Related Work.

There is a large literature dealing with line-drawings (see Sugihara [1] for an excel-
lent bibliography). This literature contains many outstanding contributions, some
of which have been referred to above. It would be impossible for us to review this
body of work here. It would also be inapproriate, since many of the papers differ
greatly in general approach and problem definition from our own work. In the
present section we wish to mention and discuss briefly those papers (known to us)
that relate directly to our approach.

The historical antecedents of our approach go back to the Gestalt psycholo-
gists (Koffka, Kohler and Wertheimer). According to this school of thought, there

30

are global “principles of organization” that explain the nature of psychological pro-
cesses, including vision. The most famous such principle is the law of Pragnanz,
which holds that “psychological organization will always be as ‘good’ as the pre-
vailing conditions allow.” (Koffka [12]).

More recently, Attneave & Frost [13] have reinterpreted Prignanz as “mini-
mum complexity”, and have performed psychological experiments dealing with the
question of whether the perception of line-drawings of parallelepipeds could be un-
derstood in terms of a system that “minimizes diversity in angles, lengths and
slopes.”

More recently yet, Brady & Yuille [14] have discussed the use of “extremum
principles” in establishing three-dimensional shape. These authors prove a mathe-
matical theorem which (in our terms) can be expressed as follows:

Start with a drawing of an ellipse; consider the orthographic extension!! of this
drawing; from among the members of the extension, restrict attention to those that
are planar (this is the “planarity assumption”); from among these planar objects,
select those that satisfy the authors’ extremum principle, which is to maximize
the ratio of the area to the square of the perimeter; the resulting objects are then
circles.

As a shorthand, the authors say that their extremum principle “interprets
ellipses as slanted circles” (under the planarity assumption).

The authors relate this mathematical result to the vision field with the state-
ment that “ellipses are normally perceived as slanted circles.” However, this state-
ment is unsupported, and is open to question. (It would seem at least equally
plausible to say that ellipses are normally perceived as ellipses.)

Brady & Yuille also show that their extremum principle interprets a parallel-
ogram as a slanted square and a triangle as a slanted equilateral triangle.

Also related is the work of Barnard [15], who shows that a triangle line-drawing
can be mathematically “interpreted” as a slanted equilateral triangle under the
assumption of equi-angularity.

To relate these workers’ results to our approach, we performed the following
experiments.

We input a parallelogram to the CONSTRUCT program:

11 A5 defined in Section 2.1 above

Object rotated - 10 degrees

Object rotated O degrees
Input line-drawing

Object rotated +10 degrees

Object created by
CONSTRUCT program

Arbitrary comparison object

31

Figure 12.

Parallelogram used in experiment with CONSTRUCT

32

PARALLELOGRAM-LINE-DRAWING
POINTS: ((-2.75 -0.93) (2.45 -0.93) (4.75 2.93) (-0.45 2.93))
LINEs: ((0 1) (12) (23)(30))

This line-drawing is shown in Figure 12 cell C. It has the following properties:

LINE-LENGTHS: (5.2 4.49 5.2 4.49)
ANGLES: (59.2 120.8 59.2 120.8)
SDA: 30.80

The program produced the following output:

OBJECT-FROM-PARALLELOGRAM-LINE-DRAWING

POINTS: ((-2.75 -0.93 0.0) (2.45 -0.93 2.9) (4.75 2.93 -1.2) (-0.45 2.93 -4.1))
LINES: ((0 1) (12) (23) (30))

ANGLES: (89.94 90.06 89.94 90.06)

SDA: 0.06

LINE-LENGTHS: (5.95 6.08 5.95 6.08)

It will be seen that OBJECT-FROM-PARALLELOGRAM-LINE-DRAWING is a slant-

ed square (to within the accuracy of the program). Note that this experimental
result was obtained without the planarity assumption. Note also that it would have
been possible for the program to generate a non-planar object, as demonstrated by
the following comparison object illustrated in the right-hand column of Figure 12.

COMPARISON-OBJECT-FOR-PARALLELOGRAM:

POINTS: ((-2.75 -0.93 0.0) (2.45 -0.93 5.0) (4.75 2.93 -25.0) (-0.45 2.93 10.0))
LINES: ((0 1)(1 2)(2 3)(3 0))

ANGLES:(38.37 50.88 8.51 29.31)

SDA: 15.46

LINE-LENGTHS: (7.21 30.33 35.38 10.96)

33

As a second experiment we input the following triangle into the CONSTRUCT
program:

TRIANGLE-LINE-DRAWING
POINTS: ((0.0 0.0) (4.0 0.0) (0.0 4.0))
LINES: ((0 1)(1 2)(0 2))

This line-drawing is a right triangle.

The output was the following:
OBJECT-FROM-TRIANGLE-LINE-DRAWING:
POINTS: ((0.0 0.0 0.0) (4.0 0.0 4.0) (0.0 4.0 4.0))
LINES: ((0 1)(1 2)(0 2))

ANGLES: (60.0 60.0 60.0)

SDA: 0.0

LINE-LENGTHS: (5.66 5.66 5.66)

It will be seen that OBJECT-FROM-TRIANGLE-LINE-DRAWING is a slanted equi-
lateral triangle.

Thus in these experiments the CONSTRUCT program, and hence the MSDA
principle, generated the same output as the principles of Brady& Yuille and of
Barnard.

5. Why does MSDA work?

None of the above sheds light, however, on the question of why MSDA works as well
as it does. We can speculate that by minimizing the standard-deviation of angles in
the constructed object we are minimizing some quantity of fundamental importance
to the human vision system: perhaps the number of bits used to represent the
object. However, there is no evidence to support such speculation. For the moment,
the question remains open. Further investigations into the nature of human vision
may provide the answer.

34

Acknowledgments.

I would like to thank Rodney Brooks, with whom I had many discussions, all of
them illuminating; Boris Katz, who managed, through magic, to eliminate the more
egregious flaws from the program; and Tomds Lozano-Pérez, who read an early draft
and provided insightful comments.

References.

[1] K. Sugihara, Machine Interpretation of Line Drawings. Cambridge, Mass.: MIT
Press (1986).

[2] L. G. Roberts, “Machine perception of three-dimensional solids.” In Tippett et
al. (Eds.), Optical and Electro- Optical Information Processing. Cambridge, Mass.:
MIT Press (1965).

[3] E. Charniak & D. McDermott, Introduction to Artificial Intelligence, Reading,
Mass.: Addison-Wesley (1985).

[4) D.A. Huffman, “Impossible objects as nonsense sentences.” In B. Meltzer & D.
Michie (Eds.), Machine Intell. 6 (1971).

[5] M. B. Clowes, “On seeing things.” Artif. Intell. 2 79-116 (1971).

[6] A. K. Mackworth, “Interpreting pictures of polyhedral scenes,” Artif. Intell,, 4,
121-137 (1973).

[7] T. Kanade, “A theory of origami world.” Artif. Intell. 13 279-311 (1980).

(8] D.H. Ballard & C. M. Brown, Computer Vision. Englewood Cliffs, N.J.: Pren-
tice-Hall (1982)

[9] D. G. Lowe, “Three-dimensional object recognition from single two-dimensional
images,” Artif. Intell., 31, 355-395 (1987).

[10] P. H. Winston, Artificial Intelligence. Second edition, Reading, Mass.: Ad-
dison-Wesley (1984).

[11] T. Kanade, “Recovery of the 3-D shape of an object from a single view,” Artif.
Intell. 17, 409-460 (1981).

[12] K. Koffka, Principles of Gestalt Psychology. N.Y.: Harcout Brace (1935).

[13] F. Attneave & R. Frost, “The determination of perceived tridimensional orien-

35

tation by minimum criteria,” Perception and Psych. 6 391-396 (1969)

[14] M. Brady & A. Yuille, “An extremum principle for shape from contour.” Al
Memo 711, MIT Artificial Intelligence Lab. (June 1983).

[15] S. T. Barnard, “Interpreting perspective images,” Artif. Intell. 21, 435-462
(1983).

Appendix: Supplementary Information for Examples.

In this appendix we give the angles, the SDA, and the line-lengths for each
object constructed in the examples and each comparison object.

Example A. (Figure 3).
OUTPUT-OBJECT-A

ANGLES: (89.83 90.63 90.0 89.83 89.37 90.0 89.37 90.17 90.0 90.17 90.63 90.0
90.17 89.37 90.0 90.17 90.63 90.0 90.63 89.83 90.0 89.83 89.37 90.0)

SDA: 0.38
LINE-LENGTHS: (4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.08 4.08 4.08 4.08)

COMPARISON-OBJECT-A

ANGLES: (147.35 106.08 62.68 147.35 133.63 67.91 172.v75 140.62 36.39 140.62
146.72 39.38 15.63 25.18 14.3 15.63 5.73 15.42 7.69 19.78 12.04 19.78 21.87 13.09)

SDA: 58.05
LINE-LENGTHS: (4.0 7.19 10.58 7.19 18.33 22.35 26.23 22.35 8.27 8.27 8.27 8.27)

Example B. (Figure 4).

OUTPUT-OBJECT-B

ANGLES: (90.23 90.8 89.77 89.2 88.97 89.77 90.8 91.03 88.97 89.2 90.23 91.03
90.23 90.8 88.97)

SDA: 0.77

36

LINE-LENGTHS: (4.05 6.04 4.05 6.04 4.05 6.04 3.8 3.8 3.8)

COMPARISON-OBJECT-B

ANGLES: (131.45 160.73 116.74 135.97 65.04 20.61 33.38 20.28 24.22 10.26 28.6
18.19 28.6 23.94 21.09)

SDA: 50.43
LINE-LENGTHS: (6.93 6.99 14.42 18.89 22.27 18.89 6.43 8.33 8.33)

Example C. (Figure 5).

OUTPUT-OBJECT-C

ANGLES:(60.2 60.2 60.0 60.2 60.2 60.0 60.2 60.2 60.0 59.54 59.54 59.54)
SDA: 0.27
LINE-LENGTHS: (4.0 4.0 4.03 4.0 4.03 4.03)

COMPARISON-OBJECT-C

ANGLES: (5.13 8.51 9.94 16.46 162.75 150.93 146.3 160.05 19.09 17.25 14.98
8.89)

SDA: 67.38
LINE-LENGTHS: (20.4 30.27 40.07 10.77 20.13 10.26)

Example D. (Figure 6).

OUTPUT-OBJECT-D

ANGLES: (50.95 55.88 41.75 61.84 61.18 71.28 70.85 61.84 66.98 47.31 67.23
62.94)

SDA: 8.92
LINE-LENGTHS: (6.2 6.38 6.1 4.48 5.76 5.37)

37

COMPARISON-OBJECT-D

ANGLES: (7.69 11.19 10.89 20.45 157.37 147.89 138.5 150.0 21.25 20.93 22.33
11.48)

SDA: 62.82
LINE-LENGTHS: (20.91 30.67 40.22 10.87 20.1 10.62)

Example E. (Figure 7).

OUTPUT-OBJECT-E

ANGLES: (90.4 91.26 90.11 90.11 88.74 89.08 88.97 89.89 91.83 89.6 91.03 88.97)
SDA: 0.95

LINE-LENGTHS: (5.12 3.66 5.07 3.74 2.01 2.01 2.01 2.01)

COMPARISON-OBJECT-E

ANGLES: (6.78 12.84 18.01 20.61 25.71 7.25 13.09 8.11 18.01 16.46 17.45 7.25)
SDA: 5.84

LINE-LENGTHS: (20.47 20.11 20.47 20.11 20.1 5.37 30.06 8.24)

Example F. (Figure 8).

OUTPUT-OBJECT-F

ANGLES: (75.52 76.64 82.88 78.76 82.18 96.14 78.76 76.05 83.05 80.44 80.21
97.99 106.26 96.78 91.2 104.95 104.24 86.79 105.01 100.14 91.78 97.7 95.68 90.23)

SDA: 10.11
LINE-LENGTHS: (3.65 3.9 3.58 3.86 2.06 2.05 1.99 2.0 4.48 4.16 4.35 4.46)

COMPARISON-OBJECT-F

ANGLES: (117.13 72.24 50.95 130.24 128.39 101.13 135.81 08.34 38.28 104.0
114.52 69.21 44.85 51.54 8.11 33.49 29.66 15.85 41.15 48.55 7.25 50.13 49.68 13.59)

38

SDA: 40.38
LINE-LENGTHS: (3.0 4.58 5.74 4.58 9.11 11.14 13.08 11.14 5.55 4.87 5.4 5.78)

Example G. (figure 9)

OUTPUT-OBJECT-G

ANGLES: (91.72 85.35 87.94 87.31 88.85 88.57 88.45 81.37 87.25 92.46 94.3 99.03
86.62 91.72 89.66 90.8 90.11)

SDA: 3.76
LINE-LENGTHS: (3.48 5.52 3.88 5.46 5.17 3.34 5.14 5.82 2.29 4.52)

COMPARISON-OBJECT-G

ANGLES: (19.95 131.3 157.22 26.23 161.99 146.93 43.2 129.27 148.21 18.92 32.11
23.51 12.04 25.71 5.73 37.25 31.79)

SDA: 58.72
LINE-LENGTHS:(20.24 16.49 6.97 10.71 9.07 22.21 8.99 9.49 22.1 26.14)

Example H (Figure 10).

OUTPUT-OBJECT-H

ANGLES: (45.49 46.61 45.73 42.86 92.12 58.87 60.79 63.19 57.93 88.57 45.17
48.39 44.19 47.23 93.55 60.33 60.66 60.86 63.96 91.43 46.61 45.49 42.86 45.73 92.12
57.93 63.19 60.79 58.87 88.57 48.39 45.17 47.23 44.19 93.55 63.96 60.86 60.66 60.33
91.43 58.87 86.45 56.15 57.18 87.88 61.18 61.18 86.45 57.18 56.15 87.88 58.87)

SDA: 16.39

LINE-LENGTHS: (3.79 3.99 3.99 3.79 3.98 3.86 4.05 4.07 4.05 4.07 3.98 3.86 5.57
5.44)

COMPARISON-OBJECT-H

39

ANGLES: (8.89 8.11 79.75 7.69 12.31 88.45 5.13 81.26 7.25 86.73 6.28 6.28 2.56
5.73 12.58 5.13 9.25 7.69 8.11 7.69 81.49 82.59 3.62 164.8 93.27 85.12 86.27 83.22
89.26 168.24 6.28 6.28 91.38 5.73 12.58 87.76 8.89 94.99 8.11 96.49 88.74 167.42 3.62
82.7 89.48 165.02 85.87 167.42 3.62 84.61 89.54 169.42)

SDA: 54.47

LINE-LENGTHS: (25.06 25.28 50.14 1.68 25.31 25.26 3.53 25.11 25.25 25.11 3.98
25.26 25.53 50.07)

Example 1. (Figure 11).

OUTPUT-OBJECT-I

ANGLES: (90.69 90.17 85.99 88.8 85.01 94.65 94.7 86.67 87.76 84.26 82.65 98.34
92.24 84.72 88.57 82.7 84.72 85.99 96.26 91.43 88.57 87.42 93.33 93.33 90.69 93.61
82.65 82.7 88.57 84.72 92.24 98.34 84.72 84.26 87.76 82.65 94.7 94.65 86.67)

SDA: 4.57

LINE-LENGTHS: (1.36 0.91 1.29 0.96 1.22 0.96 3.66 2.73 1.29 0.96 1.22 0.96 1.29
0.91 4.04 4.1 4.04 3.99 3.94 3.94 3.99)

COMPARISON-OBJECT-1

ANGLES: (12.84 18.92 25.44 24.91 3.62 51.1 49.91 4.44 104.83 104.06 5.13 148.87
146.51 7.25 19.78 155.09 174.87 9.94 50.73 41.5 60.66 157.52 151.04 29.42 154.96
157.82 8.89 128.61 129.35 5.73 74.75 76.17 4.44 33.18 33.8 3.62 22.33 22.63 4.44)

SDA: 57.95

LINE-LENGTHS: (26.02 22.02 18.02 14.02 10.04 12.03 4.08 4.69 8.05 12.03 16.03
20.02 24.02 15.02 18.33 11.53 7.81 4.58 3.6 6.08 9.64)

CS-TR Scanning Project ;
Document Control Form Date: | /19 195

Report# AN - 1)3€

Each of the following should be identified by a checkmark:
Originating Department:

K,Artiﬁcial Intellegence Laboratory (Al)
[0 Laboratory for Computer Science (LCS)

Document Type:

O] Technical Report (TR) 1%, Technical Memo (TM)
O Other:

Document Information Number of pages: 40 (4¢-imaGes)

Nt to include DOD forms, printer intstructions, etc... original pages only.

Originals are: Intended to be printed as :
X Single-sided or O Single-sided or
0 Double-sided)& Double-sided
Print type:
[Typewriter [] Offset Press X Laser Print
[J inkletPrinter [] Unknown [other:

Check each if included with document:

X‘ DOD Form & #55)J Funding Agent Form O coverPage
O spine O Printers Notes O Photo negatives
O other:
Page Data:
Blank PagesSiy page numben.

Photographs/Tonal Material eysege umbeq:

Other (ot descriptionpege numben.
Description : Page Number.
imaSE_mag (1 unnumbseEy TTLE PACE
g&) U AN MRl P&Q&;)
(3-40) PACES H'EC L~TFF
(41) SesnvcondTRIL
f-44) TRCTS
Scanning Agent Signoff: 45-46) Lod 'S
Date Received: _)__ / _E_ /ﬁ Date Scanned: _/_ LY, /_7__5' Date Returned: _L Ig?f_ I_?_Q:

(3 4 /) /—
Scanning Agent Signature: %fw 9/\/ A L

waosmwowmcummm.m

Scanning Agent Identification Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the M.I.T
Libraries. Technical support for this project was
also provided by the M.L.T. Laboratory for
Computer Sciences.

darptrgt.wpw Rev. 9/94

CAETE 8T el 1T T S PASE Wha- [s s briered

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS

BEFORE COMPLETING FORM

' REPCRT NUMBER 2. GOVY ACCESSION NO.| 3. RECIPIENT 'S CATALOG NUMBER
I R
AIM 1136 AP-A2/506%
4 TITLE rand Subtitle) S. YYPE OF REPORT & PERIOD COVERED
Computer Perception of Three-Dimensional memorandum
Objects
§. PERFOAMING ORG. REPORT NUMBER
7. AUTHORrs) 8. CONTRACT OR GRANT NUMBER(s)
Thomas Marill N00014-85-K-0124
9 PERFORMING CRGANIZATION NAME AND ADD®RESS 10. PROGRAM ELEMENT PROJECT, TASK

.. . AREA & WORK UNIT NUMBERS
Artificial Intelligence Laboratory

545 Technology Square
Cambridge, MA 02139

1. CONTROLLING OFFICE NAME ANO ADDRESS 12. REPORT DATE
Advanced Research Projects Agency Auyeust 1989
1400 Wilson Blvd. 13 NUMBER OF PAGES
Arlington, VA 22209 40
14. MONITQRING AGENCY NAME & ADDRESS(I{ ditterent {rom Controlling Olfice) 18. SECURITY CLASS. o/ this report)
Office of Nav
f Naval Research UNCLASSIFIED
Information Systems
Arlington, VA 22217 18a. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Distribution is unlimited

17. DISTRIBUTION STATEMENT (of tHe adatract entered in Block 20, 1 difierent from Report)

18. SUPPLEMENTARY NOTES

None

19. XEY WORDS (Continue on reverse side 1l necessary and identily by block number)

Computer vision . line drawings
three-dimensional perception
minimization psychological vision

20. ABSTRACT (Continue on reverse elde Il necesssary and identity by biock mumber)
We first pose the following problem: To develop a program which takes

line drawings as input and constructs three-dimensional objects as out-
put; such that the output objects are the same as the ones we see when
we look at the input line-drawing. We then introduce the principle of
minimum standard-deviation of angles (MSDA) and discuss a program based
on MSDA. We present the results of testing this program with a variety
of line-drawings and show that the program constitutes a solution to the
stated problem over the range of line-drawings tested. (cont on reverse]

DD ,%S%™. 1473 toiTion oF 1 NOV 6515 OBSOLETE
1 JAN T) SN 0102-014- 6601 1 UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Deta Bnterec

mushiin oo

AR FROAYR SR heiMmE A A% &

| émakwﬁhwm‘i‘ Tm ot 1qensed “xswmpmm, :
xR0

Migiw fwdrg B TRARTEGH ¥

~ A QB L GO0

SAGnTUA F}

$Iiys¥ wamoil

AT A L etk G SUNPORERN T #
il isioiiizasa
GandseT 8

5H . *»EbAmd«'a}

i r TR e
syassyadsl sowsgiiie
Caseupd
Qé‘ ??‘«:\

's;:w

0

Avae TAGASR 11

TROAE Ay ﬁ‘éﬂﬂéﬁ 1

:aMm Qe FRAR IZNTEHD DI FIORTHAD i3

v;mag& ea;agr‘%% Hursasad basonvba
bvld noelid D&
SULLs AV Lrorg i'x%

SR ST T REA T CFIAUSRE @

PRI 2A UM

i »1
1

1

IR R MR TR O E ST A SO 8 R
k “ s ruak ot :

wea v

éﬁ; T RRE R Y IWIEL “E%ﬁg

g “t

- T e e ST 11 U BRatl W mermiy (RATAAR v 4] THEMBTA TE MOV oRIB TRID FL

Brentinris i e i S g 82 0

e e R EU YRA T kA N3 TRy

sgatwesah skl 0
ackigssisg
sokruiv lusigoledoveg

. 1 s wésﬂgﬁw& rognine e, O

ackely yeluamol
I&ﬁ@x&ﬁmgﬁﬁj ‘
Cmoidsuimboie o

zodn ”3 Fedwr s

nailw 882
o o Jt".i Pon

Y}k"w IHV
aidd o3 noliy
fagyever po

.i{%u
3800) 3

sbraa:q B qal&vaﬁ GT
-0 25 aissido [amolunsalb-ssrdl siowiiages m 3,. ;
sw zaan a3 as smss ed¥ ayn amaié& IpgIue s 3847 fdAoua

iyg edd snuboxial nedy ol
bes.d msvgorq s zeuceib bme (AGEH) %»ﬁiaﬁﬁ 30 molkialbveb
Y z:uw BEIZeTg alidy gﬁi"&s‘!
5 poJuldlienos mergouq erfy 35&3 min'&m‘s sgniwsrb-acli do
.kaam*} 2R m41f’3~am& »

agese sy gerg-ronieig

i . “fﬂ prievy mmnm m"&} ﬁf.ﬁlﬂﬁ ﬂ 3
,ﬂa&émq :

% qild awaq 38711 oW :
. 88 ggotweih apkf - of
cavg
aakwaib-osll juqui edz in Aool ew
~brsbusde mumisks
JAGEY no

1o £3fpest adl smeesrq oW

AV midﬁm bsisjyz

03iTiz2AIMY
mamte @ 273 wedly BOAE FIHT 15 Hoi FASIRIEEA 49 TTIBUR;

oo ponm o
'fmﬁﬁiiml g noitias LM ““;;“ {

X zmaa SRR AL BN

