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Abstract:

In this paper we present an approach to perceptual organization and attention based
on Curved Inertia Frames (C.LF.), a novel definition of “curved axis of inertia”. Such
a definition is novel because it is global and can detect curved axes; it can also be
used to compute a frame of reference of the shapes in an image useful for non-rigid
object recognition or to pull out interesting structures in the image. The scheme as-
signs a saliency measure to each component of the reference frame that is a measure
of its relevance, so that large, smooth, convez, symmetric and central parts play a
more central role in the description of the shape. One of the remarkable features of
the scheme is its tolerance to noisy and spurious data.

Several perceptual phenomena observed in humans such as grouping based on sym-
metry or convexity and environmental bias in shape description can be supported
naturally in this scheme. The scheme also supports other operations such as finding
the most “interesting point” or “feature” in the image (for subsequent processing) or
defining what is inside and what is outside an object. An extension of the scheme to
find long and smooth ridges on an arbitrary surface is presented. The extension is
illustrated in the problem of finding salient blobs in images and it is suggested that
similar schemes be used in other early and middle level vision tasks.
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1 Introduction

The Problem: Finding Reference Frames

A shape description is an encoding of a shape. A common approach is to describe
the points of the shape in a cartesian coordinate reference frame fixed in the image
(see Figure 1). An alternative is to center the frame on the shape so that a canonical
description can be achieved. For some shapes this can be obtained by orienting
the frame of reference along the inertia axis of the shape (see Figure 1). If the
objects are elongated and flexible, we suggest another alternative that might be more
appropriate, the use of a curved frame of reference (see Figure 2). Recognition can be
done using a canonical description of the shape obtained by rotating or “unbending”
the shape using the frame as an anchor structure (see Figure 2). For complex shapes,
a part decomposition for recognition can be obtained with a skeleton-like frame (e.g.
[Connell and Brady 87], see Figure 3). In this paper, we address the problem of
finding reference frames (a.k.a. skeletons, symmetry or distance transforms, voronoi
diagrams etc.), for a variety of tasks such as recognition, attention, figure-ground and
perceptual organization. OQur approach is based on Curved Inertia Frames, a novel
definition of “curved axis of inertia”.

Other Applications Of Reference Frames: Perceptual Organization, At-
tention, Feature and Corner Detection, Part Segmentation, and Shape
Description

The use of reference frames need not be restricted to recognition. Non-recognition
examples include: finding an exit path in the maze of Figure 4, finding the corner in
Figure 5, finding the blob in Figure 6, determining figure-ground relations in Figure
7 and finding the most interesting object in Figure 17. These examples are closely
related to figure-ground relations and perceptual organization (a.k.a. grouping, selec-
tion and segmentation), a process that computes regions of the image coming from one
single object (of interest if possible), with little detailed knowledge of the particular
objects present in the image. The main advantage of our scheme over previously pre-
sented perceptual organization schemes [Marroquin 1976], [Witkin and Tenenbaum
1983}, [Mahoney 1985], [Harlick and Shapiro 1985], [Lowe 1984, 1987], [Sha’ashua
and Ullman 1988], [Jacobs 1989], [Grimson 1990}, [SubiranaVilanova 1990] is that
it can find complete curved, symmetric and large structures directly on the edges of
the image without requiring features like straight segments or corners. In this con-
text, perceptual organization is related to part segmentation [Hollerbach 1975, [Marr
1977), [Duda and Hart 1973], [Binford 1981], [Hoffman and Richards 1984|, [Vaina

1



and Zlateva 1990], [Badler and Bajcsy 1978], [Binford 1971], [Brooks, Russel and
Binford 1979], [Brooks 1981], [Biederman 1985], [Marr and Nishihara 1978}, [Marr
1982], [Guzman 1969], [Pentland 1988] and [Waltz 1975] since we are interested in
finding an arrangement of structures in the image, not just on finding some of them.

Some Reasons Why Finding Reference Frames Is Not Trivial

Finding reference frames is a straightforward problem for simple geometric shapes
such as a square or a rectangle. The problem becomes difficult for shapes that do
not have a clear symmetry axis such as a notched rectangle (for some more examples
see Figures 2, 8, 9, and 15) and none of the schemes presented previously can handle
them successfully. Ultimately, we would like to achieve human-like performance.
This is difficult partly because what humans consider to be a good skeleton can be
influenced by high-level knowledge (see Figure 8).

Previous Work

The study of reference frames has received considerable attention in the computer
vision literature. Reference frames have been used for different purposes (as discussed
above) and given different names (e.g. skeletons, voronoi diagrams, symmetry trans-
forms). Previous schemes for computing skeletons fall usually into one of two classes.
The first class looks for straight axis, such as the axis of inertia. These methods are
global (the axis is determined by all the contour points) and produce a single straight
axes. The second class can find a curved axis along the figure, but the computation
is based on local information. That is, the axis at a given location is determined by
small pieces of contours surrounding this location. Examples of such schemes are,
to name but a few, Morphological Filters (see [Serra 82] for an overview), Distance
Transforms [Rosenfeld and Pfaltz 68], [Borgefors 86], [Arcelli, Cordella and Levialdi
81], Symmetric Axis Transform [Blum 67], [Blum and Nagel 78] and Smoothed Local
Symmetries [Brady and Asada 84], [Connell and Brady 87]. Recently, computations
based on physical models have been proposed by [Brady and Scott 88] and [Scott,
Turner and Zisserman 89]. In contrast, the novel scheme presented in this paper,
which we call Curved Inertia Frames (C.I.F.), can extract curved symmetry axes,
and yet use global information.



Qutline

The approach that we present for finding skeletons is divided into two successive
stages. In Section 3, we present the first stage, in which we obtain two local measures
at every point, the inertia value and the tolerated length, which will provide a local
symmetry measure at every point, and for every orientation. This measure is high if
locally the point in question appears to be a part of a symmetry axis. This simply
means that, at the given orientation, the point is equally distant from two image
contours. The symmetry measure therefore produces a map of potential fragments
of symmetry curves which we call the inertia surfaces. In Sections 4 and 5, we
present the second stage in which we find long and smooth axes going through points
of high inertia values and tolerated length. In section 6 we introduce the skeleton
sketch and show some results and applications of the scheme, and in section 7 we
discuss the relation of our scheme to human perception. We conclude in section 8 by
presenting an extension of the scheme to find high, long, and smooth curves on an
arbitrary surface. The extension is illustrated on the problem of finding salient blobs
in images. In section 8 we also present some limitations of our scheme and a number
of topics for future research.

In Appendix I we prove a theorem that shows some strong limitations on the
class of measures computable by the computation described in sections 4 and 5.

_—
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Figure 1: Left: a shape described in a image or viewer centered reference frame.
Center: the same shape with an object centered reference frame superimposed on
it. Right: a canonical description of the shape.

2 Five Problems With Previous Approaches

Previously presented computations for finding a curved axis generally suffer from
one or more of the following problems: first, they produce disconnected skeletons for
shapes that deviate from perfect symmetry or that have fragmented boundaries (see
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Figure 2: Which two of the three shapes on the left are more similar? One way
of answering this question is by “unbending” the shapes using their skeleton as a
reference frame, which results in the three shapes on the right. Once the shapes
have been unbent, it can be concluded using simple matching procedures that
two of them have similar “shapes” and that two others have similar length. We
suggest that the recognition of elongated flexible objects can be performed in some
cases by transforming the shape to a canonical form and that this transformation
can be achieved by unbending the shape using its skeleton as an anchor structure.
The unbending presented in this figure was obtained using an implemented lisp
program.

Figure 5); second, the obtained skeleton can change drastically for a small change in
the shape (e.g. a notched rectangle vs a rectangle) making these schemes unstable;
third, they do not assign any measure to the different components of the skeleton that
indicates the “relative” relevance of the different components of the shape; fourth,
many computations depend on scale, introducing the problem of determining the
correct scale; and fifth, it is unclear what to do with curved or somewhat-circular
shapes because they do not have a clear symmetry axis.

Consider for example, the Symmetric Axis Transform [Blum 67]). The SAT of a
shape is the set of points such that there is a circle centered at the point that is
tangent to the contour of the shape at two points and that it does not contain any
portion of the boundary of the shape, see [Blum 67] for details. An elegant way of
computing the SAT is by using the brushfire algorithm which can be thought of as
follows: A fire is lit at the contour of the shape and propagated towards the inside
of the shape. The SAT will be the set of points where two fronts of fire meet. The
Smoothed Local Symmetries [Brady and Asada 84] are defined in a similar way but,
instead of taking the center point of the circle, the point that lies at the center of the
segment between the two tangent points is the one that belongs to the SLS and the
circle needs not be inside the shape. In order to compute the SAT or SLS of a shape
we need to know the tangent along the contours of the shape. Since the tangent
is a scale dependent measure so is the SLS. One of the most common problems
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Figure 3: Drawings of a woman, a horse and a rider, a man and a crocodile made

by Tallensi tribes (adapted from [Deregowski 1989]). See also [Marr and Nishihara
1978].
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Figure 4: Left: Maze. Center: A portion of the maze is highlighted with a
discontinuous doted line. Right: A candidate description of the highlighted region
that may be useful to find an exit to the maze. In this paper, we are interested
in finding frames or skeletons that can yield high-level descriptors like the one

shown.

(the first problem above) in skeleton finding computations is the failure to tolerate
noisy or circular shapes which often results in disconnected and distorted frames. A
notched rectangle is generally used to illustrate this point, see [Serra 1982], [Brady
and Connell 1987] or [Bagley 1985] for some more examples. [Heide 1984], [Bagley
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Figure 5: Finding corners is hard because they depend on scale. Here we present
compelling evidence adapted from [Lowe 88]. The scheme presented in this paper
can locate corners of this type, independently of scale, because it looks for the

largest possible scale.
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Figure 6: Finding the bent blob in the left image would be easy if we had the bent
frame shown in the center. Right: Another blob defined by orientation elements of
a single orientation. The scheme presented in this paper needs some modifications
before it can attempt to segment the blob on the right (see text).

1985), [Brady and Connell 1987], [Fleck 1985, 1986, 1988], [Fleck 1989] suggest to
solve this stability problem by working on the obtained SLS eliminating the portions
of it that are due to noise, connecting segments that come from adjacent parts of the
shape and by smoothing the contours at different scales. In our scheme, symmetry
gaps are closed automatically we look for the largest scale available in the image and
the frame depends on all the contour, not just a small portion making the scheme
robust to small changes in the shape.

SAT and SLS are bad for circular shapes. [Fleck 86] addressed this problem by
designing a separate computation to handle circular shapes, the Local Rotational
Symmetries. Our scheme has a preference for the vertical that will bias the frame
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Figure 7: This Figure illustrates the importance of symmetry and convexity in
grouping. The curves in the left image are grouped together based on symmetry.
On the right image, convexity overrides symmetry, after [Kanizsa and Gerbino
76]. This grouping can be performed with the network presented in this paper by
looking for the salient axes in the image.
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Figure 8: All the shapes in this Figure have been drawn by adding a small seg-
ment to the shape in the middle. At a first glance, all of these shapes would
be interpreted as two blobs. But if we are told that they are letters then finer
distinctions are made between them. When we use such high level knowledge
we perceive this shapes as being different and therefore their associated skeletons
would differ dramatically.

towards a vertical line in circular shapes. When the shape is composed of a long
straight body attached to a circular one (e.g. a spoon) then the bias will be towards
having only one long axis in the direction of the long body.

8 Inertia Surfaces and Tolerated Length

If we are willing to restrict the frame to a single straight line then the axis of
least inertia is a good reference frame because it provides a connected skeleton and
it can handle nonsymmetric connected shapes. The inertia In(SL, A) of a shape A
with respect to a straight line SL is defined as (See Figure 10):

In(SL,A) = /A D(a, SL)*da (1)

The integral is extended over all the area of the shape, and D(a, S L) denotes the
distance from a point a of the shape to the line SL. The axis of least inertia of a
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shape A is defined as the straight line $L minimizing In(SL, 4).

A naive way of extending the definition of axis of least inertia to handle bent
curves would be to use Equation 1, so that the skeleton be defined as the curve C
minimizing In(C, A). This definition is not useful if C' can be any arbitrary curve
because a highly bent curve that goes through all points inside the shape would have
zero inertia (see Figure 11). There are two possible ways to avoid this problem:
either we define a new measure that penalizes such curves or we restrict the set of
permissible curves. We chose the former approach and we call the new measure
defined in this paper (see equation 4) the inertia, the skeleton saliency or saliency
of the curve. The skeleton saliency of a curve will depend on two local measures:
the inertia value T that will play a role similar to that of D(p,a) in equation 1 and
the tolerated length T that will prevent non-smooth curves from receiving optimal
saliency values. The saliency of a curve will be defined for any curve C of length L
starting at a given point p in the image. We define the problem as a maximization
problem so that the “best” skeleton will be the curve that has the highest saliency
value. By best we mean that the skeleton corresponds to the “most central curve”
in the “most interesting (i.e. symmetric, convex, large)” portion of the image.

The inertia value

The inertia measure I for a point p and an orientation o is defined as (see Fig-
ure 12):

I(p,a) = 2REL,

Figure 12 shows how 7, R and the inertia surfaces are defined for a given orientation
o«. R = d(p,p.)/2 and r = d(p,p.), where p; and p, are the closest points of the
contour that intersect with a straight line perpendicular to a (i.e. with orientation
a + 7/2) that goes through p at opposite directions and p. is the midpoint of the
interval between these two points. For a given orientation, the inertia values of the
points in the image form a surface that we call the inertia surface for that orientation.
Figure 11 illustrates why the inertia values should depend on the orientation of the
skeleton and Figure 13 shows the inertia surfaces for a square at four orientations.

Local maxima on the inertia values for one orientation indicate that the point is
centered in the shape at that orientation. The absolute value of the local maximum
indicates how large the section of the body is at that point for the given orientation,
so that points in large sections of the body receive higher inertia values. The constant
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s or symmetry constant, 2 in the actual implementation, controls the decrease in the
inertia values for points away from the center of the corresponding section, the larger
s is the larger the decrease. If s is very large only center points obtain high values

and if s = 0 all points of a section receive the same value.

~+—

Figure 9: Skeletons found for a rectangle and a notched rectangle by SAT left
and SLS right. Observe that the skeleton is highly distorted by the presence of
the notch. The skeleton found by the computation presented in this paper on this
shapes can be seen in Figures 7 and 8.

Figure 10: Definition of axis of inertia (see text for details).

The tolerated length

Figure 11 provides evidence that the curvature on a skeleton should depend on
the width of the shape. As mentioned above, the “tolerated length” T will be used to
evaluate the smoothness of a frame so that the curvature that is tolerated depends on
the width of the section allowing high curvature only on thin sections of the shape.



Figure 11: Left: A rectangle and a curve that would receive very low inertia
according to Equation 1. Center: Evidence that the inertia value of a point
should depend on orientation. Right: Evidence that the tolerated curvature on a
skeleton should depend on the width of the shape.

Figure 12: This Figure shows how the inertia surfaces are defined for a given
orientation . The value for the surface at a point p is Z(R,r). The function Z or
inertia function is defined in the text. R = d(p;,p,)/2 and 7 = d(p, p.), where
p; and p, are the points of the contour that intersect with a straight line perpen-
dicular to o that goes through p at opposite directions and p, is the midpoint of
the interval between these two points. If there is more than one intersection along
one direction then we use the nearest one. If there is no intersection at all then
we give a preassigned value to the surface, 0 in the current implementation.

The saliency of a curve will be the sum of the inertia values “up to” the tolerated
length so that for a high tolerated length, i.e. low curvature, the sum will include
more terms and will be higher. The objective is that a curve that bends into itself
within a section of the shape have a point within the curve with 0 tolerated length so
that the saliency of the curve will not depend on the shape of the curve beyond that
point. In other words, 7 should be 0 when the radius of curvature of the “potential”
skeleton is smaller than the width of the shape at that point and a positive value
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otherwise (with an increasing magnitude the smoother the curve is).

We define the tolerated length T for a curvature of radius r. as:

T _ 0 fr.< R+
pyo,T) = re(m — arccos(l—-&%ﬂl)) otherwise

If a curve has a point with a radius of curvature r. smaller than the width of the
shape its tolerated length will be 0 and this, as we will see, results in a non-optimal
curve!

In this section we have introduced the inertia surfaces and the tolerated length.
We will define a salient frame of reference to be a high and long curve in the inertia
surfaces that is as smooth as possible based on the tolerated length. Our approach
is to associate a measure to any curve in the plane and to find the one that yields
the highest possible value. The inertia value will be used to ensure that curves close
to the center of large portions of the shape receive high values. The tolerated length
will be used to ensure that curves bending beyond the width of the shape receive low
values. In the next section we will investigate how such a curve might be computed
in a general framework and in section 5 we will see how to include the inertia values
and the tolerated length in the computation and what is the definition of the saliency
measure that results.

4 A Network to Find Salient Curves

In this section we will derive a class of dynamic programming algorithms that find
curves in an arbitrary graph that maximize a certain quantity. In the next section we
will apply these algorithms to finding long and smooth ridges in the inertia surfaces.
[Mahoney 87] showed that long and smooth curves in binary images are salient in
human perception even if they have multiple gaps and in the presence of other curves.
[Sha’ashua and Ullman 88] devised a saliency measure and a dynamic programming
algorithm that can find such salient curves in a binary image. We build on their work
and show how their ideas can be extended to deal with arbitrary surfaces. In this
section we will examine their computation in a way geared at demonstrating that the
kind of saliency measures that can be computed with the network is very limited.
The actual proof of this will be given in Appendix L.

1Because of this, if a simply connected closed curve has a radius of curvature lying fully inside
the curve then it will not be optimal. Unfortunately I have not been able to prove that any simply
connected closed curve has such a point nor that there is a curve with such a point.
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Figure 13: Plots of the inertia surfaces for a square for orientations parallel to the
sides (left two plots) and parallel to the diagonals (right two plots).

We define a directed graph with properties G = (V, E, Pg, Ps) as a graph with a
set of vertices V = {v;} ; a set of edges E = {e;; = (v;,v;) | vi,v; € V}; a function
Pg : E — R that assigns a vector p. of properties to each edge; and a function
Py : J — R that assigns a vector p; of properties to each junction where a junction is
a pair of adjacent edges (i.e. any pair of edges that share a vertex) and J is the set of
all junctions. We will refer to a curve in the graph as a sequence of connected edges.
We assume that we have a saliency function S that associates a positive integer 5 (C)
with each curve C in the graph. This integer is the saliency or saliency value of
the curve. The saliency of a curve will be defined in terms of the properties of the
elements (vertices, edges and junctions) of the curve.
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Our problem is to find a computation that finds for every point and each of its
connecting edges, the most salient curve starting at that point with that edge. This
includes defining a saliency function and a computation that will find the salient
curves for that function. The applications that will be shown here work with a 2
dimensional grid. The vertices are the points in the grid and the edges the elements
that connect the different points in the grid. The junctions will be used to include
in the saliency function properties of the shape of the curve such as curvature.

The computation will be performed in a locally connected parallel network with
a processor pe; ; for every edge e; ;. The processors corresponding to the incoming
edges of a given vertex will be connected to those corresponding to the connecting
edges at that vertex. We will design the computation so that we know at iteration n
what is the saliency of the most salient curve of size n for every edge. This provides
a constraint in the invariant of the algorithm that we are seeking that will guide us
to the final algorithm. In order for the computation to have some computing power
each processor pe; ; must have at least one state variable that we will denote as s; ;.
Since we want to know the saliency of the most salient curve of length n starting with
any given edge, we will assume that, at iteration n, s;; contains that value for that
edge. Observe that having only one variable looks like a big restriction, however, we
show in Appendix I that allowing more state variables does not add any power to the
possible saliency functions that can be computed with this network. Since the saliency
of a curve is defined only by the properties of the elements in the curve, it cannot be
influenced by properties of elements outside the curve. Therefore the computation
to be performed can be expressed as:

sij(n+1) = MAX{F(n + 1,p., pj, 3:,;(n), s;x(n)) | (5, k) € B}

3i,j(0) = .T(O,pc,pj,0,0) (2)

where F is the function that will be computed in every iteration and that will lead
to the computed saliency. Observe that given F, the saliency value of any curve can
be found by applying F recursively on the elements of the curve.

We are now interested in what types of saliency functions S we can use and
what type of functions F are needed to compute them such that the value obtained
in the computation is the maximum for the resulting saliency measure S. Using
contradiction and induction we conclude that a function F will compute the most
salient curve for all possible graphs if and only if it is monotonically increasing in its
last argument i.e. iff

13



Vp,z,y ¢ <y —_’f(pvm) < ]:(p,y)a (3)

where p is used to abbreviate the first four arguments of F.

What type of functions F satisfy this condition? We expect them to behave freely
as p varies. And when s, varies, we expect F to change in the same direction with
an amount that depends on p. A simple way to fulfill this condition is with the
following function:

F(p,z) = f(p) + 9(z) * h(p) (4)

where f, g and h are positive functions and g is monotonically increasing.

We now know what type of function F we should use but we do not know what
type of saliency measures we can compute. Let us start by looking at the saliency S;
that we would compute for a curve of length i. For simplicity we assume that g is
the identity function:

o Iter. 1: S, = f(p...)

o Tter. 2: S; = 51 + f(Pa) * P(P1,2)

o Tter. 3: S3=5: + f(Ps.4) * M(P1,2) * R(Ps,3)

o Tter. 4: Sy = Ss+ f(Pys) * h(Ps2) * 1(Pays) * h(Ps,4)

o Tter. i §; = Sia + f(Pisa) * i A(Prkrs) =
TSI F(Pri-a) * TS h(Prs)-

At step n, the network will know about the most salient curve of length n starting
from any edge. Recovering the most salient curve from a given point can be done by
tracing the links chosen by the processors (from Equation 2).
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5 Finding Long And Smooth Ridges

In this section, we will show how the network defined in the previous section can
be used to find frames of reference using the inertia surfaces and the tolerated length
as defined in Section 3. The directed graph with properties that defines the network
has one vertex for every pixel in the image and one edge connecting it to each of
its neighbors thus yielding a locally connected parallel network. This results in a
network that has eight orientations per pixel. The number of orientations per pixel
can be increased to improve the accuracy of the output.

The value computed is the sum of the f(p;;)’s along the curve weighted by the
product of the k(p; ;)’s. Using 0 < h < 1 we can ensure that the total saliency will
be smaller than the sum of the f’s. One way of achieving this is by using A =1 /k or
h = exp (—k) and restricting k to be larger than 1. The f’s will then be a quantity
to be maximized and the k’s a quantity to be minimized along the curve. In our
skeleton network (presented in the next section), f will be the inertia measure and
k will depend on the tolerated length and will account for the shape of the curve so
that the saliency of a curve is the sum of the inertia values along a curve weighted
by a number that depends on the overall smoothness of the curve. In particular, the
functions f, g and h (see Equation 4) are defined as:

. f(p) = f(pe) = I(R,T),

o g(z)==

1
o and h(p) = h(p;) = pT 7.

a, which we call the circle constant, scales the tolerated length, and it was set to
4 in the current implementation (because 4 radiusm/2 is the length of the perimeter
of a circle). p, which we call the penetration factor, was set to 0.5 (so that inertia
values “half a circle” away get factored down by 0.5). And . is the length of the
corresponding element. Also, s; ;(0) = 0 (because the saliency of a skeleton of length

0 should be 0).

With this definition the saliency value assigned to a curve of length L is:

_ . lems iy k=il Loy
Sp = SEFI( pruoa) IREL T p=™PB =SiZ I(pra—a)p ™" =TPH,
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which is an approximation of the continuous value given in Equation 5 below. Sp is
the saliency of a parameterized curve C(u), and Z(u) and T (u) are the inertia value
and the tolerated length respectively at point u of the curve.

l
S = TP Tl ®)

The obtained measure favors curves that lie in large and central areas of the shape
and that have a low overall internal curvature. The measure is bounded by the area of
the shape; e.g. a straight symmetry axis of a convex shape will have a saliency equal
to the area of the shape. In the next section we will present some results showing
the robustness of the scheme in the presence of noisy shapes.

Observe that if the tolerated length 7'(t) at one point C(t) is small then I El-(t—)dt

!
is large so that pfo %4l becomes very small (since p < 1) and so does the saliency
for the curve S;. Thus, a small a or p penalize curvature favoring smoother curves.

Smoothing

Straight lines that have an orientation different from one of the eight network
orientations generate curvature impulses due to the discretization imposed on them,
essentially 45 or 90 degrees (in a number of pixels, per unit length, which can be made
arbitrarily large with a finer grid). This results in a reduction of the saliency for such
curves biasing the network towards certain orientations. To prevent this, we made
an implementation of the network that included a smoothing term that enables the
processors to change their orientation at each iteration, instead of keeping only one
of the eight initial orientations. At each iteration, the new orientation is computed
by looking at those nearby pixels of the curve which lie on a straight line (so that
curvature is minimized).

This allows greater flexibility but at the expense of breaking the optimization
relation shown in Equation 3. A similar problem is encountered with the smoothing
term suggested in [Sha’ashua and Ullman 1988].
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a) b) c) d) e)

Figure 14: a) Rectangle. b) Skeleton sketch for the rectangle. Circles along the
contour indicate local maxima in the skeleton sketch. ¢) Skeleton sketch for the
rectangle for one particular orientation, vertical-down in this case. d) Most salient
curve. €) Most interesting point for the most salient curve.

6 Results and Applications

In this section we will present some results and applications of the frame com-
putation and in the next section we will discuss the connections of our findings to
human perception.

The network described in the previous section has been implemented on a Con-
nection Machine and tried on a variety of images. As mentioned above, the imple-
mentation works in two stages. First, the distance to the nearest point of the shape
is computed at different orientations all over the image so that the inertia surfaces
and the tolerated length can be computed, this requires a simple distance transform
of the image. In the second stage, the network described in section 5 computes the
saliency of the best curve starting at each point in the image for different orientations
- eight in the current implementation. The number of iterations needed is bounded
by the length of the most salient curve but in general a much smaller number of
iterations will suffice. In all the examples shown in this paper the images were 128
by 128 pixels and 128 iterations were used. However, in most of the examples, the
results do not change after about 40 iterations. In general, the number of iterations
needed is bounded by the width of the shape measured in pixels.
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Figure 15: Top: Four shapes, a notched square, a stamp, a J, and Mach’s demon-
stration. Second row: The most salient curve found by the network for each of
them. Observe that the scheme is very stable under noisy or bent shapes. Third
row: The most salient curve starting inside the shown circles. For the J shape the
curve shown is the most salient curve that is inside the shape. Fourth row: The
most interesting point according to the curves shown in the two previous rows.
See text for details.

The skeleton sketch and the most salient curve

The skeleton sketch contains the saliency value for the most salient curve at each
point. The skeleton sketch is similar to the saliency map described in [Sha’ashua and
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Ullman 1988] and [Koch and Ullman 1985] because it provides a saliency measure at
every point in the image. Figure 14 shows the skeleton sketch for a square. The best
skeleton can be found by tracing the curve starting at the point having the highest
skeleton saliency value. Figure 15 shows a few shapes and the most salient curve
found by the network for each of them. Observe that the algorithm is very robust
in the presence of non smooth contours. Given a region in the image we can find
the best curve that starts in the region by finding the maxima of the skeleton sketch
in the region, see Figure 15. In general, any local maximum in the skeleton sketch
corresponds to a curve accounting for a symmetry in the image. Local maxima in
the shape itself are particularly interesting since they correspond to features such as
corners.

The most salient point

In many vision tasks, besides being interested in finding a salient skeleton, we are
interested in finding a particular point related to the curve, shape or image. This can
be due to a variety of reasons, because it defines a point in which to start subsequent
processing to the curve or because it defines a particular place in which to shift our
window of attention. Different points can be defined, the point with the highest
saliency value is one of them, because it can locate relevant features such as corners.

Another interesting place in the image is the most central point in a curve which
can be computed by our scheme by looking for the saliency values along the curve at
both directions within the curve. The most central point can be defined as the point
where these two values are “large and equal”, the point that maximizes min(p;,p,)
has been used in the current implementation, other functions are possible, see Figure
15 for some examples. Observe in Figure 15 that a given curve can have several
central points due to different local maxima. This point can be used to direct future
processing?.

Similarly, the most central point in the image can be defined as the point that
maximizes min(p;, p,) for all orientations.

2See also [Reisfeld, Wolfson and Yeshurun 1988] where a scheme to detect interest points was
presented. Their scheme was scale dependent contrary to our scheme which selects the larger
structure as the most interesting one, independently of the scale at which the scene is seen.
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Figure 16: Left: Skeleton Sketch for Mach’s demonstration (Original image in
previous Figure top right). Center: Skeleton Sketch for one orientation only.
Right: Slice of the “one-orientation” Skeleton Sketch through one of the diagonals
of the image. Note that the values decrease across the gaps and increase inside
the square (see also [Palmer and Bucher 1981)).

Shape description

Each locally salient curve in the image corresponds to a symmetric region in one
portion of the scene. The selection of the set of most interesting frames corresponding
to the different parts of the shape yields a part description of the scene. Doing this
is not trivial (See [Shashua and Ullman 1990]) because a salient curve is surrounded
by other curves of similar saliency. In general, a curve displaced one pixel to the
side from the most salient curve will have a saliency value similar to that of the
most salient one and higher than that of other locally most salient curves. In order
to inhibit these curves we color out from a locally maximal curve in perpendicular
directions to suppress parallel nearby curves. The amount to color can be determined
by the average width of the curve. Once nearby curves have been suppressed we look
for the next most salient curve and iterate this process. Another approach to find a
group of several curves, not just one, is given in [Sha’ashua and Ullman 1990]. Both
approaches suffer from the same problem: the groups obtained do not optimize a
simple global maximization function.

Figure 17 shows the skeleton found for an airplane. The skeleton can then be
used to find a part description of the shape in which each component of the frame
has different elements associated describing it: a set of contours from the shape, a
saliency measure reflecting the relevance or saliency that the component has within
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Figure 17: Top: Image; airplane portion enlarged; its edges; airplane without
short edges. Bottom: Vertical inertia surface; skeleton sketch; skeleton; most
salient point.

the shape, a central point, a location within the shape.

Inside-outside

The network can also be used to determine a continuous measure of inside-outside
(see also [Subirana-Vilanova and Richards 1991]). The distance from a point to the
frame can be used as a measure of how near the point is to the outside of the shape.
This measure can be computed using a scheme similar to the one used to inhibit
nearby curves as described in the previous paragraph: coloring out from the frame at
perpendicular orientations, and using the time where a point is colored as a measure
of how far from the frame the point is. The saliency of a curve provides a measure
of the area swept by the curve which can be used to scale the coloring process.

7 Relation to human perception

The skeleton found by the network for a given shape corresponds roughly with
the central regions of the shape. In this section we show how the scheme can handle
various peculiarities of human perception.
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Important frames of reference in the perception of shape and spatial relations by
humans include: that of the perceived object, that of the perceiver and that of the
environment. In this paper we have concentrated on the first. A considerable amount
of effort has been devoted to study the effects of orientation of such a frame (relevant
results include, to name but a few [Attneave 1967], [Shepard and Metzler 1971], [Rock
1973], [Cooper 1976], [Wiser 1980, 1981], [Schwartz 1981], [Shepard and Cooper 1982,
[Jolicoeur and Landau 1984], [Jolicoeur 1985], [Palmer 1985], [Palmer and Hurwitz
1985, [Corballis and Cullen 86], [Maki 1986], [Jolicoeur, Snow and Murray 1987],
[Parsons and Shimojo 1987}, [Robertson, Palmer and Gomez 1987}, [Rock and DiVita
1987], [Bethel-Fox and Shepard 1988] [Shepard and Metzler 1988], [Corballis 1988],
[Palmer, Simone and Kube 1988], [Georgopoulos, Lurito, Petrides, Schwartz and
Massey 1989], [Tarr and Pinker 1989]). Our scheme suggests a computational model
of how such an orientation may be computed, i.e. the selected orientation is that of
the most salient skeleton when it is restricted to be straight (a and p close to 0).

The influence of the environment on the frame has been extensively studied too
[Mach 1914], [Attneave 1968], [Palmer 1980], [Palmer and Bucher 1981], [Humphreys
1983], [Palmer 1989]. In some cases the perception of the shape can be biased by
the frame of the environment. In particular, humans have a bias for the vertical in
shape description (see [Rock 73]) so that some shapes are perceived very differently
depending on the orientation at which they are viewed, for example a rotated square
is perceived as a diamond (see Figure 23). This bias can be taken into account in our
scheme by adding some constant value to the inertia surface that corresponds to the
vertical orientation so that vertical curves receive a higher saliency value. Adding the
bias towards the vertical is also useful because it can handle non-elongated objects
that are not symmetric, so that the preferred frame is a vertical axis going through
the center of the shape®.

In other cases, the preferred frame is defined by the combination of several other-
wise non salient frames. This is the case in Mach’s demonstration, first described by
E. Mach at the beginning of this century (see Figure 15). Our scheme incorporates
this behavior because the best curve can be extended beyond one object increasing
the saliency of one axis by the presence of objects nearby, especially when the objects
have salient aligned axis. This example also illustrates the tolerance of the scheme
to fragmented shapes.

The shape of the frame has received very little attention. [SubiranaV ilanova 1990]
proposed that in some cases, a curved frame might be useful (see also Figure 2 and
[Palmer 1989]). In particular, he proposed to recognize elongated curved objects by

3As discussed in section 3, another alternative is to define a specific computation to handle the
portions of the shapes that are circular [Fleck 86], [Brady and Scott 88].
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unbending them using their main curved axis as a frame to match the unbended
versions. [Subirana-Vilanova and Richards 1991] have shown that such strategy is
not always used by the human visual system.

In figure-ground segregation, reference frame computation and perceptual orga-
nization it is well known that humans prefer symmetric regions over those that are
not (see Figures 7 and references above*). Symmetric regions can be discerned in our
scheme by looking for the points in the image with higher skeleton saliency values.
However, [Kanisza and Gerbino 76] have shown that in some cases convexity may
override symmetry (see Figure 7). Convexity information can be introduced in the
inertia surfaces by looking at the distances to the shape and at the convexity at
these points so that frames inside a convex region receive a higher symmetry value.
Observe that the relevant scale of the convexity at each point can be determined by
the distances to the shape R and r.

The location of the frame of reference [Richards and Kaufman 1969], [Kaufman
and Richards 1969], [Carpenter and Just 1978], [Cavanagh 1978, 1985], [Palmer 1983],
[Nazir and O’Reagan 1990] is related to attention and eye movements [Yarbus 1967)
and influences figure-ground relations (e.g. Figure D9 in [Shepard 1990]). We have
shown how certain salient structures and individual points can be selected in the
image using the Skeleton Sketch. Subsequent processing stages can be applied selec-
tively to the selected structures, endowing the system with a capacity similar to the
use of selective attention in human vision. The points provided by the Saliency Sketch
are in locations central to some structures of the image and could guide processing
in a way similar to the direction of gaze in humans (e.g. [Yarbus 1967]).

[Palmer 1983] studied the influence of symmetry on figural goodness. He com-
puted a “mean goodness rating” associated to each point inside a figure. For a square
(see Figure 4 in [Palmer 1983]), he found a distribution similar to that of the skele-
ton sketch shown in Figure 14. The role of this measure is unclear but our scheme
suggests that it can be computed bottom-up and hence play a role in the recognition
of the shape.

Perhaps, this measure is involved in providing translation invariance so that ob-
jects are first transformed into a canonical position. This suggestion is similar to
others that attempt to explain rotation invariance (see references above) and it could
be tested in a similar way. For example, one can compute the time to learn /recognize
an object (from a class sharing a similar property such as the one shown in Figure 20)
in terms of a given displacement in fixation point (or orientation in the references

4The role of symmetry has been studied also for random dot displays [Barlow and Reeves 1979,
[Barlow 1982] and occlusion [Rock 84].
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above).

Figure 18: Top Center: Figure is often seen as shown on the right, (and ground
as on the left) due to vertical bias. Bottom Center: Preference for the vertical,
and preference for large objects is over-ridden here by the preference for small
structures (after [Rock 1985]). The network presented in this paper would find
the left object as figure due to its preference for large structures. Further research
is necessary to clarify when small structures are more salient.

Figure 19: Like in the previous Figure, small structures define the object de-
picted in this image. Drawing from Miré. This image would confuse the network
presented in [Sha’ashua and Ullman 1988].

8 What’s New

In this paper we have presented C.LF. (Curved Inertia Frames), a novel scheme to
compute curved symmetry axes. Previous schemes either use global information, but
compute only straight axes, or compute curved axes and use only local information.
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Figure 20: Does the time to recognize/learn this objects depend on the fixation
point? (See text for details.)
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Figure 21: Left: Text image. Center: Output of the convolution of the text image
with an elongated horizontal gabor filter. Right: Most salient curves.

The scheme presented in this paper can extract curved symmetry axes and use global
information. This gives the scheme some clear advantages over previous ones, such
as: 1) it can compute curved axes, 2) it provides connected axes, 3) it is remarkably
stable to changes in the shape, 4) it provides a measure associated with the relevance
of the axes in the shape, which can be used for shape description and for grouping
based on symmetry and convexity 5) it can tolerate noisy and spurious data 6) it

provides central points of the shape.

We have suggested a novel scheme to recognize elongated flexible objects by “un-
bending” them using C.LF. and demonstrated the “unbending” transformation on
the simple shapes shown in Figure 2. This is useful because flexible objects can be
matched as rigid ones once they have been transformed to the canonical straight
orientation. In fact, the canonical orientation need not be straight. If the objects
generally deviate from a circular arc then the canonical representation could store

the object with a circular principal axis.

We believe that the Skeleton Sketch and its associated curves and interest points
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Figure 22: This Figure provides evidence that a salient blob in one image might
not be so when other elements are introduced. By fixating at the X try to identify
the letter N in the left and in the right of the image. The one on the left is not
identifiable. We contend that this is due to the fact that the human visual system
selects the larger scale in the left case yielding an horizontal blob. This example
is due to J. Lettvin (reference taken from [Ullman 84]).

can also be used for part segmentation, attention, figure-ground segmentation, per-
ceptual organization, recognition and feature detection. However, further research is
necessary to support this.

The Skeleton Sketch suggests a way in which interest points can be computed
bottom-up, and hence that they might be useful as anchor structures for aligning
model to object. It also provides a continuous measure that can be used to determine
the distance from the center of the object, suggesting a number of experiments. For
example, one could test whether the time to learn/recognize an object depends on
the fixation point in a similar way in which a dependence has been found in human
perception between object orientation and recognition time/accuracy (see references
above). This could be done on a set of similar objects of the type shown in Figure 20.

We have introduced the inertia surfaces and the tolerated length and we have
shown how they can be used to find skeletons using a sophisticated version of an
algorithm presented previously [Sha’ashua and Ullman 88]. In the Appendix we
show some limitations on the functions that can be optimized using such algorithm.
Similar measures might be used to find skeletons using other algorithms such as those
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Figure 23: A square has four symmetry axis all of which could potentially be
used to describe it. Depending which one of them is chosen this shape appears
as a square or as a diamond. This suggests that when there is ambiguity the
vertical can play an important role. The two trapezoids, on the right further
illustrate that even when a shape has several symmetry axis the vertical might
be preferred even if it does not correspond to a perfect symmetry axis. Observe
that the vertical might be overridden by an exterior frame which can be defined
by the combination of several otherwise not salient frames from different shapes
such as Mach demonstration, see Figure 8.

presented in [Kass, Witkin and Terzopoulos 88] and [Zucker, Dobbins and Iverson
89].

The network presented in this paper computes skeletons in 2 dimensional images.
The network can be extended to finding 3 dimensional skeletons from 3 dimensional
data since the local estimates for orientation and curvature can be found in a similar
way and the network extends to 3 dimensions - this, of course, at the cost of increasing
the number of processors. The problem of finding 3D skeletons from 2D images is
more complex; however, in most cases the projection of the 3D skeleton can be found
by working on the 2D projection of the shape, especially for elongated objects (see
shapes in [Snodgrass and Vanderwart 1980]).

The scheme presented in this paper has two important limitations. First, it relies
on discontinuities. This can be overcome, to a certain extent, by extending the scheme
to finding high, long and smooth curves in arbitrary surfaces (but see [Subirana-
Vilanova and Sung 1992]). The scheme, as presented here, searches for the best
curve using local estimates for orientation and curvature. The estimates can be
obtained in an arbitrary surface by convolving it with oriented gabor filters at different
orientations and scales. This could be applied to many tasks in vision. An example
of such applications is finding dark blobs in images (see figure 21), the scheme selects
both a region and a scale in the image.

The second limitation is that it has a bias for large structures. This is generally
a good rule, even for human perception, except in some cases, see Figures 19, 18
and 22. The example of Figure 18 provides evidence that the preference for small
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objects can not be only due to pop-out effects. A naive solution would be to rank
the scale of the different contours in the image and find the salient ones in terms of
their location in such ordering. This distinction had not been made clear before and
deserves further treatment.
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Appendix I

In the appendix we show that the set of possible saliency measures that can be
computed with the network defined in [Sha’ashua and Ullman 88) (see also section
4) is limited.

Proposition 1 The use of more than one state variable in the saliency network
defined in section / does not increase the set of possible saliency functions that can
be computed with the network.

Proof: The notation used in the proof will be the one used in section 4. We will do
the proof for the case of two state variables, the generalization of the proof to more
state variables follows naturally. Each edge will have a saliency state variable s;;
and an auxiliary state variable a;; and two functions to update the state variables:
s8ij(n +1) = MAX,F(p,s;x(n), a;x(n)) and a;;(n + 1) = G(p, s;k(n), ajr(n)). We
will show that for any pair of functions F and G either they can be reduced to one
function or there is a network for which they do not compute the optimal curves.

If F does not depend on its last argument a;; then the decision of what is the
most salient curve is not affected by the introduction of more state variables so we
can do without them. Observe that we might still use the state variables to compute
additional properties of the most salient curve without affecting the actual shape of
the computed curve.
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If F does depend on its last argument then there exists some p, z,y and w € R
such that: F(p,y,z) < F(p,y,w). Assuming continuity this implies that there
exists some € > 0 such that: F(p, y — ¢,z) < F(p,y,w). Assume now two curves
of length n starting from the same edge e;; such that sl;;(n) = y, al;j(n) = =,
$2;j(n) = y — € and a2;;(n) = y. If the algorithm where correct at iteration n it
would have computed the values s1;;(rn) = y, al; j(n) = = for the variables s;; and
a; ;. But then at iteration n+1 the saliency value computed for an edge e;; would be

Shi =

F(p, y — €,z) instead of F(p,y, w) that corresponds to a curve with a higher

saliency value. O.
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