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A Step by Step Computer Solution

of Three Problems in Non-numerical Analysis

This memo describes the step by step solution of three problems from
different fields of applied mathematics. These problems are solved by
typing a series of computer commands for the manipulation of symbolic
mathematical expressions. These commands are best typed at the PDP-6
console, so that the Type 30 display and the wider range of keyboard sym-
bols can be used. The syntax of commands typed at the PDP-6 will be de=-
scribed. These commands are translated into a string of symbols which are
sent.to CTSS, where they are parsed into a LISP expression, which is then
evaluated.

The mathematical operators which are available in the system will be
described and then the step by step solution of each of the problems will

be given.



II. The Mathematical Operators

The commands typed at the PDP-6 are similar to Algol statements.
The commands are typed and executed one at a time. More complex operations
involving the definition and alteration of commands and the introduction of
more pneumonics and man machine interaction will be described later. The
commands consist of infix operators, functions, and variables. Functions
and variables can be subscripted and any subexpression can be quoted. A
sample command which requires most of the notation is:

#'El«'(X + Y) * 'DRV(':T,1,DRV('U,2,E1)) + !E2,20 + '(F[I,J](X,Y))4+2#

In words: the name El is assigned to the expression which is the sum
of three terms. The first term is the product of (X + Y) with the unevalu-
ated first derivative with respect to lower case T of the second derivative
with respect to U of the expression currently named El. The second term
is the 20th subexpression of a displayed expression currently named E2;
this subexpression has been indicated with the light pen. The final term
is the square of a subscripted function of X and Y. The notation may seem
somewhat complex, but as will be seen, a complex notation is required to
express in a compact way the many small steps required to solve a particular

problem.



The infix operators are:

A<B

1A,N

A=B

A+B

A*B
A/B

A+B

B is given name A. As such it is written

on the disk. The value of « is B.

The Nth subexpression of A is the value of !. Inten-
sify the desired subexpression of A by pointing to
its main connective with the light pen. Then type
A, and the computer will type N. If the expression
has no main connective, point to one of its arguments

and type ;!A instead of !A. Consider all minus signs

u__ifjtiirw_ to be unary.
Equate A and B

A plus B
A minus B
A times B

A divided by B A/B*C is equivalent to A/(B*C)

A to the power B

The functional, subscripting, and set notation is:

A(C,D,E)

A[1,J] (C,D,E)

A[I1,J]

(A,B,C)

A is a function with arguments C,D, and E.

AI 7 is a function with arguments C,D,and E.
b

AI,J is a wvariable

This is a set with three elements. By convention

(A)= A



Either an expression of a variable name can be quoted.
A function name always stands for itself. Quoting
a function name means that its arguments will be
evaluated but that the function will not be evaluated.
For example let F(X,Y) = X-Y be a function and let
X and Y be names for A; then

F(X,Y) evaluates to O

'F(X,Y) evaluates to F(A,A)

F('X,Y) evaluates to X-A

'(F(X,Y)) evaluates to F(X,Y).
Quoting a function oX variable name does not quote
its subscripts. Numbers are taken as quoted auto-
matically.
Causes the letters which follow it to be lower case

for purposes of display.

As in CTSS, there are two editing characters:

"#" must be the first and last character of every command. ;"

Deletes all the characters of a command back to the

initial #.

Deletes only the immediately preceding character.

3

causes the current intensified subexpression to be raised one level. For

example, if the A in AB + C is intensified, then when ; is typed AB will

be intensified.
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Other available operators are:

ALLSUMEXPAND (EXP) Applies SUMEXPAND to every summation in expression
EXP.
BRINGOVER(EXP, X) Subexpression X, which has been indicated with the

light pen is brought to the other side of equation

EXP.

COLLECT (EXP,SET) Top level terms in EXP are collected on powers of
the expressions in set SET.

DEPENDENCE (EXP) Returns a set of the variable and function names in EXP.

DELSUBST(EXP,0LDDEL, NEWDEL) dx L g9x
d OLDDEL d NEWDEL

for each such

subexpression in EXP

DRV[X ,N, ...s Xn’Nn’ Y) Differentiate Y Ni times with respect
1 1

to Xi’ for each 1i.

DRVDO (EXP,X) All indicated derivatives with respect to X in EXP

are carried out as far as possible.

DRVFACTOR(EXP, X, N)

e M N o
> ( ) for each such subexpression in
N+M M N
dx dx dx
EXP.
DRVZERO (EXP,X) All derivatives with repect to X in EXP are set
equal to zero.
EVALUATE (EXP,SET) SET is a set of equations; whenever the left side

of one of these equations can be matched to a sub-
expression in EXP, the right hand side is substituted.
The left sides must be variables or functions.

A match occurs whenever a binding of the function
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EXCHANGE (EXP)

EXPAND (EXP)

variables and subscripts can be made.

If the top level connective of EXP is binary, its
arguments are exchanged, right to left.
Multiplies out all expressions of the form a*(b+c)

in EXP. 1In addition,

d_ (a+b) ->£l.-§+_d_h
dx dx dx

FACTOROUT (EXP, FACTOR,Y) The factor FACTOR is factored from each term of

EXP. The third argument Y is optiomal. If Y is

present, the factor FACTOR is renamed Y.

GROUP (SET) The set SET of terms which have been indicated by the
light pen in EXP are gmuped within the associated
sum or product. The value of GROUP is the grouped
set of terms.
LEFT (EXP) Returns the left argument of the main binary connec-
tive of EXP.
LIMIT(EXP,X,N) Determines the limiting value of EXP as X approaches N.
MULTIPLYTHROUGH(EXP,X) Multiplies each top level term of EXP by X.
NEWNAME () Creates a name of the form Fn, where n is an integer.
NORMPOLY (EXP,X) Every sum in EXP is treated as a polynomial in X
and a power of X is factored out so that the lowest
power of X in the polynomial will be zero.
REPLACE(E,X,Y) Expression X replaces Y in the expression named E.

Y is a term indicated with the light pen or a group of



RIGHT (EXP)

SIMPLIFY (EXP)
SOLVE(EXP,X)

SPLIT (EXP)

SUBSTITUTE (EXP,X,Y)
SUMEACH (EXP)
SUMEXPAND (EXP)

TERM(EXP,N)

TRUNCATE (EXP, VAR, N)
SUM(I,N1,N2,Y)

ITG(X,L1,L2,Y)

Expressions which are assigned names are kept on the disk.

sion most recently computed always has the name LAST.

terms indicated with GROUP. If the light pen has
been used to construct X, the resulting expression
position is named HOLE. HOLE can then be used for
the third argument. If X is equal to NIL, then the
third argument is omitted from the expression named E.
Returns the right argument of the main binary connec-
tive of EXP.

Simplifies expression EXP.

Solves equation EXP for variable X as far as possible.
Subparts of EXP are named and replaced by their names
in EXP, so that EXP will contain less than 100 sub-
expressions.

Substitute X for each occurrence of Y in EXP.

Z(at+b) » Za + Ib

Expands the finite summation EXP.

Returns the Nth argument of the top level connective
of EXP, or NIL if there is no Nth argument.

Expands EXP up to power N in variable VAR.

Sum expression Y for values of I from N1 to N2.
Integrate Y with respect to X between limits L1 and L2.

The expres-

When A<B is executed,

if A is not "LAST" and is already the name of an expression, then this old

value of A is given the name OLD.

Thus, if A<A+2 is executed and then is

found to be incorrect, the old value of A can be retrieved.



Operators used for input-output and disk storage are:

EDISPLAY(E) Displays the expression named E on the PDP-6 scope.

EPRINT (E) Prints out the internal form of the expression
named E with PLS, PRD, EQN, and PWR in infix form;

the other operators in prefix form.

EDELETE(E) Deletes expression named E from the disk.

This completes the description of the PDP-6 commands.



The Poincare-Lighthill Procedure

Applied to % + wzx = £x3

The Poincare-Lighthill procedure is typical of a number of procedures
used to find the first few terms in the asymptotic expansion of the function
which is the solution to a mildly non-linear differential equation. The
equation chosen here is that for a harmonic oscillator with a small forcing
function. These solution procedures involve assuming a series expansion
in powers of the small parameter © for one or more of the parameters and
variables in the equation, substituting these series.into the differential
equation, and thus obtaining a series of relations between the coefficients
of like powers of ¢. Each of these equations is then treated in turn by
whatever methods seem appropriate. Thus it is in general necessary to see
these equations before the next steps in the solution process can be deter-
mined.

When a typed command has been completed, the machine makes a response
of acknowledgment. This standard response will be omitted in the dialogue
to follow; only the typed commands and the displayed equations will be shown.
A running discussion of the dialogue is inqluded and the displayed equations

are shown on the pages following their use. These equations were plotted

[
12]
o
"
0
o
(5

by the CALCCIP plotter. A photograph of th equations is shown at
the end of tha scction., The resder should be euvare that in the equation

syntax used, more than one line of an expressicn can cccur over a divide

bar or within brackets. This is illustre by equetion Ql6 in the last

section.,



-10-

Enter the differential equation.
#'E1<"(DRV(:T,2,X(:T)) + OMEGA42*X(:T) = EP*(X(:T))*+3)#
#EDISPLAY('El) #

A new independent variable T is introduced in order to stretch the
time. Type in expressions for series expansions for X and t in terms of
functions of 1. That is, a solution for X(t) rather than for X(t) will
be found. Since t depends on 1, equation El can be used to find an equa-
tion in derivatives of X(t). As a final step the inverse relationship

T(t) will be found, so that X(t) will give X(t).

#'E2«' (X(TAU) = SUM(I,O0,INF,EPAI*X[I](TAU)))#

#EDISPLAY('E2)#

#'E3«' (:T(TAU) = TAU + SUM(J,1,INF,EP4+J*:T[J](TAU)))#
#EDISPLAY('E3) #

In order to substitute dt for dt it is necessary to apply the trans-
formation

2
d’x | Q_.(.QE
dt?2 dt dt

)

to equation El.

#'E4<DRVFACTOR(E1, ' :T,1) #
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Display E4 for comparison with the substituted result below.

#EDISPLAY (EE4) #

Now substitute dr for dt, and X(1) for X(t)

{t' E5«SUBSTITUTE(DELSUBST(E4 ,'(DEL(:T)), '(DEL(TAU))/DRV('TAU,1,RIGHT(E3))),
'(X(TAD)), " (XTI #

#fEDISPLAY ('E5) #

Now substitute the series for X(t1) and perform the indicated differentiation

with repect to T.

#'E6«DRVDO (SUBSTITUTE(E5, RIGHT(E2),'(X(TAU))),' 'TAU)#
#fEDISPLAY ('E6) #

Now expand both sides to first order in €.
#'E7<TRUNCATE(E6, 'EP,1) #

The zero order terms form the harmonic oscillator equation; the solution

can be written down by inspection as Acos wr. Use the light pen to form

an equation of the first order terms.

##'E8«!E7,6=;!E7,88#
#EDISPLAY('E8) #
Bring the terms in X1 (1) to the left side of the first order equation.

Substitute for XO(T) and carry out the indicated differentiation.
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#'E9<«SIMPLIFY (DRVDO (SUBSTITUTE (SOLVE(ES, ' (X[1] (TAU))), ' (A*COS (OMEGA*TAU)) ,

"(X[0](TAV))), 'TAU)) #

#EDISPLAY('E9) #

It is now necessary to substitute an identity for cos3wt and to collect

terms on sinwt and coswT.

#'E10<COLLECT (EXRAND (SUBSTITUTE (E9, ' ((COS (3*OMEGA*TAU)+3*COS (OMEGA*TAU) ) /4) ,

' ((COS (OMEGA*TAU)) 43))), ' ((SIN(OMEGA*TAU) ,COS (OMEGA*TAU) )) ) #
{fEDISPLAY ('E10) #

Theoretical considerations require that
the coefficients of coswt and sinwt must be zero if there is to be a
periodic solution for X (1). From the coefficient of sinwt it is apparent
1

that t'(r) must be some constant C. This constant is determined from the
1

coefficient of coswt.

#'E11+SIMPLIFY(SOLVE(SUBSTITUTE(!E10,44,'C,'(DRV(TAU,l,:T[l](TAU))))=0,'C))#

#EDISPLAY('E11) #

2
So X = A coswT and to first order t = 1 + e T.
0

8w?

£3A%

8w?

2
) and X =&~ A cos (l—-eiA—)t
0

8w?

Thus to first order Tt~ t(l -
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One effect of the nonlinear term is thus seen to be.én alteration in
the frequency of the zero order term.

In coﬁélusion, note the large number of small steps necessary to
solve this problem. These are the result of doing almost the entire solu-
tion in the machine. In the case of a small problem such as this, some
of these steps could be done by hand, the object here is to illustrate the
steps which woudd be required for a larger problem. This problem also illus-
trates how rather lengthy intermediate calculations can lead to some rather
concise results. The perturbation of the frequency in the zero order func-

tion is found to have a simple expression.






III. Plasma Accelerator Electrode Boundary Layers

The second probiem is a duplication of the work in the first three
sections of chapter three of a 1963 Masters Thesis by J.S. Draper for
the M.I.T. Department of Aeronautics and Astronautics. This thesis inves-
tigates the laminar compressible boundary layer on the electrode walls
of a direct-current crossed field plasma accelerator under very special
physical conditions. Many of the assumptions used under these conditions
are set forth in the paper "Electrode Boundary Layers in Direct-Current

Plasma Accelerators'" by Jack L. Kerrebrock in the August 1961 issue of

the Journal of Aerospace Sciences. Kerrebrock's ﬁaper investiéaﬁés a

solution involving less mathematical manipulation than that undertaken by
Maste}é“Thesisfstudent Draper.

In summary, the entire solution procedure is as follows:
1. Write down 5 non-linear partial differential equatioms:
Momentum
State
Continuity
Energy
Electron mobility as a function of temperature.
These equations relate U stream velocity
V 1lateral velocity
t temperature
o density
u  electron mobility

P pressure



in terms of the independent variables x and y. The constants are:
j current
B magnetic field
‘Ep specific heat
" K compressibility
G conductivity
R gas constant.
The absence of variation in the y direction in the free stream is used
to find the momentum and state equations there. These two reduced
equations are solved for %5- which is eliminated from the 5 main equa-
tions, since P is not a function of y.
The relation H =“§PE‘+'U2/2 is used to substitute derivatives of H for
those oﬁ t in the energy equation which then becomes an enthalpy equa-
tion. tiis thus eldmdnated from this equation. Simplification of the
resulting expression requires introduction of the momentum relation. This .~
step is performed because the enthalpy equation has a term proportional

C. M
to [1 - %-] where Pr.is —2— and can be approximated as 1, thus elimina-

r X
ting this term.
Next, a change of independent and dependent variables is made. The change

of independent variables is such that it approximates a similarity trans-

formation for low Mach number. These transformations change x and y to

£

X and n. In additionA;L:— is defined as f' , — 'as 0, and %— as g.

4]

oo © o]

The momentum and enthalpy equations are transformed, using the continuity
and state equations as side conditions. X is then changed to M There
result two non-linear differential equations in f and g and their deri-

vatives with respect to n and M
[22]



5. f and g are then approximated as f'(n,Mm) = b(Mm)n + c(Mg)nz,
g(n,Mw) = e(M;)n + f(M;)nz. These approximations are substituted
into the two non-linear differential equations. The equations are
then integrated with respect to n between the wallvénd the edge of the
velocity boundary layer dJu and the edge of the enthropy boundary layer
~ 8e respectively. b(M,) and e(M_) are eliminated from the result by
the relations f'(6u,M ) = 1 and g(8e,M ) = 1. There result two ordin-
ary linear differential equations for the derivatives of 8u, ¢, de,
and f with respect to M_.
6. Two more linear differential equations for Su, c, e, and f are generated
by choosing the coefficients of the approximations in step 5 so as to
satisfy the momentum and enthalpy equations produced in step 4 exactly

at the extremal points f" = 0 and g' = O,

7. The four resulting linear differential equations are solved for the

36e
derlvatlves-—gggy—ig-ynbevand~éM by Gaussian reduction. These

four expressions are then numerically integrated with a Runge-Kutta

method.

This problem has several interesting features. It is a demonstration
of the notation use by workers in this area. The algebraic expressions
are of a size difficult to manipulate by hand, but within the capabilities
of current machines. The final symbolic result is large; it is difficult to
write the corresponding numerical integration program correctly when this
result must be input by hand, but here it is developed in the machine and
could then be transformed into the required numerical program. Note that

the symbolic steps are needed in order to cast the problem in terms of the
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independent and dependent variables:of interest. The problem is charac-
terized by the application of simplifzigg " side conditions and physical
assumptions. As such, it involves a number of manipulations for the pur-
pose of expression condensation. This will be apparent from the following
step by step reproduction of the first three sections of Chapter III.
These steps bring the described solution through the application of the
similarity transformation to the momentum equation.

Input the momentum equation:

#'D1+«' (RHO* (U*DRV(X,1,U) + V*DRV(Y,1,U)) = DRV(Y,l,MU*
DRV(Y,1,U)) - DRV(X,1,P) + :J*B)#

Input the energy equation:

#'D2+«"' (RHO*C[P]* (U*DRV(X,1,:T) + V*DRV(Y,1,:T)) =
DRV(Y,1,K*DRV(Y,1,:T)) + MU*(DRV(Y,1,U))+2
+ U*DRV(X,1,P) + :J42/SIGMA#

The boundary layer solutions must match the free stream solution.
The free stream values are indicated by the subscript «=. At the free
stream, there is no variation in the boundary layer with respect to y.

To save rewriting,define sets containing the variables to be subscripted.
#'D3«' (RHO,SIGMA,U, :T,H) #
#'D4<«"' (RHO[INF],SIGMA[INF],U[INF], :T[INF],H[INF])#

Then in the free stream D1 and D2 become:
#'D5«SIMPLIFY (SUBSTITUTE (DRVZERO(D1, 'Y) ,D4,D3)) #
#'D6+SIMPLIFY(SUBSTITUTE(DRVZERO(DZ,'Y),D4,D3))#

#EDISPLAY('D5)#

#EDISPLAY('D6)+
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D5 and D6 will now be used to express some of the expressions in D1 and
D2 in terms of the free stream quantities. Ip order to substitute
for some of the terms in a sum,:the terms must be groﬁped using the light pen.
This is somewhat inconvenient.
#fEDISPLAY(D1) #

Now the last two terms in D1 are replaced by the left side of D5.
#'D7«REPLACE ('D1,LEFT(D5), GROUP((!D1,33,!D1,38)))#
#EDISPLAY ('D7).4#
{##'D8«LEFT(D2) = EXPAND(SUBSTITUTE(

RIGHT(D2), RIGHT(SOLVE(D6,'(DRV(X,1,P)))), '(DRV(X,1,P))))#

#EDISPLAY('D8) #

The last two terms in D8 are now put in a factored form.
#'D8+REPLACE (' D8 ,FACTOROUT (GROUP (! D8,62,!D8,78)), ' (:J42/SIGMA[INF]))

' HOLE)#

#EDISPLAY('D8) #

In order to effect a cancellation, equation D8 will now be transformed
by replacing the temperature, t, with the enthalpy, H, using the definition

H=Ct+ v?/2.
First H =_§pt + U2/2 is solved for temperature t.
#'D9«SOLVE(' (H(X,Y) = C[P]*:T(X,Y) + U(X,Y)+2/2),'(:T(X,Y)))#

Now the subgtitution is made for t and t_.
#'D10«EXPAND (SUBSTITUTE(D8, (DRV('X,1,RIGHT(D9)),SUBSTITUTE(DRV('X,1,RIGHT(D9)),

D4,D3),DRV('Y,1,RIGHT(D9))),'( DRV(X,1,:T), DRV(X,1,:T[INF]),

DRV(Y,1,:T))))#
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Now, there are a number of tedious grouping steps.

#EDISPLAY( 'D10) #

First, factor RHO out of two of the terms on the left side of the equation.:

#'D11«REPLACE( 'D10,FACTOROUT (GROUP ( (!D10,48,1D10,21)), 'RHO) , 'HOLE) #
#EDISPLAY('D11)#

Now factor RHO:U from the other two terms and bring them to the right side.
#'D11<BRINGOVER( 'D11,FACTOROUT (GROUP ((!D11,5,!D11,45)), ' (RHO*U(X,Y))))#

A machine matching operation would be better for the next factoring
step which must be done twice when light-pen pointing is used.
#EDISPLAY('D11)#

The quantity K/Cpu is factored out of two of the terms and set equal
to l/Pr'
#'D11<REPLACE('D11,FACTOROUT(!D11,34, ' (K/(C[P]*MU)),'(1/P[R])), 'HOLE) #
#EDISPLAY (!D11)#

#'D11<+REPLACE('D11,FACTOROUT (!D11, 25 (K/(C[P]*MU)),'(1/P[R])), 'HOLE) #

Cﬁp/K is the Prandtl number Pr’ It is close to 1, and setting it

to 1 will effect a simplification if the identity

dU., _ 4. d U(X,Y) 4. 4du
G = v VDT - U ghigy]

is also substituted. This simplification means that the heat conduction
away from a point is just equal to the viscous dissipation at that point.
#'D11<+SIMPLIFY(SUBSTITUTE(D11, ' (1,DRV(Y,1,MU*U(X,Y)*DRV(Y,1,
U(X,Y))) -U(X,Y)*DRV(Y,1,MU*DRV(Y,1,U0))),"'(P[R],MU*(DRV(Y,1,U))+2)))#
#EDISPLAY('D11) #

Next, the substitution in D11 of the right side of equation D7 for

its left side effects a nice cancellation.
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" #'D11+SIMPLIFY (REPLACE('D11, (~RIGHT(D7)),GROUP((!D11,117,!D11,122))))#
#'D11+LEFT(D11) = SIMPLYIFY(EXPAND(SUBSTITUTE(RIGHT(D11),'(U,U[INF]), ' (U, (X,Y),
U[INF] (X,Y)))))#
#EDISPLAY('D11)#
The momentum equation D7 and the enthalpy equation D11 are now
ready for the similarity transformation.
The transformationso6f independent variables are:
#'D12+' (XB(X) = ITG(X,0,X,P*U[INF]/(P[0]*U[0])))#
#'D13«' (ETA(X,Y) = (U[INF1/U[0])*((U[0]/(2*NU[O]*XB(X)) +(1/2))*
ITG(Y,0,Y,RHO/RHO[0]))#
Next, to compute the required differentials,

dX dX dn: dx d¥

#'D14tDRV('X,l,RIGHT(D13))¥'(DEL(ETA))+DRV('X;1,RIGHT(D12))*'DEL(ﬁB&)#
#EDISPLAY ('D14)#

D14 now contains the expression for n as a factor.
#'D14+REPLACE ('D14,FACTOROUT (!D14,4 ,RIGHT(D13), ' (ETA(X,Y))), "HOLE) #
#EDISPLAY( 'D14)#

n. is now substituted for its definition and (P.Uy,)/(Pg- Ub) is
factored out.
#'Dl4+SIMPLIFY(FACTOROUT(SUBSTITUTE(D14,DRV('X,l,RIGHT(DlZ)),

'(DRV(X,1,XB(X)))), 'P*U[INF]1/(P[0]*U[0]))))#
#fEDISPLAY ('D14)#
The differential for 1/dY is

#'D15+DRV('Y,1,RIGHT(D13))*'(DEL(ETA))#
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#EDISPLAY ('D15)#
i

Expressions D14 and D15 are the required differentials for é%- and A
respectively.
Now to transform the momentum equation D7. First, substitute for

the differentials of the independent variables and the new normalized

dependent variable f, defined by U/U, = f'(i?n).

##'D16«SIMPLIFY (SUBSTITUTE (DELSUBST (DELSUBST (D7, ' (DEL(X)),D14),
'(DEL(Y)),D15), ' (U[INF] (XB)*DRV(ETA,1,
:F(XB}ETA)) ,U[INF] (XB) ,XB,ETA), ' (U,U[INF],XB(X),ETA(X,Y))))#

Now assume u= uot/to.

#'D17<+SIMPLIFY (SUBSTITUTE('D16, ' (MU[O]*:T/:T[O], 'MU))#

Use the equation of state to recognize that

d - 4 _

since P is taken independent of Y. A substitution for P should therefore
becmade.
#EDISPLAY('D17) #
The machine responds with "EXPRESSION TOO LARGE"
Therefore, the left side of equation D17 will be treated first, the
substitution for P will be deferred.
#'D18<LEFT(D17)#
An expression for V will now be developed and substituted into D18.

It was shown in Chapter II of the thesis that the continuity equation yields

Pog L
o —— I\ 2
V = > 1% (2Ug Vo X) “f
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Enter this expression.

#'D19+" (- (RHO[D]/RHO)*DRV (X, 1, ((2*U[D] *NU[0] *XB+(1/2) ) *: F (XB.ETA) ) ) #

Now substitute the new independent variables'

#'D20«SUBSTITUTE (DELSUBST (D19, ' (DEL (X)) ,D14), ' (U[INF] (XB) ,XB,ETA),

'(U[INF],XB(X) ,ETA(X,Y)))#

Now, substituting this expression for Vainto the partially transformed

left side of the momentum equation, D18, the entire expression is differen-

tiated as far as possible, expanded and simplified.

#'D21«EXPAND (DRVDO (DRVDO (SUBSTITUTE (D18,D20, 'V), 'ETA) , 'XB) ) #

Now some shorthand will be introduced to make D21 easier to read.

#'D22+«'(:F,U,F1,F2,F01,F11,U[INF])

#'D23«' (:F(XB,ETA) ,U(XB) ,DRV(ETA, 1, :F) ,DRV(ETA, 2, :F) ,DRV(XB, 1, :F) ,DRV
(ETA,1,XB,1,:F),U[INF](XB))#

#'D21«SUBSTITUTE(D21,D22,D23) #

#EDISPLAY('D21)#

It is now convenient to factor a large coefficient from each term
and set it equal to 1 since it will also be factored from the other side
and set to 1 there.
#'D24+SIMPLIFY(FACTOROUT(DZl,'(RHO*U[INF]+3*P/(2*P[O]*U[O]*XB)),1))#
#EDISPLAY ('D24)#
Returning to the right side of D17.
#'D25«RIGHT(D17) #
ffEDISPLAY ('D25)# .

The deferred substitution for P is now made.

#'D27«REPLACE( 'D25,FACTOROUT (!D25,44, " ((RHO*:T) /(RHO[0]*:T[0])),'(P/P[0])), 'HOLE) #
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The expression is now differentiated as far as possible, as was the
left side.
#'D28<«EXPAND (DRVDO (DRVDO (D27, "ETA) , 'XB) ) #
The simplifying notatdon is substituted.
#'D28<+SUBSTITUTE(D28,D22,D23) #
#EDISPLAY('D28)#

Finally the large factor is removed from each term as it=was from
the right side.
#'D29«SIMPLIFY (FACTOROUT (D28, ' (RHO*U[INF]43*P/ (2*P[01*U[0]*XB)),1))#
The two sides of the transformed mementum equation are now recombined.
#'D30«SIMPLIFY(D24-D29) = Of
#EDISPLAY ('D30)#

Using some more relations developed earlier in the thesis, a finmal
substitution will be made, from the equation of state at constant pressure.

p

oo

¢

p

oo

t
=t but L - ® so =0 , and from Chapter II,

t o

<«

= - - - 2
0= (o, - 0)g+0 - (6, -1)Ff

w
es=1+3'—;—1- - M2
The final transformed equation is:
#'D31«SIMPLIFY(SUBSTITUTE (REPLACE( 'D30,FACTOROUT (!D30,38, ' (RHO[INF]/RHO),
'((THETA[S] - THETA[W])*G + THETA[W] - (THETA[S] - 1)*F142)), 'HOLE),
'(1 + (GAMMA - 1)*M[INF]+42/2),'(THETA[S])))#

#EDISPLAY('D31)#
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In conclusion, since physical approximations are involved in the
expression condensation, close man-machine interaction is required. The
greatest draw backs to sufficient interaction are the input notation and

the lack of sufficient facilities for abbreviation on output.



IV. A Multiple Channel Queueing Problem

The third probdem is taken from Interim Technical Report No. 13 of
the M.I.T. Center for Operations Research titled 'A Class of Queueing
Problems". This work is a 1955 Doctor's Thesis by H.N. Garber. The

queueing situation shown by the example in Figure 1 is treated.

I 3 2 1| channe1 1

arrivals o 4 3 2 1 Channel 2
( N ®

4 3 2. 1 Channel 3

Arrival times at the queueing complex are expomentially distributed with
mean A. Arrivals enter any channel which becomes vacant and progress
through several phases of service with exponentially distributed service
times with mean ku.’ There are M channels and k iphases of service in the
general case. It is desired to find the probability distributidémnof the
number of units in the system. The solution can be carried a number of
steps for the general case. A set of equations relating the probabilities
of the states are written, where a state of the system is taken as a cer-
tain number N in the system and a description of which phases of which
channels are occupied. Each equation is then multiplied by the appropri-
ate variables so that the summation of the equations will yield an equa-

tion with the generating function for the state probabilities as its left
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side. Unfortunately, the generating function also appears in a summation
on the right side. The independent variables of the generating function

are constrained to make each term of this summation equal to zero. This

constraint is expressed in a change of independent variables. It is then
shown that a summation over values of the new independent variables will

yield the old generating function.

This generating function still involves the state probabilities for
a partially full system as eonstantsttotbe determined. There are a number
of relations which can be used to determine these initial probabilities.
As the third problem this evaluation will be carried out for the case of-
two channels with two phases of service.

The source of expression complexity is different in this problem. 1In
the first problem complexity arose because a small parameter allowed an
unsolvable problem to be split into a spectrum of solvable ones. 1In the
second problem complexity was the result of the number of important pheno-
mena in the physical process being described. Here, complexity is the
result of the number of states in the process being described, all of
which are very similar. 1In this problem there would be the best chance
for reduction in complexity through proper notation.

This problem has been included so that the reader can better refine
his intuitive notion of the types of mathematical operations and notation
needed to solve problems in different areas of applied mathematics. Sum-
mation expansion, function evaluation, limits, and some more grouping

operations are introduced.



A

The function in the transformed variables is:
#'Q1«' (R(2,Q[1]1,Q[2]) = ((z4(2*:K + 1))*SUM(R,1,:K, (Z4R)*
A[R] * (:E4(2*PI*I*Q[1]*R/:K)+:E+(2*PI*I*Q[2]*R/:K))))/
| (2x(z(zt:R) - ALPHA(QI1],Q[21))))
Where W, a, and Ar are defined by:
#'Q2«"(W(Z4:K) = 1 + THETA - THETA*Z4:K)#
#'Q3«' (ALPHA(Q[1],Q[2]) = (:E4(-2*%PI*I*Q[1]/:K)+
tE4(=2*PI*1I*Q[2]/:K))/2)#
#'Q4«' (A[R](Z) = P(1,R+1,0) - (2*W(Z4:K) - 1)*P(1,R,0))#
#EDISPLAY('QL)#
It is useful to have the denominator of Ql contain only powers of Zli

k-1 k-1 k- 'k
A 4 ) = (X -Y). At

This is done by using the identity (X-Y) (X

present the system contains no operators for achieving this goal, so it

must be done by brute force.

#'Q5«LEFT(QLl) = '(SUM(J,0,:K-1, (Z*W(Z4:K))+4J*ALPHA(Q[1],Q[2]4(:K-1=J)))*
SUBSTITUTE(RIGHT(Q1), '((Z4:K)*(W(Z4:K)4:K) - ALPHA(Q[1],Q[2])+:K)
'(Z*W(Z+:K) - ALPHA(Q[1],Q[21)))#

#fEDISPLAY('Q5)*

Now substitute 2 for the number of phases of service, k., Then
expand the summations.

#'Q6<SIMPLIFY (ALLSUMEXPAND (SIMPLIFY (SUBSTITUTE(Q5,2, ':K))))#

#EDISPLAY ('Q6) #
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The substitution:k = 2 is made in all the initial equations as well

since theywwlllbbe used several times.

#'QL«SIMPLIFY (SUBSTITUTE(QL,2, " :K))¥ |

#'Q2«SIMPLIFY (SUBSTITUTE(Q2,2,':K))#

#'Q3+SIMPLIFY (SUBSTITUTE(Q3,2, ' :K))#

#'Q4«SIMPLIFY (SUBSTITUTE(Q4,2,":K))#

Now write down.an expression for the generating function as a summa-
tion of Q6 over the transformed independent variables, the q's.
#8Q7+«' (H(Z42,V[1],V[2]) = (1/4)*suM(q[1],0,1,
stM(Q[2],0,1, ((VI1]/z)*(-1)4Q[1] + V[1]142/(Z42))*
((V[2]/z)*(-1)*Ql2] + V[2]*2/(2%2))*K(Z,Q[1],Q[2]1))))#
#EDISPLAY('Q7)#
Now expanding the summations, substituting the appropriate values
of Q6, Q3, and ”k,x and simplifying.
¢QQ8+SIMPLIFY (EVALUATE (ALLSUMEXRAND (Q7) , (Q6,Q3))) #
#EDISPLAY('Q8)#
To evaluate p(1,1,0) and P(1,2,0) certain known conditions are next
imposed. Q8 is known to have a zero of order four in Z for all values
of V1 and V2, so one would like to collect terms on Z'. The simplest way
to explore this would be to expand Q8 and collect terms on AR Unfortunately,
this leads to roughly a sixteen—fold growth in expression size and to memory
overfiow.
Inspection of Q8 shows that it might be rearranged while in factored

form. As the first step, subexpressions which are polynomials in Z, V;, or
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V,, have factors of Z, V;, or Vy, removed so that their lowest order term
is of zero order in these.
#'Q81+«+SIMPLIFY (NORMPOLY (NORMPOLY (NORMPOLY(Q8,'Z), ' (VI11)), " (V[2]D)) #
#EDISPLAY('Q81)#

Next the center two terms are combined.
##'Q82«REPLACE('Q81,FACTOROUT (GROUP ((!Q81,85,1Q81,108)),

'(A[2]/W(242))), 'HOLE) #

#EDISPLAY('Q82)#

The resulting term is then expanded.
##'Q83«+REPLACE('Q82, EXPAND(!Q82,90) 'HOLE)#
#EDISPLAY('Q83)#

Now the other two terms are combined.
{##'Q84+REPLACE('Q83,FACTOROUT (GROUP((!Q83,111,!Q83,30)),1/Q83!70), '"HOLE) #
#fEDISPLAY('Q84)# EXPRESSION TOO LARGE

Q84 will not display, so it is reduced in size by naming a subpart.
##'Q85«SPLIT(Q84)#
#EDISPLAY('Q85)#
Next the numerator of the larger term in Q85 is arranged on powers of Z.
#'Q86+REPLACE('Q85,COLLECT (EXPAND (SUBSTITUTE(!Q85,31,F2,'F2)), 'Z), '"HOLE) #
#EDISPLAY('Q86)# (EXPRESSION TOO LARGE)
#'Q87<«SPLIT(Q86)#
#EDISPLAY ('Q87)#

Forming a term from the renamed parts of Q87 one has for the coeffi-
cient of Z2 in Q87.

#'Q88<«SIMPLIFY(F2 + F3 + F4 + '(2%A1) + F5 + F6)#
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#fEDISPLAY ('Q88)#

Looking at equation Q87, one can see that in a double power series
expansion in V, and V,, only the coefficient of V%V% does not have a
zero of order 4 at Z = 0. Setting this coefficient equal to zero one
obtains by inspection of Q87:

Aj A + z2 . W(Zz_)jAz

mez T zEl o weadh o - °

Enter the equation into the machine.

#1Q9«" (A[2]/(2*W(Z42)) + (A[1] + Z42*W(Z42)*A[2])/
(2% (Z42*%(W(Z4+2))12 -1)) = 0)#

Evaluating W, A; and A, one obtains at Z = 0
#'QL0+SIMPLIFY (SUBSTITUTE (EVALUATE(Q9, (Q4,Q2)),0, 'Z)) #
#EDISPLAY ('Ql0)#

Recognizing that by definition P(1,3,0) = P(1,1,0)
this equation can be solved for P(1,2,0).
#'QL1+SIMPLIFY (SOLVE (SUBSTITUTE(QLO, ' (P(1,1,0)), ' (P(1,3,0))), ' (P(1,2,0))))#
#fEDISPLAY ('Q11)#

Qll can be simplified somewhat.

#'QL1«LEFT(Qll) = (-SIMPLIFY(FACTOROUT(!Ql1l,11,!Q11,29)/
FACTOROUT (!1Q11,43,!Q11,49)))#

#EDISPLAY('Qll)#
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2

Let u = z°, the generating function for the unconditional state

probabilities G(u) ==z unp(n) can now be written. There are special
n=0
case terms for n = 1, and n = 2, The other terms are found from H(u,1,1).

The most compact formula for H is Q86.

#'QL2«"'(G(U)) = "(P(0,0,0)) + 2%'U*('(P(1,1,0)) + RIGHT(QLl))
+ SIMPLIFY(SUBSTITUTE(EVALUATE(RIGHT(Q86), (Q2, qQ4)),
"(ut(/2), 1,1),'(2Z,
VI1],vI2D))#
The original transition equations five p(1,1,0) = 8p(0,0,0),.anticipating
that p(1,3,0) may also occur, substitute p(1,3,0) = p(1,1,0) = 6p(0,0,0).

Then use Ql1l to eliminate P(1,1,0).
#'Q13«SUBSTITUTE(Ql2, RIGHT(Qll), '(P(1,2,0)))#

#'Ql4+SIMPLIFY(SUBSTITUTE(Q13, '(THETA*P(0,0,0), THETA*P(0,0,0)),
'(P(1,3,0), P(1,1,00)))#
Ql4 contains only the unknown P(0,0,0) which can be determined from

the condition G(1) = 1.

#'Q15«SIMPLIFY (SUBSTITUTE(RIGHT (Q1l4),1,'U) = 1)#
The machine types out INDETERMINATE, indicating that ®*% 0 has been

replaced by UNDEFINED.

#fEDISPLAY ('Q15) #
The operator LIMIT will be tried; this operator uses 1'Hopital's Rule.

It is slow, and so it should not be used when substitution will suffice.

#'QL6<LIMIT(RIGHT (Q14), 'U,1)#

#EDISPLAY ('Q16) #
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Ql6 can be simplified by factoring and expansion.
#'Q17+FACTOROUT (EXPAND(Q16) , ' (1 ((3*THETA + 2)*(1-2*THETA))))#
#'Q17+LEFT(Q17)*EXPAND(RIGHT (Q17) ) #

#EDISPLAY('Ql7)#

Ql7 is equal to 1 and can be solved for P(0,0,0).
#'Q1l8«SOLVE(Ql7=1, '{P(0,0,0)))#

#EDISPLAY('Q18)#
The expression for P(0,0,0) shows that the SOLVE routine could be
improved. This expression is now substituted into Ql4 in order to produce

the final expression for the generating function H.
#'Q19+SIMPLIFY (EVALUATE(Q14, Q18))#

Taking a census of Q19 shows that it is probably too large to display

without being split.
#CENSUS (Q18) #

#fEPRINT ( 'LAST) # 1438
In the thesis this expression was evaluated numerically to form a
table of values. This probem would provide a basis for further work in

automatic simplification.
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The preceding problem solutions show that the current system can
be used for work on existing probiems. No one part of the system is
particularly weak, but there are many interesting possibilities for

improvement.



