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Abstract

In the four years that the MIT Mobile Robot Project has been in exis-
tence, we have built ten robots that focus research in various areas concerned
with building intelligent systems. Towards this end, we have embarked on
trying to build useful autonomous creatures that live and work in the real
world.

Many of the preconceived notions entertained before we started building
our robots turned out to be misguided. Some issues we thought would be
hard have worked successfully from day one and subsystems we imagined to
be trivial have become tremendous time sinks. Oddly enough, one of our
biggest failures has led to some of our favorite successes. This paper de-
scribes the changing paths our research has taken due to the lessons learned
from the practical realities of building robots.
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1 Introduction

The MIT mobots come in a number of shapes and sizes, utilize an assortment
of different sensors, take advantage of a few types of locomotion strategies
and are implemented in several varieties of computer hardware. Central
throughout however, is a common methodology for organizing the sensors,
actuators and computational elements to effectively control complexity.

A basic tenet of our research of the last four years is that it is important
to build complete systems that exist in the real world with all its noise. This
avoids the trap of building abstraction barriers that never quite get bridged,
but which provide cracks into which all the hard problems slip. Another
key component has been the realization that the hardest part in building
robots is not so much in building the intelligent decision system per se, but
in achieving perception. Extracting useful information from noisy sensors
requires extensive effort, and the success of our subsumption architecture
framework is primarily due to the manner with which it handles sensor
fusion rather than control.

Finally, through doing #t all, or being forced to write our own languages
and compilers, designing our own sensors, building our own computers, even
manufacturing our own motors, comes a thorough understanding of how
much computation is actually needed for a given level of behavior. The
primary result is that if the computation is well understood and the sub-
components of the system are organized correctly, then the actual silicon
area needed to implement the control for a mobile robot becomes quite
small. This realization leads to some very interesting prospects for one day
creating microminiature robots that hold the promise of useful behavior at
very low cost,.

2 Theme

The general problem we set out to solve four and a half years ago was how to
organize the intelligence system of a robot in order to answer the question of
what it would take to build something that we would consider clever. What
were the essential components that would be needed to create an intelligent
entity and how should those components be put together?

The ideas we started with took a route that was different from the tradi-
tional thinking in Artificial Intelligence at that time. Namely, our approach
emphasized:



that there would be no traditional notion of planning

e that no central representation of the world was needed

that notions of world modeling are impractical and unnecessary

that biology and evolution were good models to follow in our quest

that we insist on building complete systems that existed in the real
world so that we would not trick ourselves into skipping hard problems

To encapsulate these ideas and to address the real-world, real-time is-
sues, we developed a general methodology for the organization of the control
system, which we call the subsumption architecture. The subsumption archi-
tecture is a parallel and distributed computational formalism for connecting
sensors to actuators in robots. The underlying ideas of the architecture and
experimental runs have been well documented in the literature [Brooks 86],
[Brooks, Connell and Ning 88], [Brooks 89).

The two distinguishing aspects of the subsumption architecture are that
(1) it imposes a layering methodology in building intelligent control pro-
grams and (2) within each layer, the finite state machines give the layer
some structure and provide a repository for state.

A key observation from our experiments has been that using this subsumption-
style organization, very small amounts of computation are needed to gener-
ate intelligent behaviors.

2.1 The MIT Mobots

A variety of experiments with the subsumption architecture have been per-
formed on a number of mobile robots built in the Mobot Lab. Figure 1 shows
the family portrait at this time of writing. The different robot projects fo-
cused in on different theoretical issues or experiments with new sensors and
hardware.

The first robot, Allen, [Brooks 86], [Brooks and Connell 86] was
the initial testbed for the subsumption architecture; it simulated the parallel
layered processes on an offboard Lisp Machine. Allen had only a ring of
simple sonar sensors to achieve behaviors such as obstacle avoidance, wall
following and door finding.

After Allen, Herbert was begun to extend the experiments with the
subsumption architecture by adding more interesting sensors and actuators
[Brooks, Connell and Ning 88], [Connell 88)]. Herbert has an arm, a



Figure 1: The MIT Mobile Robots include, in the back row, left to
right; Toto, Allen, Herbert, Seymour and Tito. In the middle row are
Genghis, Tom and Jerry, and Labnav. Squirt, although rather hard to
see, 1s down in front.




light striper vision system for recognition, and infrared proximity sensors for
obstacle avoidance. In addition, all computation was moved onboard into a
network of simple microprocessors with only a patch panel of physical wires
implementing the interconnections, to make an explicit statement showing
the lack of central control. Herbert has wandered through a sequence of
rooms, found a soda can, picked it up and returned it to the place where
it was switched on. The subsumption architecture implementation in this
system achieves all those behaviors without retention of any state for more
than three seconds, and without any communication between processes. The
key idea that enables accomplishing useful tasks without recourse to world
models is the notion of communicating through the world [Connell 89).

The idea here of communicating through the world, is that Herbert’s
intelligence architecture is organized as a collection of independent agents
which compete for the resources of the body. Different behaviors communi-
cate by watching how other behaviors change the environment rather than
by receiving control signals from them explicitly. For instance, the vision
system can find a soda can (a cylindrical object to be exact) in a general
cluttered scene. The arm by itself, is capable of searching and finding a
soda can (with infrared sensors and touch switches on the hand) whenever
a can is present somewhere in its workspace. However, instead of the vision
system explicitly telling the arm to move to coordinates X,Y,Z, what the
vision system does is simply direct the base to servo itself such that the soda
can is seen in the center of the field of view of the camera, and then stop the
base. Similarly, the arm does not wait for explicit control signals from the
vision system, but merely monitors the base. Whenever the base is stopped,
the arm realizes that other behaviors have set up the world such that a soda
can is somewhere within its workspace. This observation of the base being
stopped triggers the arm to initiate its manipulation task. By organizing
the behaviors in this manner of communicating through the world, the issue
of fusing data from many sources becomes pushed back to the level of be-
havior fusion instead of sensor fusion. That is, communication through the
world has circumvented the problem of calibrating the vision system to the
arm. By alleviating the need to fuse data from the camera system with data
from the arm sensors, the final system becomes much less computationally
intensive. This observation has inspired a number of later projects.

While Herbert’s development was in progress, Tom and Jerry [Connell
87] were built to demonstrate just how little computational hardware was
needed to implement a subsumption architecture. Two small cars with only
four near-infrared proximity sensors, Tom and Jerry exhibited behaviors



roughly equivalent to Allen’s, yet the entire brain was compiled down to a
single programmable array logic chip. Without any need for sensor fusion
or world model representation, the silicon area needed to implement the
control system can be very small.

Genghis [Brooks 89] is a six legged robot which walks under subsump-
tion control and has, like Herbert, an extremely distributed control system.
While the control system is composed of 57 finite state machines, only 5
have any central role over more than one leg. That is, each leg has a notion
of how to behave when placed in various circumstances. Walking, balanc-
ing and climbing fall out by merely sequencing the lifting of the six legs.
The robot successfully walks over rough terrain using 12 motors, 12 force
sensors, 6 pyroelectric sensors, one inclinometer and 2 whiskers. Walking
behavior falls out from very simple autonomous behaviors assigned to each
leg, and as more sensors and more layers of control are added, Genghis can
be clearly seen to walk better. The first few layers of finite state machines
initiate stand-up and simple walking talents. Incremental layers above those
respond to different types of sensors which instigate balancing, turning and
people-following behaviors.

Seymour is a new robot we are building now with all onboard processing
to support vision processing of 8 to 10 low resolution cameras [Brooks
and Flynn 89]. All of these cameras will feed into different subsumption
layers which will act upon those aspects of the world they perceive. For
instance, one layer might use a camera to follow a moving blob [Horswill
and Brooks 88]. Another might use motion stereo to detect obstacles in
the path [Brooks, Flynn and Marill 87]. Yet another can locate ceiling
edges to determine sizes and shapes of rooms, as has been prototyped on the
robot Tito [Sarachik 89]. Passive infrared motion sensors are configured
to detect and range to humans [Viggh and Flynn 88].

Squirt is the smallest robot we have ever built [Flynn, Brooks, Wells
and Barrett 89a]. It packs sensors, actuator, computer and power sup-
ply in a 1.3 cubic inch volume. Using two microphones and a photoresistor,
Squirt (shown in figure 2) is programmed to act as a “bug”; spiraling around
searching for dark corners to hide in, venturing out only after hearing loud
noises some time. after the noises have disappeared. The end effect is that
Squirt gravitates towards the center of action (i.e. ends up under the con-
ference table). The entire control system for Squirt fits in 1300 bytes of
code.



Figure 2: Squirt, the smallest robot we’ve built to date, packs motor,
batteries, microcomputer, interface electronics and three sensors into a
volume slightly larger than one cubic inch.




3 Reflections on the Last Four Years

What have we learned in the last four years of building robots? Some lessons
have reinforced earlier convictions while others have turned us away from
the original paths we went charging down.

3.1 Experiences with the Subsumption Architecture

When we started, we focused our efforts on the design and organization of
an intelligent control system, as we felt the bulk of the research would lie
in organizing the software. We came up with the subsumption architecture
approach and have experimented with it in many ways. We have made a few
improvements to it over the years, most notably incorporating the strategy
of communicating through the world rather than allowing higher levels to
twiddle signals internal to lower levels. There have also been some evolu-
tions in programming styles, such as the new format of making suppressing
signals act like monostables rather than as specified delays. The monostable
form of suppression implies that the suppressing module repeatedly sends
its suppressing packet for as long as it is activated, rather than sending one
message specifying that it should be suppressing for some specific amount
of time. We’ve also designed new behavior languages for specifying sub-
sumption programs in a higher level abstraction than finite state machines
[Brooks and Flynn 89]. Mechanisms in the behavior language allow for
experiments in learning by spreading activation signals throughout the net-
work to increase the likelihood that certain behaviors will fire.

However, there have been lots of other issues that have gained equal im-
portance. The driving force behind subsumption was to achieve robustness
and distributed control so that the system would not become saturated, but
the real problems we ran into involved perception.

Time and time again, for every new robot or for every new behavior that
we thought of creating, we had to go back and invent or engineer a sensor
for the job, (in the spirit of Nature’s matched filters [Wehner 87]), so that
our control system could have something interesting to process. We have
built sonar rings, laser stripers, infrared proximity detectors, tilt sensors,
force sensors, whiskers, digital compasses, pyroelectric ranging systems and
even home-brewed cameras.

The inseparablity of perception and the intelligence system now seems
to be our major thrust in AI. Sensing is not perceiving. It is one thing for
a transducer to convert optical energy into an electrical signal. It is even



fine to print out the pattern and show it to a human who will have no
trouble understanding the image. However, having a robot extract useful
information that lies hidden somewhere in a large array of bits is much
harder.

It is interesting to observe the trend towards sensing research in the
dozens of papers that our group has written in the last four years. Early
papers dealt with subsumption and ideas for control, but the majority of
the papers in recent years have focused in on perception problems of various
sorts. It is very difficult to instill environmental awareness into a mobile
robot in the midst of real world noise. The human system is amazingly
good and we take so much of it for granted, that the a priori notion in
building a robot is that seemingly simple perceptual feats should be trivial.
However, we have spent far more time in the last four years battling noise
in near-infrared proximity sensors than in writing any piece of subsumption
code.

The subsumption architecture has not changed much - and maybe that
is because it was a good idea.

3.2 Sensor Fission

Our verdict is that subsumption was a good idea — but not only for the
original reasons. While subsumption was successful in the way it dealt
with multiple goals, control arbitration and robustness, it was even more
successful in the manner in which it dealt with the issue of sensor fusion.
Sensor fusion is the notion that if you can combine information from multiple
sensors into one model, you can achieve better perceptual acuity [Flynn
88b]. The problem with sensor fusion however, is that it is computationally
expensive and it is not clear that it is useful in carrying out tasks.

Our experience indicates that the best way to deal with sensor fusion is
to ignore it, and this is the way subsumption handles the issue.

Instead of sensor fusion, our control systems use a form of sensor fission
where different sensors trigger different behaviors and arbitration is done
at the actuator stage rather than the sensor stage. By organizing the in-
telligence system in this way, such that various sensors inject themselves at
various levels of the control system to initiate distinct behaviors, there is
no need for maintaining a model of the world or for having to make judge-
ments about which sensor data to believe should there be conflicts. The
issue of arbitration takes the form of behavior fusion rather than data fu-
sion. Circumventing all the overhead of sensor fusion and calibration means



we can build the brains for our robots with trivial amounts of computational
hardware.

3.3 Engineering All the Pieces Led to Insight

The fact that subsumption style control systems can compile down into very
lean code has been one of the most pleasant surprises in our research. We did
not realize it for a long time though, and in fact, it took one of our greatest
failures to bring us around to that point. When we first built Allen, we ran
his initial three-layer control system remotely on a lisp machine. We used
a serial cable to listen for sonar data and send down base commands. The
parallel processes of the subsumption architecture were simulated sequen-
tially on the uniprocessor and there were many layers of lisp machine system
software between our robot and his brain. We always planned on replacing
his serial tether with a radio link and adding cameras and a high bandwidth
TV channel, but it never worked. Undergraduate after undergraduate took
a crack at Ham TV, police walkie-talkies and cellular telephones, but we
found that the 9th floor of the AI Lab produced far more electrical noise
than any mobile robot deserved. We realized we were sinking a lot of time
into technology that was not our strength and also was not at the center of
our research problem.

Consequently, for all robots after Allen, we put computers onboard. It is
possible to squeeze plenty of computation onto small boards these days and
furthermore, using CMOS technology, they can run off trivial levels of power.
In addition, digital electronics is much easier to deal with than RF or ana-
log circuitry. Computer scientists building computers - that seemed much
more reasonable. Of course, building our own computers meant we needed
assemblers, debuggers and software tools, but that was perfectly reasonable
also. The necessity of targeting subsumption code down to robot-based mi-
croprocessors rather than the luxury of leaving it in Lisp and running on a
lisp machine forced us to write compilers for the subsumption architecture.
In turn, that exercise forced us to completely understand the computations
that were undertaken.

It turned out that in Allen’s brain, there really was not much happening.
From that realization Tom and Jerry were spawned; small cars with only
single-chip PALs which produced all the functionality of Allen. In the robots
that followed, the subsumption compiler, which was retargetable, was used
to program brains made out of 6301s, 68000s, 6811s and programmable logic
devices.



In choosing to build mobile robots (from the argument that mobility
tended to predominate in evolution in creatures of general intelligence), we
were forced to do extensive engineering. We found we could not buy systems
of sensors or computers off the shelf very easily. Either they often did not
exist, as in the case of sensors, or they were too large and power hungry, as
in the case of computers. If we incorporated a MicroVax and accompanying
disk drive and fan on our mobile base, we would very likely end up weighing
it down and would need larger motors. Larger motors would require more
batteries, but more batteries would just increase the weight of the base.
That would mean we would need larger motors again. As we looked around
at mobile robot projects across the country, we noticed this general trend.
It seemed mobile robots were half motors and batteries, and the pieces we
were interested in for our research, the sensing and control, fit into a very
small volume.

3.4 Connector Nightmares

Mobile robots are half motors and batteries — and the other half is connec-
tors.

We noticed that there was a tremendous amount of overhead in putting
the entire robot together. This overhead usually came in the form of inter-
connections. With motors from one vendor, batteries from another, com-
puters from yet another and sensors geographically dispersed, the ensuing
connectors form a Gordian knot of wires. Herbert, for instance, has roughly
900 electrical cabling connectors, 400 mechanical fasteners and over 10,000
Scotchflex insulation displacement points for the prototype wiring between
chips. Genghis, only one foot long and weighing just one kilogram, has 72
connectors. In fact, we spent so much time mucking around in catalogs
looking for small simple plugs and sockets in order to make modules easy
to take apart and debug, that we dubbed robotics just a “Deep Theoretical
Study in Connectors”.

By insisting on building mobile robots in order to study intelligence, we
neatly backed ourselves into the corner of having to do it all as nothing off
the shelf was ever quite light enough or energy conscious enough. We ended
up building our own arms, designing our own bases, inventing new sensors,
laying out computer boards and writing custom debuggers, assemblers and
compilers. The dive headfirst into engineering took a large investment of
time, but looking back we can see that it was well worth the effort as we now
have an infrastructure perfectly fitted to our needs and more importantly,
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we have a clear vision of just what is necessary to build a robot.

Getting frustrated with connectors led to an interesting idea. When
the VLSI community first got started, they found that often, the biggest
constraint on how much functionality could be put into a chip was the limit
imposed by the package and the allowable number of pins. If a chip had
too many signals that needed to go off chip and onto another chip, there
were serious problems in both packaging and the ensuing overhead of raising
the signal levels to drive the pads. The solution, and it turned out to be
easier than solving the connector problem, was to combine the functionality
of second chip onto the same die as the first, thus omitting any overhead for
interconnections.

Why not do the same with a robot?

3.5 Gnat Robots - The New Look and Feel

Just about two years ago, when our group was in the thick of groping our way
through Herbert’s jungles of connectors, some new research ideas surfaced
from the microsensor community concerning putting motors on chips. The
idea was to use silicon micromachining techniques to etch freely movable
structures onto a silicon chip and to electrify them, creating electrostatic
actuators [Bart, Lober, Howe, Lang and Schlecht 88]. Although they
would not be electromagnetic and would be no larger than the diameter of
a human hair, they filled the bill for some of the problems we were wrestling
with.

The whole escalating problem of large motors requiring larger batteries
In turn necessitating larger motors and so on, could be eliminated if we
went in the reverse direction. By scaling down and using smaller motors
which could get by on smaller power supplies, we could gain a tremendous
advantage. As most of the componentry we are interested in for our research
can fit on a small silicon chip anyway, why not scale everything down and
integrate an entire robot on a chip? The real advantage of putting everything
(motors, batteries, sensors and intelligence) on one chip though, is that now
we eliminate connectors!

Self-contained, completely autonomous chip robots (we call them gnat
robots) give us a completely new image for robotics [Flynn 87], [Flynn
88a], [Brooks 87]. At first you might ask what a motor with fractions
of milliwatts of power would be good for, but if the only requirement is to
push the chip on which it is built, then there might be something worthwhile
there. As many mobile robots are used solely to collect information, such
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as security robots or planetary explorers, there really is no advantage to
lugging around extra bulk. A gnat robot would be perfectly sufficient since
software and data (as compared to the motors and batteries on large robots)
take up almost no space.

Such a new look and feel for robotics of the future requires new per-
spectives on how we solve problems. One good model to keep in mind is to
think of parallel processing computers vs. traditional sequential uniproces-
sors. Programming an algorithm on a parallel computer requires standing
on your head and thinking sideways in comparison to traditional ways of
implementing algorithms, but if the algorithm solution is well matched to
the structure of the parallel computer, then there can be tremendous advan-
tages in speed. Lots and lots of very simple processors can work together to
outperform a goliath uniprocessor.

Similarly, we can match gnat robots to many real world tasks and solve
problems in better, albeit different, ways. By using many simple robots
in place of one large complicated expensive robot, we can do work in the
environment at a fraction of the cost. By integrating an entire robot onto
a chip, we can essentially print robots by the millions, just as we print
integrated circuits, and take advantage of the drastic reductions in cost per
level of performance that integrated circuits have demonstrated over the
past twenty years.

[Flynn, Brooks and Tavrow 89] provides detailed proposals for av-
enues around some of the technology barriers and gives examples of appli-
cations for gnat robots, from mowing the lawn one blade at a time with a
yardful of miniature gnat robots to machines that get into hard to reach
places and do useful work, such as cleaning lenses of space telescopes. Many
of the ideas for thinking about how to solve problems with societies of gnat
robots come from ideas in earlier work of multiple agents within one brain
communicating through the world to compete for the resources of the robot’s
body [Connell 89]. One shouldn’t think of swarms of gnat robots as ma-
chines which are told what to do, but rather as autonomous creatures that
when turned on, do what is in their programmed nature to do, in the spirit
of [Brooks and Flynn 89].

3.6 Squirt—The Bare Essentials

Although the idea of building robots on a chip was primarily driven by eco-
nomics and the thought that robots could be much more useful to society
if they cost less per unit level of talent than they do today, it turns out
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that we can reap tremendous cost savings now using strictly off the shelf
technology. We decided to build a robot using the smallest off the shelf mo-
tors and batteries we could find. The aim was to build the world’s smallest
robot. Squirt was the end product of our attempt at building a one cubic
inch robot, although he ended up slightly larger.

The interesting result from Squirt was that it showed what was the
minimal amount of hardware needed for building a robot for doing research
in connecting perception to action. The spinoff was that we realized that
we could multiply our research machines and provide graduate students
with just enough hardware to allow them to make the connection, allowing
them to focus on developing algorithms for intelligence (without recourse to
simulation) without undue cost, overhead or complexity. Although Squirt
was a stepping stone exercise towards gnat robots - with the long term goal
of providing robotic technology cost-effectively, in turned out that even at
the macroscopic dimensions of Squirt, robots became inexpensive.

3.7 The Robot Talent Show

The fallout of this realization was a Robot Talent Show which the AI Lab
held in January, 1989 [Flynn, Brooks, Wells and Barrett 89b]. Not only
could each graduate student in the Mobot Group have their own robot to
work on, but now every graduate student in the AI Lab could have their own
mechanism to connect perception to action. The catch was that everybody
had to build their own.

We gave out kits of parts (sensors, motors, connectors, batteries, wire
and prototyping equipment) and made up printed circuit boards with Squirt-
style computers and distributed a robot building manual [Flynn et al 88].
We ported the subsumption architecture programming environment to gen-
eral lab workstations and participants could work in their offices developing
algorithms and downloading code to their creatures. [Flynn 89] gives a
pictorial account of the final outcome. A few of the robots are shown in
figure 3. Over 60 people participated and the resulting robots came in a
wide assortment and showed reams of creativity and ingenuity. There were
autonomous blimps, tanks that chased toys cars, robots that learned to run
away, and cars that played laser tag. The Robot Talent Show gave stu-
dents a hands-on feel for what the hard problems are in designing intelligent
creatures.
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Figure 3: A few of the robots that appeared in the AI Lab’s Robot
Talent Show are shown here: (left) an omnidirectional vacuum cleaner;
(top to bottom) a laser tag competition entry, a tank that chased sports
cars, a bulldozer that scooped up small moving toy animals and an
obstacle avoiding car with onboard video camera.
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4 Revelations in Building Things

Building things has forced us to stay on track and to keep focused on solving
the problems that need to be addressed in creating entities which we would
consider clever. Before one builds something, one can ascribe all sorts of
complex structures to the thought processes in one’s robot, and one can
hypothesize complicated networks, special architectures, the need for lots
of memory and all sorts of computrons to connect perception to action.
Sometimes though, one can be pretty far off in some of those preconceptions.

Unless you design, build, experiment and test in the real world in a tight
loop, you can spend a lot of time on the wrong problems, such as simulating
complex control schemes while the real hard problems of perception are
abstracted away and ignored.

One of the great advantages to building things from scratch instead of
reverse engineering someone else’s work, is that you can see exactly how
much machinery is required. Oftentimes, the a priori intuition about what
will be needed is completely wrong. Then you can look at an already-built
system (such as Nature’s) with greater insight and an ability to discern the
extraneous from the essential.

4.1 Tongue in Cheek

Before we built Squirt, we did some experiments with different designs for a
locomotion mechanism. First, we built the prototype base, Squirt Jr., shown
in figure 4, which consisted of two wheels, two motors and a battery. Each
motor drove one wheel directly and the batteries were connected straight to
the motors without any intermediate circuitry except a power switch.

We now have a running joke in our lab, because to our surprise, when
we first powered up this base and long before we added the processor or
sensors, Squirt Jr. seemed to have a mind of his own and acted as if he had
a number of subsumption-style behaviors already compiled in.

At his lowest level, he displays a random wander behavior, as one wheel
invariably slightly drags and causes the vehicle to turn. However, when
higher levels are triggered, the random walk is subsumed. For instance,
whenever it hits an obstacle, it stops!

Upon closer inspection however, it is easy to see how the system works.
Obviously, it has a two-state transmission, as when in the wedged-state (and
one wheel is stuck) it rotates about that wheel. In the unwedged-state, it
goes straight forward. The most sophisticated subsystem onboard Squirt Jr.
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Figure 4: Squirt’s prototype had no control system but still seemed
intelligent to ndive observers.
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however, is his visual apparatus. A higher level behavior utilizes an edge
finder so that whenever Squirt Jr. sees the “edge” of a table, he falls off!

The behavior is extremely robust and works 100% of the time. He’s
obviously been carefully programmed to act according to the laws of physics.
Note that all this computation has been compiled down into a wery small
amount of silicon.

4.2 The Lesson

The lesson to be learned from Squirt Jr. is that building things can give
insight into how things are built, and that our hypothesized models, while
attempting reverse engineering, may attribute all sorts of complex structures
to systems that are really only very simple. We often say that artificial
intelligence is the study of the computations that connect perception to
action, but here is a case in which no computations are being performed.
Actually, maybe we should say the computations are done mechanically.

4.3 Let The Physics Do The Walking

Mechanical logic may be utilized far more often in Nature than we would
at first like to admit. In fact, mechanical logic may be used far more in our
own robots than we realize. When we built Genghis, we had some higher
level behaviors that monitored forces on the motors and we programmed
in compliance, or force balancing, in an effort to keep the robot level. For
instance, suppose there was no programmed compliance; if the robot was
in a standup position such that three legs on one side were on the ground
and the middle leg on the other side was on a rock, then the other two
legs on that side would be hanging in the air. However, since the motor
on the middle leg is not infinitely strong, it sags a little bit, and the front
and back legs are then really not as high up in the air as they might be.
Programmed-in compliance makes the middle motor sag even more until the
front and back legs reach the ground. For small rocks however, the behavior
with and without the programmed compliance is indistinguishable because
the mechanical compliance does enough. Explicit software we originally
envisioned to be essential was unnecessary.

Genghis provides a further lesson of physics in action. One of the main
reasons he works at all is because he is small. If he was a large robot
and he put his foot in a crack and then torqued his body over, he would
break. Larger walking machines usually get around this problem by carefully
scanning the surface and thinking about where to put their feet. However,

17



Genghis just scrabbles and makes forward progress more through persistance
than any explicit mechanism. He doesn’t need to build models of the surface
over which he walks and he doesn’t think about trying to put his last foot
on the same free spot an earlier foot was placed. Instead, Genghis happens
to be a creature of circumstance. Because as creatures are scaled down and
volume scales as the cube, whereas surface area scales as the square, smaller
creatures become relatively stronger and can get by with sticking their feet
in cracks. They think nothing of it.

5 Conclusion

One real robot is worth a thousand simulated robots. Building robots that
are situated in the world crystalizes the hard issues. We have found that
perception is the key problem while intelligent control is relatively easy in
comparison.

The essence of good research is figuring out the right problem to work
on. This is especially true in mobile robotics where it is ever so easy to
mis-hypothesize the dynamics of existence in various scenarios and to mis-
introspect our own internal workings. Understanding the environment and
truly discovering the constraints on cognition are more readily done by build-
ing one robot than by thinking grand thoughts for a long time. Real sensors
deliver a different image of reality than the highly processed impressions
from our own sensors.
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