MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

A.I. Memo No. 1156 December, 1989

Free Indexation: Combinatorial Analysis and
A Compositional Algorithm

Sandiway Fong

Abstract: In the principles-and-parameters model of language, the principle
known as ‘free indexation’ plays an important part in the process of determining
the referential properties of elements such as anaphors and pronominals. This
paper addresses two issues. (1) We investigate the combinatorics of free index-
ation. By relating the problem to the n-set partitioning problem, we show that
free indexation must produce an exponential number of referentially distinct
phrase structures given a structure with n (independent) noun phrases. (2)
We introduce an algorithm for free indexation that is defined compositionally
on phrase structures. We show how the compositional nature of the algorithm
makes it possible to incrementally interleave the computation of free indexa-
tion with phrase structure construction. Additionally, we prove the algorithm
to be an ‘optimal’ procedure for free indexation. More precisely, by relating
the compositional structure of the formulation to the combinatorial analysis,
we show that the algorithm enumerates precisely all possible indexings, without
duplicates.

Acknowledgements: The author would like to acknowledge Eric S. Ristad, whose
interaction helped to motivate much of the analysis in this paper. Also, Robert C.
Berwick, Michael B. Kashket, and Tanveer Syeda provided many useful comments on
earlier drafts.

This work is supported by an IBM Graduate Fellowship. This work describes
research done at the Artificial Intelligence Laboratory of the Massachusetts Institute
of Technology. Support for the laboratory’s artificial intelligence research is provided
in part by a grant from the Kapor Family Foundation, in part by NSF Grant DCR-
85552543 under a Presidential Young Investigator’s Award to Professor Robert C.
Berwick, and in part by the Advanced Research Projects Agency of the Department
of Defense under Office of Naval Research contract N00014-85-K-0124.

(© Massachusetts Institute of Technology, 1989.

1 Free Indexation

Consider the ambiguous sentence:
(1) John believes Bill will identify him

In (1), the pronominal “him” can be interpreted as being coreferential with
“John”, or with some other person not named in (1), but not with “Bill”. We
can represent these various cases by assigning indices to all noun phrases in a
sentence together with the interpretation that two noun phrases are coreferential
if and only if they are coindexed, that is, if they have the same index. Hence
the following indexings represent the three coreference options for pronominal
“him”:l
(2) a. John, believes Bill, will identify him;

b. John; believes Bill, will identify himg

c. *John; believes Bill; will identify him,

In the principles-and-parameters framework (Chomsky [3]), once indices
have been assigned, general principles that state constraints on the locality
of reference of pronominals and names (e.g. “John” and “Bill”) will conspire
to rule out the impossible interpretation (2c) while, at the same time, allow
the other two (valid) interpretations. The process of assigning indices to noun
phrases is known as “free indexation,” which has the following general form:

(4) Assign indices freely to all noun phrases.?

In such theories, free indexation accounts for the fact that we have coreferential
ambiguities in language. Other principles interact so as to limit the number
of indexings generated by free indexation to those that are semantically well-
formed.

INote that the indexing mechanism used above is too simplistic a framework to handle
binding examples involving inclusion of reference such as:

(3) a. Wey think that I; will win
b. We; think that I will win
c. *We; like myselfy
d. John told Bill that they should leave

Richer schemes that address some of these problems, for example, by representing indices as
sets of numbers, have been proposed. See Lasnik [9] for a discussion on the limitations of, and
alternatives to, simple indexation. Also, Higginbotham [7] has argued against coindexation
(a symmetric relation), and in favour of directed links between elements (linking theory). In
general, there will be twice as many possible ‘linkings' as indexings for a given structure.
However, note that the asymptotic results of Section 2 obtained for free indexation will also
hold for linking theory.

2The exact form of (4) varies according to different versions of the theory. For example,
in Chomsky [4] (pg.59), free indexation is restricted to apply to A-positions at the level of
S-structure, and to A-positions at the level of logical form.

In theory, since the indices are drawn from the set of natural numbers, there
exists an infinite number of possible indexings for any sentence. However, we
are only interested in those indexings that are distinct with respect to semantic
interpretation. Since the interpretation of indices is concerned only with the
equality (and inequality) of indices, there are only a finite number of semanti-
cally different indexings.? For example, “John; likes Mary,” and “Johngs likes
Mary,” are considered to be equivalent indexings. Note that the definition in (4)
implies that “John believes Bill will identify him” has two other indexings (in
addition to those in (2)):

(5) a. *John; believes Bill; will identify him;
b. *John; believes Bill; will identify him,

In some versions of the theory, indices are only freely assigned to those noun
phrases that have not been coindexed through a rule of movement (Move-a).
(see Chomsky (3] (pg.331)). For example, in “Who,; did John see [xpt];?”, the
rule of movement effectively stipulates that “Who” and its trace noun phrase
must be coreferential. In particular, this implies that free indexation must not
assign different indices to “who” and its trace element. For the purposes of free
indexation, we can essentially ‘collapse’ these two noun phrases, and treat them
as if they were only one. Hence, this structure contains only two independent
noun phrases.*

2 The Combinatorics of Free Indexation

In this section, we show that free indexation generates an exponential number
of indexings in the number of independent noun phrases in a phrase structure.
We achieve this result by observing that the problem of free indexation can be
expressed in terms of a well-known combinatorial partitioning problem.

Consider the general problem of partitioning a set of n elements into m non-
empty (disjoint) subsets. For example, a set of four elements {w,z,y, 2z} can be
partitioned into two subsets in the following seven ways:

{w,z,yH{z} {w,z}{y, 2}
{w,z,2H{y} {w,y}{z,2}
{w,y,2H{z} {w,z}{z,y}
{z,y, 2}{w}

3In other words, there are only a finite number of equivalence classes on the relation ‘same
coreference relations hold.’ This can easily be shown by induction on the number of indexed
elements.

4Technically, “who” and its trace are said to form a chain. Hence, the structure in question
contains two distinct chains.

The number of partitions obtained thus is usually represented using the nota-
tion {7} (Knuth [8]). In general, the number of ways of partitioning n elements
into m sets is given by the following formula. (See Purdom & Brown [10] for a
discussion of (6).)

(6)
Rt R

The number of ways of partitioning n elements into zero sets, {8}, is defined
to be zero for n > 0 and one when n = 0. Similarly, { &}, the number of ways
of partitioning zero elements into m sets is zero for m > 0 and one when m = 0.

We observe that the problem of free indexation may be expressed as the
problem of assigning 1,2,...,n distinct indices to n noun phrases where n is
the number of noun phrases in a sentence. Now, the general problem of assigning
m distinct indices to n noun phrases is isomorphic to the problem of partitioning
n elements into m non-empty disjoint subsets. The correspondence here is that
each partitioned subset represents a set of noun phrases with the same index.
Hence, the number of indexings for a sentence with n noun phrases is:

(7))
> {n)

(The quantity in (7) is commonly known as Bell’s Exponential Number
B,; see Berge [2).) The recurrence relation in (6) has the following solution
(Abramowitz [1}):

®))
=g ()

Using (8), we can obtain a finite summation form for the number of index-
ings:

(9)

It can also be shown (Graham [6]) that B, is asymptotically equal to (10):
(10)

—n—4%
mnnem,. n—%

Inn

where the quantity m,, is given by:

(11)
1

m,,lnm,,:n—E

That is, (10) is both an upper and lower bound on the number of indexings.
More concretely, to provide some idea of how fast the number of possible in-
dexings increases with the number of noun phrases in a phrase structure, the
following table exhibits the values of (9) for the first dozen values of n:

NPs | Indexings || NPs | Indexings
1 1 7 877

2 2 8 4140

3 5 9 21147

4 15 10 115975

5 52 11 678570

6 203 12 4123597

3 A Compositional Algorithm

In this section, we will define a compositional algorithm for free indexation that
provably enumerates all and only all the possible indexings predicted by the
analysis of the previous section.

The PO-PARSER is a parser based on a principles-and-parameters framework
with a uniquely flexible architecture ([5]). In this parser, linguistic principles
such as free indexation may be applied either incrementally as bottom-up phrase
structure construction proceeds, or as a separate operation after the complete
phrase structure for a sentence is recovered. The PO-PARSER was designed
primarily as a tool for exploring how to organize linguistic principles for efficient
processing. This freedom in principle application allows one to experiment with
a wide variety of parser configurations.

Perhaps the most obvious algorithm for free indexation is, first, to simply
collect all noun phrases occurring in a sentence into a list. Then, it is easy to
obtain all the possible indexing combinations by taking each element in the list
in turn, and optionally coindexing it with each element following it in the list.
This simple scheme produces each possible indexing without any duplicates and
works well in the case where free indexing applies after structure building has
been completed.

The problem with the above scheme is that it is not flexible enough to deal
with the case when free indexing is to be interleaved with phrase structure
construction. Conceivably, one could repeatedly apply the algorithm to avoid
missing possible indexings. However, this is very inefficient, that is, it involves
much duplication of effort. Moreover, it may be necessary to introduce extra

machinery to keep track of each assignment of indices in order to avoid the
problem of producing duplicate indexings. Another alternative is to simply delay
the operation until all noun phrases in the sentence have been parsed. (This is
basically the same arrangement as in the non-interleaved case.) Unfortunately,
this effectively blocks the interleaved application of other principles that are
logically dependent on free indexation to assign indices. For example, this means
that principles that deal with locality restrictions on the binding of anaphors
and pronominals cannot be interleaved with structure building (despite the fact
that these particular parser operations can be effectively interleaved).

An algorithm for free indexation that is defined compositionally on phrase
structures can be effectively interleaved. That is, free indexing should be de-
fined so that the indexings for a phrase is some function of the indexings of
its sub-constituents. Then, coindexings can be computed incrementally for all
individual phrases as they are built. Of course, a compositional algorithm can
also be used in the non-interleaved case.

Basically, the algorithm works by maintaining a set of indices at each sub-
phrase of a parse tree.® Each index set for a phrase represents the range of
indices present in that phrase. For example, “Who; did John; see ¢;7” has the
following phrase structure and index sets:

(12) [cp [Np Who][s did [rp [~p Johnj][vp see [vp ti]]l]]
{i.5} {i} {5} {i.4} {5} {i} {i}

There are two separate tasks to be performed whenever two (or more) phrases
combine to form a larger phrase. First, we must account for the possibility that
elements in one phrase could be coindexed (cross-indexed) with elements from
the other phrase. This is accomplished by allowing indices from one set to
be (optionally) merged with distinct indices from the other set. For example,
the phrases “[ypJohn;]” and “[vp likes him;]” have index sets {i} and {j},
respectively. Free indexation must allow for the possibilities that “John” and
“him” could be coindexed or maintain distinct indices. Cross-indexing accounts
for this by optionally merging indices ¢ and j. Hence, we obtain:

(13) a. John; likes him,, i merged with j
b. John; likes him;, t not merged with j

5For expository reasons, we consider only pure indices. The actual algorithm keeps track of
additional information, such as agreement features like person, number and gender, associated
with each index. For example, irrespective of configuration, “Mary” and “him” can never have
the same index.

$Some readers may realize that the algorithm must have an additional step in cases where
the larger phrase itself may be indexed, for instance, as in [y p, [~ p; John's] mother]. In such
cases, the third step is simply to merge the singleton set consisting of the index of the larger
phrase with the result of cross-indexing in the first step. (For the above example, the extra

Secondly, we must find the index set of the aggregate phrase. This is just
the set union of the index sets of its sub-phrases after cross-indexation. In the
example, “John likes him”, (13a) and (13b) have index sets {¢} and {4, j}.

More precisely, let Ip be the set of all indices associated with the Binding
Theory-relevant elements in phrase P. Assume, without loss of generality, that
phrase structures are binary branching. Consider a phrase P = [p X Y] with
immediate constituents X and Y. Then:

1. Cross Indexing: Let Ix represent those elements of Ix which are not also
members of Iy, that is, (Ix — Iy). Similarly, let Iy be (Iy — Ix).”

(a) If both Ix and Iy are empty sets, then done.

(b) Let z and y be members of Ix and Iy, respectively.

(¢) Either merge indices and y or do nothing.

(d) Repeat from step (1a) substituting Ix — {z} and Iy — {y} for Ix and
Iy, respectively, if £ and y have been merged.

2. Index Set Propagation: Ip = Ix U Iy.

The nondeterminism in step (1c¢) of cross-indexing will generate all and only
all (i.e. without duplicates) the possible indexings. We will show this in two
parts. First, we will argue that the above algorithm cannot generate duplicate
indexings. That is, the algorithm only generates distinct indexings with respect
to the interpretation of indices. As shown in the previous section, the com-
binatorics of free-indexing indicates that there are only B, possible indexings.
Next, we will demonstrate that the algorithm generates exactly that number
of indexings. If the algorithm satisfies both of these conditions, then we have
proved that it generates all the possible indexings exactly once.

1. Consider the definition of cross-indexing. Ix represents those indices in X
that do not appear in Y. (Similarly for Iy.) Also, whenever two indices
are merged in step (1b), they are ‘removed’ from Iy and Iy before the
next iteration. Thus, in each iteration, z and y from step (1b) are ‘new’
indices that have not been merged with each other in a previous iteration.
By induction on tree structures, it is easy to see that two distinct indices
cannot be merged with each other more than once. Hence, the algorithm
cannot generate duplicate indexings.

2. Wenow demonstrate why the algorithm generates exactly the correct num-
ber of indexings by means of a simple example. Without loss of generality,
consider the following right-branching phrase scheme:

step is to just merge {i} with {j}.) For expository reasons, we will ignore such cases. Note
that no loss of generality is implied since a structure of the form [NPi[NPj BRI IR ¢ O |
can be can always be handled as [p, [np,][p[Np;-- ...]...8..]}

"Note that Ix and Iy are defined purely for notational convenience. That is, the algorithm
directly operates on the elements of Iy and Iy.

Now consider the following decision tree for computing the possible index-
ings of the right-branching tree in a bottom-up fashion:

NPs Decision Tree
NPF; {i}

s \#
NP; {i {44}

}
A
‘—"\ i=kN@j;&k

NPk l} {'v‘k} {’1]} {17.7} {i!]': k}

-

Each node in the tree represents the index set of the combined phrase
depending on whether the noun phrase at the same level is cross-indexed
or not. For example, {i} and {7, j} on the level corresponding to NP; are
the two possible index sets for the phrase P;;. The path from the root to
an index set contains arcs indicating what choices (either to coindex or to
leave free) must have been made in order to build that index set. Next,
let us just consider the cardinality of the index sets in the decision tree,
and expand the tree one more level (for N P;):

;

—

2

7@

12

R)

23

N

23223

w

334

Informally speaking, observe that each decision tree node of cardinality ¢
‘generates’ 7 child nodes of cardinality i plus one child node of cardinality
t 4+ 1. Thus, at any given level, if the number of nodes of cardinality m
is ¢m, and the number of nodes of cardinality m — 1 is ¢,,—1, then at the
next level down, there will be mc,, + c,,_; nodes of cardinality m. Let
¢(n, m) denote the number of nodes at level n with cardinality m. Let the
top level of the decision tree be level 1. Then:

(14)
c(n+1,m+1)=c(n,m)+ (m+ 1)e(n,m+1)

Observe that this recurrence relation has the same form as equation (6).
Hence the algorithm generates exactly the same number of indexings as
demanded by combinatorial analysis.

4 Conclusions

This paper has shown that free indexation produces an exponential number of
indexings per phrase structure. This implies that all algorithms that compute
free indexation, that is, assign indices, must also take at least exponential time.
In this section, we will discuss whether it is possible for a principle-based parser
to avoid the combinatorial ‘blow-up’ predicted by analysis.

First, let us consider the question whether the ‘full power’ of the free index-
ing mechanism is necessary for natural languages. Alternatively, would it be
possible to ‘shortcut’ the enumeration procedure, that is, to get away with pro-
ducing fewer than B,, indexings? After all, it is not obvious that a sentence with
a valid interpretation can be constructed for every possible indexing. However,
it turns out (at least for small values of n; see examples (15) and (16) below)

"To make the boundary cases match, just define ¢(0,0) to be 1, and let ¢(0,m) = 0 and
¢(n,0) =0 for m > 0 and n > 0, respectively.

that language makes use of every combination predicted by analysis. This im-
plies, that all parsers must be capable of producing every indexing, or else miss

valid interpretations for some sentences.

There are B; = 5 possible indexings for three noun phrases:3

(15) a. John; wanted PRO, to forgive himself; (111)

b. John; wanted PRO, to forgive him, (112)
c. John; wanted Mary, to forgive him, (121)
d. John; wanted Mary, to forgive herself, (122)
e. John; wanted Mary, to forgive him; (123)

Similarly, there are fifteen possible indexings for four noun phrases:

(16) a. John; persuaded himself; that he; should give himself; up (1111)

b. John; persuaded Mary, PRO; to forgive herself, (1222)
c. John; persuaded himselfiy PRO; to forgive herz (1112)
d. John; persuaded Mary, PRO; to forgive him; (1221)
e. John; persuaded Mary, PRO; to forgive hims (1223)
f. John; wanted Bill; to ask Mary, PRO; to leave (1233)
g. John; wanted PRO; to tell Mary, about herselfz (1122)
h. John; wanted Mary, to tell him; about himself; (1211)
i. John; wanted PRO; to tell Mary, about himselfy (1121)
j. John; wanted Bill; to tell Mary, about himself, (1232)
k. John; wanted PRO; to tell Mary, about Toms (1123)
1. John; wanted Mary, to tell him; about Toms (1213)
m. John; wanted Mary, to tell Toms about him, (1231)
n. John; wanted Mary, to tell Toms about Bill, (1234)

Although it may be the case that a parser must be capable of producing
every possible indexing, it does not necessarily follow that a parser must enu-
merate every indexing when parsing a particular sentence. In fact, for many
cases, it is possible to avoid exhaustively exploring the search space of possibil-
ities predicted by combinatorial analysis. To do this, basically we must know,
a priori, what classes of indexings are impossible for a given sentence. By fac-
toring in knowledge about restrictions on the locality of reference of the items
to be indexed (i.e. binding principles), it is possible to explore the space of in-
dexings in a controlled fashion. For example, although free indexation implies
that there are five indexings for “John thought [s Tom forgave himself] 7, we
can make use of the fact that “himself” must be coindexed with an element
within the subordinate clause to avoid generating indexings in which “Tom”
and “himself” are not coindexed.® Note that the early elimination of ill-formed
indexings depends crucially on a parser’s ability to interleave binding principles
with structure building. But, as discussed in Section 3, the interleaving of bind-
ing principles logically depends on the ability to interleave free indexation with

8PRO is an empty (non-overt) noun phrase element.

structure building. Hence the importance of an formulation of free indexation,
such as the one introduced in Section 3, which can be effectively interleaved.

References

[1] M. Abramowitz & I.A. Stegun, Handbook of Mathematical Functions. 1965.
Dover.

[2] Berge, C., Principles of Combinatorics. 1971. Academic Press.

[3] Chomsky, N.A., Lectures on Government and Binding: The Pisa Lectures.
1981. Foris Publications.

[4] Chomsky, N.A., Some Concepts and Consequences of of the Theory of
Government and Binding. 1982. MIT Press.

[5] Fong, S. & R.C. Berwick, “The Computational Implementation of
Principle-Based Parsers,” International Workshop on Parsing Technologies.
Carnegie Mellon University. 1989.

[6] Graham, R.L., D.E. Knuth, & O. Patashnik, Concrete Mathematics: A
Foundation for Computer Science. 1989. Addison-Wesley.

[7] Higginbotham, J., “Logical Form, Binding, and Nominals,” Linguistic In-
quiry. Summer 1983. Volume 14, Number 3.

[8] Knuth, D.E., The Art of Computer Programming: Volume 1 / Fundamen-
tal Algorithms. 2nd Edition. 1973. Addison-Wesley.

[9] Lasnik, H. & J. Uriagereka, A Course in GB Syntax: Lectures on Binding
and Empty Categories. 1988. M.I.T. Press.

[10} Purdom, P.W_, Jr. & C.A. Brown, The Analysis of Algorithms. 1985. CBS
Publishing.

9This leaves only two remaining indexings: (1) where “John” is coindexed with “Tom” and
“himself”, and (2) where “John” has a separate index. Similarly, if we make use of the fact
that “Tom” cannot be coindexed with “John”, we can pare the list of indexings down to just
one (the second case).

10

Tius blank page was inserted to preserve pagination.

Scanning Agent Identification Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the M.LI.T
Libraries. Technical support for this project was
also provided by the M.L.T. Laboratory for
Computer Sciences.

darptrgt.wpw Rev. 9/94

e

R L T Tars $rrece~

REPORT DOCUMENTATION PAGE BEFORE ConPE BTt o

! REPORT nUMBER 2. GOVY ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
AIM 1156 AD’MI@Z[?

4 TITLE rand Subtitle) S. TYPE OF REPORT & PERIOD COVERED
Free Indexation: Combinatorial Analysis Memorandum

and a Compositional Algorithm

§. PERFORMING ORG. REPORT NUMBER

AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

Sandiway Fong NOOO14-85-K~0124
DCR--85552543

PERFORMING DRGANIZATION NAME AND ADDRESS 0. PROGRAM ELEMENT PROJECT TASK
Lo . AREA & WORK UNIT NUMBE AS
Artificial Intelligence Laboratory

545 Technology Square
Cambridge, MA 02139

"} CONTROLLING OFFICE NAME ANC ADDRESS 12. REPORT DATE
Advanced Research Projects Agency December 1989
1400 Wilson Blvd. 13. NUMBER OF PAGES
Arlington, VA 22209 10
te. MONITQRING AGENCY NAME & ADDRESS(/! different from Controlling Ollice) 18. SECURITY CLASS. rof thie report)
Office of Naval Research UNCLASSIFIED
Information Systems
Arlington, VA 22217 18a. ?ggéégf:uCAnou/Dowuanmua
16. OISTRIBUTION STATEMENT (of this Report)
Distribution is unlimited
17. DISTRIBUTION STATEMENT (ol 1Mo abatract entered in Block 20, ! difterent troen Repert)
18. SUPPLEMENTARY NOTES
None
19. KEY WORDS (Continue on reverse side If necessary and identity dy dlock number)
Natural language processing .
Parsing algorithms
combinatorics
20. ABSTRACT (Continue on reverse alde If necessary and identify by block number)
Abstract: In the principles-and-parameters model of language, the principle
known as ‘free indexation’ plays an important part in the process of determining
the referential properties of elements such as anaphors and pronominals. This
paper addresses two issues. (1) We investigate the combinatorics of free index-
ation. By relating the problem to the n-set partitioning problem, we show that
free indexation must produce an exponential number of referentially distinct
phrase structures given a structure with n (independent) noun phrases. (2) (continued)
We introduce an algorithm for free indexation that is defined compositionally
DD |\ fan'3s 1473 e€oimion oF 1 nov 63 1s oesoLeTE UNCLASSIFIED

S/N 0:02-014-6601

SECURITY CLASSIFICATION OF THIS PAGE (When Data Enterec

