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Abstract

Networks can be considered as approximation schemes. Multilayer networks of the

backpropagation type can approximate arbitrarily well continuous functions (Cybenko,

1989; Funahashi, 1989; Stinchcombe and White, 1989). We prove that networks de-

rived from regularization theory and including Radial Basis Functions (Poggio and

Girosi, 1989), have a similar property. From the point of view of approximation the-

ory, however, the property of approximating continuous functions arbitrarily well is not

su�cient for characterizing good approximation schemes. More critical is the property

of best approximation. The main result of this paper is that multilayer networks, of the

type used in backpropagation, are not best approximation. For regularization networks

(in particular Radial Basis Function networks) we prove existence and uniqueness of

best approximation.
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1 Introduction

Learning an input-output relation from examples can be considered as the problem of ap-

proximating an unknown function f(x) from a set of sparse data points (Poggio and Girosi,

1989). From this point of view, feedforward networks are equivalent to a parametric approx-

imating function F (W;x): As an example, consider a feedforward network, of the multilayer

perceptron type, with one hidden layer; the vector W corresponds, then, to the two sets

of \weights," from the input to the hidden layer, and from the hidden layer to the output.

Even before considering the problem of how to �nd the appropriate values of W for the

set of data, the fundamental representational problem must be approached: which class of

mappings f can be approximated by F; and how well? The neural network �eld has re-

cently seen an increasing awareness of this problem. Several results have been published,

all showing that multilayer perceptrons of di�erent form and complexity can approximate

arbitrarily well a continuous function, provided that an arbitrarily large number of units

is available (Cybenko, 1989; Funahashi, 1989; Moore and Poggio, 1988; Stinchcombe and

White, 1989; Carrol and Dickinson, 1989). This property is shared by algebraic and trigono-

metric polynomials, as is shown by the classical Weierstrass Theorem, and for this reason

we shall refer to it as the Weierstrass property. results of this type should not be taken to

mean that the approximation scheme is a \good" approximation scheme. An indication of

the latter point is provided, in the case of multilayer perceptron networks, of the type used

for backpropagation, by a closer look at the published results. Taken together, they imply

that almost any nonlinearity at the hidden layer level and a variety of di�erent architectures

(one or more hidden layers, for instance) insures the Weierstrass property (Funahashi, 1989;

Cybenko, 1989; Stinchcombe and White, 1989). There is nothing special about sigmoids,

and in fact many classical approximation schemes exist that can be represented as a network

with a hidden layer and that exhibit the Weierstrass property. In a sense this property is

not very useful for characterizing approximation schemes, since many schemes have it. Lit-

erature in the �eld of approximation theory re
ects this situation, since it emphasizes other

properties in characterizing approximation schemes. In particular, a critical concept is that

of best approximation. An approximation scheme has the best approximation property if in

the set A of approximating functions (for instance the set F (W;x) spanned by parameters

W ) there is one that has minimum distance from any given function of a larger set � (a

more formal de�nition is given later). Several questions can be asked, such as the existence,

uniqueness, computability, etc., of the best approximation.

In this paper, we show that feedforward multilayer networks of the backpropagation

type (Rumelhart et al., 1986, 1986a; Sejnowski and Rosenberg, 1987) do not have the best

approximation property for the class of continuous functions de�ned on a subset of Rn. On

the other hand, we prove that for networks derived from regularization, and in particular for

radial basis function networks, best approximation exists and is unique. We also prove that

these networks approximate arbitrarily well continuous functions (see Appendix B and C).

We have recently shown that radial basis function approximation schemes can be derived

from regularization and are therefore equivalent to generalized (radial) splines (Poggio and

Girosi, 1989). For Radial Basis Function networks we prove existence and uniqueness of best
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approximation.1

The plan of the paper is as follows. We �rst formalize the previous arguments, then

introduce some basic notions from approximation theory. Next, we prove that multilayer

networks of the type used for backpropagation do not have the best approximation property,

and that networks obtained from regularization theory have this property. In the last section,

we discuss the implications of these results and list some open questions. Appendix B proves

that the Stone-Weierstrass theorem holds for Gaussian Radial Basis Function networks (with

di�erent variances). In appendix C we prove a more general result: regularization networks

approximate arbitrarily well any continuous function on a compact subset of Rn.

2 Most networks approximate continuous functions

In recent years there have been attempts to �nd a mathematical justi�cation for the use of

feedforward multilayer networks of the type used for backpropagation. Typical results deal

with the possibility, given a network, of approximating any continuous function arbitrarily

well. In mathematical terms this means that the set of functions that can be computed

by the network is dense (see Appendix A) in the space of the continous functions C[U ]

de�ned on some subset U of Rd. The most recent results (Cybenko, 1989; Funahashi, 1989;

Stinchcombe and White, 1989) consider networks with just one layer of hidden units, that

correspond to the following class of approximating functions:

� � ff 2 C[U ] j f(x) =
mX
i=1

ci�(x �wi + �i); U � Rd;wi 2 R
d; ci; �i 2 R;m 2 Ng (1)

where � is a continuous function. Depending on �, the set � may or may not be dense in

the space of the continuous functions. The set D of functions � such that � is dense seems

to be large. For instance, the sigmoidal functions, that is functions such that

lim
t!+1

�(t) = 1

lim
t!�1

�(t) = 0

belong to D (Cybenko, 1989; Funahashi, 1989). Many other types of functions in D can be

found in the paper of Cybenko (1989). The set D has been recently extended by the result

of Stinchcombe and White (1989). In fact they prove that it contains all the functions whose

mean value is di�erent from zero and whose Lp-norm is �nite for 1 � p <1.

Other networks can be built, such that the corresponding set of approximating functions is

dense in C[U ]. Consider for example the network in �gure 1. This is the most general network

with one layer of hidden units, and the class of approximating functions corresponding to it

is

1The theory has been extended by introducing the more general schemes of GRBF and HyperBF, which

can be considered as the network equivalent of generalized multidimensional splines with free knots.
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Figure 1: The most general network with one layer of hidden units. Here we show the two-
dimensional case, in which x = (x; y). Each function Hi can depend on a set of unknown
parameters, that are computed during the learning phase, as well as the coe�cients ci. When
Hi = �(x�wi+�i) a network of the backpropagation type is recovered, while Hi = H(kx�tik)
corresponds to RBF or GRBF scheme (Broomhead and Lowe, 1988; Poggio and Girosi,
1989).

N � ff 2 C[U ]jf(x) =
mX
i=1

ciHi(x); U � Rd;Hi 2 C[U ];m 2 Ng: (2)

The function Hi are of the form Hi = H(x;Wi), where Wi is a vector of unknown pa-

rameters in some multidimensional space and H is a continuous function. If the Hi are

appropriately chosen the set N can be dense in C[U ]. For example the Hi could be alge-

bric or trigonometric polynomials, and in this case the denseness of N would be a trivial

consequence of the Stone-Weierstrass theorem (see Appendix B). This theorem allows a sig-

ni�cant extension of the set of \basis" functions Hi. Appendix B gives another example,

showing how Gaussian functions of radial argument (and di�erent variances) can be used to

approximate any continuous function. Appendix C provides a more powerful result showing

that all networks derived from regularization theory can approximate arbitrarily well contin-
uous functions on a compact subset of Rn. This result includes, in particular, Radial Basis

Functions networks with the radial basis function being the Green's function of a self-adjoint

di�erential operator associated to the Tikhonov stabilizer. Such Green's functions include

most of the known approximation schemes, such as the Gaussian and several types of splines

and many functions, but not all functions, that satisfy some su�cient conditions given by

Micchelli (1986) in order to be interpolating functions.
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Since a large number of networks can approximate arbitrarily well any continuous func-

tions, it is natural to ask whether this property is really important from the point of view of

approximation theory, and whether other more fundamental properties can be characterized.

As we mentioned already, one of the basic properties that an approximating set should have

is the best approximation property, that guarantees that the approximation problem has a

solution. The next section focuses our attention on the relationship between this property

and di�erent kind of networks, since this seems to be a more appropriate starting point for a

complete analysis of the networks performances from a rigorous mathematical point of view.

3 Basic facts in approximation theory

3.1 The best approximation property

An informal formulation of the approximation problem can be stated as follows: given a
function f belonging to some prescribed set of functions �, and given a subset A of �, �nd

the element a of A that is the \closest" to f .
In order to give this formulation a precise mathematical meaning, some de�nitions are

needed. First of all a notion of \distance" has to be introduced on the set �. Since this set

is usually assumed to be a normed linear space, with norm indicated by k � k, the distance
d(f; g) between two elements f and g of � is naturally de�ned as kf � gk. Given f 2 � and

A � � we can now de�ne the distance of f from A as

d(f;A) � inf
a2A

kf � ak: (3)

If the in�mum of kf � ak is attained for some element a0 of A, that is if there exists an

a0 2 A such that kf � a0k = d(f;A), this element is said to be a best approximation to f
from A. A set A is called an existence set (uniqueness set, resp.) if, to each f 2 �, there is at

least (at most, resp.) one best approximation to f from A. If the set A is an existence set we

will also say that it has the best approximation property. A set A is called a Tchebyche� set
if it is an existence set and a uniqueness set. We are now ready to give a precise formulation

of the approximation problem:

Approximation problem: given f 2 � and A � � �nd a best approximation to f

from A.

From the de�nition above it is clear that the approximation problem has a solution if

and only if A is an existence set, and a large part of approximation theory has been devoted

to proving existence theorems, which give su�cient conditions to guarantee existence and

possibly uniqueness of closest points. We will only present very simple properties of sets

with the best approximation property, and will apply these result to network architectures,

in order to understand their properties from the point of view of approximation theory.

We begin with the following observation:

Proposition 3.1 Every existence set is closed.
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Proof. Let A � � be an existence set, and suppose that it is not closed. Then there is a

sequence fang of elements of A that converges to an element f that is not in A, that is there

exists an f 2 �nA such that

lim
n!1

d(f; an) = 0

This means that d(f;A) = 0, and since A is an existence set there is an element a0 2 A such

that kf � a0k = 0. By the properties of the norm this implies that f = a0, which is absurd

because f 62 A and a0 2 A. Then A must be closed. 2

The converse of this proposition is not true, that is closedness is not su�cient for a set

to be an existence set. However the stronger condition of compactness is su�cient, as the

following theorem shows.

Theorem 3.1 Let A be a compact set in a metric space �. Then A is an existence set.

Proof. For each f 2 � the distance d(f; a), with a 2 A, is a continuous real valued function

de�ned on the compact set A. From theorem A.2 of Appendix A it attains its maximum

and minimum value on this set and this concludes the proof. 2

In the next section we apply these simple results to some network architectures.

4 Networks and approximation theory

From the point of view of approximation theory a feedforward network is a representation of

a set A of parametric functions, and the learning algorithm corresponds to the search of the

best approximation to some target function f from A. Since in general a best approximation

does not exist unless the set A has some properties (see, for instance, theorem 3.1), it is of

interest to understand which classes of networks have these properties.

4.1 Multilayer networks of the backpropagation type do not have

the best approximation property

Here we consider the class of networks of the backpropagation type with one layer of hidden

units. The space � of functions that have to be approximated is chosen to be C[U ], the

set of continuous functions de�ned on a subset U of Rd with some unspeci�ed norm. If the

number of hidden units is m, the functions that can be computed by such networks belong

to the following set �m:

�m � ff 2 C[U ] j f(x) =
mX
i=1

ci�(x �wi + �i);wi 2 R
d; ci; �i 2 Rg (4)

where �(x) is usually a sigmoidal function. We now show that �m is not an existence set,

and this does not the depend on the norm that has been chosen. The result is proved in the

case of � being a sigmoid and for one hidden layer, �(x) = (1+ e�x)�1, but it holds for every

other non trivial choice of nonlinear function and for networks with more than one hidden

layer.
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Proposition 4.1 The set �m is not an existence set for m � 2.

Proof: A necessary condition for a set to be an existence set is to be closed. Therefore it

is su�cient to show that �m is not closed, and this can be done by showing an accumulation

point that does not belong to it. Let us consider the following function:

f�(x) =
1

�

�
1

1 + e�[w�x+�]
�

1

1 + e�[w�x+(�+�)]

�

Clearly f� 2 �
m;8m � 2, but it easily seen that

lim
�!0

f�(x) � g(x) =
1

2(1 + cosh[w � x+ �])

and g 62 �m;8m � 2. For each m � 2 the function g is then an accumulation point of �m

but does not belong to it: �m can not be closed and this concludes the proof. 2

This result re
ects a general fact in non linear approximation theory: usually the set of

approximating functions is not closed, and its closure must be added to it in order to obtain

an existence set. This is the case, for instance, for the approximation by 
-polynomials in
one dimension, that are replaced by the extended 
-polynomials, to guarantee the existence

of a best approximating element (Braess, 1986; Rice, 1964, 1969; Hobby and Rice, 1967; De

Boor, 1969).

4.2 Existence and uniqueness of best approximation for regular-

ization and RBF

One of the possible approaches to the problem of surface reconstruction is given by regular-

ization theory (Tikhonov and Arsenin, 1977; Bertero et al. 1988). Poggio and Girosi (1989)

have shown that the solution obtained by means of this method maps into a class of networks

with one hidden layer (an instance of which are Radial Basis Function networks or RBF).

In fact the solution can always be written in the parametric form:

f(x) =
mX
i=1

ci�i(x) (5)

where the ci are unknown, m is the number of data points and the �i are �xed, depending on

the nature of the problem and on the data points. More precisely the \basis function" �i is

of the form �i(x) = G(x;xi), where xi is a data point and G is the Green's function of some

(pseudo)di�erential operator P (a term belonging to the null space of P can also appear, see

Appendix C). In the particular case of radial function G = G(kx�xik) the RBF method is

recovered, and the solution of the approximation problem is then a linear superposition of

radial Green's functions G \centered" on the data points.

Notice that this function can be computed by a network that is a special case of the

one represented in �gure 1. The main di�erence is that in the general case the functions Gi

depend on unknown parameters, while in the regularization context only the coe�cient ci
are unknown.
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Equation 5 means that the approximated solution belongs to the subset Tm of C[U ]:

Tm � ff 2 C[U ] j f(x) =
mX
i=1

ci�i(x); ci 2 Rg (6)

Since we have shown that the set of approximating functions associated with networks with

one hidden layer of the type used for backpropagation does not have the best approximation

property, it is natural to ask whether or not the set Tm has this property 2. The answer is

positive, as is stated in the following proposition:

Proposition 4.2 The set Tm is an existence set for m � 1

Proof. Let f be a prescribed element of C[U ], and let a0 be an arbitrary point of Tm. We

are looking for the closest point to f in Tm. It has to lie in the set

fa 2 Tm j ka� fk � ka0 � fkg:

This set is clearly closed and bounded, and by theorem A.1 it is compact. The best approx-

imation property comes from theorem 3.1. 2

From this proposition we can see that every time that the approximating function is a

�nite linear combination of basis functions, the set that is spanned by these basis functions

is an existence set for C[U ]. Depending on the norm that is chosen in C[U ] the best approx-

imating element can be unique. In fact the following theorem holds (see Appendix A for the

de�nition of strictly convex):

Proposition 4.3 The set Tm, m � 1 is a Tchebyche� set if the normed space C[U ] is

strictly convex.

Proof. The existence has already been proved. Suppose then that there are two best ap-

proximating elements f and f 0 from Tm to a function g 2 C[U ]. Let � be the distance of g

from Tm. Applying the triangular inequality we obtain :

k
1

2
(f + f 0)� gk �

1

2
kf � gk+

1

2
kf 0 � gk = � (7)

Since Tm is a vector space, then 1
2
(f + f 0) 2 Tm and by de�nition of � it follows that

k1
2
(f + f 0)k � �. This implies that the equality holds in equation 7. If � = 0 it is clear that

f = f 0 = g. If � 6= 0, then we can write equation 7 as

k
1

2

"
(f � g)

�
+
(f 0 � g)

�

#
k = 1: (8)

This means that the vectors (f�g)

�
, (f 0�g)

�
and their midpoints are all of norm 1, but since

stricty convexity holds, then f = f 0. 2

Since it is well known that C[U ] with the Lp-norms, 1 < p < 1 is strictly convex (Rice,

1964), we have then shown that in most cases regularization theory gives an approximating

set with the best approximation property and with a unique best approximating element.

2Notice that multilayer perceptrons of the type used for backpropagation cannot be derived from any

regularization scheme since it cannot be written as the linear superposition of Green's functions of any kind.
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5 Conclusions

5.1 GRBF and Best Approximation

We have recently extended the scheme of equation 5 to the case in which the number of basis

functions is less than the number of data points (Poggio and Girosi, 1989; Broomhead and

Lowe, 1988). The reason for this is that when the number of data points becomes large the

complexity of the network may become too high, being proportional to the number of data

points. A solution to the approximation problem is sought of the form:

f(x) =
nX
i=1

ciG(x; ti) (9)

where n is smaller than the number of data points and the positions of the \centers" ti
of the expansion are unknown, having to be found during the learning stage. Does the

best approximation property hold for this approximation scheme, that we call Generalized

Radial Basis Function (GBRF) method? The answer is no, exactly as for splines with free

knots, to which equation 9 is in fact equivalent. By the same arguments we have used in

section 4.1 we could show that the set Gn of approximating functions generated by equation

9 (the analogous of the set Tm) is not closed. The scheme, however, has almost the best

approximation property in the following sense. The scheme already works satisfactorily if

the centers ti are �xed to a subset of examples or other positions. In this case Gn is a

linear space, and it is an existence set, as well as Tm. We could then have an algorithm

in which �rst the centers are found independently (for instance by the K-means algorithm,

see Moody and Darken, 1989) and then the ci are obtained with gradient descent methods

(see Poggio and Girosi, 1989). In this scheme the best approximation property is preserved,

while the computational complexity has been reduced with respect to the exact solution of

the regularization problem.

There are other ways to make GRBF a best approximation. The most interesting ap-

proach is to follow the theory of 
-polynomials (Braess, 1986; Rice, 1964, 1969; Hobby and

Rice, 1967; De Boor, 1969) and complete the sets of basis functions with its closure, con-

sisting of an appropriate number of derivatives of the Green's function with respect to its

parameters, yielding a best approximation scheme. It seems very di�cult to use either of

these two approaches for networks of the type used for backpropagation.

5.2 Open Questions

We have not explored the practical consequences of the fact that multilayer networks of the

backpropagation type are not best approximation. Intuitively, it seems that the lack of the

best approximation property is related to possible practical degeneracies of the solution. In

certain situations, because of the fact that the sigmoid, which is asymptotically constant,

contains as an argument one set of parameters (the wi), the precise values of these parameters

may not have any signi�cant e�ect on the output of the network. The same situation

happens for GRBF when the centers inside the Green's function are unknown. In the GRBF

case, however, we can freeze the ti to reasonable values whereas this is impossible in the

backpropagation case.
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Other questions remain open as well. The most important questions from the viewpoint

of approximation theory are: (1) the computation of the best approximation, i.e., which

algorithm to use, (2) a priori bounds on the goodness of the approximation given some

generic information on the class of functions to be approximated, and (3) a priori estimates

of the complexity of the best approximation, again given generic information on the class of

functions to be approximated. In the case of RBF, the latter question is directly related to

the size of the required training set, and therefore to the deep issue of sample complexity

(see Poggio and Girosi, 1989, section 9.3). About problems 1) and 2) notice that in practical

cases it may be admissible to use a scheme which is not best approximation, if it provides
an almost as good approximation at a much lower computational cost.
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A De�nitions and basic theorems

We review here some of the de�nitions that have been used in the paper. Every set will be

assumed to have the structure of metric space, unless di�erently speci�ed, and the concepts

of limit point, in�mum and supremum are assumed to be known. All these de�nitions and

theorems can be found in any standard text on functional analysis (Yosida, 1974; Rudin,

1973) and in many books on approximation theory (Braess, 1986; Cheney, 1981).

An important concept is that of closure:

De�nition A.1 If S is a set of elements, then by the closure [S] of S we mean the set of

all points in S together with the set of all limit points of S.

We can now de�ne the closed sets as following:

De�nition A.2 A set S is closed if it is coincident with its closure [S].

A closed set then contains all its limit points. Another important de�nition related to the

concept of closure is that of dense sets:

De�nition A.3 Let T a subset of the set S. T is dense in S if [T ] = S.

If T is dense in S then each element of S can be approximated arbitrarily well by elements

of T . As an example we mention the set of rational numbers, that is dense in the set of real
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numbers, and the set of polynomials that is dense in the space of continuous functions (see

appendix B).

In order to extend some properties of the real valued functions de�ned on an interval to

real valued functions de�ned on more complex metric spaces it is fundamental to de�ne the

compact sets:

De�nition A.4 A compact set is one in which every in�nite subset contains at least one

limit point.

It can be shown that, in �nite dimensional metric spaces, there exists a simple characteriza-

tion of compacts sets. In fact the following theorem holds:

Theorem A.1 Every closed, bounded, �nite-dimensional set in a metric linear space is

compact.

The well known Weierstrass theorem on the attainment of the extrema of a continuous

function on an interval can now be extended as following:

Theorem A.2 A continuous real valued function de�ned on a compact set in a metric space
achieves its in�mum and supremum on that set.

A subset of the metric spaces is given by the normed spaces, and among the normed spaces,

a special role is played by the strictly convex spaces:

De�nition A.5 A normed space is strictly convex if:

kfk = kgk = k
1

2
(f + g)k = 1) f = g

The geometrical interpretation of this de�nition is that a space is strictly convex if the unit

sphere does not contain any line segment on its surface.

B Gaussian networks and Stone's theorem

It has been proved (Cybenko, 1989; Funahashi, 1989) that a network with a one hidden

layer of sigmoidal units can approximate a continuous function arbitrarily well. Here we

show that this property, which is well known for algebraic and trigonometric polynomial

approximation schemes, is shared by a network with Gaussian hidden units. The proof is

a simple application of the Stone-Weierstrass theorem, which is the generalization given

by Stone of the Weierstrass approximation theorem (Stone, 1937, 1948). Our result was

obtained independently from the equivalent proof of Hartman, Keeler and Kowalski (1989).

We �rst need the de�nitions of algebra.

De�nition B.1 An algebra is a set of elements denoted by Y, together with a scalar �eld

F , which is closed under the binary operators of + (addition between elements of Y), �
(multiplication of elements of Y), � (multiplication of elements in Y by elements from the

scalar �eld F), such that
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1. Y together with F , + and � forms a linear space,

2. if f; g; h are in Y, � is in F , then

a. f � g is in Y,

b. f � (g � h) = (f � g)� h,

c. f � (g + h) = f � g + f � h,

d. (f + g)� h = f � h+ g � h,

e. �(f � g) = (�f) � g = f � (�g).

It is an elementary calculation to show that if U is some subsect of Rd then C[U ] is an

algebra with respect to the scalar �eld R. We can now de�ne a subalgebra as following:

De�nition B.2 A set S is a subalgebra of the algebra Y if

1. S is a linear subspace of Y,

2. S is closed under the operation � . That is, if f and g are in S, then f � g is also
in S.

We can now formulate the Stone's theorem:

Theorem B.1 (Stone, 1937) Let X be a compact metric space, C[X] the set of continuous
functions de�ned on X, and A a subalgebra of C[X] with the following two properties:

1. the function f(x) = 1 belongs to A;

2. for any two distinct points x and y in X there is a function f 2 A such that f(x) 6=
f(y).

Then A is dense in C[X].

As a simple application of this theoremwe consider the set of gaussian superpositions, de�ned

as

GX � ff 2 C[X] j f(x) =
mX
i=1

cie
�

(x�ti)
2

�
2
i ;X � Rd; ti 2 R

d; ci; �i 2 R;m 2 Ng (10)

We can now enunciate the following:

Proposition B.1 The set GX is dense in C[X], where X is a compact subset of Rd.
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Proof: In order to use Stone's therorem, we �rst have to show that GX is a subalgebra

of C[X], for each compact subset X of Rd. The set GX will be a subalgebra of C[X] if the

product of two of its elements yields another element of GX . Since GX is a linear superposition

of gaussians of di�erent variance and centered on di�erent points it is su�cient to deal with

the product of two gaussians. From the identity below it follows that the product of two

gaussians centered on two points t1 and t2 is proportional to a Gaussian centered on a point

t3 that is a convex linear combination of t1 and t2. In fact we have:

e
�

(x�t1)
2

�2
1 � e

�
(x�t2)

2

�2
2 = ce

�
(x�t3)

2

�2
3 ;

t3 =
�22t1 + �21t2

�21 + �22
; �23 =

�21�
2
2

�21 + �22
; c = e

�
(t1�t2)

2

�2
3 :

The function f(x) = 1 belongs to GX , since it can be considered as gaussian of in�nite

variance, and for any distinct points x;y we can obviously �nd a function in GX such that

f(x) 6= f(y): the conditions of Stone's theorem are then satis�ed and GX is dense in C[X]

2.

C Regularization networks can approximate smooth

functions arbitrarily well

In this appendix we brie
y describe the regularization method for approximating functions

and show that the networks that are derived from a regularization principle can approximate

arbitrarily well continuous functions de�ned on a compact subset of Rn.

Let S = f(xi; yi) 2 R
n �Rji = 1; :::Ng be a set of data that we want to approximate by

means of a function f . The regularization approach (Tikhonov, 1963; Tikhonov and Arsenin,

1977; Morozov, 1984; Bertero, 1986) consists in computing the function f that minimizes

the functional

H[f ] =
NX
i=1

(yi � f(xi))
2 + �kPfk2

where P is a constraint operator (usually a di�erential operator), k � k2 is a norm on the

function space to whom Pf belongs (usually the L2 norm) and � is a positive real number,

the so called regularization parameter. The structure of the operator P embodies the a

priori knowledge about the solution, and therefore depends on the nature of the particular

problem that has to be solved. The general form of the solution of this variational problem

is given by the following expansion (Poggio and Girosi, 1989):

f(x) =
NX
i=1

ciG(x;xi) + p(x) (11)

where G is the Green's function of the di�erential operator P̂ P , P̂ being the adjoint operator

of P , p(x) is a linear combination of functions that span the null space of P , and the

coe�cients ci can be found by inverting a matrix that depends on the data points (Poggio
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and Girosi, 1989). We remind the reader that the Green's function of an operator P̂ P is the

function that satis�es the following di�erential equation (in the distributions sense):

P̂ P G(x;y) = �(x� y) : (12)

It is clear that there is a correspondence between the class of functions that can be written

in the form (11) (for any number of data points and for any Green's functions G of a self-

adjoint operator) and a subclass of feedforward networks with one layer of hidden units, of

the type shown in �gure 1. Under mild assumptions on P̂ P , these networks can approximate

continuous functions arbitrarily well, as is stated in the following proposition:

Proposition C.1 For every continuous function F de�ned on a compact subset of Rn and

every piecewise continuous G which is the Green's function of a self-adjoint di�erential op-

erator, there exists a function f�(x) =
P

N

i=1 ciG(x;xi), such that for all x and any positive
� the following inequality holds:

jF (x)� f�(x)j < �

Proof: Let F be a continuous function de�ned on a compact set D � Rn. Its domain of

de�nition can be extended to all Rn by assigning zero value to all points that do not belong to

D. The resulting function, that we still call F , is a continous function with bounded support3.

Consider the space K of \test functions" (Gelfand and Shilov, 1964), that consists of real

functions �(x) with continuous derivatives of all orders and with bounded support (which

means that the function and all its derivatives vanish outside of some bounded region). As

Gelfand and Shilov show (Appendix 1.1), there always exists a function �(x) in K arbitrarily

close to F , i.e. , such that for all x and for any � > 0,

jF (x)� �(x)j < �:

Thus it is su�cient to show that every function �(x) 2 K can be approximated arbitrarily

well by a linear superposition of Green's functions (function f� of proposition C.1).

We start with the identity

�(x) =
Z
dy�(y)�(x� y) (13)

where the integral is actually taken only over the bounded region in which �(x) fails to

vanish. By means of equation 12 we obtain

�(x) =
Z
dy�(y)(P̂PG)(x;y) (14)

and since �(x) is in K and P̂ P is formally self-adjoint we have

�(x) =
Z
dyG(x;y)(P̂P�)(y): (15)

3The support of a continuous function F (x) is the closure of the set on which F (x) 6= 0.
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We can rewrite equation 15 as

�(x) =
Z
dyG(x;y) (y) (16)

where  (x) = P̂ P�(x). Since G(x;y) (y) is piecewise continuous on a closed domain, this

integral exists in the sense of Riemann. By de�nition of Riemann integral, equation 16 can

then be written as

�(x) = �n
X
k2I

 (xk)G(x;xk) + Ex(�) (17)

where xk are points of a square grid of spacing �, I is the �nite set of lattice points where

 (x) 6= 0, and Ex(�) is the discretization error, with the property

lim
�!0

Ex(�) = 0: (18)

If we now choose f�(x) = �n
P

k2I  (xk)G(x;xk), combining equation 18 and equation 17

we obtain

lim
�!0

[�(x)� f�(x)] = 0: (19)

Thus every function � 2 K can be approximated arbitrarily well by a linear superposition

of Green's functions G of a self-adjoint operator, and this concludes the proof 2.

Remark: The conditions of proposition C.1 exclude Green's functions that have singu-

larities in the origin. An example is the Green's function associated with the \membrane"

stabilizer P = ~r in 2 or more dimensions. In 2 dimensions, the membrane Green's function

is G(r) = �logr, where r = kx� xik (in 1 dimension G(x) = jxj, satis�es the conditions of
proposition C.1).

Remark: Notice that in order to approximate arbitrarily well any continous function on

a compact domain with functions of the type 11, it is not necessary to include the term p

belonging to the null space of P .
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