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Abstract

Learning an input-output mapping from a set of examples, of the type that many
neural networks have been constructed to perform, can be regarded as synthesizing an
approximation of a multi-dimensional function. From this point of view, this form of
learning is closely related to regularization theory. The theory developed in Poggio
and Girosi (1989) shows the equivalence between regularization and a class of three-
layer networks that we call regularization networks or Hyper Basis Functions. These
networks are not only equivalent to generalized splines, but are also closely related to
the classical Radial Basis Functions used for interpolation tasks and to several pattern
recognition and neural network algorithms. In this note, we extend the theory by
defining a general form of these networks with two sets of modifiable parameters in
addition to the coefficients ¢,: moving centers and adjustable norm-weights. Moving
the centers is equivalent to task-dependent clustering and changing the norm weights
is equivalent to task-dependent dimensionality reduction.
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1 Introduction

In previous papers (Poggio and Girosi, 1989, 1990) we have shown the equiv-
alence between regularization and a class of three-layer networks that we
called regularization networks and that are related to the classical interpola-
tion technique of Radial Basis Functions.

Let S = {(x;,4;) € R*xR|i = 1,...N} be a set of data that we want to ap-
proximate by means of a function f. The regularization approach (Tikhonov,
1963; Tikhonov and Arsenin, 1977; Morozov, 1984; Bertero, 1986) selects the
function f that solves the variational problem of minimizing the functional

N
HIf) = 3o — F0x)) + NP (1)
i=1
where P is a constraint operator (usually a differential operator), || - || is
a norm on the function space to whom Pf belongs (usually the L? norm)
and ) is a positive real number, the so called regularization parameter. The
structure of the operator P, that is called “stabilizer”, embodies the a priori
knowledge about the solution, and therefore depends on the nature of the
particular problem that has to be solved (for instance, it is not needed in
the case of P corresponding to a Gaussian or bell-shaped Green’s function).
We have shown (Poggio and Girosi, 1989) that the solution of the variational
problem (1) has the following simple form:

N
flx) = ; ciG(x;x:) + p(x)

where G(x) is the Green’s function (Stakgold, 1979) of the self-adjoint dif-
ferential operator PP, P being the adjoint operator of P, p(x) is a linear
combination of functions that span the null space of P, and the coeflicients
¢; satisfy a linear system of equations that depend on the N “examples”, i.e.
the data to be approximated. The form of the term p(x) depends on the sta-
bilizer that has been chosen and on the boundary conditions, and therefore
on the particular problem that has to be solved. For this reason, and since
its inclusion does not modify the main conclusions, we will disregard it in the
following. If P is an operator with radial symmetry, the Green’s function G
is radial and therefore the approximating function becomes:



N
fx) = 2 aG(llx = xil*), (2)

which is a sum of radial functions, each with its center x; on a distinct data
point. Thus the number of radial functions, and corresponding centers, is
the same as the number of examples.

In this note we indicate how to extend the technique into three natural
directions:

1. The computation of a solution of the form (2) has a complexity (number
of radial functions) that is independent of the dimensionality of the
input space but is on the order of the dimensionality of the training
set (number of examples), which is usually high. We show how to
justify in terms of the regularizationan framework an approximation
of equation (2) in which the number of centers is much smaller than
the number of examples and the positions of the centers are modified
during learning (Poggio and Girosi, 1989). The key idea is to consider
a specific form of an approximation to the solution of the standard
regularization problem. Moving centers are equivalent to the free knots
of nonlinear splines. In the context of networks they were first suggested
as a potentially useful heuristics by Broomhead and Lowe (1988) and
used by Moody and Darken (1989).

2. It is natural to try to extend the form of the solution (2) by considering
the superposition of different types of Green’s functions (Poggio and
Girosi, 1989, 1990a) (for example basis functions of different scales).
This extension is natural within the framework of regularization (and
has a direct Bayesian interpretation) by considering a more general
functional than equation (1) containing several stabilizers. We will
show how the well-defined but underconstrained variational problem
associated with the new functional can be transformed into an over-
constrained problem.

3. In equation (2) the norm ||x — x;|| may be considered as a weighted
norm

lIx — %[}y = (x — x:)TWIW(x — x;)
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where W is a square matrix and the superscript T indicates the trans-
pose. In the simple case of diagonal W the diagonal elements w;; assign
a specific weight to each input coordinate, and the standard Euclidean
norm is obtained when W is set to the identity matrix. They play
a critical role whenever different types of inputs are present. We will
show how the weighted norm idea can be derived from a slightly more
general functional than equation (1). The associated variational prob-
lem is well-defined but underconstrained; it can be transformed into an
overconstrained problem by using a certain approximation technique.

We call Hyper Basis Functions, in short HyperBFs, the most general form
of regularization networks based on these three extensions.

2 Moving Centers

The solution given by standard regularization theory to the approximation
problem can be very expensive in computational terms when the number of
examples is very high. The computation of the coefficients of the expansion
can become then a very time consuming operation: its complexity grows
polynomially with N, (roughly as N3) since an N x N matrix has to be in-
verted. In addition, the probability of ill-conditioning is higher for larger and
larger matrices (it grows like N for a N x N uniformly distributed random
matrix) (Demmel, 1987). We now show a way to reduce the complexity of the
problem, introducing an approximation to the regularized solution. While
the exact regularization solution is equivalent to generalized splines with fired
knots, the approximated solution is equivalent to generalized splines with free
knots.

2.1 An approximation to the regularization solution

A standard technique, sometimes known as Galerkin’s method, that has been
used to find approximate solutions of variational problems, is to expand the
solution on a finite basis. The approximated solution f*(x) has then the
following form:

n

fr(x) =3 cidi(x) (3)

=1
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where {¢;}~, is a set of linearly independent functions (Mikhlin, 1965). The
coefficients ¢; are usually found according to some rule that guarantees a
minimum deviation from the true solution. In the case of standard regu-
larization, when the functional to minimize is given by equation (1), this
method gives the ezact solution if n is equal to the numer of data points N,
and {é:}%; = {G(x;x;)}Y,, where G is the Green’s function of the opera-
tor PP. In this case the unknown coefficients of the expansion (3) can be
obtained in a simple way by substituting expansion (3) in the regularization
functional (1), that becomes a function H{f*] = H*(¢y,...,¢cn), and then by

minimizing H[f*] with respect to the coefficients, that is by setting:

OH[f"]
66,‘

It can be easily shown (Poggio and Girosi, 1989) that, if the Green’s
function vanishes on the boundary of the region that is considered, the set of
equations (4) is a linear system whose solution gives the standard regulariza-
tion coefficients. In more general cases the basis {¢;}”, should be enlarged,
to include terms that generate the null space of P, in order to obtain the
correct solution. For simplicity, we disregard these terms in the following,
since they do not change the main conclusions. A natural approximation to
the exact solution will be then of the form:

=0 i=1,...,N. (4)

f1(x) = ‘écaax; t) (5)

where the parameters t,, that we call “centers”, and the coefficients ¢, are
unknown, and are in general fewer than the data points (n < N). This form
of solution has the desirable property of being an universal approximator for
continuous functions (Girosi and Poggio, 1989) and to be the only choice
that guarantees that in the case of n = N and {to}s-; = {xi}}2; the correct
solution (of equation 1) is consistently recovered. We will see later in section
(5) how to find the unknown parameters of this expansion.

3 Different types of Basis Functions.

This scheme can be further extended by considering in equation (5) the
superposition of different types of functions G, such as Gaussians at different



scales.

The function f to be approximated is regarded as the sum of p compo-
nents f™, m = 1,...,p, each component having a different prior probabil-
ity. This assumption is clearly meaningful only if p << N. Therefore the
functional H|[f] to minimize will contain p stabilizers P™, p regularization
parameters A, and will be written as

N P
[ Z me X, 2+Z_:)‘M||mem“2 . (6)

The Euler-Lagrange equations associated with equation (6) have the form:

Pumfm(x —-/\ii Xp: fEx))b(x—x;) m=1,...,p. (7)

As in the case of standard regularization, the solution of equation (7) is
a linear superposition of Green’s functions:

N
= > d"G™(x;%;) (8)
=1
The function F(x) that minimizes the functional H[f] is then a linear su-
perposition of linear superpositions of the Green’s functions G™ correspond-
ing to the stabilizers P™, that is

p N
=2 X G (xx:) +p(x), 9)

m=1 =1
where p(x) is a linear combination of functions that span the null spaces
of the stabilizers. For instance, when G™(x) are Gaussian a polynomial is
not needed, though it can always be added. For other Green’s functions the

theory requires an appropriate p(x).

Substitution of equation (8) in equation (7) yields a linear system for the
coeflicients ¢*. There is a simple relation between the coefficients associated

to two different stabilizers, that is

m — A ; . _
GAm=cA, t=1,...,N; nom=1,...,p.



This means that if a component f™(x) of the solution is given, the other
p — 1 ones can be recovered by a simple scaling operation. This is expected,
since the underlying variational problem is underconstrained: we are trying
to obtain Np coeflicients from a set of N data points. The form of the
solution (9) is appealing: if all the coefficients ¢I* were independent and free
to vary, the system could “choose” among different stabilizers, depending on
the site. In order to retain the form (9) of the solution, while making the
problem overconstrained instead of underconstrained, we choose a solution
of the approximation problem of the following form (instead of equation 9):

= 3 /09 430, (10)
K
=3 mGm(x; 7 (11)

where (1 + d)YF,—; K, < N and the coefficients ¢ and the centers t7' are
unknowns. They can be found with a technique sumlar to the one described
in section (5). Notice that equations (10) and (11) are of the same form as
equation (5) and share its approximation properties.

3.1 Multiple Scales.

This method leads in particular to radial basis functions of multiple scales
for the reconstruction of the function f. Suppose we know a priori that
the function to be approximated has components on a number p of scales
O1,...,0p: We can use this information to choose a set of p stabilizers whose
Green’s functions are, for example, Gaussians of variance o1, . . .,0,. We have

(Poggio and Girosi, 1989, 1990a) :
P ) = Zak [ éx(D*H(x))’

where D* = VZ D%+ = YV and of = k'2’=’ V being the gradient
operator. As a result, the solution will be a superposition of superpositions
of Gaussians of different variances. Of course, the Gaussians with large o
should be preset, depending on the nature of the problem, to be fewer and
therefore on a sparser grid, than the Gaussians with a small o.



The HyperBF method also yields non-radial Green’s functions — by using
appropriate stabilizers — and also Green’s functions with a lower dimension-
ality — by using the associated f™ and P™ in a suitable lower-dimensional
subspace. Again this reflects a priori information that may be available about
the nature of the mapping to be learned. In the latter case the information
is that the mapping is of lower dimensionality or has lower dimensional com-
ponents.

4 Weighted norm

The norm in equation (5) is usually intended as an Euclidean norm. If the
components of x are of different types, it is natural to consider a weighted
norm defined as

||x|]%;v = xTWTwx,

since the relative scale of the components is otherwise arbitrary. The case
in which the matrix W is known (from prior information) does not present
any difficulty. It is interesting, however, to see what it means in terms of the
underlying regularization principle.

4.1 Weighted norm and regularization

The regularization principle consists in finding the f that minimizes the
functional:

N
Hw(f] =3 (v — f(x))* + M PfIRv (12)
=1
where we assume that P is radially symmetric in the variable y and that
y = Wx (i.e. y is a known linear transformation of x that depends on the
parameters W). This means that the smoothness constraint is given in a
space that is an affine transformation of the original x space. The Green’s
function associated with equation (12) is

G(lylI*) = G(lIxl1%v) (13)
with x|}y = xTWTWx.



Suppose now that the parameters W are unknown. We can formulate the
problem of finding f and W that minimize the functional Hw/(f). Notice
that the relevant quantity is M = WZW, since W only appears in this
form. The matrix M is symmetric and positive definite; it has therefore a
unique, symmetric “square root” R, such that M = RTR = R?%. One could
chose to identify W with R. W would be therefore symmetric, with @
independent parameters.

Thus finding the optimal W corresponds to finding the best stabilizer
among those that are expressed in a coordinate system which is a linear
transformation of the original one. The parameters W of the linear trans-
formation become parameters of H with respect to which the functional is
minimized.

The simplest case is the case of W diagonal and G(z) = e=*". In this
case

Gllelfy) = eirtembud . =sho
and thus the components w; of W are equivalent to the inverse of the variance
o of each component of the multidimensional Gaussian.

In the probabilistic interpretation of standard regularization (see Poggio
and Girosi, 1989) the term MA||Pf]|? in the regularization functional corre-
sponds to the following prior probability in a Bayesian formulation in which
the MAP (Maximum A Posteriori) estimate is sought:

Prob(f) = e IPIIF,

Our extension corresponds to choosing the stabilizer Pw = || Pf(y)||%,
with y = Wx. The stabilizer Pw is parametrized by the matrix W and
defines a prior Probw(f) which is also parametrized by W.

The solution of the variational problem (12) has the form

N
f(x) = 3 aG(llx - xill), (14)

i=1
where the coefficients ¢; and the elements of the matrix W must be estimated.
Here again we are facing an underconstrained variational problem, since we
trying to determine N + LdZTHQ parameters from N data points. The same
considerations of section (3) apply: in order to transform the problem into
an overconstrained problem, we look for a solution of the form

8



fr(x) = 2 caG([1% = tall3y) (15)

5 How to learn centers’ positions and norm
weights

Suppose that we look for an approximated solution of the regularization prob-
lem of the form (15). We now have the problem of finding the n coefficients
Cq, the d X n coordinates of the centers t, and the gﬁ;—"—i) elements of the
matrix M so that the expansion (12) is optimal. To avoid too many indeces,
we will only consider here the case p = 1 in eq. 10. The extension is obvious.
In this case we can use the natural definition of optimality given by the func-
tional H. We then impose the condition that the set {c4,tsJa = 1,...,n} and
the matrix M must be such that they minimizes H[f*], and the following
equations must be satisfied:

OH[f"] _ OH[f") _ ., OHIf] _ _
aca —O, 6—ta—-0, oM —0, a-—l,...,n.

Gradient-descent is probably the simplest approach for attempting to
find the solution to this problem, though, of course, it is not guaranteed
to converge. Several other iterative methods, such as versions of conjugate
gradient and simulated annealing (Kirkpatrick et al., 1983) may be more
efficient than gradient descent and should be used in practice. Since the
function H[f*] to minimize is in general non-convex, a stochastic term in the
gradient descent equations may be advisable to avoid local minima. In the
stochastic gradient descent method the values of ¢,, t, and M that minimize
H|[f*] are regarded as the coordinates of the stable fixed point of the following
stochastic dynamical system:

. OH[f"] _
Co = —w——aca +7,(t), a=1,...,n
ta=_wagT[f*]+ﬂa(t)’ a=1,...,n
o OH[Sf"]
M=-w M + 2 (1)

9



where 74(t), 1, (t) and £ (¢) are white noise of zero mean and w is a parameter
determining the microscopic timescale of the problem and is related to the
rate of convergence to the fixed point. Defining

A= yi— ) = yi— 3 caGllIxi — tally)

a=1
and setting A = 0 for simplicity (the more general case can be approached in
a similar way) in equation (1) we obtain

N
H(f*] = Hepm = (A%

=1
The important quantities — that can be used in more efficient schemes
than gradient descent — are, with ||x; — to|l3y = (x; — to)TM(x; — t,) and
M= WTW:

e for the ¢,

% N
O _ 95 mi(li — talli) (16)
Jcy =
o for the centers t,
0H[f*] al ’ 2
T deg > AG (% — tall3v)M(x; — tao) (17)
« =1
e and for M
OH[f*] n& ' 2
=-2) ca ) AG(|Ixi — tallw)Qin (18)
8M a=1 =1 ’

where Q; , = (%; — t,)(x; — to)T is a dyadic product and G is the first
derivative of G.

Remarks
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1. Instead of equation (18) for M the following equation can be used for
W:

OH[f"]

n N
_ (. 2 )
oW 4W E Ca Z AG(|1%: — tallw) Qo (19)

a=1 i=1

2. From equation (18) the matrix M is guaranteed to remain symmetric in
a deterministic gradient descent scheme, since the right hand-side of the
equation is symmetric (because the Q); , are correlation matrices and a
linear combination of symmetric matrices is symmetric). Of course, the
initial value must be a symmetric matrix and in the stochastic update
scheme, the noise term must not break the symmetry. The matrix
M must satisfy the additional constraint of remaining positive definite
(since the scalar product x*Mx must be non-negative). We conjecture
that equations (16), (17) and (18) conserve the positive definiteness of
M if G is positive definite.

3. Equation (16) has a simple interpretation: the correction is equal to
the sum over the examples of the products between the error on that
example and the “activity” of the “unit” that represents with its center
that example. Notice that H[f*] is quadratic in the coefficients c,, and
if the centers and the matrix M are kept fixed, it can be shown (Poggio
and Girosi, 1989) that the optimal coeflicients are given by

c=(GT G+ Xg)'GTy (20)

where we have defined (y); = yi, (€)a = ¢a, (G)ia = G(x;;t,) and
(9)ap = G(ta;tp). If X is let go to zero, the matrix on the right side of
equation (20) converges to the pseudoinverse of G (Albert, 1972), and if
the Green’s function is radial the approximation method of Broomhead
and Lowe (1988) is recovered.

4. Equation (17) is similar to task-dependent clustering (Poggio and Girosi,
1989). This can be best seen by assuming that A; are constant: then
the gradient descent updating rule makes the centers move as a func-
tion of the majority of the data, that is of the position of the clusters.
In this case a technique similar to the k-means algorithm is recovered

11



(MacQueen, 1967; Moody and Darken, 1989). Equating _3%5_'1 to zero
we notice that, when the matrix M is set to the identity matrix, the
optimal centers t, satisfy the following set of nonlinear equations:

2.P.°‘x~
t, =22 a=1,...,n

2 P

where P = A;G'(||x; —t4]|?). The optimal centers are then a weighted
sum of the data points. The weight P* of the data point ¢ for a given
center t, is high if the interpolation error A; is high there and the radial
basis function centered on that knot changes quickly in a neighborhood
of the data point. This observation suggests faster update schemes, in
which a suboptimal position of the centers is first found and then the
¢, are determined, similarly to the algorithm developed and tested
successfully by Moody and Darken (1989).

. Equation (19) (by assuming that Y2 _, ¢, A;G'(]|x; — ta||3y) is asymp-
totically constant (!!)) contains the quantity 3%, Q;. which is an
estimate of the correlation matrix of all the examples relative to t,
(modulus a normalization factor). Let us define C,, o as the d x m ma-
trix whose columns are the vectors of the examples x; —to, ..., X, — tq.
Then X, Qi can be written as ¥V, Qi o = Cn,oC¥ , and is the d x d
correlation matrix (d being the number of components of x). Interest-
ingly, in this case, equation (19), when inserted in the gradient descent
equation, has the form:

W= -WQ
which has the solution
N
W(t) = W(0)e ™ =W(0) Y e"Aftejef
1=1
where e; are the eigenvectors of ) and \; are the associated eigenvalues.
All eigenvectors will decay to 0, the ones with the largest eigenvalues

fastest. Since in the full equation the other terms such as A; will keep
W from decaying to 0, we may expect that W will converge to a matrix

12



with rows that are similar to the eigenvectors of @ with the smallest
eigenvalues. In other words, the equation should converge to rows of W
that span the space orthogonal to the space spanned by the principal
components of the input examples (i.e. the eigenvectors of @@ with the
largest eigenvalues). In this case, the matrix M is a projection operator
that projects x into a space orthogonal to the space of the principal
components. The principal components are the singular vectors of X,
with the property that they span a nested set of optimal subspaces.
This interpretation of the gradient descent equation is just a rough in-
dication of what may happen, because of the very strong underlying
assumptions. It turns out that in the object recognition case (Poggio
and Edelmann, 1990), the interpretation is perfectly consistent with
what one expects, given the (linear) computational theory underlying
the problem (Basri and Ullmann, 1990; see also the appendix in Edel-
mann and Poggio, 1990). Under orthographic projection, the vectors
representing views of the same object span a linear subspace with a low
dimension. Let us assume, according to the above discussion, that W
projects a new input vector into a space orthogonal to the one spanned
by the principal components extracted from many views of the object
(the “examples”). Then, if the new input is another view of the same
object, the result will be close to zero for all units. In the case of the
Gaussian, for instance, this means that each unit will be maximally
activated and by suitable choice of ¢ any desired output may be syn-
thesized. On the other hand, if the new input is the view of a different
object, the result of operating on it with W will be different from
zero and possibly large enough to give a very small activity of the unit
making it impossible to synthesize a desired output by an appropriate
choice of the ¢ (the output will be zero or close to it). In this case,
the appropriate W will solve the problem with just one center (since
the problem is linear). Notice that if W is symmetric (i.e. if W is the
square root of M), it has the same eigenvectors of M, and M and W
have the same null space.

. One may think intuitively that it is desirable that W is space depen-
dent, that is W = W(x). This assumption, however, seems rather
meaningless from the point of view of regularization theory. As a con-
sequence, we believe that it is wrong to assume W = W(x) in a scheme

13



such as HyperBF. On the other hand, it makes theoretically sense to
use different HyperBF networks for different subsets of the domain of
the given multivariate function, each one possibly with a different W.
We do not have any theory, however, of how to partition appropriately
the domain of the function. An alternative approach, that also makes
sense, is local linear approximation. In this case one finds a set of local
charts, somewhat similarly to computing W (x).

5.1 A practical algorithm

It seems natural to try to find a reasonable initial value for the parameters
c,t,, M, to start the minimization process. In the absence of more specific
prior information the following heuristics seems reasonable.

e Set the number of centers and set the centers’ positions to positions
suggested by cluster analysis of the data (or more simply to a subset
of the examples’ positions).

o Set the rows of W to be vectors orthogonal to the eigenvectors with
largest eigenvalues of 3", 3°; Qi &

e Use matrix pseudo-inversion to find the c,.

o Usethet,, M = WTW and ¢, found so far as initial values for gradient
descent equations.

It should be noticed than an even more general strategy makes sense in
some cases. Suppose that the system can be made to operate satisfactorily
with the steps above or perhaps just with the first step. Suppose also that the
system can continue to accumulate examples while operating. An example
could be an autonomous vehicle that can improve, say, the model of its
dynamics by collecting appropriate example pairs while operating. Then it
makes sense to perform dimensionality reduction and to move the centers as
outlined above. As an additional step one may try to eliminate features that
receive little weight, if possible, and then to add other features while keeping
the previously found centers. This is equivalent to adding centers of higher
dimensionality. Another iteration of moving centers, finding norm weights,
eliminating features and centers then takes place.

14



Experiments with movable centres and movable weights have been per-
formed in the context of object recognition (Poggio and Edelman, 1990; Edel-
man and Poggio, 1990) and approximation of multivariate functions (Caprile,
Girosi and Poggio, 1990) and in both cases the results are promising.

6 Remarks

1. Equation (19) is similar to an operation of (task-dependent) dimension-
ality reduction (Duda and Hart, 1973) whereas equation (17) is similar
to a clustering process.

2. It is conceivable that learning the weights of the norm is even more
important than learning the centers and that in many cases it may be
preferable to set the centers to a representative subset of the data and
to keep them fixed thereafter.

3. A specific matrix W corresponds to a specific metric in the multidi-
mensional input space: W projects the input vector into the subspace
spanned by its rows. In the case of the rows of W spanning the space
orthogonal to the principal components of the inputs, W assigns a
metric ellipsoid with the largest axes (corresponding to a large o in
the Gaussian) along the principal components and the small axis (cor-
responding to a small ¢ in the Gaussian) orthogonal to it: thus even
vectors that are far away (in the ordinary euclidean metric) are close in
this metric if they lie in the hyperplane of the principal components and
even close vectors (in the ordinary metric) are far away in the metric
induced by W if they are orthogonal to the principal components.

4. In the case of N examples, n = N fixed centers and M = I, there are
enough data to constrain the N coeflicients ¢, to be found. Moving
centers add another nd parameters (d is the number of input compo-
nents) and the matrix M another %’ﬁ independent parameters. Thus
the number of examples N must be sufficiently large to constrain ad-
equately the free parameters — n d-dimensional centers, n coefficients
¢y and 12—2"‘—‘1 independent entries of the matrix M. Thus

15



& +d
N>>n4+nd+ ;

5. In the case of Gaussian basis functions, learning the entries of a diagonal
W is equivalent to learning the variances of each two-dimensional (or
one-dimensional) Gaussian receptive field for each center. It is clear
that sets of units with different scales (see section 3.1) correspond to
sets of units with different W.
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