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1 Introduction

In [McAllester et al., 1989] we argued that first order theorem proving could
be made more effective by replacing the classical syntax of first order logic
with a syntax based on taxonomic relationships. This claim is supported by a
technical theorem stating that a certain quantifier-free fragment of the new
taxonomic syntax has a polynomial time decision procedure, and further-
more, this quantifier-free fragment of taxonomic syntax is more expressive
than any corresponding quantifier-free fragment of classical syntax. The de-
cision procedure for the quantifier-free fragment of taxonomic syntax can be
incorporated into a high-level proof system which is complete for first order
inference.

The technical observations about taxonomic syntax can be extended to
yet more powerful syntaxes for first order logic. In this paper we investigate a
syntax derived from a fragment of English under Montague semantics. This
“Montague syntax” for first order logic is quite similar to the taxonomic
syntax presented in [McAllester et al., 1989) except that it allows the “quan-
tifiers” some and every to appear as noun phrase specifiers. The sentence
“every man loves some woman” is a well formed formula in Montague syntax
for first order logic. Although this sentence appears to have two quantifiers,
both of these quantifiers appear as specifiers of noun phrases and neither
quantifier involves a bound variable. In Montague syntax for first order logic
the noun phrase specifiers “some” and “every” are not considered to be quan-
tifiers and the above sentence is taken to be quantifier-free. We show that a
certain case of quantifier-free inference in Montague syntax can be decided
in polynomial time. No translation to classical syntax is needed. In fact,
the inference procedure relies heavily on the syntactic structure of Montague
formulas.

Our previous work on taxonomic syntax and our present work on Mon-
tague syntax can be viewed as an extension of work by other researchers
on knowledge representation languages, e.g. [Bobrow and Winograd, 1977],
[Fahlman, 1979], [Brachman et al., 1983], [Brachman, 1983]. Knowledge rep-
resentation languages have traditionally been organized around taxonomic
relationships between classes. Al researchers often express the intuition that



such taxonomic representations facilitate inference and our previous work on
taxonomic syntax for first order inference provides some degree of technical
support for this intuition. Our work on alternate syntaxes for first order
logic can also be viewed as an extension of work on the use of types, or sorts,
in making first order inference more effective [Walther, 1984b], [Walther,
1984a], [Stickel, 1985], [McAllester, 1989]. There also seems to be some re-
lationship between our work on taxonomic syntax and the notion of type
used in computer programming languages [Reynolds, 1974], [Burstall, 1984],
[Cardelli, 1984]. The current paper was, of course, directly inspired by Mon-
tague semantics for English [Dowty et al., 1983]. By restricting this paper to
a small formal fragment of English we avoid most of the subtle issues that
have traditionally concerned researchers in Montague semantics — we make
no attempt to deal with propositional attitudes or the intension/extension
distinction.

The decision procedure we give for determining satisfiability of certain
classes of Montague formulas is based on an algorithm we call noun phrase
subsumption. The noun phrase subsumption algorithm is a modification of
the monotone closure procedure described in [McAllester et al., 1989], which
can itself be viewed as a generalization of the congruence closure algorithm
described in [Downey et al., 1980]. The noun phrase subsumption algorithm
can also be viewed as another fast decision procedure for a restricted inference
problem in the same spirit as the algorithms described in [Nelson and Oppen,
1979] and [Nelson and Oppen, 1980].

The technical results in this paper can be evaluated along two indepen-
dent dimensions. First, the results can be evaluated from a purely engineer-
ing viewpoint. From this perspective the important contribution is a new
inference procedure, noun phrase subsumption, that can be used to improve
automated reasoning systems. It should be possible to use the noun phrase
subsumption procedure to reduce the amount of user-provided detail needed
in the machine verification of mathematical theorems. From this engineer-
ing viewpoint the fact that noun phrase subsumption operates on English
syntax is irrelevant. In addition to evaluating the engineering implications
of the noun phrase subsumption algorithm, one can, of course, evaluate this
work in terms of the insight it provides into the observed structure of natural
language. The existence and effectiveness of the noun phrase subsumption al-



gorithm suggests that natural language syntax plays an important functional
role in human cognition.

2 English Syntax for First Order Logic

In this section we present a formal language based on English syntax. This
formal language is really just a syntactic variant of first order predicate cal-
culus — every formula of our new language is equivalent to some formula of
first order logic and every formula of first order logic is (essentially) equiva-
lent to a formula in our new logic. We call this new language the Montague
syntax for first order logic. The quantifier-free fragment of Montague syn-
tax is more expressive than the quantifier-free fragment of either classical
syntax or our earlier taxonomic syntax. In spite of the increased expressive
power of the quantifier-free fragment, however, the quantifier-free fragment
of Montague syntax retains most of the nice computational properties of the
quantifier-free fragment of classical syntax.

Classical syntax involves terms and formulas. In both taxonomic and
Montague syntax terms are replaced by class expressions where each class
expression denotes a subset of the first order domain. For compatibility with
English, Montague syntax allows for two different kinds of class expressions:
noun phrase class expressions and verb phrase class expressions. Each class
expression, whether noun or verb, denotes a subset of the first order domain.
In addition to class expressions and formulas, Montague syntax has a new
kind of expression called a maximal noun phrase. If man is a noun class token,
and hence a noun phrase class expression, then the expressions (every man)
and (some man) are maximal noun phrases. An atomic formula of Montague
syntax consists of a maximal noun phrase followed by a verb phrase class
expression. The various kinds of expressions of Montague syntax can be
defined by mutual recursion as follows:

e A noun phrase class expression is any one of the following:

— A noun class token such as man, bird, or natural-number.



= An application (R N) where R is a noun relation token, such as
brother-of or employee-of, and N is a maximal noun phrase.
— A such-that expression of the form (N z such that ®(x)) where

N is an noun phrase class expression, z is a variable, and ®(z) is
a formula.

¢ A mazimal noun phrase is one of the following:

— A variable. Variables will be denoted with the symbols x, y and
z.

— A constant symbol such as John.

— An expression of the form (every N) or (some N), where N is an
noun phrase class expression.

o A verb phrase class ezpression is an application (V N) where V is a verb
relation token and N is a maximal noun phrase.

e A formula is either an expression of the form (NP VP), where NP is a
maximal noun phrase and VP is a verb phrase class expression, or a
Boolean combination of formulas.

Formulas of the form (NP VP) are called atomic formulas—these and
their negations (NOT (NP VP)) will be called literals. For example, if man
and woman are noun class tokens, and loves is a transitive verb token, then
the expressions

((every man) (loves (some woman)))

((some man) (loves (every woman)))
((some (employee-of (some company))) (loves (every woman)))

are all atomic formulas of Montague syntax for first order logic. Further-
more, these formulas are taken to be quantifier-free. We consider the essence
of quantification to be the presence of bound variables. Such-that class ex-
pressions allow for the introduction of bound variables in our Montague syn-
tax. For example, consider the statement that every man loves himself. This
would be expressed in classical syntax as

Vz man(z) — loves(z, ).
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In Montague syntax this statement can be expressed as the formula
((every man) (is (some (man x such that (x (loves x)))))).

An expression of Montague syntax will be called quantifier-free if it does not
contain any such-that expressions.

For the sake of readability it is often convenient to use the tokens “a” and
“an” as synonyms for the token “some”. For example, the above formulas
could be written as

((every man) (loves (a woman)))

((a man) (loves (every woman)))
((an (employee-of (a company))) (loves (every woman))).

The formal semantics given in the next section assigns each of the above
formulas a meaning that is consistent with reading these formulas as English.

Just as in first order logic, we assume that equality is included as a fixed
logical constant. In Montague syntax we use the token “IS” to denote the
equality relation. The token IS is a verb relation token. Given this verb
relation token Montague syntax includes the atomic formulas

((every dog) (is (a mammal)))

((every poodle) (is (a dog)))
((some mammal) (is (a (child-of (a reptile))))).

Under the semantics given in the following section, all these formulas are
assigned meanings consistent with reading them as English.

To ensure that first order Montague syntax is as expressive as classical
first order logic, a special logical constant THING is included as a noun class
token. In any semantic interpretation the class token THING denotes the entire
universe of discourse of that interpretation (the semantics of the constant
THING is given in more detail in the next section). Using this constant we
can construct atomic formulas that refer to all things. For example, consider
the formula (John (hates (every THING))).



Unfortunately, some formulas of Montague syntax are ambiguous when
read as English sentences. Our formal semantics assigns every formula a
unique unambiguous meaning. The meaning assigned by the formal seman-
tics is not always the same as the most common reading of the corresponding
English sentence. For example, because “a” and “some” are synonymous,
the formulas

((some dog) (is (a mammal)))

and ((a dog) (is (a mammal)))

are identical. The second formula, being identical to the first, has a different
formal meaning from the formula ((every dog) (is (a mammal)). This
example shows that first order Montague syntax, as a formal language, is
not intended to be completely faithful to the meaning of English, although
the correspondence is quite good in general. Independent of any relationship
to English, first order Montague syntax can be viewed as an engineering
tool for improving the effectiveness of automated reasoning by making the
quantifier-free fragment of the language more expressive while preserving its
computational tractability.

3 Formal Semantics

Our formal semantics for the Montague syntax is a simplification of Mon-
tague’s original semantics [Dowty et al., 1983]. Just as in classical syntax,
a model of first order Montague syntax is a first order structure, i.e., a do-
main D together with an interpretation of various tokens as elements of D,
subsets of D, or relations on D. Each first order structure assigns, to each
constant such as John, a meaning which is an element of the domain of that
structure. Noun class tokens, such as man and mammal, have the same se-
mantics as monadic predicates in classical syntax: each first order structure
assigns to each noun class expression a meaning which is a particular subset
of its domain. Noun relation tokens, and verb relation tokens, both have the
same semantics as binary relation symbols in classical syntax: each model
assigns to each noun and verb relation token a particular relation, i.e., set
of pairs, over the domain of that structure. For example, the noun relation
token brother-of and the verb relation token loves both denote relations
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on the domain of the structure. We require that in every model of first order
Montague syntax the verb relation token IS denotes the identity relation on
the first order domain and the noun class token THING denotes the entire
domain.

In the following specification of the semantics of Montague syntax we
assume that a fixed first order structure and a particular variable interpreta-
tion have been specified. A variable interpretation over a first order structure
M assigns each variable a meaning which is a member of the domain of M.
Given a first order structure and a variable interpretation we can assign a
meaning to each class expression, where the meaning is a subset of the se-
mantic domain, and assign a truth value to each formula. We do not give an
independent meaning to maximal noun phrases, although we do give mean-
ing to all class expressions and formulas that involve maximal noun phrases.
The reason for not giving an independent meaning for maximal noun phrases
is discussed below.

First we give the meaning of class expressions. A class token (either a
noun token or a verb token) denotes the set that is assigned to it by the
first order structure. To define the meaning of other class expressions some
additional terminology is needed. We view relations as operators that take
a single argument and return a set. If R is a relation token, either a noun
relation token or a verb relation token, and d is an element of the semantic
domain, then we will use the notation (R d) to denote the set of domain
elements @’ such that the pair (d’,d) is a member of the relation denoted
by R. The meaning of a class expression (R N) where R is a relation token
(either verb or noun) and N is a maximal noun phrase depends on the kind
of maximal noun phrase involved. If N is a constant or variable denoting
domain element d, then the class expression (R N) denotes the set (R d).
For example, the class expression (brother-of J ohn) denotes the set of all
brothers of John, and the class expression (loves Mary) denotes the set
of all people who love Mary. A class expression of the form (R (some C))
denotes the union of all sets (R d) where d is a member of the set denoted by
C. If C denotes the empty set, then so does (R (some C)). For example, the
class (brother-of (some person)) denotes the set of all people that are
the brother of some person, and (loves (some person)) denotes the class
of all people who love some person. A class expression of the form (R (every



C)) denotes the intersection all sets of the form (R d) where d is in the set
denoted by C. If C denotes the empty set then (R (every C)) denotes the
entire semantic domain. For example, if d is a member of the class denoted by
(brother-of (every person)) then d must be a brother of every person.
Similarly, if d is a member of the class (loves (every person)), then d
must love every person. Finally, consider a class expression of the form (N z
such that ®(z)). This expression denotes the set of all elements d of the
class denoted by N such that the formula ®(z) is true when z is interpreted
as d. For example, the phrase (man z such that (z (loves z))) denotes
the class of all men who love themselves.

Given that every class expression denotes a well defined subset of the first
order domain, we can readily define the meaning of any Montague formula.
Every Montague formula is either an atomic formula or a Boolean combi-
nation of atomic formulas. Boolean combinations are given their standard
meaning, and so it suffices to assign meaning to the atomic formulas. An
atomic formula is always an expression of the form (NP VP) where NP is a
maximal noun phrase and VP is a verb phrase class expression. The meaning
of such a formula expression depends on the kind of maximal noun phrase
involved. If NP is a variable or constant symbol then the formula (NP VP) is
true just in case the object denoted by NP is a member of the class denoted by
VP. A formula of the form ((every N) VP) is true just in case every member
of the class denoted by N is a member of the class denoted by VP, i.e., just in
case the class denoted by N is a subset of the class denoted by VP. A formula
of the form ((some N) VP) is true Just in case some member of the class
denoted by N is also a member of the class denoted by VP, i.e., just in case
the class denoted by N intersects the class denoted by VP.

We leave it to the reader to verify that, if we restrict our attention to
languages with only constants and unary and binary relation symbols, then
every classical first order formula can be translated to a logically equivalent
formula of Montague syntax and every formula of Montague syntax can be
translated to an equivalent formula in classical first order syntax. Thus first
order Montague syntax is really just a syntactic variant of first order logic. Bi-
nary relation symbols, in the presence of equality, are in some sense sufficient
to express arbitrary first order facts. Thus Montague syntax as defined here
seems sufficiently expressive. However, the usefulness of Montague syntax in



speeding up automated reasoning can be enhanced by allowing for function
symbols and for both functions and relations of unbounded arity (number
of arguments). This extension of Montague syntax is discussed briefly in a
later section.

The above semantics assigns a meaning to class expressions (as sets) and
to formulas (as truth values) but does not assign any independent meaning to
maximal noun phrases. This was done to simplify the conceptual complexity
of the semantics. As Montague observed, it is possible to give maximal noun
phrases an independent meaning.! In this way one can give the quantifier-free
fragment of the language a purely compositional semantics, i.e., a semantics
in which every phrase is assigned a meaning and the meaning of any phrase
is determined by the meanings assigned to its immediate subphrases. This
completely compositional semantics is not required for an understanding of
the noun phrase subsumption procedure presented below. 2

4 Simplified Montague Syntax

The distinction between nouns and verbs in our formal Montague syntax is
unmotivated. Noun relation symbols are semantically indistinguishable from
verb relation symbols and noun phrase class expressions are semantically in-
distinguishable from verb phrase class expressions. To simplify the discussion
of the computational properties of Montague syntax, we will ignore the dis-

!The meaning assigned to maximal noun phrases is higher-order: a maximal noun
phrase denotes a predicate on sets. For example, the maximal noun phrase (every man)
denotes the predicate As.(man C 8), i.e., the predicate that takes a set s and returns true
if the class man is a subset of the class 5. The maximal noun phrase (some man) denotes
the predicate As.s N man # 0 and the maximal noun phrase John denotes the predicate
As.John € s. A formula (NP VP) is true Jjust in case the higher order predicate denoted by
the maximal noun phrase NP is true when applied to the class denoted by VP. Now consider
a class expression of the form (R D) where D is a maximal noun phrase that denotes the
higher-order predicate D. The class denoted by (R D) can be defined as the set of all
domain elements d’ such that the predicate D is true of the set {d:(d',d) er}.

%In our experience, thinking about the compositional semantics seems to interfere with
a clear understanding of the computational properties of first order Montague syntax. For
example, the meaning of maximal noun phrases is second order, but first order Montague
syntax is really just a syntactic variant of first order predicate calculus.
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tinction between nouns and verbs. Ignoring this distinction there are three
syntactic categories: class expressions, maximal noun phrases, and formulas.
Dropping the distinction between nouns and verbs leads to a simplified syn-
tax in which the expressions of each kind can be defined by mutual recursion
as follows:

® A class expression is either a class token, an application (R N) of a rela-
tion token R to a maximal noun phrase N, or a such-that class expression
of the form (N z such that ®(z)) where N is a class expression, r is
a variable, and ®(z) is a formula.

o A mazimal noun phraseis either a variable, a constant, or an expression
of the form (some N) or (every N) where N is a class expression.

® A formula is either an atomic formula of the form (NP C) where NP
is a maximal noun phrase and C is a class expression, or is a Boolean
combination of such atomic formulas. A literal is an atomic formula or
its negation.

The simplified syntax is “free-er” than the Montague syntax given above:
every atomic formula of Montague syntax is also an atomic formula of the
simplified syntax but many formulas of the simplified syntax are not legal in
the unsimplified Montague syntax. For example, the formulas ((every dog)
mammal) and ((every (loves John)) (loves Mary)) are legal in the sim-
plified syntax but not legal in the unsimplified syntax. However, since the
unsimplified syntax is simply a subset of the simplified syntax, any inference
algorithm that runs on the simplified syntax will be able to handle the un-
simplified syntax as a special case. For this reason we restrict the discussion
of computational properties to a discussion of the simplified syntax.

From an engineering perspective the simplified syntax seems clearly su-
perior to the unsimplified syntax. The simplified syntax allows verb phrase
class expressions to be used directly in constructing maximal noun phrases
such as (some (loves Mary)). This ability to use verb phrase class expres-
sions in maximal noun phrases apparently implies that the quantifier-free
fragment of the simplified syntax is more expressive than the quantifier-free
fragment of the unsimplified syntax. Furthermore, this increase in expressive
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power apparently has no computational cost. Any inference algorithm on the
unsimplified syntax can be used to perform inference on the simplified syn-
tax. More specifically, all formulas of the simplified syntax can be translated
into formulas of the unsimplified syntax by treating every relation token in
the simplified syntax as a noun relation token and translating every atomic
formula (NP C) in the simplified syntax into the formula (NP (is (a €)))
in the unsimplified syntax.

Our first order Montague syntax and the associated inference procedure
given below may provide a functional explanation for some of the syntactic
structure of maximal noun phrases. However, as the above simplification of
the language indicates, it does not provide any functional explanation for
the distinction between nouns and verbs. Nouns and verbs do appear to play
different functional roles in natural language. For example, the fact that
verbs can be tensed (past, present or future) while nouns can not indicates
that nouns and verbs play different functional roles. Not being linguists, it
would be foolish for us to attempt an analysis of all the potential semantic
differences between nouns and verbs in natural language. We will simply
say that we expect that there is some semantic difference between nouns and
verbs in natural language and that this difference is not being captured in our
first order Montague syntax. Perhaps some additional semantic complexity
of verb phrases could be incorporated into a yet more sophisticated formal
language with yet more expressive power in its quantifier-free fragment.

5 The Noun Phrase Subsumption Procedure

We now define a decision procedure for determining the satisfiability of a
set of quantifier-free Montague literals using techniques similar to those used
in [McAllester et al., 1989]. Unfortunately, this satisfiability problem is NP
complete; the proof of NP hardness is given in a later section. The NP
hardness of the general problem arises from the fact that, for a given class
expression appearing in the input, we may not know whether or not there
exist elements of that class. If, for each class expression, we know whether
or not elements of that class exist then the satisfiability problem becomes
polynomial time decidable.

12



To simplify the satisfiability problem we first observe that without loss of
generality we can assume that every occurrence of a constant symbol ¢ in ¥
is in a class expression of the form (IS c) — any formula or class expression
that contains a constant symbol c¢ is semantically equivalent the expression
that results from replacing ¢ by (some (is c)). This simplification allows us
to assume without loss of generality that in any formula of the form (NP C) ,
and any class expression of the form (R NP), where R is a relation other than
IS, the maximal noun phrase NP is either of the form (some s) or ( every s)
for some class expression s.

It is useful to introduce abbreviations for several formulas that are used
commonly in this paper. First, we use the notation s C ¢ where s and # are
class expressions as an abbreviation for the formula (Cevery s) t). We use
the notation s Mt where s and ¢ are class expressions as an abbreviation for
((some s) t). Formulas of the first type express subset relationships and
formulas of the second type express the statement that two classes intersect.
Given the above simplification for constant symbols, every atomic formula is
of one of these two types. We use the notation 3s where s is a class expression
as an abbreviation for the formula sMs. Formulas of the form Js express the
statement that there exist elements of the set denoted by s. Finally we use
the notation s =t where s and ¢ are class expressions as an abbreviation for
the conjunction (s C t) A (t C s).

Definition: We say that a set of formulas ¥ determines existen-
tials if, for every class expression s that appears in any formula
in ¥, ¥ contains either the formula 3s or the formula —3s.

Montague Syntax Quantifier-Free Decidability Theorem:
The satisfiability of a set of quantifier-free Montague literals that
determines existentials is polynomial time decidable.

The above theorem implies that one can determine whether an arbitrary
set ¥ of quantifier-free Montague literals is satisfiable by searching for a su-
perset of ¥ that determine existentials and is satisfiable. If there are n class
expressions that appear in formulas in ¥ then one need search at most 2"
different extensions of X. In practice, the noun phrase subsumption proce-
dure, on which the above theorem is based, can be applied even when ¥ does
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not determine existentials; if ¥ does not determine existentials the proce-
dure is not guaranteed to be complete. If a complete procedure is desired,
one can search the space of possible extensions of ¥ using the noun phrase
subsumption procedure at each node of the search tree.

To prove the above theorem we now observe that ¥ can always be trans-
formed into an equi-satisfiable set ¥’ which contains no literals of the form
8 Mt where s and t are different class expressions. We will call such literals
positive intersection literals. This transformation can be achieved by simply
replacing any positive intersection literal with three literals w Cs,wCt
and Jw where w is a new class token. Any model of ¥’ is also a model
of ¥, and any model of ¥ yields a model of ¥’. For the remainder of this
section we assume that ¥ contains no positive intersection literals. Negative
intersection literals, i.e. literals of the form —(s M), may still be present.

The noun phrase subsumption procedure is based on the notion of re-
stricted inference. The inference process involves the inference rules given in
figure 1. These rules introduce a new formula, Ds, read as “determined s”,
where s is a class expression. The formula Ds is true just in case the set
denoted by s contains at most one member.

The noun phrase subsumption procedure is an inference process involving
the inference rules in figure 1. If & is a set of Montague literals we write & - &
if any one of the following conditions hold:

® ® can be proven from ¥ using the above rules of inference.
° @isoftheforms:tandzl-sgtandEl-tgs.

® & is of the form s Mt and there exists some w such that ¥ - Jw,
YFwCsand X bhwCt

Clearly, the last two conditions above could have been incorporated into
the inference rules in table 1. However, there are no occurrences of equality
or intersection formulas in the antecedents of the inference rules. This im-
plies that the noun phrase subsumption procedure can be run to completion
without deriving equality or intersection formulas. After the procedure has
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(1) 3THING (11) Dt,rCt

(2) s C THING Dr
(3 sct (12)  ~(rct)

(R (some 8)) C (R (some t)) 3r
(4) sct (13) 35, Dt, sCt

(R (every t)) C (R (every s)) tCs
(5) rCs,8Ct (14 3r,rcCs rcCt

rcCt (R (every 5)) C (R (some t))
(6) tct (15)  Ds, 3s
(7 3@is o) 8= (IS (every s))
(8) D(is ¢) (16)  3(1S (every s)), 3s
(9 3R (some 5)) Ds

3s (17) 5= (IS (some s))
(10) 3, rcCt (18)  —3s

3t THING C (R (every s))

(19) Dt,sCt

(R (some 8)) C (R (every t))

Figure 1: The inference rules for quantifier-free literals. In these rules the
letters r, s, and ¢ range over class expressions, c ranges over constant symbols,
and R ranges over relation symbols. An inference rule that concludes an
equation s =t is an abbreviation for two inference rules, one that concludes
8 C t and another that concludes ¢ C s.
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been run to completion, we can easily check whether a given equality or a
given intersection formula has been implicitly deduced. The notation ¥  F

abbreviates the statement that there exists some formula, ¥ such that ¥ + ¥
and X F -0,

The inference rules allow for the derivation of an infinite number of formu-
las. To guarantee that the inference process terminates it must be restricted
in some way. This is done by requiring that every formula derived by the in-
ference process only mention class expressions that explicitly appear in some
formula in X. The notation ¥ H ¥ is defined by analogy with £ I ¥ except
that every class ezpression appearing in any derivation must either be the
special class expression THING or must appear in some formula in ¥. The
notation ¥ H F is defined analogously to £ + F. The inference rules can
only derive atomic formulas (rules 15 and 17 are each abbreviations for a,
pair of rules that derive subset formulas). Since there are only quadratically
many atomic formulas that involve class expressions that appear in ¥, one
can construct a polynomial-time procedure for determining if ¥ H F. The
following section contains a proof that for any set ¥ of quantifier-free taxo-
nomic literals satisfying the above simplifying assumptions, if & |/ F then &
is satisfiable.

6 Correctness of the Procedure

Suppose that ¥ is a set of quantifier-free Montague literals that determines
existentials, contains no positive intersection literals, and such that every
appearance of any constant symbol c in ¥ is contained in a class expression
of the form (IS c¢). This section gives a proof that £ i/ F if and only if ¥ is
satisfiable, thus proving the polynomial time decidability theorem stated in
the previous section. If £ H F then the soundness of the individual inference
rules guarantees that ¥ is unsatisfiable. If & # F the proof is more difficult.
In this case we must construct a model of X.

Assume that £ K/ F. As in most formal completeness proofs, we will con-
struct a formal model of ¥ where the elements of the domain are constructed
from the class expressions that appear in X. The definition of the semantic
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domain of the model involves two complications. First, we must construct
equivalence classes of class expressions. If$ H s = t,and ¥ H Ds, then s and
t must denote the same singleton set. In this case the single object in the set
denoted by s is (essentially) the equivalence class of all class expressions that
are provably equal to s. The second complication involves the need for both
“minimal” and “maximal” elements of every class. If 3 H (R (some s)) Ct
then we must guarantee that s contains a maximal element d such that (R
d) is a “large” set, and in particular, that (R d) includes something not in
the set denoted by t. Let |s| be the equivalence class of the class expression
8. We use the notation "some-|s|" to denoted the pair of the token “some”
and the class |s|. The pair "some-|s|" will be the desired maximal element of
the class denoted by s. If & K ¢ C (R (every s)) then we must guarantee
that s contains some minimal element d such that (R d) is a small set, and
in particular, that the set denoted by ¢ contains something not in (R d). By
analogy with maximal elements, we use the notation "every-|s|" to denote
the formal object that will be the minimal element of the set denoted by s.

We say that a class expression s is a domain ezpression if it is either the
special class THING or appears in £ and ¥ H 3s. If s is a domain expres-
sion then we use the notation |s| to denote the set of all domain expressions
¢t such that ¥ H s = t. Inference rules 6 and 11 guarantee that the sets
of the form |s| form a partition of the domain expressions into equivalence
classes. The semantic domain D of our model will consist of the maximal ele-
ments "every-|s|" where s is a domain expression and the minimal elements
"some-|s|" where s is a domain expression such that ¥ A Ds. Inference rule
11 guarantees that if ©* H Ds and & H s = ¢ then ¥ H Dt. This implies
that the choice of whether or not to include the domain element "some-|s|"
in the semantic domain is independent of the choice of the representative s
of the class |s|.

Given this semantic domain D, we must define an interpretation for the
class tokens and relation symbols in ¥ such that each literal of ¥ is satisfied.
The model we construct will satisfy a certain denotation invariant — the set
denoted by a class expression s that appears in X will consist of all domain
elements "some-|¢|" and "every-|¢|" such that & H ¢ C s. We define the
interpretation of constant symbols, class tokens, and relation symbols using
this desired domain invariant as a guide. We use the notation "Q-|s|" to
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mean either the object "some-|s|" or the object "every-|s|". The denotation
of a class token C is defined to be the set of all domain members of the form
"Q-|s|" such that £ H s C C. This definition immediately guarantees the
denotation invariant for class tokens. Inference rule 2, together with the
definition of the denotation of class tokens, guarantees that the special class
token THING denotes the entire semantic domain D.

We define the denotation of a constant symbol c that appears in ¥ to be
the domain member "every-|(IS c)|". The simplifying assumptions given
above guarantee that the class expression (IS ¢) appears in ¥ and inference
rule 7 guarantees that this class expression is a domain expression. Inference
rules 7, 8, 11 and 13 guarantee that the denotation invariant holds for classes
of the form (IS ¢) where c is a constant symbol. We interpret each constant

symbol that does not appear in ¥ as an arbitrary element of the semantic
domain.

We will now define the interpretation of relation symbols other than IS.
(The relation IS always denotes the identity relation.) For any domain el-
ement "Q-|s|" we must define the set (R "Q-|s|"). Intuitively, the set (R
"@-|s|"), where Q is either some or every, should be the set of domain mem-
bers "Q'-|t|" such that & H ¢ C (R (Q s)). This intuitive definition fajls
because the class expression (R (Q 3)) need not appear in £. To remedy
this situation we define a new relation Ho.

o We writeX Fo t C (R (some s)) if any one of the following conditions
hold:

— There is someexpression (R (some w)) in X such that & H w Cs
and ¥ H ¢t C (R (some w))

— There is some expression (R (every w)) in ¥ such that & H sMw
and ¥ Ht C (R (every w)).

o We write £ o ¢ C (R (every 3)) if any one of the following condi-
tions hold:

— There is some expression (R (every w)) in X such that & H s C
wand ¥ HtC (R (every w))
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— There is some expression (R (some w)) in X such that & H Dw,
YHw=sand T HtC (R (some w))

One can check that if ¥ H ¢t C (R (Q 8)) then & to t C (R (Q s)).
Conversely, if (R (Q s)) appears in £, and & Fo ¢ C (R (Q 38)) then
X HtC (R (Q 3)). The difference between the two relations is restricted
to expressions of the form (R (Q s)) that do not appear in ¥. The reader
can also check that if  H 3sand ¥ to ¢t C (R (every s)) then & to ¢t C
(R (some s)).

We now define the set (R "Q-|s|") to be the set of all domain elements
"some-|t|" and "every-|¢|" such that ¥ Fo ¢ C (R (Q s)). We must check
that this definition is well formed, i.e., that the definition is independent of
the choice of s and ¢ used as the representatives of the equivalence classes |s|
and [t|. Fortunately, the transitivity of the subset relation guarantees that
if t' is equivalent to ¢ and ' is equivalent to s then & o #' C (R (Q s))if
and only if ¥ Fo t C (R (Q s)).

This completes the definition of a first order structure — we have defined
a semantic domain and assigned an appropriate meaning to all constant
symbols, class tokens, and relation tokens. We will now prove that every
class expression that appears in ¥ satisfies the desired denotation invariant.

Class Denotation Lemma: For any class expression s that ap-
pears in X, the denotation of s equals the set of domain elements
"Q-|t|" such that ¥ H ¢ C s.

We prove this lemma by induction on the structure of class expressions.
Every class expression appearing in ¥ is either a class token, an expression of
the form (IS c) for some constant symbol ¢, or an expression of the form (R
(Q 3)) for some relation token R (including equality), specifier Q, and class
expression s. We have already argued that the denotation invariant holds for
class tokens and class expressions of the form (IS ¢) for constant symbols c.
Now we assume that s satisfies the denotation invariant and consider an ex-
pression in X of the form (R (Q s)). It now suffices to show that (R (Q s))
satisfies the denotation invariant, i.e., the set denoted by (R (@ s)) is the
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set of domain elements "Q'~[t|" such that & H ¢t C (R (Q 3)). There are
now four cases depending on whether R is the special relation IS and on
whether the specifier Q is some or every.

Case 1: Ris IS and Q is some. We must show that "Q'-[t|" is in the set
denoted by (IS (some s)) if and only if ¥ H ¢t C (IS (some s)). The
semantics of IS and some imply that the set denoted by (IS (some 3)) is
the same as set denoted by s. Inference rule 17 guarantees that ¥ H t C
(IS (some s)) if and only if & H ¢ C s. So it suffices to show that * - [¢]"
is in the set denoted by s if and only if & H ¢ C s. But this is precisely the
statement of the denotation invariant for s which we have assumed.

Case 2: Ris IS and Q is every. We must show that "Q'-|t|" is in the
set denoted by (IS (every s)) if and only if ¥ H t C (IS (every s)).
First, suppose that ¥ H 3s and & K Ds. This case is similar to case
1 above —the denotation invariant for 8, together with inference rule 13,
imply that the set denoted by s contains the single element "every-|s|" so
the set denoted by (IS (every s)) equals the set denoted by s. Inference
rule 15 guarantees that £ H ¢ C (IS (every s)) ifand only if & H ¢ Cs.
The denotation invariant for (IS (every s)) now follows directly from the
denotation invariant for s.

Now suppose that £ H 3s but & W Ds. In this case the denotation
invariant for s implies that s contains (at least) the two elements "every-|s|"
and "some-|s|". Thus the class (IS (every s)) denotes the empty set. It
now suffices to show that there is no domain class t such that ¥ H ¢t C
(Is (every 8)). If L H ¢ C (IS (every s)) then inference rules 10 and
16 guarantee that ¥ H Ds, contradicting the assumptions of this case.

Finally, suppose that ¥ A 3s. Since T determines existentials, we must
have ¥ H —=3s. In this case the denotation invariant ensures that s denotes
the empty set — if "Q’-|t|" were in the class denoted by s then ¢ must be a
domain expression and so ¥ H 3¢ and the denotation invariant for s implies
L H t C ss0 by inference rule 10 we have © H 3s. But if s denotes the empty
set then the class (IS (every s)) denotes the entire semantic domain. To
show that the denotation invariant holds for (IS (every s)) we must show
that ¥ H ¢ C (IS (every s)) for an arbitrary domain class ¢. This last
statement is guaranteed by inference rules 2 and 18,
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Case 3: R is a relation token and Q is some. First, suppose that "Q'-|t|"
is in the set denoted by (R (some s)). We must show that ¥ H t C
(R (some s)). In this case there must be some element "Q"-|s'|" in the
set denoted by s such that (R "Q"-|s'|") contains "Q'-|t|". By the induc-
tion hypothesis we must have £ H s’ C s. By the definition of the meaning
of R, we must have £ to ¢ C (R (Q” s')). Since s’ is a domain class we must
have £ H 3s’. As noted above, the definition of o implies that if ¥ H 3¢’
and ¥ o ¢t C (R (every s')) then & o ¢ C (R (some s’)). Thus we must
have ¥ to ¢ C (R (some s')) (it is possible that ¥ o ¢ C (R (some s'))
even if "some-|s'|" is not a domain member.) By the definition of of Fo
there must exist some expression (R (Q" w)) that appears in ¥ such that
Y HtC (R (Q"w)) and such that (R (Q" w)) satisfies one of the
two ways of establishing ¥ to ¢ C (R (some s')). Let (R (Q@" w)) be
an expression that satisfies one of these two cases. We leave it to the
reader to verify that in each case the expression (R (Q" w)) ensures that
Yo tC (R (some s)) and thus that & K # C (R (some 3)).

Now suppose that ¥ H ¢t C (R (some s)) for some domain class ¢t and
consider a domain element of the form "Q-|t|". We must show that "Q-|t"
is a member of the set denoted by (R (some s8)). Since t is a domain class
we have ¥ H 3t. Inference rules 9 and 10 now guarantee that ¥ H 3Js.
Now suppose that ¥ H Ds. In that case the definition of o ensures that
Y Fo t C (R (every s)). Since s satisfies the denotation invariant, and
¥ H s, the element "every-|s|" must be in the class denoted by s. Fi-
nally, since £ Fo ¢ C (R (every s)), we have that the set (R "every-|s|")
contains "Q-[t|" and thus "Q-|t|" is in the set denoted by (R (some s)).
Now suppose that & K/ Ds. In this case the fact that Y H 3s and the
denotation invariant for s guarantee that the set denoted by s includes the
element "some-|s|". But the fact that £ H ¢ € (R (some s)) immediately
implies that "Q-|¢|" is in the set (R "some-|s|") and thus "Q-|¢|" is in the
set denoted by (R (some s)).

Case 4: Ris a relation token and Q is every. We must show that "Q’-|t|" is
in the set denoted by (R (every t)) if and only if £ H ¢ C (R (every t)).
Y I 3s the proof is identical to the last part of the proof of case 2. Suppose
¥ H 3s. In this case the denotation invariant guarantees that the set denoted
by s contains the element "every-|s|". Now if "Q’-|t|" is in the set denoted
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by (R (every s)), then "Q’-|t|" must be in the set (R "every-|s|"). But
this implies that £ o ¢t C (R (every s)) and since (R (every s)) appears
in ¥, this implies that ¥ H ¢ C (R (every s)).

Now suppose X H ¢t C (R (every s)). To show that "Q'-|t]" is a
member of the set denoted by (R (every s)) let "Q"-|s'|" be an arbitrary
member of the set denoted by s. We must show that "Q’ -|t|" is a member of
the set (R "Q”~|s|"). The denotation invariant for s implies that ¥ H s’ C
8. But in this case the definition of Fo guarantees that ¥ o ¢ C R Q" s"))
and thus "Q’-[¢|" is in the set (R "Q"~|s'|") as desired.

We now conclude our proof of the noun phrase subsumption inference
procedure’s completeness, by showing that the model defined above satisfies
every literal ¢ in X. ¢ must be of the form s C ¢, —(s Ct), 3s, or ~(sNt)
(formulas of the form —3s are a special case of negative intersection formu-
las and we have assumed that ¥ does not contain any positive intersection
formulas other than formulas of the form 3s). First, consider a literal in X
of the form s C t. The denotation invariant (and the transitivity inference
rule) implies that the class denoted by s must be a subset of the class de-
noted by ¢. Now consider a formula in ¥ of the form —(s C t). Inference rule
12 guarantees that £ H 3s. Thus the semantic domain includes the ob ject
"every-|s|". But since & K F, we must have % s C t. Thus by the class
denotation invariant, "every-|s|" must be a member of the set denoted by
s that is not a member of the set denoted by ¢, and thus the formula s C ¢
must be false in the defined model. Now consider a formula jn X of the form
Js. The class denotation invariant, and definition of the semantic domain
immediately imply that the set denoted by s includes the object "every-|s|"
and thus the formula 3s is true in the defined model. Finally, consider a
formula in ¥ of the form —(s Mt). Suppose this formula were false in the
defined model, i.e., there exists a domain element that is in both the set
denoted by s and the set denoted by t. Let "Q-|w|" be a domain element
that is in both s and t. The definition of the semantic domain implies that
¥ H Jw. The denotation invariant for s and ¢ implies that £ H w C s and
¥ H w Ct. But the definition of the relation H implies that in this case we
have £ H sMt and hence & H F which we have assumed is not so.

We have now proven that the model we defined is indeed a model of T,
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and therefore that ¥ is satisfiable anytime the noun subsumption inference
procedure detects no contradiction in X.

7 NP Completeness of the General Case

Now consider a set ¥ of quantifier-free Montague literals that does not deter-
mine existentials. The results of the preceding section show that the problem
of determining the satisfiability of ¥ is in NP — one can verify that ¥ is sat-
isfiable by first guessing which existential statements are true in some model
and then using the noun phrase subsumption procedure to verify that the
guessed existential statements do have a model. We now show that deter-

mining the satisfiability of a set ¥ that does not determine existentials js
NP-hard.

The proof of NP-hardness is by reduction of a special case of monotone 3-
SAT. More specifically, we start with a set of propositional clauses where each
clause either contains three negative literals or two positive literals. We leave
it to the reader to verify that satisfiability of an arbitrary 3SAT problem can
be reduced to satisfiability of this special case. For each proposition symbol
P in our restricted 3SAT problem we introduce a class token P’ and we
reduce the set of clauses to a set ¥ of Montague literals as follows:

For each clause of the form PV Q we add the literal (R (every P')) C
(G (some Q’)) where R and G are new relation tokens. Any model of this
literal must satisfy either 3P’ or 3Q" — if both P’ and Q’ are assigned the
empty set then (R (every P’)) denotes the unversal set, which must be
non-empty, while (G (some Q’)) denotes the empty set. Conversely, for any
interpretation of the classes P’ and Q' as sets, if at least one of the two sets is
non-empty then one can ensure that the above literal is satisfied by making
R the empty relation and G the universal relation.

Now for any class tokens s, ¢t and w we define [Is — (t C w)] to be the two
literals ¢t C (H (every 3)) and (H (some s)) C w, where H is a new relation
token specific to this constraint. Any model of these literals must satisfy the
constraint that if s denotes a non-empty class then the class denoted by ¢
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must be a subset of the class denoted by s. Conversely, for any assignment of
sets to the classes s, t, and w satisfying the desired constraint, there exists an
interpretation of H satisfying the above literals — if s is assigned the empty
class then the above literals are satisfied by any interpretation of H; if s is
non-empty then ¢ must be a subset of w and the above literals are satisfied
by interpreting H as the relation that maps every domain element to the set
w.

Finally, for any clause of the form PV —QV -U we add the literals that
constitute the constraints

[3P' - (s Cwy)]

[3Q" - (w1 Cw,)]
[0’ — (w; C )]
ﬁ(s g t)

where 3, ¢, w;, and w, are new class tokens specific to this clause. Any model
of the above formulas must assign one of the classes P’, Q’, or R’ the empty
set. Conversely, for any interpretation of P’ » @, and R’ as sets at least one
of which is empty, there exist interpretations of s, ¢, wy, and w; as sets that
satisfy the above constraints.

We leave it to the reader to verify that the set of literals generated by this
reduction is satisfiable if and only if the original restricted 3SAT problem is
satisfiable.

8 Open Technical Problems

We have not yet investigated generalizing Montague syntax to three place
and higher arity relations. In Montague syntax, a three place relation would
be viewed as an operator that takes two arguments and returns a set. The
English verb “give” can be viewed as denoting a three place relation and
one could extend Montague syntax to allow the verb phrase class expres-
sion (gave (a man) (a book)) and the formula (John (gave (a man) (a
book))). The meaning of the class expression (gave (some s) (every t))
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would be the union over d in the meaning of s of the intersection over &’ in
the meaning of ¢ of the set (gave d d'). This definition preserves the left
to right order of the quantifiers so that the sentence (John (gave (some
man) (every book))) has the expected meaning. Preserving the order of
the quantifiers also seems to assign the preferred meaning to the sentence
(John (gave (every man) (a book))). In any case, we do not require
that the meaning of the formal expressions of Montague syntax always agree
with the meaning of the corresponding English expressions. Consider a set
2 of literals in Montague syntax extended to allow for three place relations
such that ¥ determines existentials. Does there exist a polynomial time de-
cision procedure for determining the satisfiability of £? It seems likely that
if we restrict the language to three place relations, or relations of any fixed
arity, then the noun phrase subsumption procedure can be modified to yield
a polynomial time decision procedure. However, the case of unbounded arity
seems less clear. In classical syntax operators of more than two arguments
can always be replaced by operators of two arguments and an additional
pairing function for forming tuples. Unfortunately, this transformation does
not seem to apply to Montague syntax. Let pair be a three place relation
that takes two arguments z and y and returns a set containing the single
element which is the pair of z and y. In Montague syntax the expression

(pair (every s) (every t)) would denote the empty set whenever s or ¢
denotes a set of more than one member.

Another open technical question involves the introduction of function
symbols. Our previous work on taxonomic syntax [McAllester et al., 1989]
shows that the satisfiability problem for quantifier-free taxonomic literals re-
mains polynomial time decidable in the presence of function symbols. It
seems likely that this result would carry over to Montague literals that de-
termine existentials and have bounded arity. We have not yet investigated
the addition of function symbols.

9 Summary

We have presented an inference algorithm for noun phrase subsumption that
gives a polynomial time decision procedure for the satisfiability of a set of
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Montague literals that determines existentials. This shows that, although
Montague literals are quite expressive, they retain much of the computa-
tional tractability of the literals of classical predicate calculus with equality.
Furthermore, since the noun phrase subsumption procedure is based on the
restricted application of inference rules, this procedure can be applied to an
arbitrary set of formulas. In [McAllester et al., 1989] we argue that a similar
procedure for taxonomic syntax can be used to reduce the amount of detail
that need be provided by a human user in the machine verification of math-
ematical theorems. A similar argument can be made for the noun phrase
subsumption procedure.

The pragmatic value of the noun phrase subsumption procedure remains
an open empirical question: further experimentation is needed to determine
if noun phrase subsumption really does improve the performance of auto-
mated reasoning systems. In the near future we do not expect to have a
definitive answer to the question of the utility of noun phrase subsumption.
A powerful argument for the utility of noun phrase subsumption might be
that, at some future time, all competitive high-performance mathematical
verification systems rely on the procedure.

If noun phrase subsumption is useful, this utility may provide a func-
tional explanation for the syntactic structure of English noun phrases. The
inference rules that define the noun phrase subsumption procedure are stated
directly in terms of Montague syntax. Defining the same procedure in terms
of classical syntax seems to require the implicit translation of classical for-
mulas into Montague syntax equivalents. Even if the procedure were defined
on classical syntax, it seems that the efficiency of the procedure could be
greatly improved by translating the classical syntax into Montague syntax
and running the inferences directly on Montague syntax. In short, Mon-
tague syntax seems to be needed for the effective use of the noun phrase
subsumption procedure. If the noun phrase subsumption procedure is prag-
matically important, then the syntactic structure of English noun phrases
has a functional motivation.
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