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Abstract: Representing the world in terms of visible surfaces and the freespace
existing between these surfaces and the viewer is an important problem in robotics.
For example, such a representation can be used to plan mobile robot navigation
routes or manipulator paths for pick-and-place operations. Recently, researchers
have proposed using the 3-D Delaunay Tessellation for representing 3-D stereo vi-
sion data and the freespace determined therefrom. We discuss problems with using
the 3-D Delaunay Tessellation as the basis of the representation and propose an
alternative representation that we are currently investigating. This new representa-
tion is appropriate for planning mobile robot navigation and promises to be robust
when using stereo data that has errors and uncertainty.
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1 Introduction

Representing the world in terms of visible surfaces and the freespace existing
between these surfaces and the viewer is an important problem in robotics. For
example, such a representation can be used to plan mobile robot navigation
routes or manipulator paths for pick-and-place operations. We are mainly
concerned with representing freespace to aid mobile robot navigation and
therefore discuss in this paper some ongoing research on the problem.

Recently, researchers have proposed using the 3-D Delaunay Tessellation
for representing 3-D stereo vision data and the freespace determined therefrom
[Boissonnat, et al. 1988a] [Boissonnat, et al. 1988b] [Le Bras-Mehlman, et al.].
We discuss problems with using the 3-D Delaunay Tessellation as the basis of
the representation if the data is supplied sequentially and the representation
built up incrementally. We propose an alternative representation based on
the 2-D Delaunay Tessellation and 2-D uncertainty grids [Matthies and Elfes]
that we are currently investigating. This new scheme promises to avoid the
problems identified in the 3-D Delaunay-based scheme.

2 The 3-D Delaunay Method

[Boissonnat| has used the 3-D Delaunay tessellation as a volume-based rep-
resentation for three-dimensional objects. This work has been extended by
using the tetrahedra resulting from the 3-D Delaunay tessellation to repre-
sent freespace in a scene processed by a stereo vision algorithm [Boissonnat,
et al. 1988a) [Boissonnat, et al. 1988b] [Le Bras-Mehlman, et al.]. In their
approach, Boissonnat et al. first run a stereo algorithm on a pair of images to
obtain a set of 3-D line segments. The space viewed by the cameras is then
tessellated into tetrahedra with a 3-D Delaunay algorithm, ensuring that the
stereo segments are included as edges of the tetrahedra. Freespace tetrahedra
are identified by considering the line (actually planar patch) of sight between
the viewer and the stereo segments. Any tetrahedron intersected by one of
these lines of sight is marked as being freespace. (Such a tetrahedron cannot
represent occupied space since a stereo segment is visible through it.) All re-
maining tetrahedra are marked as being non-freespace and are either occupied
or are part of freespace but have no stereo segments visible through them to
allow the tetrahedra to be marked as freespace.
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3 Proposed Method

We propose a different method for determining and representing freespace
from stereo data. First, we triangulate the matched stereo segments in the
image plane without regard to their depth, ensuring that each stereo seg-
ment appears in the triangulation. (The 2-D Delaunay triangulation is used
to minimize the occurrence of thin, elongated triangles.) Triangular planar
patches in three-dimensional space are then derived from the triangles in the
image plane by interpolating the depth between the edges and vertices of the
triangles. These edges and vertices correspond to pieces of matched stereo seg-
ments. All space lying between the 3-D triangular patches and the viewer is
then declared to be freespace. This freespace-labeling step implicitly assumes
a straight-line surface approximation between matched stereo segments. Fol-
lowing the work of [Matthies and Shafer] [Matthies and Elfes] [Moravec and
Elfes] in two dimensions, we divide space into cubes (say, 6 inches on a side)
by imposing a 3-D grid on the space to be represented. The cubes that
correspond to freespace can then be marked in this representation, with the
unmarked cubes representing non-freespace.

4 Comparison with Perfect Data

In comparing the above methods for determining freespace, let us first con-
sider the case where the output of the stereo algorithm is error-free, i.e., that
stereo edges are localized with zero error, that no false matches are returned,
and that every possible match was found. Assume that after a stereo pair
from a view is processed and this information incorporated into the freespace
representation, the cameras are moved (translation and rotation) and a sec-
ond stereo pair is taken. Since the stereo output is error-free, the results of
the second stereo run can be compared with the first and the translation and
rotation can be determined exactly.

4.1 3-D Delaunay

Considering just the stereo results from a single image pair, the 3-D Delaunay
has a problem. Assume that tetrahedron A lies behind edge a. Furthermore,
let b be an edge that lies behind A and does not touch A. Figure 1 shows
the projection of this situation into 2-D. Now, tetrahedron A must be la-
beled as freespace since edge b is visible through it. However, if it is labeled
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as freespace, then edge a is “floating” since it is not connected to any non-
freespace tetrahedron. If we modify this labeling scheme by labeling each
tetrahedron that lies directly behind an edge as non-freespace, then tetrahe-
dron A will be labeled as non-freespace because of edge a, but will occlude
edge b. Since the 3-D Delaunay tessellation does not use any information
about the configuration of the stereo edges in the images when finding the
3-D tetrahedra, this freespace/non-freespace contradiction can potentially oc-
cur for any pair of edges. Also, since the 3-D Delaunay tessellation for a given
set of edges is unique, we cannot retessellate to obtain a different set of tetra-
hedra that avoid this contradiction. Thus, we are left with an edge which has
no non-freespace to justify its existence. To avoid this problem, [Boissonnat,
et al. 1988a] suggest only marking as freespace those tetrahedra that have a
number of lines of sight passing through them.

v -

e

Figure 1. Tetrahedron A behind edge a and in front of edge b. (Projected
into 2-D.)
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Now consider the stereo edges obtained from the second pair of images. This
stereo information is to be added to the representation already built from
the first pair. After determining the correspondences between edges that
are visible from both views, the new edges in the second view are added
to the original set of edges and the tessellation is updated. Some of the
original tetrahedra will be eliminated and others will appear in their places.
To determine the freespace status of these new tetrahedra, the line of sight
method is again employed. However, this time we must perform the line of
sight test from both of the viewpoints used to obtain the edges. Furthermore,
we must perform this test from each viewpoint only considering the edges
that were visible from that viewpoint. Thus, we must label each edge with
the viewpoint(s) from which it is visible to allow this selective processing.
Furthermore, these labels must be kept until we no longer intend to update
the freespace representation.

4.2 Proposed Method

Now consider the method we have proposed for determining and representing
freespace when presented with perfect data. For the first viewpoint, we mark
as freespace each cube that lies between the viewer and the 3-D triangles.
The occlusion contradiction of the 3-D Delaunay method cannot occur since
the relationships between the edges in the image were considered when the
2-D triangulation was performed. After obtaining the set of matched stereo
edges from the second viewpoint, we again triangulate in the image plane.
Triangles that are formed from edges common to both viewpoints will be
the same. However, there will be some edges in the second pair of images
that were not visible in the first pair. If an edge from the second viewpoint
falls outside the field of view from the first viewpoint, then the freespace
resulting from the triangles generated by that edge is marked as before. If
a new edge from the second viewpoint falls within the field of view of the
first viewpoint (Figure 2.a), then it will either fall within an area previously
marked as freespace (edge a in Figure 2.a) or in an area that is non-freespace
(edge b in Figure 2.a). If the edge falls in a freespace area, then the triangles
associated with it bound a region of freespace. We simply adjust the cubes
within this region to be marked as non-freespace (Figure 2.b). Similarly, if
the edge falls in a non-freespace area, we mark the cubes within the region
bounded by the edge’s triangles as freespace (Figure 2.b).
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Figure 2. a. Edge a falls within an area previously marked as freespace
(shaded area) while edge b falls within a non-freespace region. (Projected
into 2-D.) b. The freespace/non-freespace regions due to edges a and b
have been adjusted. (Projected into 2-D.)

5 Comparison with Missing and Extraneous Edges

Because no stereo vision algorithm (or any other sensing scheme) is perfect,
we now consider the case where the stereo output may return extraneous edges
or may not return some edges that were visible and could have been matched
correctly. For edges that were matched correctly, we assume that the edges
were localized without error.

5.1 3-D Delaunay

Since edges are never retracted from the 3-D Delaunay tessellation, an edge
that is missing from a stereo pair in a sequence of views presents no problem
since its occurrence in one of the views is enough to ensure its inclusion in the
tessellation. However, since there is no mechanism for retracting an edge from
the tessellation, the case of an extraneous edge is much more serious. An ex-
traneous edge (and its associated tetrahedra) will be added to the tessellation
when it is seen. Tetrahedra in the tessellation will be marked as freespace
based on this edge, and since this edge will remain in the tessellation, it will
continue to cause tetrahedra to be erroneously marked as freespace. A sec-
ondary problem is that space will be tessellated about such an extraneous
edge and the tessellation in this area will never be retracted.
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5.2 Proposed Method

A slight modification to our proposed scheme for representing freespace will
allow us to handle the cases of missing and extraneous edges. Rather than
simply marking a cube as freespace, we mark it with a value representing our
confidence that it represents freespace. Each time we have a view that declares
a cube to be freespace, we update its confidence with a running average that
takes into account its previous marking. A cube that had previously been
marked as freespace has its confidence level reinforced (raised) each time a
different view marks it as freespace. Thus, the effect of any one view declaring
a cube to be a part of freespace will be tempered with the decisions regarding
that cube from previous views.

We still need a way to decrease the confidence that a cube is a part
of freespace or, equivalently, to increase the confidence that it is a part of
non-freespace. We cannot simply mark all cubes behind a triangle as being
part of non-freespace since this area has infinite extent. All we can presume
is that locally the space at a triangle is non-freespace. So, when we find a
surface triangle, we label the cubes through which it passes as non-freespace,
again with a confidence factor. If a freespace cube is labeled as freespace by a
new stereo pair, its freespace confidence is reinforced. If it is instead labeled
as non-freespace, then its freespace confidence is reduced. The obvious dual
applies to non-freespace cubes. Also, based on the confidence levels, a cube can
change from being labeled as a freespace cube to being a non-freespace cube,
or vice-versa. [Moravec and Elfes] describe such an grid-update algorithm for
two-dimensional maps derived from sonar data. [Stewart] describes a three-
dimensional grid-based system to combine multisensor data for an underwater
environment.

One problem remains. Suppose that a new edge is seen that was missed
in previous stereo pairs and that the space around this edge has already
been labeled as freespace. The cubes around the edge’s triangles will now
get marked as non-freespace and eventually (after enough views of this edge)
their confidences will indicate that the cubes are non-freespace instead of
freespace. What happens to the cubes that are behind the triangle and that
have now been “fenced in” by the triangle and other surrounding surfaces?
The answer is nothing. As long as the surfaces that are bounding these cubes
are perceived, the confidences of these cubes cannot be updated one way or the
other. This does not matter since, as they are surrounded by surfaces, they
are implicitly non-freespace, i.e., there is no way for a mobile robot to get to
them. If one of the real-world surfaces that bound this area is removed or one
of the surfaces is no longer perceived (because it was previously matched in
error), then the non-freespace confidence of the surface in the representation
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will be reduced and will eventually become a freespace confidence. Also, if
one of the bounding surfaces is not perceived, then the freespace confidences
associated with this bounded area will be averaged in with the current labeling
of the bounded area as freespace.

[Matthies and Elfes] discuss a Bayesian estimation method for labeling
the confidences of the occupancy grid squares that models the sensor uncer-
tainty. We are experimenting with a simpler method which does not explicitly
model the sensor uncertainty, but instead depends on a large number of data
samples to develop the position estimates. For the implementation of this
confidence idea, we suggest freespace confidences in the range [—1,0) and
non-freespace confidences in the range (0,1]. Zero represents areas where we
have no information (or where the opposing confidences have exactly canceled
each other). Each cube is associated with a confidence and also with a count
of how many times this confidence has been updated. This count is used to
weight the confidence resulting from the current view when combining it with
the stored confidence. The current update rule for keeping a running average
of the confidences is

a2,
Tk+1 = m : 2
=1
k
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= v
krl f T g1 e
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_ oz _ 3 1
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where
Zk+1 1s the new cumulative confidence for the cube
Z 1s the previous cumulative confidence for the cube
z; 1s the confidence for the cube determined from view i
and

k is the update count.

(It should be obvious that if the current view makes no assignment of confi-
dence to a cube, then neither its cumulative confidence not its update count
is updated.) Other factors can be substituted for the 1/(k + 1) in equation
(1) to adjust the relative importance of the current freespace marking and the
cumulative marking. Other update rules are under consideration.

Note that with the confidence updating scheme, we do not change the
freespace /non-freespace designation of cubes based on where a new edge falls,
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as we did above in the section about the use of this method with perfect
data. Since we are not guaranteed that a new edge is indeed a true edge, we
do not want to change the freespace designation of a cube absolutely based
on a single observation of an edge, but rather, we want to take into account
previous observations when we detect a new edge.

6 Comparison with Uncertainty of Position

Finally, let us consider the case that we have when dealing with input from a
stereo algorithm applied to real images. In addition to extraneous and miss-
ing edges, the locations of the edges are not known with absolute certainty,
but instead the locations are known within some uncertainty bound. Thus,
although a set of edges may be visible in two different views of a scene, no
registration of the two views will cause these common edges to exactly co-
incide. We can derive an estimate of the rotation and translation between
camera positions, but this will be a best-fit transformation under which most
of the corresponding edges will not coincide.

6.1 3-D Delaunay

Since two different views of an edge will not coincide, each edge will be added
separately to the tessellation. We will begin to add long, thin tetrahedra
that will occur between these different instantiations of the same edge. Since
edges are never removed in this (3-D Delaunay) scheme, the location of the
freespace /non-freespace boundary will shift farther away from its true location
with each additional view. Instead of refining the shape of freespace with
additional stereo information, we will distort it. Also, with many perceived
edges appearing near the location of a true edge, the freespace/non-freespace
contradiction discussed in Section 4.1 will occur frequently.

6.2 Proposed Method

There are at least three solutions to the uncertainty problem in our proposed
method. Testing will show which works well enough for building representa-
tions for navigational purposes.

The first solution is to proceed as described above for dealing with missing
and extraneous edges. Over many views of a scene, the location of an edge will
tend to average out to its true location. This implicitly depends on the law
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of large numbers, but we will probably be dealing with a small set of images
of any particular scene. Still, we probably do not need to know the location
of edges and surfaces very exactly. The transformation of viewpoint will be
determined by a best-fit criterion for matching the edges between views (4 la

RAF [Grimson and Lozano-Pérez]).

The second solution is to attach a “radius of certainty” to each edge
based on its distance from the viewer [Durrant-Whyte]. The farther away an
edge is, the larger the radius due to the lower certainty of its true location.
When averaging the non-freespace confidence values for a triangle with the
cubes that it intersects, we spread the triangle out to intersect a section of
cubes, with the width of the spread interpolated from the radii of uncertainty
for the triangle edges. The non-freespace certainties inside the area defined
by a radius of uncertainty can be decreased with distance from the locus of
the non-freespace area, but this is probably more complex than the problem
warrants. Edge correspondence and determination of the translation and
rotation between views would take this radius and the certainty associated
with it into account.

The third solution is like the second, but instead of using a radius of
uncertainty which models the uncertainty in the location of a point as a sphere
around that point, we use an ellipsoid of uncertainty. The ellipsoid reflects the
fact that the uncertainty in depth is different from the angular uncertainty
when considering the vector from the viewer to a point. [Matthies and Shafer]
have modeled the uncertainty of the location of an edge with a 3-D Gaussian
when updating the position of a mobile robot from successive views of a scene.
They report improved robot localization when using this ellipsoidal model
instead of a spherical model. For the scheme described above, however, using
a constant-density ellipsoid instead of a 3-D Gaussian may be sufficient since
we are not trying to build a highly accurate map of the world. Instead, we
want a map of the area immediately around the robot to allow us to do simple
obstacle avoidance and path planning in that area. If we will be in an area
long enough to need a better freespace representation, then we will depend on
the locations of the perceived world features to average over time to a good
estimate of the actual locations.

7 Conclusions

The method of Boissonnat et al. for representing freespace for navigational
planning using the 3-D Delaunay tessellation has been examined. Deficiencies
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have been identified regarding the marking of tetrahedra in the tessellation
as freespace or non-freespace and regarding the difficulty in removing edges
from the tessellation. No method readily presents itself for handling extra-
neous stereo features or features with positional uncertainty. These problems
occur when the data is presented incrementally and the representation built
up over time and when there are errors in the data. An alternative method for
representing freespace has been proposed which overcomes the deficiencies in
the 3-D Delaunay approach. This new method avoids the freespace labeling
contradiction that the 3-D Delaunay approach encounters. It also deals effec-
tively with stereo data that may be in error. Finally, it handles the practical
problem of the uncertainty of position of matched stereo features.

The foregoing discussion assumes that one wants a three-dimensional
model of the world for navigational planning. However, a two dimensional
model may be sufficient if the only goal is to plan collision-free paths. (The
ideas presented above extend to 2-D by projecting the stereo features to the
ground plane and tessellating in that plane.) A three-dimensional model will
be more important if this representation is to be used for tasks other than
path planning, such as search or world location recognition.
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