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1 Introduction

Much of the current research in navigation planning and world modeling for
mobile robots concerns mission-level autonomy, i.e., autonomous operation
over a limited time frame for the accomplishment of a specific goal. We, how-
ever, are interested in the problems of long-term autonomy, i.e., autonomous
operation of a mobile robot over a period of days, weeks, or months for the
continued achievement of a set of goals. For example, there are plans to build
a mobile robot that will “live” in our laboratory, continually collecting empty
soda cans and returning them to a central repository [Connell].

To achieve navigation over a long lifetime, a mobile robot needs a memory
of the world, i.e., a map or “world model.” For true autonomy, the robot must
be able to navigate in places of which it has no previous knowledge. Thus, we
want the robot to build its world model instead of having it supplied a priori.
Unfortunately, due to the problem of cumulative error, exact metrical models
of the world cannot be used [Brooks 1985]. The most promising alternative is
a topological map that contains world locations and information about how
they are connected [Kuipers] [Chatila and Laumond]. However, due to errors
and uncertainty in odometry, we cannot follow such a map exactly. Thus, we
need the ability to recognize the locations contained in such a map.

The first part of the problem we are considering, then, is how to build
models of world locations and use them for recognition. The problem becomes
more difficult when we realize that the world changes over time. Also, our
sensory input is imperfect. Therefore, the second part of the problem is to
maintain these models over time as the world changes and as we receive
new sensory data which is noisy. Thus, the problem we are addressing is to
build, use, and maintain models of world locations for recognition to support
navigation.

To explore this problem, we are using stereo vision as the sensory input
and the 9th floor area in our laboratory as the world. Stereo vision was chosen
for sensing because of the spatial resolution of its results. Although sonar is
a popular choice for a mobile robot sensor, its poor angular resolution makes
it an inappropriate choice for solving the recognition problem. (However,
we note that [Drumbheller] has used sonar to localize a mobile robot in a
known location given an a priori model of that location.) The 9th floor of
our laboratory was chosen as the test world because we wish to address the
problems of indoor navigation in a standard office-type environment.

The problem stated above is difficult for four reasons:

1. Any sensory input is noisy. There will be both errors of omission and
commission, i.e., blind spots and hallucinations.
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2. The data is sparse. From the Marr-Poggio-Grimson stereo algorithm that
we are using, depth information is only available at intensity edges in the
images.

3. The world changes over time. Although major features of the world tend
to remain stable, the room we are in today does not look exactly as it
did yesterday.

4. The robot will have a long lifetime. The system must be sufficiently
robust to run for days, weeks, or months without human intervention.

The task, then, is to build a recognition system for world locations. This
system as implemented incorporates several pieces: stereo vision, recognition,
model building, and model maintenance. Stereo vision is fairly well under-
stood. Progress is being made in the field of recognition. Model building
for recognition is fairly new—most recognition systems depend on a prior:
models. We believe that model maintenance is a new area of research for
recognition.

To recognize a location (for our testing, one of several connected rooms
on the 9th floor of our lab), we first take a series of stereo pair images from
a single position in the current room. The stereo vision module (Section 2)
then finds salient features of the room and abstracts them into the representa-
tion which will be used for recognition (Section 3). Recognition is performed
(Section 4) by comparing this representation to room models which were built
by the system from similar stereo data obtained previously (Section 5). The
results of this recognition are used to update the existing model to reflect the
current state of the room and the importance of the features to the recogni-
tion (Section 6). This recognition system fits into a larger, planned modeling
system (Section 7). Preliminary results of this research are given in the text
and Appendix, with a fuller account of the research forthcoming [Braunegg].

2 World Features from Stereo Vision

Any data used to drive a recognition system must fulfill certain requirements.
The data must be well-localized, i.e., the locations of the perceived data must
have a high enough resolution and correspond closely enough with real-world
features to be useful for recognition. The features that the data represent
must be distinctive, i.e., must well-characterize the object to be recognized.
Finally, the data must be repeatable from different viewing positions. (Many
other requirements could also be mentioned, but the ones listed are among
those that are essential.)
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Stereo vision provides the locations of world features in camera-centered
world coordinates. Since these locations have relatively good spatial resolution
(compared with sonar data, for example), the stereo data is a good candidate
for input to the recognition system. (The error bounds on the stereo data
have been investigated by [Matthies and Shafer].)

We use the Marr-Poggio-Grimson stereo algorithm [Marr and Poggio]
[Grimson 1981] [Grimson 1985] [Braunegg 1989a)] to obtain our stereo data.
This stereo algorithm is based on intensity-edge features in the images. Since
such features usually correspond to physical edges of visible objects, they
characterize the distribution of objects in the visible world. Employing the
heuristic that large objects tend not to move and thus help to identify the
specific areas in which they reside (e.g., doorways, windows, bookcases), we
eliminate short stereo features from the stereo data. Also, since our camera
geometry uses horizontal epipolar lines, the localization of the stereo fea-
tures deteriorates as the features become more horizontal. Thus, we only use
long vertical features to represent the indoor spaces through which we navi-
gate (Figures 1 and 2). (Currently, we fit straight line segments to the data
[Pavlidis] and eliminate those segments that are shorter than 2 feet tall or
have slopes less than 4, i.e., are more than ~ 25° from vertical.)

Figure 1. A pair of stereo images used for obtaining room features for
Room 914.

To get a full view of the room containing the robot, we rotate the robot
through 360°, taking overlapping views of the room [Brooks 1986). The stereo
data from these overlapping views is then “pasted” together for a full represen-
tation of the room. Using the camera geometry, the stereo feature coordinates
are converted into camera-centered world coordinates and the ceiling and floor
features removed. (Using 8.5mm lenses on our Panasonic WVCD-50 cameras,
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Figure 2. Long, vertical stereo features from the stereo pair in Figure 1.

the field of view is roughly 55°. We take a stereo pair every 20° to obtain
sufficient overlap for pasting the data together.)

3 Model/Data Representation

Although it might be tempting to try to create a representation of a room
that looks like an architect’s floorplan, this is not possible. For a recognition
system, the world is not defined as we would like it to be, but instead is
defined by what is observable by the sensors that are being used. Thus, in
our case, the representation must be related to the matched stereo features
obtained from the stereo algorithm.

Other researchers have investigated the use of full 3-D stereo features for
map building [Faugeras, Ayache, and Faverjon] [Braunegg 1989b]. However,
our task is different in that we wish to recognize rooms rather than navigate
through them. To build our room representation for recognition, we project
the vertical room features from the stereo algorithm to the groundplane (Fig-
ure 3). We have found that this 2-D representation sufficiently characterizes
the room for the purpose of recognition. We conjecture that the 2-D repre-
sentation may also suffice for planning some navigation tasks.

The 2-D groundplane representation of the stereo features has the added
benefit of reducing the amount of data that must be handled for each location
to be recognized. We further abstract the data by using it to develop an
occupancy-grid representation of the current room [Moravec and Elfes]. We
impose a grid with 1-foot spacing on the floor of the room and mark each grid
square that has a vertical stereo feature falling in it (Figure 4).
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Figure 3. Groundplane projection of the vertical stereo features from the
full set of stereo pairs for Room 914. The circle shows the camera location
and the tick mark in the circle indicates 0° in the camera-based world
coordinate system.
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Figure 4. Occupancy grid imposed on the groundplane projection of the
vertical stereo features from Figure 3.

The final representation of a room, then, is a set of grid squares that
mark the locations of vertical room features as determined by the stereo al-
gorithm (Figure 5). The locations of these squares are described in terms
of a camera-centered coordinate system. The orientation of this coordinate
system is determined by the orientation of the robot when the first stereo pair
is taken. No attempt is made to align the coordinate system axes with the
walls of the room.
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Figure 5. Grid abstraction used to represent Room 914.
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4 Recognition

We wish to build the models of locations as the robot explores its world
instead of supplying these models a priori. The models will therefore be very
similar to the data that we obtain. For the first recognition example shown
below, the room representation shown in Figure 5 is used as the model. The
representation obtained by the robot from another position and orientation in
the same room serves as the data in the same recognition example (Figure 6).
(The simple model shown here is only the initial model for the room. This
room model is updated with the results from each recognition in which it is
used (see Sections 5 and 6). Examples of the evolving model are shown in the
Appendix.)
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Figure 6. Representation of Room 914 obtained from a different position
and orientation of the robot.

To recognize a data set vs. a model, we use a least-squares algorithm to find
the best fit of model to data and then evaluate that fit. This fitting process
requires a good initial estimate of the transform (2-D translation and rotation)
required to match model and data. To obtain these initial estimates, we find
transforms that align model and data feature clusters.

The feature clusters used to obtain the initial alignments consist of colin-
ear groups of model and data points. Using all possible pairs of model (data)
points to define lines, we find the largest colinear groups of points by selecting
the most frequently occurring lines found through a Hough bucketing scheme
(Figure 7). We then form pairs of the ten most frequently occurring lines and
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keep the pairs that form angles of greater than 20°. For the model and data
line pairs whose angles match within a 10° tolerance, we align the line pairs
and determine a set of model-to-data transformations based on these align-
ments. (Other methods of grouping the points of the representations and
aligning model and data will need to be added for other environments [Jacobs
1987)] [Jacobs 1988], but these linear groups suffice for our indoor scenes.)

NS
% VA

/ H ~

Figure 7. Hough lines for the ten most frequently occurring linear groups
of points for the data of Figure 5.

Ranking the transformations by preferring the ones resulting from angles near-
est to 90°, we use the top ten transformations as initial guesses for a least-
squares model-to-data fit. The least squares minimizes the error between the
locations of the model and data points by varying the translation (z,y) and
rotation 6 of the model. This process is similar to the one described by [Lowe].
However, given an alignment, we find all possible model-data point matches
before performing the least-squares optimization instead of adding the pairs
as we incrementally refine the transformation. Initially we tried the incre-
mental refinement approach, but found that one bad match could affect the
rotation component of the transformation enough to generate a completely
wrong final result. A different incremental approach was taken by [Ayache
and Faugeras] in their recognition system HYPER, which used a Kalman filter
to refine the initial transformation guesses. When we applied this approach
to our point data, however, the same problem of one bad match corrupting
the final solution still occurred.

The quality of the final recognition is determined by the number of model
points that have been matched and the transform variance. The transform
variance is the sample variance as determined by summing the squared dis-
tances between each model point and its closest data point, then dividing by
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the number of model points minus one [Walpole and Myers]. The best recog-
nition obtained from the set of initial guesses is the one that matches the
most model points. If more than one recognition matches this same highest
number of model points, then the one with the lowest transform variance is
chosen (Figure 8).

Figure 8. Final recognition using the model from Figure 5 (shown as solid
dots) and the data from Figure 6 (shown as open squares).

After finding the best match of model to data, we still need to determine if
the match is correct, i.e., if the model and data actually correspond to the
same location. Since we need to compare the recognitions of several models
to a single data set, we base our evaluation of the recognitions on the data so
that the evaluations are comparable. We take as the correct recognition, then,
the model that matches the highest number of data points above a threshold.
Since it is possible that the data does not correspond to a model currently in
our database, the threshold is used so that we can declare no recognition in
cases where the match is poor.

Matching the wrong model to the data (a false positive) is a serious error
since the mobile robot uses this information to verify its location in its world
map. Deciding that the current data does not match one of the models in the
database when the mobile robot is actually in one of the locations represented
by a model (a false negative) is less serious. With no recognition (with respect
to an existing model), the current data is added to the database as a new
room model. Over the lifetime of the robot, we will be able to merge this new
model into the existing model for this room (see Section 7). With 11 data sets
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obtained from one room (Room 914) and 6 data sets from another (Room 913)
we ran a series of recognition tests. Using each data set in turn as data with the
other 16 as models, we ran the recognition algorithm. A recognition threshold
of 70% matched data points yielded 10% false negatives with no false positives.
The two rooms 913 and 914 were explicitly chosen because they have similar
dimensions, thus intentionally making the recognition difficult. Tests against
data from a third room that is a different size yielded no recognition errors. In
all cases, recognitions that were accepted also determined the correct model-
data transformation.

Once a recognition has been established, we have verified our location
with respect to the world model. This serves to confirm that the mobile robot
is following the map correctly. Also, since there are error and uncertainties
associated with the odometry of a mobile robot, we would like to refine the
current estimate of our position. The transformation that is determined be-
tween the model and the data via the recognition also serves to give us the
current position of the mobile robot with respect to the model. We can then
reinitialize the odometry. Also, assuming that information about the posi-
tions of important items in the world (e.g., doors—see Section 7) has been
associated with the room models, the model-data transformation serves to tell
us where these items may be found with respect to our current position.

5 Model Building

In the recognition above, we used the data obtained from one 360° view of
a room for our model. This suffices for an initial model, but a more reliable
model can be constructed by combining later views of the same room. Once
a model-data recognition has been established, the data is transformed to
the same position and orientation as the model and the two combined into
a new model. A weight is associated with each point in the model and the
weight is increased for those model points that are overlapped by data points
(Figure 9). If the current data corresponds to no model in the database, that
set of data is entered into the database as the model of a new location.

Combining the new data with the current model serves two purposes.
First, new features that appear in the data are added to the model. This is
important since some room features may be occluded from certain viewpoints.
Second, the features that were used for recognition (and thus had a model-
data overlap) become more important in the recognition process. This is
accomplished by using a weighted least-squares algorithm to emphasize the
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Figure 9. Updated model of Room 914 based on the recognition shown in
Figure 8. The darker squares correspond to more heavily weighted model
points.

matching of heavily weighted model points. Other advantages to a weighted
model will be discussed in the next section.

6 Model Maintenance

By combining the model and data sets of a recognition into a weighted model,
we build the model up over time. The way in which these weights are de-
termined obviously affects the appearance of the new model. Therefore, we
are currently investigating different schemes for incrementing the model-point
weights. Our current scheme weights the initial model points by one and in-
crements these weights by one each time a data point overlaps them. A
different possibility is to weight the currently visible points more heavily than
the points already extant in the model. The justification is that the mod-
els represent our memory of the world while the current data represents the
world as it currently exists and thus is more certain. A further refinement
is to time-weight the model points so that the longer ago we saw a model
feature, the less importance we give it for recognition. This weighting can be
based on a count of the number of times a model is used or on the actual
clock time since the model was last used. In all of these weighting schemes,
there is a low-weight threshold. When the lowest weights of a model become
sufficiently small, they are eliminated from the model. This step is obvious
once we realize that the weights reflect our confidence in the existence of the
various model features.
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All of the model-weight update schemes have a common theme: the more
often we see something, the more confident we are of its existence. This is
important for three reasons. First, the world changes. By adding newly ob-
served world features into the models, we can incorporate features belonging
to objects that are new or are in new locations. By removing those model fea-
tures that have low weights, we remove from the models those world features
that no longer exist or that are no longer in their original locations. (The
feature weights will be low because, since the features are no longer visible,
they will not exist in the data sets that are being used to update the model
weights.)

Second, no stereo vision algorithm (or any other sensing scheme) is per-
fect. There will be both errors of omission and commission, i.e., blind spots
and hallucinations. The blind spots will be filled in by later data that is in-
corporated into the models. The hallucinations will slowly disappear since
they will not be seen again and their weights not reinforced.

Third, the locations of world features determined by the stereo algo-
rithm (or, again, any other sensing scheme) are not perfect. When a world
feature is seen several times and its location entered into the model, the av-
erage perceived location gradually increases in weight. As the data points
are added over time, the marked model points approximate a Gaussian dis-
tribution about the true location of the feature. Thus, the model updates
also serve to refine the locations of the world features in the model. This
approach avoids the additional computation needed to model the uncertainty
of the sensor data [Durrant-Whyte] [Matthies and Shafer].

7 Location Recognition and the World Model

The location (room) models described above are part of a larger world mod-
eling system that is planned. The mobile robot’s world will be represented
by a topological map similar to that described by [Kuipers]. The world will
be represented by locations and information about how they are connected.
Rather than being supplied a priori, this world model will be built by the
robot as it explores its environment. Because the robot has long-term auton-
omy, existing for days, weeks, even months at a time in its environment, the
amount of time incurred to build the initial world model is amortized over the
lifetime of the robot. Because the robot builds and maintains its own world
model, it can react to a (gradually) changing world in a way that a robot
depending on a precomputed map cannot.
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For each location in the world, a model as described previously will be
built. Since the world locations are discovered through movement (explo-
ration) in the environment, the connections between the locations will be tra-
versed and the location models can be annotated with their positions. Other
sensing and robot tasks will assign importance to places and features in the
environment and these, too, can be annotated on the world model.

When a room is entered, the robot will check the database of known lo-
cations to see if it is in a previously encountered location. If so, the current
data will be incorporated into the current model as described above. If this
is the first time the room has been entered, the robot can wander about the
room and take data from several viewpoints. Knowing that these viewpoints
all come from the same world location, they can be combined into the initial
model for that location. A background process will continually compare the
location models in the database to search for multiple models that have been
created for the same location due to false negatives from the recognition sys-
tem. (As more data is added to the models, the models can be recognized
as actually representing the same location.) Multiple models for the same
locations will then be combined in the same way that model and data are,
as described previously. The end effect will be that duplicate sections of the
world will be compacted into a more concise representation.

By following the world model as it travels through its environment, the
robot always has an estimate of its current location. Given this current es-
timate, only the model for the estimated location and neighboring locations
need be compared to the current data to verify the current location. Thus,
although the database of locations might be quite large, only a small fraction
of the models need be compared to the data at any one time. If, for some
reason, the robot becomes completely lost and has no current estimate of its
location in the world model, the currently observed data can be compared to
all of the location models in the database. This may take some time if the
database is large, but the robot can do no useful work until it finds itself in
any case!

The mobility of the sensing platform (a mobile robot) can be used in
two different ways. If the observed data ambiguously matches two different
location models, the robot can be moved to a location where it can explicitly
look for features that are not common between the models. If this fails, the
robot can explore the local area, build up a second map of the world, and
compare this map to the current world model to determine its location.

Thus, the world location recognition system as implemented fits nicely
into our larger world modeling scheme. Just as the models of the individual
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world locations evolve over time, so does the world model itself. The complete
system is well-suited to a long-term autonomous mobile robot.

8 Conclusions

We have presented a working system that builds, maintains, and uses models
of world locations for recognition to support navigation. This system uses
stereo vision to obtain information about the world for use as input to the
model builder and the recognizer. In addition, we have described how this
recognition system will fit into a larger world modeling scheme.

This work is interesting for several reasons. The model builder and recog-
nition system uses sparse data from the real world as input. We accept the
fact that any input data is noisy and explicitly provide a method for handling
these data errors. We acknowledge that the world is not static and therefore
we provide a way for our location models to change over time as the perceived
world changes. We provide for long-term autonomy in our mobile robot by
rejecting a prior: models in favor of models built by the robot itself, thus
allowing the robot to explore areas of the world. And finally, we not only
build the models that are used by the recognition system, we also maintain
them over time in the presence of sensing errors and a changing world.

The recognition system has been tested on over 300 model-data pairs
from actual scenes with a 10% false negative rate and a 0% false positive
rate for the initial unity-weight models. The error rates are even lower when
using weighted models that have been built up over time. The error rates
demonstrated are low enough to permit the inclusion of this world location
recognition system in the larger world modeling scheme that we have outlined.

9 Further Work

We are continuing with the testing of the system as described as well as ex-
tending it. Different update schemes for the models weights need to be tested.
Groupings other than linear clusters of features should be examined in order
to obtain better initial alignment guesses. The issue of separating different
locations (rooms) needs to be addressed. We are currently concentrating on
offline examinations of the observed data to separate rooms based on geomet-
rical properties of the data. Other sensing methods, such as sonar, could also
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complement the system by providing information about the passage of the
robot through restrictions, such as doors and hallways, that separate rooms.

Further out on the horizon, non-indoor environments need to be consid-
ered. Our reliance on simple sparse, rather than extended dense, features
will help us extend this work to outdoor environments where, for example,

scattered trees might provide the world features that identify a particular
field.

Also for the future is an examination of other sensors to provide the data
for recognition. From this work, we have learned that the sensors must provide
repeatable measurements of distinct features in the world with reasonable
resolution. Laser ranging systems are certainly a possibility and narrow-beam
active sonar might also hold some promise.
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Appendix

We present some of the data obtained from the two rooms mentioned in this
paper along with the weighted models built from this data. Figure 10 shows
some of the data sets taken from Room 914. The first data set was used as the
initial model and the second as the initial data. After recognition, an updated
weighted model was formed and used in the recognition algorithm with the
third data set, again producing an updated weighted model. This process was
repeated for all the data sets shown. Figure 11 shows the weighted model as
it evolves over the course of the various updates. Note how the extraneous
data point from the second data set fades away. The points inside the upper
right-hand corner of the model correspond to a wire that was hanging from
the ceiling when the first three data sets were taken. Note that these points
also fade away since the wire was not present in the later data sets. Figure 12
shows the final weighted model for Room 914 before and after the low-weight
points are removed. Note how the location of the bottom-right model point
is being refined and also that the extraneous data point from the second data
set has been removed.

Figures 13, 14, and 15 show, respectively, data sets for Room 913, the
evolving model for Room 913, and the final Room 913 weighted model.

16



Braunegg Location Recognition Using Stereo Vision

O
%cﬂn ESEEH
O m
O % (DL'E
q H & i
e
O
DEE —
=
Ty o H m O o
m q .
rlnn_F] B EP e
et “hops
DH:
O
O
"THEL'H:I .
i 2

B L]
B8 s

Eigau qIHEEI:ﬁ:

Figure 10. Data sets for Room 914.
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Figure 11. The weighted model for Room 914 as it evolves over the course

of several recognitions. The darker squares correspond to more heavily
weighted model points.
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Figure 12. The final weighted model for Room 914.  a. Before low-weight
point elimination.  b. After low-weight point elimination.
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Figure 13. Data sets for Room 913.

20

1

Ao

= B
O O
s

Braunegg

off

m B

L
B o F
o "



Braune Location Recognition Using Stereo Vision
gg g g

2
2
i
%

ey
e
N

Figure 14. The weighted model for Room 913 as it evolves over the course
of several recognitions. The darker squares correspond to more heavily
weighted model points.
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Figure 15. The final weighted model for Room 913.  A. Before low-
weight point elimination.  B. After low-weight point elimination.
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