Automatic Recognition of Tractability
in Inference Relations

David McAllester
A.l. Memo No. 1215 February, 1990

Abstract: A procedure is given for recognizing sets of inference rules that
generate polynomial time decidable inference relations. The procedure can
automatically recognize the tractability of the inference rules underlying con-
gruence closure. The recognition of tractability for that particular rule set
constitutes mechanical verification of a theorem originally proved indepen-
dently by Kozen and Shostak. The procedure is algorithmic, rather than
heuristic, and the class of automatically recognizable tractable rule sets can
be precisely characterized. A series of examples of rule sets whose tractability
is non-trivial, yet machine recognizable, is also given. The technical frame-
work developed here is viewed as a first step toward a general theory of
tractable inference relations.

Keywords: Machine Inference, Theorem Proving, Automated Reasoning,
Polynomial Time Decidability, Inference Rules, Proof Systems, Mechanical
Verification.

This report describes research done at the Artificial Intelligence Laboratory
of the Massachusetts Institute of Technology. Support for the laboratory’s
artificial intelligence research is provided in part the National Science Foun-
dation contract IRI-8819624 and in part by the Advanced Research Projects
Agency of the Department of Defense under Office of Naval Research contract
N00014-86-K-0124.

(©Massachusetts Institute of Technology (1990)

1 Introduction

Decidable inference relations have been studied from a variety of different
directions and have been applied in a variety of ways. The well-known con-
gruence closure algorithm is fundamentally a decision procedure for the in-
ference relation defined by the inference rules for equality, including the rule
for the substitution of equals for equals [Kozen, 1977], [Downey et al., 1980],
[Nelson and Oppen, 1980]. Congruence closure has applications in, among
other things, compilation and program verification [Downey et al., 1980],
[Nelson and Oppen, 1979]. Other decidable relations have played a role in
various automated inference and program verification systems [Nelson and
Oppen, 1980], [Constable and Fichenlaub, 1982], [Shostak, 1984]. Decid-
able inference relations also play a central role in strongly typed computer
programming languages [Milner, 1978] where the types of program expres-
sions are defined by inference rules for deriving types. In most practical type
systems the inference rules for deriving types yield a decidable relation.

In light of the attention that has already been given to particular decid-
able inference relations, a general theory of decidable relations would seem to
have wide applications. This paper investigates a certain class of polynomial-
time decidable inference relations called local relations. Locality is an easily
defined property of a set of inference rules which guarantees that the inference
relation generated by those rules is polynomial time decidable. Although lo-
cality is easily defined, determining whether a given set of inference rules is
local can be difficult — it is not currently known whether locality itself is
decidable. However, it is possible to construct a procedure for automatically
recognizing a certain subclass of local relations.

The best known example of a local rule set is the set of rules for equality
that underlies the congruence closure procedure. The method given here
for automatically recognizing certain local rule sets can be used to machine
verify a theorem given in [Kozen, 1977], [Shostack, 1978], and [Nelson and
Oppen, 1980] concerning the equality rule set. Additional examples of local
rule sets are given below which support the conjecture that non-trivial local
rule sets are quite common.

The technical notion of locality presented in this paper underlies a general

approach to the construction of semi-automated verification systems for ar-
bitrary first order reasoning. Consider a sound and complete set of inference
rules for first order logic. These rules can be separated into local and in-
tractable rules. The local rule set defines a notion of an “obvious” inference.
A “high-level proof” is a proof in which the individual steps are obvious in
this sense. The amount of detail that must be explicitly given in high-level
proofs is determined by the power of the local rule set — powerful local rules
yield more concise high-level proofs. Clearly, one would like the local rule
set to be as powerful as possible.

Powerful local rule sets can be constructed using non-standard syntax.
There are many different languages, with non-standard syntax and semantics,
that are all expressively equivalent to first order predicate calculus. Each
such language can be associated with sound and complete inference rules —
phrased in the syntax of that particular language — and these rules can be
separated into local and intractable rules. The power of the resulting local
rule set is sensitive the original choice of syntax and semantics. It seems that
syntactic features of natural languages such as English are particularly useful
in constructing powerful local rule sets. The fact that certain syntactic and
semantic constructions yield powerful local rule sets suggests a functional
explanation for the existence of those constructions in human language. An
example of a local natural language rule set is given in section 7. The general
approach to the use of locality in constructing high-level proof systems is
discussed in section 8.

Hopefully, the notion of locality described in this paper is a first step
toward a more general understanding of tractable rule sets. Several open
technical problems, and several directions for further research, are discussed
at the end of the paper. A better understanding of tractable inference rela-
tions will hopefully result in an improved technology for the construction of
semi-automated verification systems, and a deeper understanding of inference
in general.

2 Preliminary Definitions

This paper presents a general procedure for recognizing certain cases in which
a set of inference rules generates a computationally tractable inference rela-
tion. The first step in constructing such a procedure is to precisely define
the notion of an “inference rule”. Figure 1 gives basic inference rules for the
Boolean connectives = and V. In these rules a question mark in front of a
symbol indicates a variable that can be replaced by different expressions in
different applications of the rule. Variables in inference rules will be called
metavariables to distinguish them from variables of the underlying language.

Throughout the remainder of this paper we let B (for Boolean) denote
the set of inference rules given in figure 1. All Boolean expressions can be
written in terms of the two universal connectives = and V. The rule set B
expresses some, but not all, of the inferential properties of these connectives.
The rule set B can be viewed as a (somewhat obscure) characterization of
unit resolution, or as a specification of the Boolean constraint propagation
mechanism described in [McAllester, 1989)]. The inference relation generated
by these rules is linear time decidable. Yet, if the above inference rules are
augmented by a simple case analysis sequent rule then the rules become
complete for Boolean inference.

As another example of a set of inference rules, consider the following rules
for equality.

13 7s=" 16 781 =,

M ="7s '78,. =,
14 =" 2f(?81,...78,) = 2f(Tt1, ... Mty)
15 r=17s

="

Tr="N

1 " 7 -?@

-7y
—(?® Vv 7¥)
2 -7
8 -7®
¥ -7
3 ?P (7T v 7®)
VP 9 -(?7® v 7¥)
4 P -7®
PVIV 10 =(?® v V)
5 ¢ VI Y
7P
11 13}
i -7y
6 VIV F
-
12 F
?¢
7%

Figure 1: A tractable set of Boolean inference rules

The rules 13, 14, and 15 express the symmetry, reflexivity, and transitivity
properties of equality respectively, while rule 16 expresses the substitutivity
of equals for equals. It is well known that congruence closure provides a
polynomial time decision procedure for the inference relation generated by
these equality rules. The precise notion of inference rule developed here is
not general enough to allow for the notation “...” used in rule 16. Fortu-
nately, however, any inference problem involving function symbols of more
than two arguments can be converted to an equivalent problem involving
function symbols of at most two arguments. For example, a function f of
three arguments can be replaced by two functions pair and f’ such that

f(z, y, 2) equals f'(z, pair(y, z)). Without loss of generality, we can
replace rule 16 by the following two rules.

16a 7= 16b ?81 = ?tl

?82 = ?tz
7(2s) = 7£(7%)

?f(?sl, ?82) = 7£(%t1, 72)

In the remainder of this paper we let E denote the rule set consisting of rules
13, 14, 15, 16a and 16b.

Different metavariables have different syntactic kinds. For example, the
metavariables that appear in the Boolean rule set B range over formulas,
while the rule set F has metavariables that range over terms and metavari-
ables that range over function symbols. The phrases “formula”, “term”, and
“monadic function” each refer to a particular syntactic kind.

Definition: A syntactic kind is either a kind symbol or an ex-
pression of the form o7 X 03 X ...0, — T where 7 and each o; are
syntactic kinds.

Definition: A well formed ezpression is either a constant symbol
or metavariable of a given syntactic kind, or an application of
the form f(sy...s,) where f is a well formed expression of kind
01 X ...0, — T and each 3; is a well formed expression of kind
oi. In the latter case the expression f(s;...s,) is a well-formed
expression of kind 7.

In first order predicate calculus, an ordinary constant symbol is just a
constant of kind term; a proposition symbol is a constant of kind formula; a
function symbol of is a constant of kind term X ... term — term; and a pred-
icate symbol is a constant of kind term x ... term — formula. The Boolean
connectives - and V are constants of kind formula — formula and formula
X formula — formula respectively. Quantifier-free predicate calculus is the
language generated by a set of constants of type term, a set of constants of
type formula, a set of function symbols, a set of predicate symbols (including

6

equality) and the Boolean connectives. A well formed expression o(ey, ... e€,)
will sometimes be written as (o e;...e,;) (Lisp notation), and occasionally
as ey o e; (infix notation).

The above definitions do not allow for quantified expressions. This paper
only discusses inference rules that do not involve quantification. Even with-
out quantifiers, a set of rules can still generate an undecidable or intractable
inference relation. On the other hand, the presence of quantifiers does not
necessarily prevent tractability. Tractable inference relations involving quan-
tification are discussed in [McAllester, 1989] and [McAllester et al., 1989]. A
more general notion of locality will be needed to construct a procedure for
automatically recognizing tractability in rule sets that involve quantification.

Definition: A well formed expression of kind formula will be
called a formula.

Definition: An inference rule is an object of the form
¥,

¥

©

where ¥, ... ¥, and © are all formulas.

Definition: A metavariable substitution is a mapping p from
metavariables to expressions such that, for any metavariable ?z,
we have that p(?z) is a well formed expression of the same kind
as 7z.

Definition: For any metavariable substitution p, and any well
formed expression s, we define p(s) to be the result of replacing
each metavariable in s by its image under p. For any set of
expressions T, we define p(T) to be the set {p(s) : s € T}.

Observation: For any metavariable substitution p, and any well
formed expression s, p(s) is a well formed expression with the
same syntactic kind as s.

Definition: A formula @ is one-step derivable from a set of for-
mulas ¥ under inference rules R if there exists an inference rule

¥,

v,

]

in R, and a metavariable substitution p, such that p(¥;),...p(¥,)
are all members of ¥ and p(©) equals .

Definition: A derivation of ® from ¥ is a sequence of formulas
v, ¥a,... ¥, such that each ¥; is either a member of ¥, or is one-
step derivable under R from previous elements of the sequence,
and ¥, is the formula ®. If there exists a derivation of ® from X
under rule set R then we write ¥ g ®.

Note that kg is the relation generated by R in the standard way.

3 Local Rule Sets

We are interested in finding general properties of a rule set R that guarantee
that the corresponding inference relation F g is polynomial time decidable.
One way of doing this is to consider a “restricted” relation H g that is ex-
plicitly constructed to be polynomial time decidable. This can be done using
the following terminology.

Definition: A formula ¥ will be called a label formula of a set

or expressions {2 if every proper subexpression of ¥ is a member
of Q.

Definition: For any set of formulas I' and rule set R we define
R, T') to be the set of all proper subexpressions of formulas in
I' plus all closed (variable-free) proper subexpressions of formulas

in R.

Note that, for any finite rule set R and finite formula set T, the set (R, T')
is finite. However, any formula constant or formula metavariable is a label

8

formula of any expression set. This implies that any expression set has
an infinite set of label formulas. In spite of the infinity of label formulas,
however, restricting the inference process to label formulas of a small finite
set yields a tractable inference relation.

Definition: We write ¥ Hp @ if there exists some derivation
¥, Uy,... ¥, of ® from ¥ under rule set R such that each ¥; is
a label formula of Q(R, X U {®}).

Tractability Lemma: For any finite rule set R, the relation H g
is polynomial time decidable.

Definition: A set of rules R will be called local if the relation
H g is the same as the relation Fg.

The tractability lemma implies that the inference relation generated by
a local rule set is polynomial time decidable. The proof of a refined version
of the tractability lemma is given in the following section. It is instructive,
however, to consider the equality rule set E. Consider the problem of deter-
mining whether or not ¥ H g ® where ® and each formula in ¥ are equations
between first order terms. The expression set Q(E,X U {®}) consists of the
equality symbol plus all first order terms that appear in ¥ and ®. If s and
t are terms in Q(F,X U {®}) then the equation s = ¢ is a label formula
of Q(E,Z U {®}). Let n be the total size of £ U {®}. There are order n?
equations that are label formulas of Q(E,X U {®}). This implies that one
can enumerate, in polynomial time, all label formulas of Q(E, X U {®}) that
can be derived from X using derivations restricted to label formulas.

The definition of locality does not provide any obvious way of determining
if a given rule set is local. Locality of the equality inference rules was orig-
inally proved (using different terminology) independently by Kozen [Kozen,
1977] and Shostak [Shostack, 1978]. Kozen uses a syntactic argument to
show that if ¥ Fg ®, then ¥ Hg ®. The proof is essentially an induction
on the length of the derivation used to establish ¥ kg ®. Shostak’s proof of
the locality of E is semantic. Shostak observes that the relation H g is clearly
sound under the standard semantics for equality. Furthermore, if © i 5 @,
then one can construct a model of ¥ in which ® is false. In other words, the

relation H g is semantically complete. Since Fg is sound, and bz is at least as
strong as H g, the semantic completeness of H g implies that H g is the same
as Fg. A semantic proof using a simpler model construction was later given
by Nelson and Oppen [Nelson and Oppen, 1980]. Semantic proofs of locality
of other rule sets can be found in [McAllester et al., 1989] and [McAllester
and Givan, 1989)].

Semantic proofs of locality are more compact in many cases than syn-
tactic proofs of the same results. However, it seems difficult to generalize
semantic proof techniques to the point where they can be used to mechani-
cally recognize a wide class of local rule sets. However, section 6 shows that
syntactic techniques for proving locality can be used as the foundation for a
general locality recognition procedure.

4 The Tractability Lemma

The tractability lemma states that for any finite rule set R, the relation H g is
polynomial time decidable. The statement of the tractability lemma can be
refined to give a useful upper bound on the order of the polynomial involved.
This refinement requires some additional terminology.

Definition: An inference rule r will be said to have order k
if there exist expressions e;...ex, such that each e; is either a
metavariable or a proper subexpression of some formula in the
rule r, and such that every metavariable that appears in r also
appears in some e;.

For example, the rule

16b 51 =
?82 = ?tz

?f(?sl, 32) = ?f(?tl, ?tg),

10

has order two because the two expressions ?f(7sy, 7s;) and ?f(7¢;, %)
satisfy the requirements of the above conditions. Note that the rule does
not have order one because the equation ?f(7s1, s2) = 7f(?t1, ?¢2) is not a
proper subexpression of a formula in the rule. Similarly, the rule

7 -7®
-7y

~(70 V 7T)

has order one, while the rule

3 %

(A AV]
has order two.

Refined Tractability Lemma: For a fixed finite rule set R, it
is possible to determine whether £ H ; ® in order n* time where
n is the total size of ¥ and ® and all rules in R have order k or
less.

Proof: For the purposes of this proof, a rule set R will be called normalif, for
every rule r in R, every metavariable in r appears as a proper subexpression
of some formula in r. We first reduce the problem of determining whether
Y Hpr @ to the the problem of determining whether ¥ H i ® in the case
where R is normal. If ¥ is empty, and no inference rule in R has an empty
set of antecedents, then ¥ K , ®. Thus we can assume without loss of
generality that either ¥ is non-empty or some rule in R has no antecedents.
Consider a rule r and a metavariable 7¥ that appears in = but does not
appear as a proper subexpression of any formula in r. The only place 7¥ can
appear in r is as an antecedent or conclusion. If ?¥ is both an antecedent
and a conclusion, then r can be removed from the rule set without affecting
the relation H . If 7¥ is an antecedent but not a conclusion, then the above

11

comments about ¥ and R imply that the rule r can be replaced by the rule
r’ in which the antecedent 7¥ has been removed. If 7¥ is the conclusion of
r, but is not an antecedent of r, then we replace r by the rule r’ derived from
r be replacing the conclusion ?¥ with a new formula constant F. Let R’ be
the rule set derived from R by making all such removals and replacements.
We now havethat ¥ Hyz ® justincase ¥ Hgr ® or ¥ Hp F. Furthermore,
R' is a normal rule set and all rules in R’ have order k or less.

Now, without loss of generality, we can assume that R is a normal rule set.
Let T be the set Q(R,X U {®}). For a fixed rule set R, the set T has order
n elements. We have that ¥ Hpi @ just in case there exists a derivation
¥, ¥,... ¥, of ® from ¥ under R such that each ¥; is a label formula of
T. Let r be an inference rule in R. For any metavariable substitution p we
let p(r) be the rule derived from p by replacing each metavariable in r by its
image under p. Since R is normal, we need only consider those instances p(r)
where p maps every metavariable in r to a member of Y. Let e;...e; be a set
of expressions that satisfy the conditions of the definition of r being order j.
Each e; is either a metavariable or a proper subexpression of some formula
in r. This implies that we need only consider those instances p(r) where p
is a substitution such that p(e1)...p(e;) are all members of Y. Since every
metavariable in r appears in some e;, the set of all such instances p(r) can be
computed by matching the expressions e; ...e; against elements of T. For
a fixed rule r (independent of the size n), the set of all possible matches of
ey ...e; to elements of T can be computed in order n? time. The restriction
that each p(e;) be an element of T does not guarantee that the conclusion
and antecedents of p(r) are label formulas of T. Let I(r) be the set of all
such instances p(r) such that the conclusion and all the antecedents of p(r)
are label formulas of Y. The set I(r) can be computed in order n’ time. Let
I(R) be the union of the sets I(r) for rules r in R. The set I(R) can be
computed in order n* time. We now have that ¥ Hpx & just in case ® can
be derived from ¥ under the rules I(R) by purely propositional reasoning
(we need not consider further substitution into the rules in I(R)). This is
equivalent to determining if a given proposition symbol can be derived from
a set of proposition symbols using a set of propositional Horn clauses. The
existence of such a derivation can be determined in time proportional to
the total size of the set of propositional Horn clauses. Since I(R) can be

computed in order n* time, its total size is order n*.

12

5 Syntactic Proofs of Locality

For any finite rule set R, the relation H g is polynomial time decidable. The
rule set R is local if the relation H g is the same as the relation Fgz. A
general syntactic approach to proving locality for particular rule sets can be
constructed using the following definitions.

Definition: A set of expressions T will be called subezpression
closed if every subexpression of every member of T is also a mem-

ber of T.

Definition: Let R be a rule set, ¥ a formula set, and let T be
an expression set that is subexpression closed and that contains
QR,X) as a subset. The set Cr(X, T) is defined to be the set of
formulas ¥ such that there exists a derivation of ¥ from ¥ such

that every formula appearing in that derivation is a label formula
of T.

Observation: £ H g @ if and only if ® € Cr(Z, QR,ZU{®})).

Definition: Wesay that the set Cr(X, Y) is universal if Cr(Z, T)
contains all label formulas of Y.

Lemma: Let R be a fixed rule set such that all rules in R have
order k or less. Let ¥ be a formula set, let T be a subexpression
closed set containing (R, X) and let n be the number of expres-
sions in T. One can determine whether Cr(Z, T) is universal in
order n* time. If Cg(Z, T) is not universal, it is finite and can be
enumerated in order n* time.

The proof of the above lemma is similar to the proof of the refined
tractability lemma and is not given here. It is possible to characterize locality
in terms of the closure operator Cg rather than the inference relation H g.
To do this we need some additional terminology.

Definition: A one step extension of a subexpression closed set
T is an expression « that is not a member of T but such that
every proper subexpression of « is a member of T.

13

Definition: An eztension event for a rule set R is a four-tuple
<o, U, %, T> such that T is subexpression closed and contains
QUR,X), ais a one step extension of T, and ¥ is a member of

Cr(S,T U {a}).

The letters €, £, £, etc. are used below to denote extension events.
Consider an extension event <a, ¥, X, T>. Note that the formula ¥ may be
“old” in the sense that ¥ may be a member of Cg(Z,Y). Alternatively, ¥
may be “new” in the sense that ¥ is a member of Cr(Z,T U {a}) but not
a member of Cr(X,T). The lemma given below states that a rule set R is
local if and only if it is impossible for a new formula to be a label formula of
the old set T.

Definition: A feedback event for a rule set R is an extension
event <a,V,3, T> for R where ¥ is a label formula of T but not
a member of Cr(%,T).

Lemma: A rule set R is local if and only if there are no feedback
events for R.

Proof: First, suppose there exists a feedback event £ for R
with components <a,¥,X, T>. The fact that ¥ is a member
of Cr(%,T U {a}) implies that ¥ +Fpx W. The fact that £ is
a feedback event implies that ¥ is a label formula of T but not
a member of Cr(X, T). The fact that ¥ is a label formula of T
implies that T contains (R, XU ¥). So ¥ must not be a member
of Cr(Z,Q(R,ZU{U})) and so & A p ¥. Thus Fg and H g are
different and R is not local.

The above argument shows that if R is local then there can
be no feedback events for R. We will now show the converse —
if there are no feedback for events for R then R is local. Suppose
there are no feedback events for B. Now consider any ¥ and
® such that £ I 5 ®. To show that R is local it suffices to
show that ¥ I/p ®. To show ¥ l/g ® it suffices to show that
for any finite subexpression closed set T containing Q(R,% U
®) we have ® ¢ Cg(Z, T). By assumption we have that & ¢
Cr(Z,UR,Z U {®})). Now let T be any subexpression closed

14

set containing Q(R,X U {®}) such that ® ¢ Cr(X, T). For any
one-step extension o of T we have that ® is not a member of
Cr(E, TU {a}) — otherwise the tuple <a, ®, L, T> would be a
feedback event. By induction, this implies that ® is not a member

of Cr(Z, T) for any finite subexpression closed set T containing
Q(R, LU {®}) and thus & t/r .

The above lemma reduces the problem of determining locality to the prob-
lem of determining the existence of feedback events. The locality recognition
procedure is based on a general method of proving the non-existence of feed-
back events. This general method is best introduced using a simple example.
Consider the following rules expressing the monotonicity of an operator f.

17 HCn 19 ?7s C 7u

18 rC7s f(?s) C f(Tu)
2CN
CN

Let M (for monotonicity) be this set of three inference rules.! We wish
to prove the non-existence of feedback events for M. Consider an extension
event <a,¥,%, T> for rules M. Either V¥ is an “old” formula, i.e., a member
of Cp(Z,T), or ¥ is provable from old formulas using the above inference
rules. It is possible to characterize all the ways of proving a new formula
from old formulas using rules M. More specifically, for any extension event
<o, ¥, 3, T> for M, one of the following four conditions must hold.

e U is an “old” formula, i.e., a member of Cp (X, T).

e V¥ is the formula a C .

1The rule set M has applications in high-level proof systems for first order logic
[McAllester et al., 1989]. An in-depth analysis of the computational complexity of the
relation ks is given in [Neal, 1989].

15

e « is of the form f(s) and ¥ is a formula of the form a C ¢ where
Cum(Z, T) contains the formulas s C v and f(u) C¢t.

o « is of the form f(s) and ¥ is a formula of the form ¢t C o where
Cm(Z, T) contains the formulas ¢t C f(u) and u C s.

If an extension event satisfies one of the above conditions then either ¥ is an
old formula (the first condition) or ¥ contains « as a proper subexpression
(the last three conditions). Thus ¥ is either an old formula, or ¥ is not a
label formula of Y. So no event satisfying one of the above conditions can
be a feedback event. The problem of proving the non-existence of feedback
events for M has now been reduced to the problem of proving that every
extension event for M satisfies one of the above four conditions. This can be
be done using the following definitions.

Let R be a rule set, ¥ a formula set, T a subexpression closed set
containing (R, X), and let & be a one step extension of T.

Definition: The set C3°(X, T) is defined to be Cr(Z,Y). The
set C? (2, T) is defined to be C¥(E, T) plus all label formu-
las of T U {a} that can be derived from CR?(Z, T) via a single
application of an inference rule in R.

Note that ‘
Cr(Z,TU{e}) = U Cg’(Z,7T).

§20

Consider a fixed but arbitrary £, T and a. To show the non-existence of
feedback events for M, it suffices to show that every formula ¥ in Cps(Z, TU
{a}) satisfies one of the above four conditions with respect to £, T, and a.
The four conditions can be viewed as defining four different types of formulas
in the set Cp(X, T U {a}). To prove that every formula in Cp(Z, T U {a})
is of one of these four types, it suffices to prove, by induction on j, that
every formula in Cy(Z,T) is of one of these four types. Every formula in
Ci(Z,T) is an old formula and so is a formula of the first type. Now assume
that every formula in Cpf’ (X, T) is of one of the four given types. Under this

16

assumption one can prove that every formula ¥ in Cg#+'(Z, T) is of one of
the given types. The induction step involves a case analy31s on the proof rule
used to derive an element of C5 *(Z, T) and the types of formulas used as
antecedents in the application of that rule.

The method just described for proving locality for the rule set M can be
generalized to a mechanical procedure for recognizing locality.

6 The Locality Recognition Procedure

The mechanical locality recognition procedure is not guaranteed to recognize
of all local rule sets. However, it is possible to precisely characterize the
class of rule sets whose locality is mechanically recognizable. This precise
characterization involves some additional terminology.

Definition: The rank of an extension event <o, ¥, X, T> for a
rule set R is the least natural number j such that ¥ is an element

Of CR,J (2 T)

Definition: For any natural number k& and rule set R we say
that R is k-bounded-local if R is local and all extension events for
R have rank j or less. The rule set R is bounded-local whenever
there exists some k such that R is k-bounded-local.

Note that if R is k-bounded-local then Cr(Z, T U {a}) is always equal
to C¥*(Z,T). It would seem that bounded- locality is an extremely strong
condition on inference rules and that few rule sets would satisfy this condi-
tion. However, all of the examples of local inference rules discussed above
are bounded-local — the rule sets E and M are 2-bounded-local while B
is 1-bounded local. Unfortunately, there are rule sets which are local but
not bounded-local. Let I consist of the reflexivity rule (17), transitivity rule
(18), plus rules 20, 21, and 22 given below. The rule set I is local but not
bounded-local (the proof is left as a non-trivial exercise for the reader).

17

20 N(?s,7t) C ?s 22 wC?s
TwC™
21 N(7s,7) C %

7w C N(?s,7t)

Given that I is local (although not bounded-local), the refined tractability
lemma implies that the generated inference relation is decidable in order n®
time (the transitivity rule has order 3).

The following two theorems are the main results of this paper.

First Locality Recognition Theorem: For any rule set R and
bound k it is possible to determine whether or not R is k-bounded

local.

Second Locality Recognition Theorem: There exists a pro-
cedure which, given any rule set R, does the following.

o If R is not local then the procedure terminates and outputs
a feedback event for R.

o If R is bounded-local then the procedure terminates and
outputs the least k£ such that R is k-bounded-local plus an
enumeration of the possible “types” of extension events.

¢ If R is local, but not bounded-local, then the procedure fails
to terminate.

Consider the proof of locality for the monotonicity rules described in the
preceding section. The proof shows that every monotonicity extension event
falls into one of four types and that no event of these types can be a feedback
event. To mechanize this proof technique we need some way to formally
represent event types. Consider the third monotonicity event type given in
the preceding section:

e « is of the form f(s) and V¥ is a formula of the form a C t where
Cum(Z, T) contains the formulas s C u and f(u) Ct.

18

The events of this type can be characterized by specifying the form of «,
the form of ¥, and certain formulas that must be in Cr(X¥, T). In general,
we allow a formal specification of an event type to also include a specification
of expressions that must be in T. A formal specification of an event type is a
four-tuple <o/, ¥/, ¥, T"> where o’ and ¥’ are patterns giving the form of a
and U respectively; X' is a set of formulas that must be included in Cg(Z, T);
and Y’ is a set of expressions that must be included in Y. The patterns o
and U’ are just expressions containing metavariables. The above type of
monotonicity event can be characterized by the following formal four-tuple.

o <f(?s), f(?8)C ™, {7sC Tu, f(Tu) C U}, {S, [, s, f(Pu),u}>

The above four-tuple specifies the class of events in which « has the
form f(?s), ¥ has the form o« C 7t, and Cr(Z,Y) contains the formulas
78 C ?u and f(?u) C 7t. Let <o/, ¥, ¥/, T'> be the above four-tuple. Note
that Y’ has been constructed so that Y’ is a subexpression closed set con-
taining Q(R,X’), and o« is a one-step extension of Y’. In fact, the tuple
<o/, ¥, X', T'> satisfies all of the conditions given in the definition of an
extension event — this tuple is itself an extension event. In general, an
extension event containing metavariables defines an entire class of “instanti-
ations” of that event.

Definition: Let £ be an extension event <o, ¥, ¥, T> and let &’
be an event <o/, ¥/ ¥ YT'>. We say that £ is an R-instance of
the template £, or that the template £ R-covers the event &, if
there exists a metavariable substitution p satisfying the following
conditions.

e p(a)=«a
o p(U)=T
e p(¥) C Cr(%,Y)
e p(THCT

We say that a template set 73 R-covers an event set T3 if every
member of T3 is R-covered by some member of Tj.

19

I will often say “covers” or “instance” rather than “R-covers” or “R-
instance” respectively when the rule set is clear from context. I will use the
term “event template”, or just “template”, rather than the term “event” to
describe events that are being used as templates or schemas for a whole class
of events. The following lemmas state useful properties of event templates.

Let £ be <a, ¥, %, T> and let £ be <o/, ¥, ¥/, T'> such that £
is an instance of €' by virtue of the metavariable substitution p.

Lemma: The set p(Cr(X’,Y’)) is a subset of Cr(E, T).

Proof: Consider any formula © in Cg(¥’,T’). We must show
that p(©) is a member of Cr(X, T). Consider a derivation D of ©
from ¥’ such that all formulas in the derivation are label formulas
of T'. Let p(D) be the derivation derived from D by replacing
each expression in D by its image under the substitution p. p(D)
is a derivation of p(@®) from p(X’). Furthermore, since p(Y’) is a
subset of T, every formula in p(D) is a label formula of T. Since
every element of p(¥’) is in Cr(%, T), we must have that p(O) is
also in Cg(%, T).

Lemma: For each natural number j, the set p(CEH (2, Y")) is a
subset of Cg’ (L, T).

Proof: The proof is by induction on j. The previous lemma es-
tablishes the result for j = 0. Now assume that the result holds
for j and consider j 4 1. Let © be any formula in C;l’“'l(z' , T).
We must show that p(0) is in C5* (X, T). O is derivable, via a
single inference rule, from some formulas ®; . .. ®, in CZ " (=, 7).
By the induction hypothesis p(®,)...p(®,) are in Cp’(Z, T).
But p(0©) is derivable from p(®,)...p(®,) and p(0) is a label
formula of T U {@}. Thus p(0) is in C5**!(Z, T).

Lemma: The rank of £ is less than or equal to the rank of £'.

Proof: Let j be the rank of £’. The formula ¥’ is in CO(,).
By the above lemma, p(¥’) must be in Cg?(E,). Since p(¥’)
equals U, the event £ must have rank 7 or less.

Lemma: If £ is not a feedback event then &£ is not a feedback
event.

20

Proof: Since £’ is not a feedback event the formula ¥’ is either
a member of Cr(¥’,T’) or is not a label formula of Y’. In the
first case, the above lemma implies that p(¥’), and hence ¥, is a
member of Cr(Z,T). Now suppose that ¥ is not a label formula
of T. Since ¥’ is a label formula of T/ U {a'} but not a label
formula of Y’, the expression o/ must be a proper subexpression
of ¥'. But this implies that p(c') is a proper subexpression of
p(¥’') and thus «a is a proper subexpression of ¥. This implies
that ¥ is not a label formula of T and thus £ is not a feedback
event.

The locality recognition procedure takes a bounded-local rule set R and
automatically constructs a proof of the locality of R using the same technique
as that used above in proving the locality of the rule set M. The proof of
locality of M involved showing that every extension event for M is an instance
of one of four specific templates. In order to construct an analogous proof for
an arbitrary bounded-local rule set R, the procedure must generate a finite
set of event templates, specific to the rule set R, and must show that this
finite set of event templates covers all extension events for R. The recognition
procedure uses a single process to both generate the event templates and to
prove that the generated templates cover all events. This process starts with
a set of “null” templates and generates new templates by iteratively passing
existing templates through the inference rules.

Definition: The null template of kind 7 is <?a,?¥, {70}, {}>
where 7« is a metavariable of kind 7.

Observation: An extension event has rank 0 if and only if it is
an instance of some null template.

Without loss of generality we can consider only the syntactic kinds used in
the inference rules, so we we need only consider a finite set of null templates.
The following lifting lemma states the existence of a procedure for passing
templates through inference rules.

21

Lifting Lemma: Let R be a finite rule set and let T' be a finite
template set such that T covers all extension events for R of rank
J or less. It is possible to compute a finite template set R(T) that
covers all events of rank j + 1 or less.

The proof of the lifting lemma, and a procedure for computing R(T), is given
in the appendix.

Definition: For any rule set R, define To(R) to be the set of null
templates and define T;41(R) to be T;(R) U R(T;(R)).?

Observation: T;(R) covers every extension event for R with
rank j or less.

Lemma: R is local if and only if there is no j such that T;(R)
contains a feedback event.

Proof: Suppose there exists some feedback event for R. This
event must have some finite rank j and must be covered by some
element of T;(R). Templates that are not feedback events can not
cover feedback events, so T;(R) must contain a feedback event.

Lemma: R is j-bounded-local if and only if T;(R) does not con-
tain any feedback events, T;(R) covers R(T;(R)), and every mem-
ber of T;(R) has rank j or less.®

Proof: First suppose T;(R) covers R(T;(R)). Since covering is
transitive, this implies that T;(R) covers all events of rank j+1 or
less. But, by the same argument, this implies that T;(R) covers
all events of rank j + 2 or less. In fact, Tj(R) covers all events.
If, in addition, T;(R) does not contain any feedback events, then
there can be no feedback events for R and R must be local. If all
templates in T};(R) have rank j or less then, since no template can
cover an event of greater rank, all extension events for R must
have rank j or less.

2A “more efficient” definition states that T;41(R) equals T;(R) plus those elements of
R(T}(R)) not already covered by some element of Tj(R).

3The most natural procedure for constructing R(T) ensures that every event in T};(R)
has rank j or less.

22

Now suppose that R is j-bounded local. Since there are no
feedback events for R, T;(R) must not contain a feedback event.
Since every event has rank j or less, T;(R) must cover all events.
This implies that T;(R) covers R(T;(R)). Finally, since all ex-
tension events for R have rank j or less, every template in T;(R)
must have rank j or less.

The recognition theorems follow directly from the above lemmas. A pro-
cedure based on the above lemmas has been implemented and all claims
made in this paper for the bounded-locality of particular rule sets have been
mechanically verified.

7 Additional Examples

This section presents additional examples of bounded-local rule sets. These
examples are intended to support the hypothesis that bounded-local rule sets
are quite common and easily constructed. The examples are also intended
to support the hypothesis that recognizing locality is usually difficult.

Three examples of local rule sets are discussed above — a Boolean rule
set B, an equality rule set E, and a monotonicity rule set M. Additional
examples of bounded-local rule sets can be derived by considering various
unions of these rule sets, e.g., MU B or M UB U E. It turns out that
all such unions are bounded-local. In general, however, a union of local
rule sets need not be local. Similarly, a subset of a local rule set need not
be local. The locality of the various combinations of B, E, and M has
been determined through mechanical verification. Except for the rule set
B, which is 1-bounded-local, all combinations of rule sets B, E, and M are
2-bounded-local.

The next example is a rule set based on the syntactic structure of English
under Montague semantics. The rules involve expressions of three differ-
ent syntactic kinds: class expressions, specified noun phrases, and formulas.
The expressions can be given a simple semantics in which each class expres-
sion denotes a set, each formula denotes a truth value, and each specified

23

23 ((every 7z) 7z) 27 ((some ?z) 7y)
((every ?y) ?z)
24 ((every 7z) 7y)

((every ?y) 7z) ((some 7z) 72)
((every ?z) 7z) 28 ((every 7z) 7y)

2% ((some ?z) 7y) ((every (7R (some ?z))) (?R (some 7y)))
((some 7y) ?z) 29 ((every ?z) 7y)

2 ((some ?z) 7y) ((every (2R (every 7)) (7R (every ?z)))
((some ?z) 7z) 30 ((some ?z) 7y)

((every (?R (every 7z))) (7R (some 7y)))

Figure 2: A Natural Rule Set

noun phrase denotes an operator that maps sets to truth values (a second
order predicate). For example if z denotes a set then (every z) is a speci-
fied noun phrase and denotes a second order predicate that is true of a set
y just in case the set z is a subset of the set y — a formula of the form
((every z) y) is true just in case z C y. Similarly, a formula of the form
((some z) y) is true just in case some element of the set z is a member
of the set y, i.e., just in case z N y is non-empty. For any binary rela-
tion R, and class expression C, we let (R (some C)) and (R (every C))
be class expressions. For example, let kissed be a binary relation and let
man and woman be class expression constants. We have the class expres-
sions (kissed (some woman)) and (kissed (every woman)) and we have
formulas such as ((every man) (kissed (some woman))), or alternatively,
((some man) (kissed (every woman))).

The meaning of expressions of the form (R (some C)) and (R (every C))
can be defined so that the above formulas have a natural meaning. The
inference rules shown in figure 2 are sound under this natural semantics.
Let N (for Natural) be the set of inference rules given in figure 2. A more
complete discussion of natural language inference relations can be found in

24

[McAllester and Givan, 1989]. In the current context, the rule set N simply
provides another example of a rule set that can be analyzed in terms of
locality. Although N is not a local rule set, the notion of locality can be used
to construct a polynomial time decision procedure for the relation Fp. First,
to see that IV is not local, note that by combining inference rules 25 and 30
we get

((some C) S) Fn ((every (R (every S))) (R (some C))).

However, the derivation involves the expression (some S), which does not
appear in the statement of the inference problem, and we have

((some C)S) W ((every (R (every S))) (R (some C))).

In spite of the fact that N is not local, the locality recognition procedure
can be used to show that the relation -y is polynomial time decidable. Let
N’ be the rule set constructed from N by replacing formulas of the form
((every C) S) and ((some C) S) by formulas of the form (is-every C S)
and (is-some C S) respectively. For any formula & and set of formulas ¥
we similarly define &' and Y. We now have that ¥ Fy @ if and only
if ¥ Fn ®. It now suffices to show that I+ is polynomial time decid-
able. But one can machine-verify the fact that N’ is 4-bounded-local. The
refined tractability lemma then implies that there exists an order n2 decision
procedure for the relation Fpy.

8 Applications to General Reasoning

Sound and complete rule sets for semantically expressive languages are nec-
essarily intractable. Assuming P # NP, the semantic entailment relation
for propositional logic is not polynomial time decidable. The case is worse
for full first order logic — if a rule set R is sound and complete for first order
logic then g is not decidable. At first glance, it would seem that the notion
of locality does not apply to such intractable rule sets. However, the notion
of locality can be useful in constructing semi-automated verification systems
for checking proofs under intractable rule sets.

25

Consider the quantifier-free predicate calculus with equality. The seman-
tic entailment relation for quantifier-free predicate calculus is coNP-complete
— so the relation is presumably intractable. However, consider the rule set
BUE which is the union of the Boolean and equality rules given above. This
rule set is local and thus Fpyg is polynomial time decidable (it is actually
decidable in order nlog®n time, or order nlogn time assuming that hash
lookups take unit time). Although the relation F pug is not complete for
quantifier-free logic, it seems quite powerful in practice. It is possible to con-
struct a sequent proof system that is complete for quantifier-free logic based
on the decidable relation Fpyg. A proof in this system is a series of lines
where each line is a sequent of the form ¥ + ®. This proof system is “high-
level” in the sense that individual lines in the proof can abbreviate inferences
involving a large number of individual rule applications. The abbreviation
of many inferences in a single line allows high-level proofs to be shorter than
traditional proofs. The high-level system has two sequent rules. First, if
Y Fpue @ then the line ¥ F @ can be introduced without justification.
Second, if the high-level proof contains lines U ¥ @, and T U~V + &,
then one is allowed to add the line © + ®. The resulting high-level proof
system is semantically complete, i.e., if ® is semantically entailed by ¥ then
one can derive the sequent ¥ ®. The correctness of a series of sequents,
i.e., the “proofhood” of a proposed high-level proof, can be quickly verified
using the decision procedure for the relation Fp_gz. Most importantly, proofs
in this high-level proof system can be much shorter than traditional proofs
based on the same rule set.

The high-level proof system just described for quantifier-free predicate
calculus can be modified to yield high-level proof systems for full first order
logic, or even Zermelo-Fraenkel set theory. A high-level proof system for first
order logic is described in [McAllester et al., 1989]. A machine verified high-
level proof of the Stone representation theorem for Boolean lattices, from
the axioms of set theory, is described in [McAllester, 1989]. In this earlier
work particular inference relations were shown to be polynomial time decid-
able without using the general notion of locality or the mechanical locality
recognition procedure.

The various high-level proof systems described above are all based on the
idea of separating an intractable inference relation into a combination of a

26

tractable rule set and a set of high-level sequent rules. Note that there is
no requirement that the tractable rule set be semantically complete. This
division should be done in a way that maximizes the power of the tractable
rule set. In the case of first order logic, the power of the tractable rule set can
be improved by using inference rules for a non-standard syntax. It appears
that a syntax based on certain features of natural language is particularly
effective. The use of natural language syntax in the construction of powerful
high-level proof systems is discussed in more detail in [McAllester et al., 1989)
and [McAllester and Givan, 1989].

9 Discussion

Several technical questions remain unanswered. First, although the above
procedure shows that k-bounded locality is decidable for arbitrary rule sets,
it is not known whether (unbounded) locality is decidable. Another open
question regards inference relations rather than rule sets. An inference rela-
tion will be called local if it is generated by some local rule set. It is possible
for a rule set R to be non-local and yet the relation kg is generated by some
other rule set R’ where R' is local — so the relation -z can be local even
though R is not. Given a rule set R can one determine if the relation g
is local? We will say that a relation is k-bounded-local if it is generated by
some k-bounded-local rule set. Can one determine if kg is k-bounded-local?

It seems likely that the definition of locality can be improved. Consider
the “natural” rule set NV given above. This rule set is not local but a trivial
syntactic transformation yields an essentially equivalent, but bounded-local,
rule set N’. In general, replacing formulas of the form (P s t) by formulas
of the form ((P s) t), i.e., Currying the predicate P, can transform a local
rule set into one that is not local. The fact that locality is sensitive to
such trivial syntactic changes suggests that a more robust notion of locality
is possible. Ideally, a definition of locality should have the property that
locality of an arbitrary rule set is decidable, locality of a rule set guarantees
that the generated inference relation is polynomial time decidable, and the
class of local relations is closed under certain simple syntactic transformations
such as Currying.

27

An improved notion of locality might also lead to improvements in the
refined tractability lemma. Ideally, one should be able to mechanically recog-
nize that the Boolean inference relation is linear time decidable rather than
quadratic as the tractability lemma would indicate. Similarly, the single rule
of transitivity generates a relation that is decidable in linear time, rather
than cubic. In both of these examples the more efficient algorithm can be
viewed as a tighter restriction on forward chaining inference. Automatic
construction of a fast congruence closure algorithm is perhaps too much to
expect — fast congruence closure is not simply a matter of tightening the
restriction on forward chaining inference. However, it may be reasonable to
invoke special case mechanisms for rule sets that include the equality rules
as a subset. Hopefully, the framework presented in this paper is only a first
step toward a more powerful, and more general, theory of tractable inference
relations.

28

APPENDIX: The Lifting Lemma

The lifting lemma can be stated as follows.

Lifting Lemma: Let R be a finite rule set and let T be a finite template set
such that T covers all extension events for R of rank j or less. It is possible
to compute a finite template set R(T") that covers all events of rank j + 1 or
less.

The template set R(T') can be constructed from R and T as follows.

Definition: Let R be a set of inference rules and let T be a set of event
templates such that any individual metavariable appears in at most one rule
or template (the rules and templates have all been resolved apart). We
define R(T) to be the set of event templates that can be generated non-
deterministically by the following procedure.

1. Let
O,

On

P

be a rule in R and let <oy, ¥,%, 11> ... <oy, ¥y, B, Tr> be tem-
plates in T such that there exists a metavariable substitution p such
that p(0;) = p(¥;) for 1 <i < nand p(eg) = p(e;) for 1 <i<j<n.

2. Let p be the most general substitution satisfying the above conditions.
3. Let a be the expression p(«;) for any «;.

4. Let {s;...s;} be the set of all top level proper subexpressions of p(®),
i.e., proper subexpressions of p(®) that are not proper subexpressions
of any (larger) proper subexpression of p(®).

5. Let {u;...un,}and {w; ... w,} be disjoint sets whose union is {s; ... sz}
and such that there exists a substitution p’ such that p'(u;) = p/(«) for
1<i<m.

29

6. Let p’ be the most general substitution satisfying the above conditions
for the selected expressions uj ... Up,.

7. Let o be p'(a).
8. Let &' be p'(p(®)).
9. Let ' be p'(p(Ur<ica(E:)))-

10. Let Y’ be the least subexpression closed set containing all of the fol-
lowing:

(a) All closed (variable-free) proper subexpressions of formulas that
appear in the rule set R.

(b) All proper subexpressions of X’
(c) All sets of the form p'(p(Y;)) for 1 <i<n
(d) All proper subexpressions of .

(e) The expressions p'(w1). .. p'(w,).

11. If o' is not a member of Y’ then output <o/, ®, ', T'>.

Lemma: If T is a set of event templates for R then R(T) is also a set of
event templates for R and if all templates in T" have rank j or less then all
templates in R(T') have rank j + 1 or less.

Proof: Let <o/, ®',%',T'> be some tuple in R(T). An event template is
just an event (which may contain metavariables) so we have to show that
this tuple satisfies all of the conditions for being an extension event for R.
Step 10 ensures that T’ is subexpression closed and steps 10a and 10b ensure
that T’ contains Q(R, X'). Step 10d, and the condition in step 11 that o’ not
be in Y’, ensure that o' is a one step extension of Y'. Steps 3, 4, 5, 6, and
10e ensure that every immediate subexpression of ® is either a member of
T’ or is equal to o’. This guarantees that @’ is a label formula of T/ U «'.

We must also show that the formula @' is a member of C}O{"j (2, T). Let
<oy, ¥, 5, 11> ... <op, Up, s, To> be the templates in T selected at step
1 of the procedure. Let p” be the substitution that maps every expression e to

30

p'(p(e)) where p and p' are the substitutions constructed in steps 2 and 6 re-
spectively. The construction of the substitution p’ ensures that ®’ is derivable
from p"(¥;)...p"(¥,) via a single inference rule. For each ¥; we have that
U;is a member of Cr”(%:, T:). Now we show that p"(Cr(Z;, Y;)) is a subset
of Cr(¥', T'). Let O be any formula in Cg(Z;, Y;) we must show that p”(©)
is a member of Cr(¥’, T’). Let D be a derivation of © from I; such that ev-
ery formula in D is a label formula of T;. p”(D) is a derivation of p"(©) from
p"(X). Furthermore, since every proper subexpression of every formula in D
is a member of T, every proper subexpression of every formula in p”(D) is a
member of T’. Thus p”(0) is a member of Cr(¥’, T'), and rho"(Cr(Z;, T:))
is a subset of Cr(Z',T’). Since ¥; is a member of CE"(5;, Y;), there ex-
ists a depth j derivation of p”(¥;) from p”(Cr(Z;, T;)). Since p”"(Cr(Z;, 1)
is a subset of Cr(%’,Y’), there exists a depth j derivation of p"(¥;) from
CR(E' T’). An argument similar to the one above shows that every formula
in thlS derivation is a label formula of T U {c/} and thus p”(¥;) is a member
of CE(x!, T’). But @' is derivable in one step from p"(¥;)...p"(¥,) and
thus ® must be a member of C&“+!(5, T/). O

Lemma: If T is a set of templates that covers all events with rank j or less,
then R(T) covers all events of rank j + 1.

Proof: Let £” be an extension event <a”, &, £", T"> of rank j +1 (the use
of double primes allows the names used in this proof to agree with the names
used in the above procedure). By definition, ®” is a member of C&7+}(Z, T)
but not a member of Cg’(%,T). This 1mphes that there exist formulas
Y. 0" in Cg #(Z",T") and an inference rule r of the form

0,

©n

®

in R that allows ®” to be derived from WY ... ¥” by applying a substitution o
to the inference rule. We have that 0(0;) = ¥/ and o(®) = ®". Let £7...&"
be the extension events <o, ¥y, E", T">... <a”, ¥ 5" T"> respectively.

31

Each event £ has rank j or less and thus each £/ is covered by some tem-
plate in T. Let £;...&, be templates <oy, ¥1,3;, T1> ... <an, ¥n, Zn, Tu>
that cover events £7...&) via substitutions p; ... p, respectively. We have
assumed that no metavariable appears in more than one of r, & ... &,.
Therefore we can define a substitution 7 such that for any metavariable z,
if z appears in r then 7(x) equals o(z); if z appears in &; then 7(z) equals
pi(z); otherwise 7(z) equals z. We now have

7(0;) = 0(0;) = ¥/

(W) = pi(¥:) = ¥/

(o) = pi(eg) = "
Thus we have that 7(0;) = 7(¥;) for 1 < ¢ < n and 7(e;) = 7(e;) for
1 <1 < j < n. So the substitution 7 satisfies all of the conditions given in

step 1 of the procedure. Let p be the most general substitution satisfying
these conditions, as constructed at step 2 of the procedure.

The substitution p is at least as general as 7. This implies that the
substitution 7 can be written as p followed by another substitution 7/, i.e.,
for any expression e we have that 7(e) equals 7/(p(e)). Let a be p(a;) as
defined in step 3 of the procedure. Since 7/(p(c;)) equals 7(o;) which equals
o, we have that 7/(a) equals o". The expression 7/(p(®)) equals 7(®) which
equals ®”. Thus 7/(p(®)) is a label formula of Y” U {a”}. This implies
that, for each immediate subexpression s of p(®), we have that 7/(s) either
equals o or is a member of Y”. Let u;...ux be the set of all immediate
subexpression u of p(®) such that 7'(u) equals o”. Let w;...w, be the
set of immediate subexpressions w of p(®) such that 7/(w) is a member of
T". Note that for each u; we have that 7/(u;) equals o” which equals 7' ().
Thus 7/ is a substitution that satisfies the requirement of step 5. Let p’ be
the substitution defined in step 6 of the procedure, i.e., the most general
substitution such that p'(u;) = p’(a) for 1 <i < m.

The substitution, p’ at least as general as 7/. As before, this implies that
7’ can be written as p’ followed by another substitution 7”, i.e., for any ex-
pression e, 7'(e) equals 7"(¢'(e)). We now have that for any expression e, 7(e)
equals 7"(p'(p(u)). Let o/, @', X', and Y’ be defined as in steps 7, 8, 9, and 10
of the procedure, and let £’ be the tuple <o/, &, %', T'>. We will now show

32

that £’ is an event template that covers the original event <o, ®", 3", T">
via the substitution 7”. We have that "(a’) equals 7(p'(«)) which equals
. Similarly, 7"(®’) equals ®”. Furthermore, a case analysis on steps 10a
through 10d can be used to show that /(') is a subset of Y”. This implies
that o' is not a member of Y’, otherwise we would have that 7”(a’) is a mem-
ber of 7/(Y’) and so o would be a member of T” which violates the original
condition that a” be a one-step extension of T”. Since ¢ is not a member
of T’ the tuple £’ is output by the procedure and thus is a member of R(T).
By the above lemma, £’ is an event template. Finally, we must show that
7"(X) is a subset of Cr(%”,Y"). The set 7"(%’) equals Ui<i<a T"(0'(0(%5)))
which equals Uy ;<,, 7(Z;). But by assumption, 7(0;), which equals p;(%;),
is a subset of Cg(3”,T"). O

References

[Constable and Eichenlaub, 1982] S. D. Johnson Constable, R. L. and C. D.
Eichenlaub. An Introduction to the PL/CV2 Programming Logic, volume
135 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1982.

[Downey et al., 1980] Peter J. Downey, Ravi Sethi, and Robert E. Tarjan.
Variations on the common subexpression problem. JACM, 27(4):758-711,
October 1980.

[Knuth and Bendix, 1969] Donald E. Knuth and Peter B. Bendix. Compu-
tational Problems in Abstract Algebra, chapter Simple Word Problems in

Universal Algebras, pages 263-297. Pergamon Press, Oxford, England,
1969.

[Kozen, 1977] Dexter C. Kozen. Complexity of finitely presented algebras.
In Proceedings of the Ninth Annual ACM Symposium on the Theory of
Compututation, pages 164-177, 1977.

[McAllester and Givan, 1989) D. McAllester and R. Givan. Natural language
syntax and first order inference. Memo 1176, MIT Artificial Intelligence
Laboratory, October 1989.

33

[McAllester et al., 1989] D. McAllester, R. Givan, and T. Fatima. Taxono-
mic syntax for first order inference. In Proceedings of the First Interna-

tional Conference on Principles of Knowledge Representation and Reason-
ing, pages 289-300, 1989.

[McAllester, 1989] David A. McAllester. Ontic: A Knowledge Representa-
tion System for Mathematics. MIT Press, 1989.

[Milner, 1978] Robin Milner. A theory of type polymorphism in program-
ming. JCSS, 17:348-375, 1978.

[Neal, 1989] Radford Neal. The computational complexity of taxononic in-
ference. University of Toronto, December 1989.

[Nelson and Oppen, 1979] Greg. Nelson and Derek Oppen. Simplification

by cooperating decision procedures. ACM Trans. Prog. Lang. and Syst.,
1:245-257, October 1979.

[Nelson and Oppen, 1980] Greg Nelson and Derek Oppen. Fast decision pro-
cedures based on congruence closure. JACM, 27(2):356-364, April 1980.

[Shostack, 1978] R. Shostack. An algorithm for reasoning about equality.
Comm. ACM., 21(2):583-585, July 1978.

[Shostak, 1984] Robert E. Shostak. Deciding combinations of theories.
JACM, 31(1):1-12, January 1984.

34

CET . D AE T T AT T Tl BAGE (Wha- e Enterann:

REPORT DOCUMENTATION PAGE BEF ORI CNSTRUCTIONS
! REPORT NUMBER 2. GOVT ACCESSION NO| 3. MECIPIENT S CATALOG NUMBER
AIM 1215 A223679
4 TITLE rend Subtitie) S. TYPE OF REPORT & PERIOD COVERED
Automatic Recognition of Tractability for Memorandum

Inference Relations

§. PERFORMING ORG. REPORT NUMBSER

AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(e)

IRI-8819624

David McAllester NO0O14-86-K-0124

PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT PROJECT, TASK
, i R R AREA & WORK UNIT NUMBERS
Artificial Intelligence Laboratory

545 Technology Square
Cambridge, MA 02139

11. CONTROLLING OFFICE NAME AN.D ADDRESS 12. REPORT DATE
Advanced Research Projects Agency February 1990
1400 Wilson Blvd. 13. NUMBER OF PAGES
Arlington, VA 22209 34
14 MONITQRING AGENCY NAME & ADORESS(If ditterent irom Controlling Olllce) 18. SECURITY CLASS. rof thie report)
Office of Naval Research UNCLASSIFIED
Information Systems
Arlington, VA 22217 s, DECL ASSIFICATION/ DOWNGRADING

OISTRIBUTION STATEMENT (of thie Report)

Distribution is unlimited

1.

ODISTRIBUTION STATEMENT (of the abetract sntered in Block 20, i{ ditlerent from Repert)

8. SUPPLEMENTARY NOTES
None
'9. KEY WORDS (Continue on reverse side Il necessary and identity by block number)
Machine Inference Theorem Proving.
Automated Reasoning Polynomial Time Decidability
Inference Rules Proof Systems
20. ABSTRACT (Continue on reverse aide Il necessary and identity by Mock number)
Abstract: A procedure is given for recognizing sets of inference rules that
generate polynomial time decidable inference relations. The procedure can
automatically recognize the tractability of the inference rules underlying con-
gruence closure. The recognition of tractability for that particular rule set
(continued on back)
DD ,55n'y, 1473 €oimion oF 1 NOv 6315 oRsoLETE UNCLASS IF1ED

S/N 0:02-014-6601)

SECURITY CLASSIFICATION OF THIS MAGE (When Deta Bnterec

Block 20 continued:

constitutes mechanical verification of a theorem originally proved indepen-
dently by Kozen and Shostak. The procedure is algorithmic, rather than
heuristic, and the class of automatically recognizable tractable rule sets can
be precisely characterized. A series of examples of rule sets whose tractability
is non-trivial, yet machine recognizable, is also given. The technical frame-

work developed here is viewed as a first step toward a general theory of
tractable inference relations.

CS-TR Scanning Project ‘
Document Control Form Date: {1 /103 /T4

Report # _Ai[N -]alS

Each of the following should be identified by a checkmark:
Originating Department:

N Artificial Intellegence Laboratory (Al)
[0 Laboratory for Computer Science (LCS)

Document Type:

[0 Technical Report (TR) x Technical Memo (TM)
O Other:

Document Information Number of pages: ___ 3%

Not to include DOD forms, printer intstructions, etc... original pages only.

Originals are: Intended to be printed as :
N Single-sided or [J Single-sided or
O Double-sided X Double-sided
Print type:
[Typewriter [Offset Press X Laser Print
[[] InkdetPrinter [] Unknown [other:

Check each if included with document:

N DOD Forma{ fss) [Funding Agent Form O coverPage
[(J spine O Printers Notes [0 Photo negatives
[J Other:

Page Data:

Blank Pagesy vage numben;

Photographs/Tonal Material ey page numben:

Other (note description/page number):
Description : Page Number:

Scanning Agent Signoff:
Date Received: _/ /03/94 Date Scanned: _tl /107/9% Date Returned: _lI /10 /9§

i
. . . J
Scannmg Agent Slgnature J‘A‘Z‘“M Rev 9/94 DS/LCS Document Control Form cstrform.vsd

Scanning Agent Identification Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the M.I.T
Libraries. Technical support for this project was
also provided by the ML.L.T. Laboratory for
Computer Sciences.

darptrgt.wpw Rev. 9/94

