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Figure 1: Lorenz Attractor

1 Introduction

Chaos is complicated, unpredictable and seemingly random behavior in a de-
terministic physical system. A system need not be complex, noisy or subject
to experimental, error to exhibit chaotic behavior: 'it need only be nonlinear.
This flouts the classic conception of determinism as expressed by Laplace:
44 given the exact position and velocity of every particle n the universe, [I can]
predict the future for the rest of time" 3 This vew is not only unrealistic
but actually untrue. Two objects at starting points separated by a distance
smaller than can be measured can follow vastly different paths through space.
Another important revelation about chaos is its universality. In the throes of
chaos, many different systems, from fluids to economics to the human heart,
act alike.

Chaos was first discovered in turbulent fluid flow, considered "the" un-
solved problem "in classical physics[5]. Fluid flow turns from smooth (lami-
nar) to turbulent as 'Its velocity increases. The classic explanation for this
[221 was that new frequencies appeared, one at a time, in the velocity and
density profiles. In the early 1960s a meteorology professor at MIT named
Edward Lorenz simulated the actions of an air mass between warm ground
and cool clouds,,Modeled by a smplified, version. of .the-Navier-Stokes equa-
tions for fluid flow[23]. The system traced out a never-repeating and yet
highly'structured path in 'Its phase space (pressure versus velocity,) as shown
in figure 1. If the classic scenario were correct, the pattern would eventually
have repeated itself. Lorenz also r ized the underlying cause - the non-
linearit in the avier-Stokes equations maps small causes into huge effects.
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Figure 2 Smale's Horseshoe

This was later termed the "Butterfly Effect": a butterfly stirring the air to-
day in Peking can transform storm systems next month in New York[12].
In the late 1960s and early 1970s, researchers in many different fields redis-
covered chaos, unaware of results that had been published in other fields'
journals'. After much proselytizing by the Dynamical Systems Collective at
UC Santa Cruz (distinguished by their use of an analog computer as well as
by their early interest in the field) and others, cross-fertilization took place
in the mid 1970s and the study of chaos and nonlinear dynamics has been
gaining momentum ever since. The intricate, beautiful patterns of nonlinear
dynamics, brought out by the graphics in various glossy books[25, 26], has
recently captured public interest, much as the universality of the theory has
aroused scientific interest.

Mathematically, the definition 6 of chaotic behavior requires: (1) sensi-
tive dependence upon initial conditions 2) topological transitivity and 3)
dense periodic points in the Poincare' section of the system's state space.
Sensitive dependence is iustrated by Smale's horseshoe, the nonlinear trans-
formation shown in figure 2 The points marked wth os start close together
and finish far apart; the points marked with xs do the opposite. A lin-
ear transformation such as the-stretch -which performs the-first part of the
horseshoe transformation, scales all distances in the same direction. The
nonlinearity - the folding - makes sensitive dependence possible and also

"Communication across the revolutionary divide is inevitably partial" 21].
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keeps the figure bounded in space. This gives a flavor of unpredictability to
the behavior, although only deterministic forces are present. A system in a
chaotic regime is random in the sense that the future cannot be predicted
without an infinite-precision knowledge of the present. A truly random pro-
cess can only be described in terms of average properties, whereas a chaotic
process is fully described by a (often quite simple) nonlinear equation. It
can be hard to tell the difference, especially in experimental data. Presented
with figure 3 a small section of a system's phase space that looks like an
evenly distributed cloud of dots it is impossible to determine whether the
system is random or chaotic. HoweVer, on a larger scale (as in figure 4 some
structure might take form, indicating that the system 'is not really randoM2.
Topological transitivity means that chaotic regions are connected: chaotic
trajectories are confined to one region unless perturbed. Chaotic and non-
chaotic regions - any number of each - can peacefully coexist, sometimes
intricately intertwined, on a system's phase space. Periodic orbits in a sys-
tem's state space appear as periodic points on a section of that space. This
apparently ordeily behavior seems 'out of place within" he cha6 et a one as
part of its definition; almost all of these orbits, however, exert no influence

2The same structure might appear wthin the apparent randomness in Figure 3 if more

data points were included; see the discussion of fractals later in this section.
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Figure 5: Series of Expansions

because they are unstable 3. These three criteria for chaos are commonly but
by no means universally agreed upon.

Although nonlinearity has been positively identified as a necessary condi-
tion for chaotic behavior, sufficient conditions (in real physical systems) are
not as clear. The usefulness of this body of knowledge is thus lmited since
one cannot, in general, predict where it wll apply. Some symptoms have,
however, been identified. When a system's characteristic period suddenly
doubles, one should suspect chaos. Repeated doublings make the diagno-
sis more sure. Chaos' patterns of 'structured randomness" on phase space
plots are very distinctive. Formal, mathematical evidence is sparse: "the
justification for classifying much irregular behavior as chaos depends on the
accumulation of numerical evidence and on experience with a few idealized
mathematical systems known to [have positive Lyapunov exponents]"[20].
These difficulties often lead papers in this field to take intuitive, informal
approaches to definitions, causes and effects. Chaos has reduced strict theo-
rists to classifying "clues" and stating that one outcome is more "likely" than
another. The highly intuitive understanding that such descriptions engender
is wonderful, but the informality can be frustrating at times.

A fractal 25] is a structure which looks the same under different power
magnifying glasses. The series o expansio -us in-,figure -shows this scaling
property. A cross section of this structure is a version of the Cantor set,
a line segment with the middle third removed ad infinitum: The Hausdorff

3External control has been used to stabilize systems at some of these periodic points

[15].

5



etc

Figure 6 Cantor Set

dimension of a set is strictly less than the topological dimension of the man-
ifold on which it lives and need not be an integer. For the Cantor set in
figure 6 which is neither a point nor a line, the Hausdorff dimension dh is

0.63. For a Cantor set with the middle fifth removed, dh= 076. A fractal 'is
a set that has fractional Hausdorff dimension. Fractal structure is common
in nature; examples are the bronchi in the human lung and branches on trees.
Perhaps the most striking example of this type of oject is the Mandelbrot
set. Beautiful photos of various types of fractals can be found in 26].

Fractals play a role in the universality of chaos: many chaotic systems
show fractal structure in their phase diagrams. In fact, figure shows itera-
tions of the system of nonlinear difference equations:

Xn+1 = C - X 2 + fly.

Yn+1 = Xn

with a = 124 and 0.4. The pattern we see is called the H6non attractor.
The map models, among other things, the patterns of a dripping faucet. See
Appendix B.

Since researchers have been alerted to its form, chaos' distinctive pat-
terns have been observed in many physical systems - often 'in previously
discounted noisy" data. Chaos can explain noise that doesn't act quite
right, that has some hints of structure. Some of the patterns of the ap-
proach of chaos have been identified, which could allow it to be diverted or
encouraged, as desired. Sensitive dependence on initial conditions' creates
a wealth of structure from simple system equations, which suggests a new
approach to describing complex structures or encoding information. Despite
its proponents' almost-religious fervor, however, chaos theory does not solve
every outstanding problem in dynamics.

One severe dr6*ba& of th6 theory_ 'is -its Iack'�of'j�ecess-a'ir�y"'and'�'�-u�--'I-ffici�ent
conditions. Another is the relationship between parts and whole. For exam-
ple, figure 3 can be constructed from figure 4 but the converse is not true
in general. Conflicts with thermodynamics also ase. Cream stirred into a
cup of coffee is a good example of this - the equations governing interac-
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tion of the spoon and the small volume elements of fluid are deterministic
and yet the mixing sends the system down the (unclimbable, by the second
law of thermodynamics) entropy hill. Chaos theory says that the process is
reversible in principle, but that any'tiny slip of the spoon will scotch it. The
paradox may eventually be reconciled if the "tiny slips" are proved to be
unavoidable. It is also difficult to reconcile chaos and quantum mechanics;
this is part of the bigger problem that the latter has with the world as it is
portrayed in classical mechanics. Schro'dinger's equation is linear. Because it
describes the fundamental constituents of matter, one should theoretically be
able to use quantum mechanics to describe anything at all, but the linearity
theoretically precludes any chaotic behavior!

The rest of this document is organized as follows. One section is devoted
to each of four papers from the current literature and one section to a sum-
mary. The first paper describes a body of theory and the next three describe
applications of that theory to different physical systems: an electronic circuit,
a chemical reaction, and a system of satellites in the solar system.

7 -
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2 Theory

Lagrangians can be used to write N first-order differential equations describ-
ing any N degree-of-freedom system; such a system has a 2N-dimensional
state space. If the systemi's linear, solving the equations is a matter of linear
algebra'. A simple harmonic''Oskillator is an example of this type of system:

dx (2)
dt y
dy
dt _X

Nonlinear equations are harder, and often impossible, to solve in closed form.
The simple pendulum's equations:

dO (3)
dt

dw 9-- sinO
dt -1

which reduce to a scaled version of the system 2) if < can be solved
in closed form using elliptic functions' but this tractability is unusual. Most
nonlinear systems, like the Van der Pol oscillator in appendix A, whose equa-
tions are:

dx (4)
dt y

dy (x ay - y')
dt

must be integrated numerically. Confronted with such equations, one tries
to find constants of the motion, such as energy or momentum. Each such
constant can be used to reduce, by substitution, the number of equations
that remain to be solved; finding 2N of them solves the system completely.
Systems in which this holds are described as integrable. System trajectories
then follow curves of constant energy, angular momentum, etc'. Many math-
ematical tricks have been developed to aid in finding these useful quantities;

4In fact, elliptic functions were invented to solve this problem
5If the Harniltonian H is time-independent - that is, if potential and kinetic energy

1, y of-positions andvBlocities -----.:,.then H itself, isa constant 4 -the motion.
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see for example, 13, page 55] and the dcussion of Lyapunov exponents
later in this section.

Chaos can only arise 'in nonlinear systems, but not all nonlinear sys-
tems are chaotic - only those that are non-integrable[16]. Non-integrable
equations are often well-behaved for some parameter (coefficient) values and
chaotic for others. Only a er -few nonline'ar"p'roblems - the simple pendu-
lum and the two-body problem, for example - have integrable equations, so
one need not look far to find a chaotic system. Finding out what parameter
values push the system over the edge may not be so easy.

Three dimensions are required for chaos in continuous time systems, but
only one is needed for chaos in iterated maps; this implies, among other
things, that a double pendulum has enough degrees of freedom to be chaotic,
whereas a single pendulum does not (unless it is driven.) Chaotic maps fold
manifolds, forcing trajectories to cross over each other. The uniqueness the-
orem causes an obvious problem with this in 2-space, but an extra dimension
allows trajectories to cross over one another wthout touching (which would
cause one starting point to have -two future solutions.) Iterated solutions
escape this requirement because they define time in clicks, changing the def-
inition of "at the same time" - essentially, a crossing-over point can hide
between snapshots.

In a review paper[8], Eckmann treats non--integrable systems that 'are
well understood for some value of the control parameter" and that mutate
from order to chaos as the parameter-is changed. He also restricts discussion
to dissipative systems, for reasons discussed in the next paragraph. System
evolution equations are presented either in the form of equations (1), for
iterated maps, or in the form of the systems 2), 3) or 4) for continuous-
time systems.

An attractor 'is a region in phase space into which a trajectories within
some larger enclosing region converge. In figure 7 W 'is the attractor and V
is the "basin of attraction" (cf. the Atlantic ocean and the terrain east of the
continental divide.) The formal definition also requires W to be indecom-
posable (i.e., in one piece.) Attractors appear once transients have died out.
An attractor can be a fixed point (like vc= iL= in an RLC circuit), a
limit cycle (a sine wave generator), an n-torus (n signal generators generat-
ing a Lissajous figure on an n-input oscilloscope), or something much more
complex, like the Lorenz attractor in the introduction. Most non-disSiDative
systems, like LC circuits, have closed orbits. These aren't attractors because
they don't vacuum up nearby trajectories. iouville's theorem states this
formally: non-dissipative or conservative mappings preserve the volume of
phase space. Only dissipative mappings, which contract phase space, can
have attractors.

9



Figure 7 Definition of an Attractor

The definition of a strange attractor, one of the phase space signatures of
a chaotic system, has one additional clause, embodying "sensitive dependence
upon initial conditions.' Eckmann's definition differs in tone from the rest
of the literature, including the writings of the men who discovered 23] and
named 29] strange attractors. He points out rghtly) that "although [the
dissipative map] contracts volumes, 'it need not contract lengths', and follows
this reasoning to the conclusion: 'points which are arbitrarily dose initially
may get macroscopically separated on the attractor after sufficiently large
time intervals." In direct contrast, other authors 14, 29] emphasize that
the time intervals need not be large at all. Helleman notes a 16 order-of-
magnitude change 'after a short time[16]." AU of these statements suffer
from an ill-defined notion of "large" and small" in regard to tme; the time
scales of sensitive dependence are dscussed further at the end of section 2.
As was the case with the definition of chaos, there are as many (slightly
different) definitions of strange attractors as there are authors writing about
them. One of the most popular identifies strange attractors as those with
fractional Hausdorff dimension.

As mentioned in the first paragraph of this section, variations in equation
parameters can change order into chaos. These variations can also alter the
topology and texture of the phase space, making attractors change shape or
size. Figure shows a series of snapshots of the behavior of some typical sys-
tem, taken at different times during the transformation from order to chaos.
The left column is the time domain, the middle the frequency domain, and
the right column-a projection of the phase space--(velocity agaffist position).
The value of the "nonlinearity parameter" is lowest at the top and highest
at the bottom. The top two rows of graphs show period-one and period-two
limit cycles and the bottom row shows the system after the onset of chaos.
The attractor on the bottom right is aperiodic. and the corresponding fre-
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Figure 9 Poincare' Section

quency spectrum shows broad-band energy (which is in general not noise, or
else it would have appeared on the two previous spectra, assuming 'identical
conditions for all three experiments)-

Two other graphical tools are extre 'mely valuable - the Poincare' section
and the bifurcation diagram. The former i's an n - dimensional cross section
of a region in n dimensional phase space. A two-dimensional Poincar' section
of the trajectories in figure is shown in figure 9 A bifurcation diagram, as in
figure 10, is a stack of Poincare' sections (or projections thereof, to reduce the
dimension and make the picture easier to understand), measured or computed
at different values of the parameter. The three vertical lines in figure 0
correspond to the dashed lines in figures and 9 On these axes, period
doublings appear as pitchforks and chaos as dark bands of dots. The veiled
lines within these bands correspond to areas of the Poincare' sections that cut
through an attractor where its threads are dense. Note the windowsof order
in the cha ti be pi ure 20, page 173] shows further period
doublings within these wndows. The merging of the chaotic bands 'is caused
by topological changes in an attractor and is termed "reverse bifurcation."

12
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Figure 10: Bfurcation Diagram

The Lyapunov exponent is defined as:

1 N dF
A = i E In -- (x,,,) (5)

N-+oo N n=1 dx

A function that has a negative A in some region is said to be "stable in the
sense of Lyapunov;" its trajectories are attracted to some proper subset of
that region. A measures how fast neighboring trajectories separate; a pos'_
tive A is an alternate definition of chaos. Note the correspondence between
bands of chaos on the the bifurcation diagram in figure 10 and positive As on
figure 11. The arrows indicate the prameter values marked b dashed lines
on several previous figures. Zero As correspond to ntegrals of the motion,
which can be practical: integrals foithe Toda problem were found only after
their existence was suggested by zero As in numerical data[111.

A correlation graph is a plot of x against 'its previous values. This is an
ideal format in which to present data from, say, a dripping faucet, with the
intervals between successive drops -as the x 12, page 262] 3 page 55] A
regular, period-one flow looks like a single dot on such axes. A long/short
interval pattern would be dots on two corners of a rectangle whose sides are
the lengths of the intervals. Fot high flow rates a faucet's drip rate becomes
aperiodic, manifesting as a structured cloud of points on the correlation graph
(in fact, the structure appears to be a variant of the He'non attractor shown
in the introduction and in appendix B.)

Eckmann uses these tools with the exception of the LyAp-4n9y.exponent
or`- r�l at � I o n " Ai a gr am, and

and the c with the addit on of the eigenvalues of
the system's Jacobian, evaluated on the fixed attractor, to classify system
dynamics. He analyzes three scenarios, or "paths to chaos", which a system
can follow as a parameter is varied. This is not a standard scientific approach:
if some conditions are met then other things are "likely" to happen. This

13
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form of analysis capitulates to the unformed nature of chaos theory; it 'is very
effective but it makes its author uncomfortable. A whole page - 10% of the
paper - is devoted to disclaimers like: "The theory is completely general,
but it cannot describe its domain of application" and Results cannot be
generalized."

Each of the next three subsections analyzes one of these scenarios. For
each case, the mathematical statement given in [8] is translated into English;
its implications in an experimental setup are then assessed. The form of the
characteristic signature, on at least one of the different plots given in section
1) is given for each. These signatures will be used in sections 3 4 and to
classify data from the the three applications papers.

2.1 The Ruelle-Takens-Newhouse Scenario

A Hopf bifurcation occurs when a stable fixed point splits into a repelling

fixed point and a stable lin-�t cycle - the structure found in the phase
diagram of a Van der Pol oscillator (see appendix A.) This transformation
takes place when a pair of complex eigenvalues of the system's Jacobian cross

14
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the imaginary axis as the parameter changes. The frequency of the new limit
cycle is independent of existing system frequencies.

Given this definition, the Ruelle-Takens-Newhouse scenario for the onset
of chaos can be stated as follows: if a system undergoes three Hopf bifurca-
tions and its vector field holds certain properties over a certain type of set,
then the system possesses a strange attractor'. This scenario 'is the oldest of
the three and is omitted from many modern texts 6 33].

Exact verification of this scenario requires knowledge of the exact equa-
tions that describe the system. This is realistic when one is smulating math-
ematical equations, but impossible for a physical system. C2 neighborhoods
in Axiom A vector fields" are hard to identify in noisy, inaccurate experi-
mental data, so some characteristics or clues must be distilled out of the
description.

The signature of this scenario is the successive appearance, as the non-
linearity is turned up, of up to three independent frequencies on the power
spectrum, followed by the sudden onset of broad-band "noise" -underneath
the peaks, much like the spectrum on the bottom line of figure .

2.2 The Feigenbaum Scenario

The definition of the conditions that gve rise to the Feigenbaum scenario is
much more exact (and complicated) than that of the Ruelle-Takens-Newhouse
scenario. The proof involves defining a space of functions and proving that
the sequence f, f2, f4,... (the functions whose fixed points are cycles with
period 2 4� the bifurcation points of f) converges. Feigenbaum's
original paper [10] gives a simpler explanation and derivation based on scal-
ing or renormalizing curves near fixed points. The complex proof alluded to
above was developed later by Eckmann and others[4]. Again, this formalism
is all moot; one cannot measure convergence on a function space for physical
data. Feigenbaum concedes this point: "If [a flow exhibits period doubling],
our theory applies. However, to prove that a given flow (or any flow) should
exhibit doubling is well beyond present understanding. All we can do is
experimental

The mathematical "if') part may be more complex than the previous sce-
nario, but the-clues that-cAt"be distilled from-the""then" arent ir e m- 'u-c-_h ''more

concrete and widely applicable. Feigenbaum systems undergo an infinite se-
quence of period-doubling bifurcations of stable periodic orbits (pitchfork
bifurcations) at specific ntervals of parameter and amplitude. In contrast
to the previous scenario, there is only one independent frequency; all others

15
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are subharmonics. The intervals between bifurcations decrease steadily, pa-
rameterized by the constant . The bifurcations thus get closer and closer,
converging at the "accumulation point" or onset of chaos. See figure 12.
Feigenbaum predicts, in the limit of large i and independent of the details of
the system, within bounds 6:

Ai = 8 4.6692...
Ai+j

ei
2.5029...

ei+1

This has been repeatedly verified in the literature, both numerically and
with data from physical systems. The bifurcation diagram in figure 10 was
obtained by iterating the logistic map, which originated in population mod-
eling:

Xn+1 =KXn(1 - Xn) (6)

The horizontal axis is K. Values of K, and a are shown in table for the
first three bifurcations. a is given for the topmost set of branches on the
tree. The as and bs aren't exactly 250.. and 466.. - those, values hold
only in the limit of large Detection of more bifurcations would require
more decimal �Aaces f6r- ai�mker' 's'pecific-ation and hence would became

itsimpossible at . where bts is the number of bts used to store a floating
1092 0)

'This applies to any any function that can be approximated, near its maximum, as a

parabola.
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Periods K Interval 6 a

4 3.445 0.445 2.424

3.542 0.097 4.588 2.107

Table 1: Measured Values for and a

------ 2N.-L-

�Iql -

#lb 0%

� < 2 >

A

f I 1,
frequency frequency

increasing nonlinearity

Figure 13: Feigenbaum's Scenario in the Frequency Domain

point number in the computer. This resolution limit affects observations as
well as parameter specifications: the nh bifurcation causes a "pitchfork" that
is a-n wide and the computer deems differences below bil, to be invisible.

These issues are discussed further in section 24. 1092 0

On a frequency spectrum, as shown in figure 13, this scenario 'predicts
that 2 n spikes will appear, as the parameter increases, at the 2 n th sub-
harmonics of the fundamental. A spectrum wit h an odd number of spikes,
or with spikes at independent frequencies, would violate this condition (but
might fit the Ruell'e'-T�kens-New-b:o"u's--e Scenario.) different scenar-
los could hold at the same time in different regions of phase space. and e

govern (respectively) the values of the parameter at which new spikes appear

and their heights at each frequency. At the accumulation point, where the
size of the bifurcation branches reaches zero, the chaotic regime begins. Eck-

17
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mann contradicts himself in the description of the chaotic spectrum: "...one
will observe aperiodic behavior, but no broad-band spectrum." Aperiodic
behavior is usually thought of as broad-band. Frequency spectra which fit
the Feigenbaum pattern have been found in many experiments. It is perhaps
the most widely understood and accepted "path to chaos."

2.3 The Pomeau-Manneville Scenario

The statement of this scenario 'is the most qualitative and least mathematical
of the three in Eckmann's paper. It is imprecise in that "there is no mention
as to when the 'turbulent' regime is reached or what the exact nature of this
turbulence is [8]." A "saddle-node" bifurcation occurs when two fixed points,
one stable and one unstable, meet and annihilate one other. If such an
event occurs, the system will exhibit "intermittently turbulent" behavior of
random duration, interleaved with long stable periods. The length of these
stable periods increases with the proximity of the two fixed points and is
familiar to anyone who has ever trimmed an oscilloscope probe - the pole
leaves a long, slow exponential tail on the step response.

This behavior is best illustrated on a "return map" - probably the most
common expository device used in chaos articles in popular science 'magazines
[3, 20]. For example, the equation

2x,,+ = - Rx,,, (7)

describes a parabola in (x,,+l) xn)-space. Repeated iteration's can be graphi-
cally computed by drawing lines between the'parabola and the 45 degree line
(where Xn+ = Xn), as shown in figure 14. This trajectory closes in on the
fixed point along a squared-off spiral. If the nonfinearity (R) is turned up, the
parabola rears higher and its slope at the fixed point increases. When that
slope reaches one, the point loses its stability and a pencil point bouncing
between parabola and 45 degree line will find two fixed points: a bifurcation
has taken place. The plots in figure 15 show the sequence of iterates for
these two cases. The ordinate is iteration number (n) and the abscissa isXn-

These data can also be plotted in correlation form, in Xn+11Xn -sp ace, as
in figure 16. When R reaches 2,.the system goes chaotic. The pencil point
bounces all over the parabola and the iterates cover the range (figure 17.)
VonNeuman'n- actually used this p-rVcular'ffiap-p-i`ng as a n6tie�11y'veryran-
dom) random number generators. The clustered points correspond to the
veiled lines in the bifurcation diagram and the clotted areas in the attractor.
Seen on a return map, the iterates slowly cover the parabola.

If the parabola is close to the 45 degree line but does not touch it, the

18



Iteration
(n)

xIn

mmill mo II I-III, , - moolmom

x
n-

I

Figure 14 A Return Map for Equation 7)
Ixn

x
n

i
4I

Figure 15: Iterates of Equation 7)

x
I rf+ I

x
n+l

Figure 16: Iteratesof Equation 7) in orrelation Form

19



itoration

Figure 17: Chaotic Iteration, Sequence
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Figure 18: An Almost-Fixe.d Point

iterates appear to be converging to a fixed point, but then pass the point
of closest approach and diverge, as in figure 18. If the distance between
curve and 45 degree line is small, the system can appear to be at a fixed
point for a while and then collapse into chaos. The smaller the distance,
the longer the apparent stable orbit lasts. This transient stability appears
in iterations of equation 7) as well as the logistic map - equation 6 -
both upon entry to and exit from chaotic regions (Eckmann only discusses
the onset of chaos). Iterates of equation 7) for parameter values 'ust below a
band of order within a chaotic zone are shown in figure 19. In these graphs,
the system appears to be "trying to find" the same period-three solution
from two slightly different starting points 20% and 21 %- of full Locale). Note
that the two sequences are very different, even at the beginning, despite the
close starting values. The time constants of the tails seem to be the same
in all "laminar" regions, but the duration of those regions varies. This is
consistent with an iteration sequence entering one near-approach zone from
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iteration

Figure 19: Mix of Periodic and haotic Behavior

Figure 2.- Convergence to So' 'tions

various paths'. If R 'is increased slightly, the parabola touches the 45 degree
line. Iterations of this equation (figure 20) then converge to the solution that
they seemed, in figure 19, to be seeking.

Eckmann points out several shortcomings of this scenario some of which
are caused by mathematical looseness. He found the reports of experimental
data to be sparse and unconvincing. There are no defined long-range pre-
cursors to intermittency - the effects of te colliding fixed points are only
felt when they approach each other The Pomeau-Manneville scenario does
not exclude the other two scenarios described. In fact, Feigenbaum uses the
very same logistic map to illustrate his scenario[IO]. Despite its drawbacks,
this scenario does explain the perplexing regions of order in chaotic iteration
sequences.

7Period-three cycles are sgnificant for another reason: Sarkovskii's theorem states that

if a one-dimensional iterated map has a period-three cycle, 'it will not only exhibit chaos

but also have a period-n cycle for n > 3 6.
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2.4 Noise

Papers on chaotic behavior often take a paradoxical approach to noise. One
would think that sensitive dependence on initial conditions, the very heart of
chaos, would amplify any external noise and obliterate the underlying behav-
ior, yet many authors dismiss this 'issue most out of hand. The explanation
centers on the denseness with which chaotic trajectories cover the attractor
densely. Noise bumps a point onto a nearby trajectory where it would even-
tually end up at some point in the system's evolution anyway. Noise does not
change the character of the attractor, it just changes the order 'in which the
whorls are traced out. An apt analogy is that "it gives one more shuffle to
a well-shuffled deck of cards[12]." The attractor is bounded in space, due to
the nonlinear folding illustrated by Smale's horseshoe, so the nonlinear am-
plification doesn't get out of hand. The Beta-shadowing theorem formalizes
the statement: "With high probability, the sample paths of the problem with
external noise follow some orbit of the deterministic system closely[8]." The
Ruelle-Takens-Newhouse scenario uses this reasoning to sweep noise under
the rug.

Information theory leads to another interesting approach. It has been
noted 19] that the amount of 'Information lost per iteration is -- , where A is

bits
the now-farniliar Lyapunov exponent and bits is the number of bits needed to
store the information. By definition - finite'-precision computer arithmetic
or Heisenberg uncertainty principle -initial conditions cannot be specified
to infinite precision and chaos spreads this finite-width 'Initial value band over
the entire attractor after bit, iterations (see 3, page 52].) Noise has the sameA
effect as imprecise specifications. Of course, if the band straddles some basin
boundary, the repercussions will be global and related only to the probabilis-
tic description of the noise'or to the way the computer truncates numbers,
not to the system's dynamics. This is where the "with high probability" part
of the Beta-shadowing theorem breaks down. Basin boundaries can be very
complicated - even fractal - and so can occupy much of the phase space.
Systems where this occurs are pathologically sensitive to noise.

Noise on the output of an amplifier is not as much of a problem as noise
on its input, but can still obscure measurements. On a calculator with six
decimal places, two of which are obscured by numerical noise, solutions that
cycle between 1000002 and 1000007 are indistinguishable, nor will the cal-
culator find the predicted solutions if-parameter,-values are.entered that differ
only by 000001 and are above and below some high-order bifurcation. The
constant embodiesthis in the Feigenbaum scenario: the noise must have a
x-times smaller variance for one more bifurcation to be visible.
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Figure 21: Nonlinear Osciflator Circuit

3 Applications Nonlinear Oscillator

Testa et a] 32] analyze a nonlinear oscillator, shown in figure 21, consisting
of a series RLC circuit driven by a sine wave source. The capacitor 'in this
circuit is actually a N953 varactor, which acts like a diode under forward
bias and like a nonlinear capacitor under reverse bias, with

coC (8)
+ 0.6

The differential equation for the system is:

diL + CO d VcL RiL + Vo sin f t (9)
dt + dt

0.6

The voltage-controlled capacitor makes the equations nonlinear and non-
integrable. For low voltages, the square root term is close to one and the

Icircuit acts like a linear RLC circuit, with a resonant peak at wre, =
Testa et a] givefe, as 93 kHz, but the component values gven in the -paper
suggests e,= 91.9 kHz. As Vo increases) the nonlinear capacitance shrinks
and fr,, rises.

In these experiments, Vo is the nonlinearity parameter and is the
system state. -The former is_xaried to-generate-a bifurcation -diagram (with
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Periods V0 Feigenbaum Prediction

1 2 _0.639

4 1.567

8 1.785 1.766

16 1.83-6 1.832

1.853 1.847

Table 2 Observations and Predictions

Vc on the y-axis) and a spectrum (with the frequency of on the yaxis)
for the circuit. The authors deal with the one additional variable, the voltage
source frequency, by fixing it near f,,., This decision is discussed later in this
section. Generation of the bifurcation graph required a window comparator
and simultaneous x and y sweeping of the scope beam (with and ,
respectively.)

The data resemble the bifurcation map for the logistic map (equation 6)).
The first five period doublings table 2 match Feigenbaum's predic-
tions quite well. The intervals approach a limit at = 1856, the onset
of chaos. Beyond this threshold, wndows of order appear wthin the chaos,
all with periods that are a multiple of three (again, see 35].) Also appar-
ent is the "veiled structure" of the attractors seen in cross section and the
band-merging of reverse bfurcation. The frequency spectrum, taken just
below the onset of chaos, also matches the Feigenbaum scenario very well.
Peaks appear at the fundamental and its subharmonics. All but one of their
heights match the predictions made in [8] and in [10]. K, the measure of "how
much noise is required to obliterate a bifurcation also correlates well with
Eckmann's predictions 6.3 measured, 662 predicted.)

Two things are troubling about this paper-. First of all, the authors fix
the driving frequency of a resonant circuit without giving any explanation.
Some discussion of why a value "near f," was chosen and how behavior
changes with frequency would seem necessary; electronic circuit models can
be drastically. different-at -high and low frequencies -Judging by�an unsuc-
cessful attempt to build the circuit and reproduce the experiment, it would
seem that the choice was not at a arbitrary- No period doubling and no
chaos were observed. The behavior was exquisitely frequency dependent, due
to the nonlinearity and the hgh Q. At low frequencies, the capacitor volt-
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Not

age does indeed do odd nonlinear things as the source voltage is turned up,
but harmonics, not subharmonics, appeared, Above f,,, the system looks
more linear (mainly because the rolloff lowers the amplitude and anything
looks linear in small enough increments.) Slightly different component values
were used (L = 0 mH, R = 27 and a varactor" - the collector/base
junction of a 2N6193 power transistor -- with a slightly smaller Co) than
those given in 32]. It is quite likely that this system is so sensitive to equa-
tion coefficients that these slight changes pushed the period doublings and
chaotic behavior right off the observable voltage scale, or even forced the
system into a non-chaotic zone. The driven damped pendulum, governed by
an almost-identical equation, is extremely sensitive to the drive: its param-
eter space (drive frequency vs. amplitude) is honeycombed with zones of
order and chaos[7]. If the experiment 'is so tcklish as to preclude repetition,
then the authors should either say so or explain why the chosen parameters
cause chaotic behavior when other nearby parameters do not (as given, for
example, in 7)

Secondly, the authors "assume a correspondence between [the oscillator
and the logistic map] down to the details of equating Vo wth K and C
with x, again without explanation. The universality of chaos may be the
answer: "As long as the model is 'in the same universality class as the real
system, both will undergo a period doubling sequence... This means that we
can get the right physics out of very crude models... [5]" It is not obvious
why this oscillator and the logistic map are in the same universality class
(loosely, this means that they have the same number and power of terms in
their power series.) Some formal 'ustification seems warranted. The fragility
of this correspondence 'is illustrated by comparisons between oscillator data
and logistic map prediction for : deviations ranged from 10% to 30%. Com-
parisons to Feigenbaum's a and c. and Eckmann's , only had 3 4 and
4% error (respectively). These numbers also come from an approximation,
but it is obviously a better one.

This experiment clearly fits into the Feigenbaum scenario because its
bifurcations follow the pattern defined by a, and -K. It does not fit the
Ruelle-Takens-Newhouse scenario - too many spikes appear before the onset
of chaos. It is impossible to determine its match with the Pomeau-Manneville
scenario; there may well be one or more saddle-node bifurcations, but none
were captured in the published data. Another paper on this subject by these
authors does pesent observations of s4cha,. bifurration[27]._,
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4 Applications �� Belousov-Zhabotinski' Re-

action

The Belousov'-Zhabotinskii reaction is one of the most colorful examples 'in
nonlinear dynamics'. As five chemicals - ferroin, malonic acid, sodium
bromate, sulfuric acid, and cerous ion - are injected into a reactor, concen-
trations of different brightly colored ions vary chaotically in space with time
and injection rate9. This experiment 'is different from many others in the
chaos literature in that it is not easily repeatable with a computer, a box
of resistors, or a dripping faucet; 29] gives the recipe, but cautions "Per-
haps the mathematical reader should be wrned that dluting sulfuric acid
produces heat..."

The prameters of this experiment are best described by analogy to the
nonlinear oscillator of the last section. The sine wave source 'is equivalent
to the injected chemicals; the nonlinearity parameter of voltage amplitude 'is
replaced by "residence time', which is directly related to injection rate. Dis-
sipation, provided by the oscillator's resistor, manifests here as the continual
consumption of the reactants. Fnally, system behavior is measured not in
voltages but in ion concentrations at a point in space.

Hudson and Mankin 191 present ion concentration data at three residence
times. Two of these data sets show periodic behavior and one is chaotic. The
authors' stated purpose is not to trace the path to chaos, but simply to prove
that the apparently aperiodic behavior that was observed is indeed chaotic.
They do mention that period doublings occur as the nonlinearity (residence
time) is turned up, eventually resulting in semi-random behavior, but this
issue is pursued no further.

Almost all of the tools introduced in sections and 2 are used 'in [1 9]. Ion
concentrations are plotted against time, frequency, each other, their deriva-
tives and their delayed values. The two latter cases require some justifi-
cation, as derivatives and delayed values are in some sense 'manufactured
variables." They are, however, ndependent variables; for a nA-order system,
the use of any n independent quantities uniquely specifies the behavior. An
n-dimensional state space can even be reconstructed from a single stream
of time-series data gathered at a single point[9]. Using a different set of n
variables smply brings-out a -different view of the state space.-

'Excepting computer graphics.

'The ferroi serves only to bring out the colors, so 'it is omitted from serious studies

like 91.
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At low residence time, the phase space and time domain plots of the
bromine 'ion concentration show period-two oscillations. At a higher injection
rate the plots- are aperiodic and a strange attractor takes form on the phase
plot. One final, higher value puts the system into a period-three window in
the chaos band. The origin of the second column of phase plots in figures 3
and 4 of 19] is a mystery; the authors refer only to plots of a single quantity
(Br-). Perhaps the other column shows data for the other ion (Pt+)?

The frequency spectra of these three concentrations look qualitatively
different from those measured in turbulence or electronic experiments: both
background noise and the broad-band noise that accompanies chaos are quite
frequency-dependent. This is not addressed and may be due to the probes
used to gather the data. The authors' viewpoint on this noise is also qualita-
tively different. They speak of frequency peaks dsappearing with the onset of
chaos where Eckmann and others note the appearance of broad-band energy
which obscures the peaks. The tips of the peaks are still visible in the chaotic
ion concentration data, so the latter description seems more appropriate.

The second half of the paper concentrates on the chaotic data set. A
transformation on the phase space, of the type discussed in a previous para-
graph, is performed and some very tentative conclusions are drawn from the
attractor's shape on the new axes. The return map'o (see figure 14]) is plot-
ted for a particular cross section of the phase, space and is analyzed in depth.
The authors present results of a complicated curve-fitting procedure, used
to compute the Lyapunov exponents of that return map. As are invariant
(a return map from a different cross section would have the same A 5, page
11]) and, as mentioned before, are direct 'Indicators of chaos. For the data
set under consideration, A = 062. This value is extremely sensitive to the
parameters of the curve fit. The -authors convey this concept in an interesting
way, varying these parameters and generating a matrix of As. One quarter
of the values turned out negative, so slight changes in the return map could
result n periodic flow (cf. the frequency dependence of chaos in the crcuit
in section 3 Finally, sensitive dependence upon iitial conditions is inus-
trated by tracing the path of iterates from a narrow band of 'Initial values
to a chaotically-distributed batch of points on an attractor (much like the
figure on page 52 of 3]).

For a variety of reasons, it is difficult to fit this experiment into one of
Eckma 'nn7s slots. The authors do not present a series. of snapshots of the
system as -it enters chaos - -They -o allude-briefly to chaos following, upon
the heels of period-doublings, but they do not discuss' the mechanism of

10Hudson and Mankin's terminology is confusing; thi's is called a "next-amplitude map"

in their 'Introduction and a "return map" for the rest of the paper.
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the transition - they give only a description of the finished product. The
frequency spectra do not match any of those given 'in [8]. The frequencies
do not appear to be independent and yet they don't follow the Feigenbaum
subharmonic sequence. The heights of the peaks seem to fall off smoothly,
as opposed to the sawtooth pattern defined by and c. This pattern is
unique among the papers reviewed for this paper; another paper on the same
reaction 28] seems to show frequency peaks in the Feigenbaum sequence,
but the scale only includes a few bfurcations. This may indicate an entirely
different path to chaos.

5 Applications Solar Systern

'Solar system dynamics encompasses the orbital and rotational
dynamics of the planets and their natural 'satellites, the coupling
between them and the slow evolution of the orbits and spins due
to tidal friction. It is primarily the dynamics of resonances, and
resonances are almost always associated- with chaotic zones." 34]

Chaos in the solar system should be of absolutely fundamental interest to
its denizens. From an experimental standpoint, this syst em 'is very different
from an RLC circuit or chemicals 'in a vat and not just because of size.
Time scales are vastly longer than 'in the previous two examples. The tools
of choice are plots in the phase space and the time domain. Except for tidal
friction and the occasional collision, dissipation does not exist. Recall that
dissipation is not a necessary condition for chaos * st for the existence of
attractors.) The tme scales of these exceptions are so different from the
others in the system that they are treated asperturbations. The tides may
be thought of as causing ob'ects to wander slowly across the phase plot of the
non-dissipative system, rather than as causing the phase plot to evolve with
time. Because the system is so large and complicated, many more forces have
first or second order effects on the solution than in electronics, fluid dynamics
or chemistry problems, so approximation accuracy is very important.

One example where modeling is extremely important is the chaotic rota-
tion of Hyperion, one of Saturn's moons. Anv aSDherical satellite is sub 0 ect

W A Jto restoring tor hich try synchr 'ze the, spin withAhe rotation -ques w oni
hence the "dark side of the moon'. Tidal forces also align the spin axis, the
largest moment of inertia, and a vector perpendicular to the plane of orbit.
Wisdom used this alignment a's an assumption in the first-order model in
[34]. The resulting equation cannot be solved in closed form: the time de-
pendence of the torque, caused by Hyperion's highly eccentric orbit, makes
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it non-integrable". Numerical integration yields a complicated phase dia-
gram, plotted in the phase space of angular velocity versus angular position,
showing a large chaotic region clotted with periodic islands. The orbit was
sampled at periapse, the point of closest approach to Saturn. The islands
correspond to resonances like the spin-lock of earth's moon.

This model cannot account for chaotic tum ling because one of its as-
sumptions was to fix the spin axis relative to the plane of orbit. If this
condition is relaxed the spin axis i's found to be wildly attitude-unstable on
the largest periodic island, the large central chaotic zone and on most of the
smaller 'Islands as well. If.Hyperion's spin axis 'is Just slightly off perpendic-
ulax when it enters any of those regions, the satellite will tumble chaotically.
The equations are so complicated that Wisdom resorts to Lyapunov expo-
nents - positive in three of the six phase space dimensions (The Euler angles
0, , O and their derivatives) -to affirm his diagnosis of chaos.

The evolution scenario suggested by this model is fascinating: over the age
of the solar system, tidal forces slowed the satellite's chaotic spin and aligned
its longest axis perpendicular to the orbital plane, then "the work of the tides
over aeons was undone in a matter of days' when Hyperion entered one of the
attitude-unstable areas with its axis just off center and started the cycle over
again. This hypothesis was verified by Voyager photographs, which showed
the satellite in a position "inconsistent wth other known regular rotation
states."

The attitude instability of the large synchronous island is unique to Hype-
rion, so the other moons in the solar system don't tumble chaotically. How-
ever, many of them did in the past, because (due to a theorem, proposed
by Kolmogorov and proved by Arnold and Moser, called the KAM theorem)
almost all resonances - islands on surfaces of section which correspond to
stable orbits - are surrounded by chaotic zones. The size of these zones de-
pend both on deviations from spherical symmetry and on orbit eccentricity.
Perfectly spherical satellites orbiting in perfect circles and other, less perfect
bodies that happened to begin life in exactly the right spot did not have to
traverse chaotic zones on the way their current stable synchronous islands
but all others did.

The orbit eccentricity distribution of the asteroids in the belt between
Mars and Jupiter is not uniform. Gaps and enhancements in this distri-
bution are found at resonance points.-with- Jupiter, but -the. mechanism of
theirformation has never been adequately explained. The mathematics near
such a resonance is complicated, so exact closed-form solutions have not
been found. Numerical integration is prohibitively expensive because of the

"This implies that Hyperion could not act chaotically if 'it were in a circular orbit.
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system's different time scales; one of the figures in 34] required 200 VAX
hours to generate, even with significant effort devoted to accelerating the in-
tegrator. Because of this expense, earlier integrations were terminated after
10,000 years of apparent steady state behavior, having lulled investigators
into a false sense of security. Wisdom's longer integrations, however, showed
that systems can be well-behaved for millions of years, then come abruptly
out of dormancy and into wild orbits which jump from one eccentricity to
another. The erratic patterns of the data led him to suspect chaos and to
assess it as a possible method for clearing the Kirkwood gaps. Numerical
integrations for a typical asteroid near the 31 Kirkwood gap verify these
suspicions. The intermittent behavior 'is explained by a strange chaotic band
that has roughly constant eccentricity (e) through most of its domain and
a narrow thread extending out to much higher es. Orbits with such high
eccentricities cross the paths of Mars and the Earth. This hypothesis neatly
dovetails, the evacuation of the Kirkwood gaps and the origin of meteorites
that strike the Earth. Experimental verification is extremely convincing -
the boundaries of the calculated chaotic zone and the observed edges of the
3/1 gap overlie one another 34, figure 9.

Other resonance points do not yield such neat explanations, perhaps be-
cause their dynamics are more complicated. Two such cases are the Kirkwood
gap at the 21 resonance and the enhancement (the Hilda group) at the 32
point. The Digital Orrery[l] a dedicated celestial mechanics multiprocessor,
was used to integrate model equations for particles in these areas. These
data showed previously unknown chaotic regions, one of which is near the
2/1 point. Chaotic behavior 'is not enough to explain the gap - the mech-
anism that actually destroys or removes the asteroids must be identified as
well. Once again, a better model (allowing motion in all three dimensions)
uncovered a possible mechanism - close encounters, or, more raxely, colli-
sions with Mars. More recently[311, the Orrery was used to show that Pluto's
orbit is chaotic with A lo-7.3 Chaos is not the solution to all problems in

year

dynam ical astronomy, however. It did not explain the 32 enhancement, nor
does it play an obvious role in the formation of the gaps in Saturn's rings.

What distinguishes this work from the other papers reviewed here is the
reach of the conclusions drawn from the data. Eckmann waffles about do-
main of applicability", Testa et a] and Hudson And Mankin are content merely
to show chaos' patterns in their experiments. Wisdom predicts and verifies
real, far-ranging effects- As with the other-applications,, 'it -is -difficult to clas-
sify Wisdom's data within Eckmann 7s framework. The difficulty arises from

the sheer complexity of the application, as well as from the inadvisability

of 'varying the nonlinearity parameters" of the solar system to watch the
resulting behavior . we might vary ourselves right out of 'existence. Model
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parameters can be varied to check extensions to hypotheses, as Wisdom did
for differently-shaped moons, but deep changes in the equations might create
nonphysical situations - and model verification for a hypothetical situation
is impossible. The solar system does', however, contain many bodies in many
stages of evolution, which in some sense comprise a set of "Snapshots" like
those in the previous application papers. Time, not nonlinearity, 'is the vari-
able, so the 'paths to chaos" that can be dstilled out of this paper are time
evolutions and not bifurcation diagrams. In spirit, Wisdom's data resemble
the frequency spectrum in 19 - a description of the finished product of
chaos.

High-dimension non-dissipative systems may not be in Eckmann's stated
domain, but some extensions of his classifications do apply. Feigenbaum's
scenario, in particular, has been extended to such systems by other authors
[5]. The phase plot of Hyperion's orbit shows nested island chains with
two elements, the higher-dimensional analog to the first bifurcation (see 20,
figure 5] or 16]), possible evidence that Feigenbaum's period doubling is at
work. ntermittent chaotic behavior 'is clearly present on the eccentricity-
versus-time plots. It is attributed to slow tidal wandering in and out of
different zones on the Hamiltonian (non-dissipative) phase plot - a possible
extension of the 'Ideas in the Pomeau-Manneville scenario.

None of the three applications reviewed fits neatly into one scenario. This
is a consequence of incomplete theory and inexact data. The three scenarios
do not cover a possibilities - indeed, that was one of Eckmann's disclaimers.
This is highlighted in the chemical reaction of section 4 where the clearly
chaotic experimental data fit none of the specified patterns. Even when the
data do fit the patterns, formal, exhaustive verification of a scenario's "if"
clause is impossible. Distinguishing between several closely-related types
of bifurcations (Hopf, pitchfork, inverse saddle-node) is not experimentally
practical. More useful definitions would emphasize distinctive, observable
characteristics, rather than mathematical details (the latter are important,
but not in classifying experimental data.) A broader definition, in which the
three scenarios described are simply special cases of a common whole, would
be extremely valuable. The universality of chaos does suggest that such a
broad definition exists, even if it has not yet been discovered.

6 Universa i y in Chaos

Chaos is universal in that a great many systems act alike when their nonlin-
earities are turned up. The distinctive patterns of period doubling, broad-
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Figure 22: Return Maps With Slope=1 at the 45 Degree Line

band "noise' - that isn't really noise and strange attractors have been
found in an incredible variety of man-made and natural systems. Identifi-
cation of these new patterns has changed experimental methods; noisy or
random data now warrants a second look.

The mathematics behind this universality is exact - chaos theory is
not just a 'better linearization." This exactness causes many papers in the
field to read like topology texts. Armed with such formalism, however, those
papers are able to prove sweeping results like Sarkovskil"s theorem (page 21),
which define existence and ordering of periods, chaotic bands and windows
of order. Most of the proofs hinge only on a function's slope at one point
or the nature of its maximum, e.g., "The order [of the windows] does not
depend on the map f (x), as long as f has a differentiable maximum and falls
off monotonically..." [5]. Looking back at the return map, one can see why
this small set of requirements leads to universality. Recall that a bifurcation
occurs when the slope of the curve reaches at the 45 degree line. This is
a local consideration. It doesn't matter (within limits) what the curve does
anywhere else. See figure 22. Also, on a small enough scale, any curve looks
like a straight line: "After we have magnified the neighborhoods of fixed
points many times, practically a information about the global shape of the
starting function f is lost, and we are left with a universal function- gX)151."
At first, Feigenbaum thought that period doubling was a particular property
of the logistic map., It was -only afterhe fotih:d d6u, bling'hi'the- equation

Xn+1 = A sin rx,

with the same 8, that he broadened the domain of the theory. One of the
less topologically rigorous papers puts it thus: "Around the maximum, it
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0looks like a parabola...Iike any sensible approximation to a function with
a hump[5]." Implicit in the use of the word "sensible" is the breadth of
the universality class. Chaos lets one predict something about the behavior
of systems in this class without analyzing unsolvable Wh order differential
equations.

Thi's universality makes the theory usejruk knowing chaos' precursors
could help one head it o[181 or encourage it[2], as desired. Universality
also makes the theory widely applicable. 'Dynamical disease 24] manifests
in physiological rythyms in time or space- presence or absence of chaos in
these rythyms can be significant. An EEG of a healthy brain is chaotic, for
example, while an epileptic brain is often quasiperiodic. The human heart
is normally periodic, but can go into a chaotic fibrillation state. Chaos the-
ory might allow construction of a better model for the heart, which could
be studied with changing nonlinearity (adrenaline, blood supply .. A better
pacemaker might sense period doubling or other precursors to chaos and ad-
minister a slight shock to divert its onset, a less traumatic technique than the
current full phase reset after onset of arythmia. The dynamics of a driven
oscillator, like the RLC circuit in section 3 give insight into the interactions
of a mechanical ventilator and a person's normal breathing rythym A more
global example is the earth's magnetic field, which reverses now and then.
Researchers are trying to find the "attractor" and understand the behavior.
Note that, even if the attractor were known, the date of the next reversal
could not be predicted because exactly what comprises nitial conditions"
is unknown, nor could they be measured to infinite precision if they were
known

The richness of structure that chaos stirs up in simple systems suggests
a way to classify complex behavior. Presented with figure 23, any chaos
devotee would immediately recognize the Mandelbrot set and give the system
equation

2 C
Zn+ = Zn

which is a lot more compact than the figure. Genetics is a less trivial exam-
ple. Genes are vastly less complex than the structures that they generate.
Nonlinear dynamics does not give the "equations' - the genetic encoding -
but it does suggest a mechanism that can bridge the gap. This compression
and expansion of information resembles the operation of companders in com-
munications. If information happened to come in Mandelbrot sets, one could
just transmit "zn+l -=-A+c"--and the -appropriate c, then reconstitute the in-
formation at the other end of the channel. Cryptography is another possible
application. A few times -through an iterative chaotic map would certainly
scramble data quite well, but even a single bit of noise would devastate the
decoding process.
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Figure 23: A Set in he C' lex Plane

Although chaos does' simplify explanations for some systems that once
were thought to be random "or too complex to describe, the predictions 'it
lets us make about those systems are limited. This dooms 'it as a tool for
playing the stock market 20] or roulette (one of the primary projects of the
Dynamical Systems Collective at Santa Cruz 12.) It also vindicates Lorenz its
discoverer, and verifies what meteorologists have always known - weather
is fundamentally unpredictable.

12 These projects are also doomed for another reason-even if the initial conditions were

known. Roulette wheels and stock markets are their own fastest smulators.
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A The Van der Pol Oscillator

The Van der Pol oscillator is an RLC crcuit whose nonlinear resistor looks
negative for small voltages and positive for large voltages. An RLC with a
positive R has an unstable equilibrium point at the origin of its state space
plot, surrounded by growing spirals. In an RLC crcuit with a negative R,
the fixed point is stable and the spirals decay in towards the origin. The
nonlinear Van der Pol resistor acts as a restoring force, forcing the voltage
to a limit cycle between the two domains. The radius of the lmit cycle can
be approximately calculated by equating the power absorbed by the system
when the resistor is acting negative and the power generated when the resistor
is acting positive. The crcuit and the nonlinear resistance curve are shown
in figure 24. The state equations are:

_(vc + aiL- WL
L L

V %LC C'

The Jacobian T is:
a-3bj2

0
L C

The eigenvalues of the natural frequencies of the circuit - are the roots
of:

JAI - J = 

which are:
N2 (a - N2 )2A ±j L

2L LC 4L2

The limit cycle is shown in figure 25. It is almost circular, but not quite;
the slopeOf VRat the origin causes some harmonic distortion. A more com-
plex resistor can give the circuit more than one attractor, separated by a
metastable "separatrix." See figure 26.
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AB The Henon Attractor

For some parameter values, iterates of the system of nonlinear difference
equations:

Xn+I = -ax 2 + n

Yn+1 = Pxn (10)

form strange attractors in correlation space (cf. figure 16.) Figure in
the introduction shows plots for a = 12 and = 04; plots for several
other parameter values are shown in figure 27. The attractor mutates as
the parameters change - for the lowest a values in the figure (top leftq),
the attractor is actually a period-4 cycle. Raising a induces a bifurcation to
a period-8 cycle. Higher as force the system into a chaotic zone at which
point the Lyapunov exponent becomes nonzero. In general, A increases with
increasing a or until a = 124, P = 04. Any increase beyond this point
results in an unstable system and diverging iterations.

H'non's goal, in 17], was to find the simplest system that exhibited the
behavior observed in Lorenz' work on the Navier-Stokes equations (see fig-
ure 1.) The latter are differential equations, but they can be modeled by
difference equations - which require orders of magnitude less time to evolve
with a computer. Henon never claims that this set of equations models any
particular physical system, but many other authors have noted that cor-
relation plots of physical data from dripping faucets look very much like
He'non's pictures. Formal justification of this conjecture would require deter-
mining the differential equations for a drip forming at an orifice, followed by
application of numerical 'Integration methods, like Forward Euler or Runge-
Kutta, and identification of equations (10) in the results. The fluid dynamics
of such a drip is horribly complicated and the stability of the equations is
structurally sensitive to model parameters. Another approach 30] is to use a
simpler model of the system, shown 'in figure 28. The mass grows wth time,
forcing the spring to stretch out and lowering the frequency of any oscillations
that are present. When, he mass reachesxit a portion breaks-off. .To make
the equations non-integrable, the amount that breaks off must be a function
of velocity. However, this introduces a singularity into the equations, which
precludes any use of methods like Forward Euler and symbolic recovery of
equations (1 0).
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One can solve this system in pieces by numerically integrating the equa-
tions:

dx W
dt
dv k

X(t)dt M(X7 7 )

dm h
dt

where x is the position of the mass, v the velocity, k the spring constant, and
h the linear) rate of growth of m. When x reaches xit, the time is recorded
and the integration is restarted with a new value for the mass, as dictated
by the velocity at xit. A sample run is shown in figure 29. The top line is
X, the mddle v and the bottom m. If the 'intervals between break-offs are
plotted in correlation form, the resulting plot (figure 30) does indeed "look
like" H6non's pictures: suggestive but not conclusive evidence that the latter
are a good model for the former, at least for some values of a and
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