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Chapter I

Introduction

Vibration is a concern of virtually every engineering discipline. Mechanical

engineers continually face the problem of vibration because mechanical systems vibrate

when performance is pushed to the limit. The typical engineering solutions to vibration are

to design "stiff" systems, add damping to flexible systems, or develop a good controller.

Input shaping 'is another possibility for vibration control that can supplement the above

methods. If inputs (velocity, torque,, voltage, etc.) are shaped properly, a system will

respond with a vibration-free movement 2, 5 6 7 8, 9].

Vaaler and Seering 12] used an unorthodox geometry to build an assembly robot

with high stiffness. They used a "four plus two" configuration to achieve the necessary six

degrees of reedom. By giving the robot's "right hand" four degrees of freedom and the

"left hand" two degrees of freedom, they avoided the flexibility that occurs in most six

degree-of-freedom robots that are designed with their axes in series.

Plump, Hubbard, and Bailey 41 examined the use of piezoresistive polymer fms to

generate additional damping in a structure. Alberts, astings, Book, and Dickerson [10]

used a thin layer viscoelastic: material to obtain passive damping that enhanced system

stability.

A great deal of work has been done in the area of feedback control of flexible

systems. Cannon mid Schmitz [ 1 1 ] examined feedback control with noncolocated endpoint

position measurenwnts for a one link flexible robot. Hollars and Cannon 3] compared four

different control strategies for a two-link robot with elastic drives.

An early form of input shaping was the use of posicast control by OTM Sith 9].

This technique breaks a step of a certain amplitude into two smaller steps, one of which is
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delayed ' time. The result is a reduced settling time for the system.

Farrenkopf 2] developed velocity shaping techniques for flexible spacecraft. He

showed that control of decoupled modes could be added wthout exciting vibration.

Swigert [5] demonstrated that torque shaping can be lemented on systems which

modally decompose into second order harmonic oscillators. Utilizing terminal boundary

conditions he generated shaped inputs that excit�d the vibration during movement, but

reduced the vibration to zero when the movement ended. Swigert also showed that vibration

from multiple modes could be eliminated by adaptive correction of the control law.

Singer and Seering 7) have shown that residual vibration can be significantly

reduced for single mode systems by employing an input shaping method that uses a smple

system model and requires very little computation. The system model consists only of the

system's natural frequency and damping ratio. Constraints on the system inputs result n

zero residual vibration if the system model is exact. When modeling effors exist, the

shaped input function does not keep the system vibration at zero, but it does reduce 'it to a

low level that is acceptable for many applications. Extending the method to multi-mode

systems is straightforward [6].

The shaping method involves convolution of a desired input with a sequence of

impulses to produce an input function that does not cause vibration. Selection of impulse

amplitude and tming dictate how well the system performs. Figure 1-1 shows how impulse

sequences can be convolved with system inputs to generate shaped inputs. Three-impulse

sequences have been shown to yield particularly effective system inputs both in terms of

vibration suppression and response time [6]. The shaping method is effective in rducing

vibration both open and closed loop systems.

My work concentrates on generating the impulse sequences to be used in the

convolution that produces the vibration-reducing inputs. Most of the work in this text

centers on vector dagrams, which are graphical representations of impulse sequences.
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Vector diagrams are used to generate and evaluate the vibration-reducing impulse

sequences. All sequences in this text will consist of three Ises, although the use of

more ipulses can be beneficial in some applications. By modifying the constraints used to

produce the impulse sequences, a variety of sequences can be generated that give better

performance than those reported previously.
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Chapter 2

Vector Diagrams

A vector diagram is a graphical representation of an finpulse sequence. Vector

diagrams are graphs in polar coordinates (r-O space). A vector diagram is created by setting

r equal to the amplitude Ai of the ihimpulse ' a sequence and by setting = Tp where

(o (rad/sec) is an arbitrary frequency and ATj 'is the time delay from an arbitrary time zero to

the time when the ih impulse occurs. Figure 21 shows a typical ipulse sequence and its

corresponding vector diagram.

Vector diagrams become useful tools for producing vibration-reducm'g ipulse

sequences when o is set equal to the natural frequency of a system ( = oy.) and the tfine

of the first ipulse is arbitrarily set to zero (AT I = 0) I When a vector diagram is created 

this manner, the resultant, R, from summing the vectors on the vector diagram has a special

significance. R is proportional to the amplitude of residual vibration of a second order

system of natural frequency o,,, driven by a step convolved with the impulse sequence [6].

Because arbitrary inputs can be built as sums of steps, the amplitude of R is a measure of

system response for arbitrary puts. Tis result enables us to calculate residual vibration

geometrically. The length of the resultant on the vector diagram is the amplitude of the

vibration and the angle of the resultant 'is the phase of the vibration relative to the system

response from the f ipulse. Figure 22 compares a vector diagram representation of

vibration with a time domain representation of vibration for an undamped system. On a

vector diagram, vibration appears as a vector, whereas, the time domain, vibration

appears as a sinusoidal function.

Iln this text, o will refer to the modeling frequency and oy, will stand for the actual natural frequency of
the system.
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2.1 Canceling Vibration

� If we place N vectors on a vector diagram such that the resultant equals zero, a

second-order system of natural frequency gen the corresponding time domain input wll

execute a vibration-free mvement. We can use this fact to create vibration-reducm-g 'input

functions directly from a vector diagram. We can place N arbitrary vectors on a vector

diagram and then cancel the resultant of the first N vectors with an N I st vector. When the

vectors are converted to an u1se sequence, and the sequence is convolved with'a step

input,2 the resulting shaped ut wl cause no residual vibration when applied to the

system. And, if the impulse amplitudes are normalized so they sum to one, the system will

come to rest at the point desired by the ser.

The canceling vector, A,,.,, 'is given by the equations:

[A"+11 + RYI
R

On+ I- x + an I[A (1)
RX

where:

R = 4,.cos0i
R = T-4,sin0i (2)

The above equations demonstrate an interesting fact; there are an infmite number of

impulse sequences that wl result in a vibration-free response. We can place N arbitrary

vectors on a vector diagram and then use Eqs I to fmd an N I' vector that will cancel the

N oinal vectors. When the N1 vectors from the vector diagram are used in the

convolution a vibration-free input function is produced.
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2.2 The Effects of Damping

When damping is considered, the vector diagram must be modified 'in two ways.

First, we must use the damped natural frequency of the system to plot the vector diagram.

This corresponds to using:

0 1 �_Jr- i T (3)

when plotting the vector diagram. Second, the amplitudes of te vectors must be scaled to

account for damping. As tme progresses, the amplitude of the canceling vector decreases.

For example, if we give a system an ipulse with amplitude, A, at time zero, the impulse

that will cancel the system 9s. vibration is located (I 800) out of phase with the first

impulse, but it has a smaller amplitude. Fgure 23 demonstrates this result the tme

domain. The aplitude of the second ipulse is 6]:

A = A A eO (4)2 1 1

The effective amplitude of a vector, Ai at Ti is the amplitude of a vector at tme zero

whose vibration it could ncel Wten equation form this means that the effective

amplitude, IA,� of a vector A is:

L41Rq = �� (5)
CO

This scaling effect of damping can be represented on a vector diagram by superimposing

the spiral, Ae-118. Any vector whose tip lies on the spiral has the effective amplitude of a

vector A at time zero. See Figure 24. When we attempt to cancel N vectors with an N Is'

vector on a vector diagram we must assign each of the N vectors an effective amplitude

before using Eqs. I to solve for the resultant. Wen we include the effects of damping, the

equations describing the N+lj1 canceling vector are:

[An+11 x Y

On+ = x + tan-1 (6)

where = Nrl�--4�2 oAT, and R, and RY are given by:
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R = LA. oseX I eff i

R = L4. sinO.y I eff i (7)

System
response

AlTotal
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-AT 'runee

Figure 23: The scaling effect of damping on the "canceling" ipulse.
A2 Ssmaller than A, because the vibration has been partia[ly

dwnped out after AT.
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Chapter 3

Insensitivity

It 'is possible to create an infinity of vibration-reducing input functions. The "best"

would seem to be the one that worked most effectively on a real systern- they are all

vibration-fi-ee when the system model is exact. When the system model is not exact, some

residual vibration will occur when the system is moved. A plot of the vibration vs. eror in

estimated natural frequency for a three-impulse sequence developed by Singer 6] is shown

in Figure 3 along with the corresponding vector diagram. This impulse sequence

produces a system response that is fairly insensitive to eors or changes in the system

parameters. That is, there is relatively little vibration in the system even when the resonant

frequency estimate is off by 20% as shown.

3.1 Effects of Modeling Errors on the Vector Diagram

Figure 31 can be obtained directly from a vector diagram if we analyze how a

modeling eor changes the diagram. When the natural frequency of a system differs from

the assumed natural frequency, the error can be represented on a vector diagram by shifting

the vectors through an angle 6 If coy, is the actual natural frequency of the system and
the modeling frequency, then the error in frequency is - - le angle throug`6

(o is SYS

which the vectors are shifted, t, is related to the frequency error by the equation:

+i N,�--(oY)AT (8)

The eor in modeling causes a resultant to be formed on the vector diagram; the

vectors no longer satisfy Eqs 6 The resultant that 'is formed represents the vibration that is

caused by the effori frequency.
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Given that modeling eors cause a resultant, Rerr9 on a vector diagram, we can

compare the insensitivity of different input functions by plotting the amplitude of Rerr VS.

the eor frequency. For now, the effors in the damping ratio a-re ignored because the

effors in natural frequency have been shown to be far more iportant 6].

If we plot an "'nsensitivity curve" like the one shown Figure 3- 1, we can determine

how much vibration will result from a given eor estimated frequency. To make an

insensitivity curve, we must develop an expression for the resultant as a function of the

error in frequency (o - oy)-

If we subtract the angle due to the error, from the oginal angle, 0, then the ill

vector on the vector diagram has a total angle of:

Oi oj---Oi (9)
total

Given this, the amplitude of the resultant is:

IReff tRmrrl2 + Ryffrl2 (10)

where:

Rm =A. COS(O-0rr I eff i
Rye, MAi st-n(Oi-0) O )

eff

and:

Ai
Aieff

(12)

Eq. 10 is the expression that we were seeking. It gives the amplitude of the resultant as a

function of the eror in frequency.
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3.2 Defining Insensitivity

To compare impulse sequences and determine which is the "best" for decreasing

vibration in the presence of modeling effors, we need a formal criterion. erefore, the

insensitivity of a sequence will be defmed as the width of the ffisensitivity curve at a given

level of residual- vibration. If the acceptable level of vibration is 5%, then we can draw a

horizontal line across the fimnsitivity curve at 5%. The distance between the points of

intersection 'is the insensitivity. For example, the insensitivity of the impulse sequence

shown in Figure 3 is 0286, because it causes less than 5% of the step vibration from
= 0857 to = 1143.

((O/O)$Y$)knVer r

Now that we have a precise definition for M'sensitivity, we can compare various

impulse sequences quantitatively.

3.3 Increasing Insensitivity by Changing Vectors

The three impulses in the function shown in Figure 31 are in the ratio 12:1 and are

located on the vector diagram at 0, -x, and 2 respectively. We know that we can arbitrarily

place two vectors on the vector diagram and cancel them with a third, so we can vary the

amplitudes and angles of the first two vectors and then cancel the vibration they cause with

a third vector. By the definition of a vector diagram, the angle of the first vector is always

zero and its amplitude is one. Any change from the value of one will simply scale the

second and third vectors accordingly 

ff we modify the finpulse sequence in Fgure 31 by placing the second vector at an

angle less than (keeping the amplitude fixed at 2 the insensitivity curve changes in an

interesting way. It gets wider and shifts to the right. Figure 32 shows the insensitivity

curve when the second vector is at 1540. he insensitivity for this input function is 0408

(0.93 to 1338) a 43% improvement over the ipulse sequence of Figure 31. A drawback
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is that the insensitivity curve is skewed to the right, i.e., nsitive to eors that

are higher frequency than the modeling frequency. This may be a desired property of an

input function if the system being moved increases its natural frequency during some part

of its operation [I]. However, for most applications it is desirable to have equal

insensitivity on either side of of the modeling frequency oVe),Y) = ).

We can shift the insensitivity curve of Figure 32 back to the left by choosing a new

modeling frequency that is in the center of the skewed insensitivity curve. The modeling

frequency is not shifted to get it closer to the actual natural frequency of the system, rather

it 'is shifted to obtain an 'insensitivity curve that has equal insensitivity on either side of the

modeling frequency. When the modeling frequency is shifted to the center of the skewed

for the above example = 1540), the new modeling frequency is: o,, = .134(oold.

Adjusting so that the new modeling frequency is at one causes the insensitivity curve to

shift to the left and shrink. The shrinkage occurs because the new modeling frequency is

larger than the original, so when (olw.) is recalculated using the larger o), the dfference

between (o/(oY,)I,,,, and (o/(oY,).PP,, decreases. In the above example, the "true"

insensitivity at 5% vibration 'is 036; smaller than the "skewed" Msensitivity of 0408, but

still much larger than the insensitivity of the 1 2 impulse sequence shown Figure 3 - .
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3.4 Increasing Insensitivity by Relaxing the Zero Vibration Constraint

In the cases discussed previously, it was assumed that the residual vibration should be

zero when the estimated natural frequency exactly matched the system natural frequency.

As we shall see, the relaxation of this constraint can improve M'sensitivity. We introduce an

error at the modeling frequency if we do not exactly cancel the first and second vectors with

the third vector, i.e., do not use the exact solution given by Es 6 For most systems, it

would seem desirable to have an insensitivity curve which is symmetric about the modeling

frequency. So, to generate an effor at the modeling frequency and maintain symmetrical

insensitivity, we should change the aplitudes of the vectors, but always place them at 0, n,

and 2n.

'Me largest filSensitivity that has been discovered for a three-impulse sequence occurs

when the eror at the modeling frequency exactly matches the vibration limit, V 3 and the

insensitivity curve falls off to zero on both sides of the modeling frequency. See Figure 33.

This "hump" the insensitivity curve widens the curve and, therefore, increases

insensitivity.

Using the above conditions, we can derive the three-impulse sequence that yields the

maxunum known insensitivity for a given vibration limit. Te insensitivity curve should be

symmetrical about the modeling frequency, so when vectors are shifted by a modeling eror

or a shift system natural frequency, the angle of the third vector, 3, is always twice the

angle of the second vector, 02 I equation form-.

03 = 22' (13)

When the resultant at the model' frequency 'is set equal to the vibration 1imitVjj. we

have:

[AI I - 421 43 = Vu,(L4 11 + LA2 + L431) (14)

3V fim for ft above examples was 5%; that is, the allowable residual is 5% of the em'dual which would
have resulted had the system been given a step 'input.
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negative value 'is assigned to I.I on the left side of Eq. 14 because A in the

opposite direction of A, and A3 on the vector diagram. We have arbitrarily set IAI equal to

one, so we can rearrange Eq. 14 to get an expression for IA21:

(I-VnXI+L431)
L421 (15)

(1+Vli,)

Because the insensitivity curve s to zero on both sdes of the modeling frequency,

the resultant on the vector diagram equals zero when vector A2 is at some angle, (D2 and

vector A3is, at some angle, 3' This corresponds to:

= I + L421cos(D2 + L431COS'03 (16)
= 421sinO2 + L431sin(D3 (17)

Eqs. 13, 15, 16, and 17 are four equations wth five unknowns, (A2,(D2, A3,(D3 ad

Vli,,,). If an upper bound on allowable vibration 'is known, the sequence that yields the

maximum insensitivity for the gven VfiM can be determined. Putting Eq. 13 into Eq. 17 and

reducing gives-,

LA21 -2L431COSID2 (18)

Combining Eq. 15 with Eq. 18 we get cos(D2 in terms of A31:

(1-Vjj,)(I+L431)
COSID2 = - (19)

2IA31(1+VUM)

If we put Eqs. 13 and 15 into Eq. 16, we get:

(I-Vjjj,)(l+L431) (20)
1 + [�- I +V'UM) C042 2431COS24D2 431 0

Putting Eq. 19 into q. 20 and solving for A I ves:

IA = 1 (21)3

We can use the result of Eq. 21 to solve Eq. 15 for A21- When this is done, the result is:

IA21 2(1-Vam) (22)

(I+VfiM)

Therefore, the three-vector combination that yields the largest known insensitivity for

a given vibration limit 'is:
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[All = 1, 01 = 

L4 I =2(1-Vlim) 0 = Jr (23)
2 (I+V 2rim

IA3 I = 03 = n

Converting the above vectors M'to the time domain we fmd that the three-impulse

sequence that yields the largest known insensitivity for a given vibration limit is:

A1=19 AT = 

2(1-Vfim) n
142 AT = - (24)

(I +VU,) 0)

A3 I AT = 2n
(O

Figure 33 shows the insensitivity curve for the above ipulse sequence when the
vibration limit is set to 5%. For lar er vibration IM'U'ts, Msensitivity increase ' cantly

9 s signifi

as Figure 34 demonstrates. The insensitivity increases from 0398 to 056 when VU is

changed from 5% to 10%.

When the driven system has viscous damping the amplitudes in Es. 24 must be

replaced by effective amplitudes and the damped natural frequency must be used. The

sequence then becomes:

A 1, AT, 0

A (25)
2- (I +VfiM) AT2

- 2t 2nJA3 - e AT3

-� -I-- __4 2 O

where is the modeling frequency and 'is the approximate damping ratio of the system.
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Chapter 4

Input Shaping

The following steps should be taken when shaping a system input:

1. Determine the system's natural frequency and damping ratio. (The
insensitivity provided by this method aows for substantial eors in the
measurement of these two parameters).

2. Determine the impulse sequence for the system by using Eqs. 25.

3. Normalize the aplitudes of the 'impulses so they sum to one.

4. Convolve the normalized impulse sequence with any desired input.

5. Use the result of the convolution as the input to the system.

0'Me shaped input causes the system to aive at the position it would have if the

desired input had been used. However, when the movement is fished, the system's

vibration w be much less than if the desired input had been used. In addition, the

vibration wl be less than the established vibration limit, provided the system model is

wid-dn the interval shown on the insensitivity curve. The cost of the improved perfon-nance

of the system is a time penalty equal to the period of the system's natural frequency. The

shaped input takes one period of the natural fi-equency longer to execute than the unshaped

input). For most systems, however, the tfine penalty is not a real penalty because the

vibration caused by an unshaped input usually takes more than one period to decay. A

system can actually be moved faster with shaped 'inputs because at the end of the input

sequence, the system i's at the desired position rather than oscillating about the desired

position.
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4.1 Digital Systems

The ipulse sequence given by Es. 25 was derived based on the assumption that the

amplitude of the input can be changed at any time. This 'is not possible with digital systems

because the inputs can be changed only at discrete time "increments. The impulse sequence

of Es. 25 can, however, be transformed into an equivalent sequence where the impulses

occur only at the discrete time steps. The transformation is straightforward and is discussed

in detail in reference [6]. Basically, the transformation works bv replac' an ipulse that

is not located at a discrete time step with two impulses that are located at the digital time

steps on either side of the impulse to be replaced. The two impulses are chosen so as to be

equivalent to the impulse they replace

4.2 Constant Amplitude Inputs

When a system is driven by constant amplitude inputs; for example, when the space

shuttle is moved by its stabilizing thrusters; the shaped input cannot be implemented in its

original form. be result of the convolution cannot be used because it requires varying the

amplitude of the t). Although we cannot get all of the vibration-reducing aility of this

input-shaping method to a control system that uses constant amplitude inputs (pulses),

there is an apprOXIMate method that works well when the shortest possible driving pulse is

small compared to the period of the system's natural frequency. When this is the case, the

result of the convolution4 can be modified by converting the amplitude of the three pulses

into the width of the three pulses. The pulse with the smallest amplitude should be assigned

the shortest width possible. The widths of the other pulses are then adjusted according to

the height to width ratio used to convert the smallest pulse.

*rhe convolution of the impulse sequence with the shortest possible driving pulse will produce three pulses
of unequal amplitudes separated by some amount of time. The greater the separation between the pulses, the
better the approximate method will work.
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Once the three constant-amplitude pulses have been determined, their centers should

be placed at the time spacings given by Es. 25. When this 'is done, one half of the first

pulse will exist in negative time, a smple time shift win yield a three-pulse sequence that

moves the system with much less vibration than would occur if a single pulse had been used

to achieve the same movement.

The approximate method for constant amplitude inputs can be summarized as follows

(see Figure 41):
1. Convolve the 'impulse sequence of Es. 25 with a pulse equal to the shortest

possible driving pulse.

2. Modify the result of the convolution by converting the aplitude of each
pulse into a proportional width.

3. Center the three constant amplitude pulses around the tmes given by Es. 25.

4. Multiply the width of the three pulses by a proportionality constant to achieve
the length of movement desired.

5. Shift the pulses to place the fim pulse at zero time.

The above method is a sple and straightforward process for dealing with the

restriction of constant amplitude inputs. The method sgnificantly reduces vibration when

the input pulses can be made much shorter than the period of the system's natural

frequency. The next chapter gives the results of dynamic simulations that demonstrate the

above method's vibration reducing ability.
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Figure 41: Approximate shap' ethod for systems w*th constant amplitude
inputs.
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Chapter 

Experimental Results

The performance of the finpulse sequence given by Es. 25 was verified by dynamic

simulations and with hardware experiments.

5.1 Simulation of Single Mode Control

The ability of the shaping method to reduce vibration was shown by implementing it

on the simple two-mass lumped parameter model shown in Figure 5-1 I the first series of

tests, the following values were used for the parameters:

ml - M2 = 

k = 19-74

b-0.

F(t)

XI X 2

Figure 5-1: Simple lumped parameter model used for simulating
a single-mode system

The system was moved by giving a step in the force, F(t), on MV The amplitude of

the step was one and it was applied ftom 05 sec. to 07 sec. Tbe step input and the

corresponding system response is shown in Figure 52.
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The following five steps were then taken to shape the ste t so the residual

vibration of the system would be reduced to five percent of the vibration that resulted from

the step input.

1. The system's natural frequency was determined to be 2n. 

2. The values of Va = 0.05 and = it were put into Es. 24, giving an impulse
se quence of:

A = AT = 1 1

A = 181, AT = 0.5 (26)

A3 = 11 AT3 - 1

3. The aplitudes of the impul. ses were normalized to give: A 0.262 A 2
0.475, A3 0262.

4. The normalized sequence was convolved with the step input shown Figure
5-2.

5. The result of the convolution was used as an input to the system.

'Me shaped input and the corresponding system response are shown in Figure 53.

By comparing Figures 52 and 53 we can see that the shaped input reduced the residual

vibration just as predicted. Figure 53 also shows the txne penalty that is incurred when the

input is shaped. The tixne penalty 'is equal to one period of the natural frequency (hi this

case, I sec). The step input ends at 07 sec., but the shaped t ends at 17 sec.

By changing the value of Vum to zero and repeating steps 25, the residual vibration

can be reduced to zero as shown in Figure 54. The sequence that is produced by setting

VHM equal to zero is the same as Singer's three-ixnpulse sequence 6].

5

2k
M
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Figure 52: A step input and the coffesponding response of
the single-mode system.
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Figure 53: The shaped input when VU = .05 and the
corresponding response of the single-mode system.
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corresponding response of the single-mode system.
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5.1.1 Single Mode With Damping

Damping was added to the dynamic smulation by setting the damper of the lumped

parameter model equal to 05. Figure 5-5 shows the response of the damped system to a

step input. e damped natural frequency and damping ratio were calculated and then put

into Eqs. 25 to produce the vibration reducing impulse sequence. HM was set to zero and

the impulse sequence was convolved with the step t. Fgure 56 shows the shapedMPU

input and the corresponding system response.

5.2 Energy Consumption of Shaped Inputs

In aition to reduced settling te, input shaping has another benefit: it saves

energy. Qualitatively, it can be reasoned that because it takes energy to excite vibrat' n, the

shaped inputs require less energy than unshaped inputs. We can calculate the energy

savings by integrating the force thnesvelocity with respect to tme. When this is done for

the movement of the damped system above, we find tat the step input requires

approximately 0.018 joules, but the shaped input uses only about 0.010 joules. The shaped

MP ut requires less energy because it decreases the energy loss the damper.6 A plot of the

energy used by the inputs vs. tme is shown in Figure 57.
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Figure 5-5: A step' t and the coffesponding response of
the damped single-mode system.
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coffesponding response of the damped single-mode system.
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5.3 Simulation of Constant Amplitude Input Control

When a system can only be driven by constant amplitude inputs, the shaped input that

results from the convolution cannot be used. (This was discussed in the previous chapter.)

The approximate method proposed in the last chapter was tested on a computer simulation

developed to MUM- the rotational dynarmcs of the space shuttle deploying the Hubble

space telescope. The dynamic model 'is shown in Figure 5-8. The model consists of two

unequal rotational inertias connected by a torsional spring. The large m'ertia (the shuttle) is

acted on by a small constant torque (a gravity gradient) and it can be rotated in the opposite

direction by a large constant amplitude torque (a stabilizing jet). The values for the system

parameters were obtained from the DRS and SDAP simulations that Draper Laboratory

uses to verify and plan shuttle i'ssiolls.

I

I

Figure 5-8: Rotational inertia dynamic model.

The control action of the dynarmc model was designed to copy the ations of the

shuttle's digital autopilot (SDAP). Basically, the simulation attempts to maintain the large

rotational inertia within a given angular region. When the ertia is rotated out of the
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region by the gravity torque, a constant amplitude torque is appl' d the opposite direction

to drive the inertia back into the desired region. This would correspond to the firing of a

stabil * jet to reorient the shuttle. The reorienting torque causes large rotational

oscillations in the system. Figure 59 shows the typical dynamic response of the model to a

reorienting Put. By 280 sec. the gravity torque has caused the large inertia to rotate out of

the desired angular region. A large reorienting torque 'is applied to drive the inertia back

into the desired region.

The procedure for shaping constant amplitude inputs that was outlined in the previous

chapter was used to develop a shaped input for the above simulation. The system response

to the shaped input is shown in Figure 5-10. A comparison between Figure 59 and Figure

5-10 reveals that the shaped input significantly reduces the oscillations in the system. The

results shown in Figure 5-10 are 'impressive because the reorienting torque could be turned

on and off at any time. However, when the s, ystern has a large digital tme step the

approximate shaping method is not as effective because the width of the input pulses cannot

be set arbitrarily. Developing a method for dealing with constant amplitude inputs and

large digital time steps is an area of ongoing research.
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Figure 59: Response of rotational inertia model to unshaped M-put.
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5.4 Hardware Experiments

The hardware verification of the impulse sequence was performed on the assembly

robot described in reference [ 1 21. The experimental setup is shown in Figure 5-1 1. A steel

beam with a mass at one end was attached to the turntable of the robot. The table was

driven in the theta direction by a dc motor and its position was determined by an optical

encoder.

When the table was given a step in position, largebscillations were induced in the

system. Figure 512 shows a typical system response to a step input. Data from ten step

responses were recorded and the vibration amplitudes were averaged to get a baseline value

for the vibration caused by a step input. The aplitude of the vibration was determined by

fmding the highest value in the data and then subtracting the lowest following value.

The system parameters were determined by exanuning the data from a step response.

The natural frequency was found to be 28 Hertz and the damp' ratio was approximated

as 0.05. The step input was then shaped by the impulse sequence given by Eqs. 25 with the

vibration limit set to 5%. Fgure 513 shows the system response to the shaped input. The

amplitude of the vibration in Figure 513 is only 5% of the baseline value for a step input.

The residual vibrafion of the system can be virtually eirn'ated by setting the vibration

limit to zero. See Figure 5-14.

5.4.1 Insensitivity Curves

Insensitivity curves for the ipulse sequence were experimentally determined by

purposely introducing effors ' the system model. Tbe experimentally determined natural

frequency was chosen as the "exact" frequency (oy = 28 Hz). Impulse sequences were

then derived for frequencies ranging from 0.6(oy, to 18(o... (1.8 Hz - 504 Hz). The value

for the damping ratio was kept at 05 for all cases. Each ipulse sequence was used



-45-

Figure 5-11. The experimental setup: Robot turntable and steel
beam with a large mass attached to the end.
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to shape the step command and the shaped input was applied to the system. The amplitude

of the resulting vibration was recorded. The amplitude value was then divided by the

baseline value to get the percentage of the step vibration caused by the shaped input. By

plotting the percentage of the step vibration versus the normalized modeling eor o/(oY,),

insensitivity curves were obtained.

Figure 515 shows the experimentally determined Msensitivity curve when the

vibration limit was set to 5%. Figure 515 shows the experimental curve has the same

general shape as the theoretically determined insensitivity curve (Figure 3-3). The curve

has a non-zero value when the system model is coffect and it slopes down toward zero on

either side of the modeling frequency. 71be experimentally deternuned insensitivity for Vfi.,

= 0.05 is approximately 042. (The vibration is less than 5% from 082 to 124 on the

insensitivity crve). The theoretical insensitivity when Vjj. equals 05 is 0.398.

The vibration mit was set to 10% and the above tests were repeated. Figure 516

shows the resulting insensitivity curve. The insensitivity increased to approximately 067

(Me vibration was less than 10% from 075 to 142 on the insensitivity curve). The

theoretical insensitivity when Vli,,, equals 0. IO is 056.

The roughness of the insensitivity curves is largely due to the resolution of the optical

encoder. The vibrations resulting from the shaped inputs are only a few ticks on the

encoder. For example a vibration that is 5% of the baseline value for a step is only three

encoder spacmgs. Another fim'tation on the accuracy of the experimental tests is the servo

rate (I kHz) of the robot controller. The shaped input that results from the convolution

does not usually change at exactly the same time that the servo loop is called. As a result,

the change in input must occur during the next call of the servo loop. This eror causes the

experimental value for the vibration aplitude to differ slightly from the theoretical value.
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Chapter 6

Discussion

It has been shown that a variety of ulse sequences can be convolved with a

desired system put to create a shaped input that moves a system without causing residual

vibration. By plotting the residual vibration of the system vs. the error in estimated natural

frequency, we can determine how insensitive the impulse sequence 'is to shifts or effors in

the natural fi-equency of the system. Some of the impulse sequences cause a skewed

insensitivity, so the input function is more insensitive to eors in one direction. When an

upper bound on the acceptable level of residual vibration is known, the three-impulse

sequence that gives the maximum known insensitivity can be determined.

When the system inputs are constrained to one amplitude, an approximate method

can be used to shape the input by varying the width of the input instead of the amplitude.

The approxinmte method works well when the constant amplitude input can be turned on or

off at any time. When the constant amplitude constraint is combined with a large digital

time step, the shaping method becomes difficult to implement.

Computer smulations and hardware experiments verified the vibration-reduc'g

ability of the impulse sequences. The hardware experiments showed that the impulse

sequences were more insensitive than the theory predicts. The theory is based on the

assumption that the system is a second-order damped harmonic oscillator. It is possible that

nonlinear affects, such as stiction, caused the impulse sequences to be more insensitive in

practice than "in theory. Tbe limitations of the hardware, such as the optical encoder

spacing and the motor servo rate, may have also contributed to the high value for the

experimentally deteffnined insensitivity.
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