
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

ARTIFICIAL INTELLIGENCE LABORATORY

A. I. Memo 1227 April, 1990

The Behavior Language; User's Guide�

Rodney A. Brooks

Abstract

The Behavior Language is a rule-based real-time parallel robot program-

ming language originally based on ideas from [Brooks 86], [Connell 89],

and [Maes 89]. It compiles into a modi�ed and extended version of the sub-

sumption architecture [Brooks 86] and thus has backends for a number of

processors including the Motorola 68000 and 68HC11, the Hitachi 6301, and

Common Lisp. Behaviors are groups of rules which are activatable by a number

of di�erent schemes. There are no shared data structures across behaviors, but

instead all communication is by explicit message passing. All rules are assumed

to run in parallel and asynchronously. It includes the earlier notions of inhi-

bition and suppression, along with a number of mechanisms for spreading of

activation.

�Support for this research was provided in part by the University Research Initative under O�ce

of Naval Research contract N00014{86{K{0685, in part by the Advanced Research Projects Agency

under O�ce of Naval Research contract N00014{85{K{0124 and in part by a gift from Siemens.

1



1 INTRODUCTION 2

1 Introduction

The subsumption architecture was described initially in [Brooks 86] and later mod-

i�ed in [Brooks 89] and [Connell 89]. The subsumption compiler compiles aug-

mented �nite state machine (AFSM) descriptions into a special purpose scheduler to

simulate parallelism and a set of �nite state machine simulation routines. This is a

dynamically retargettable compiler that has backends already for a number of pro-

cessors, including the 68000, the 68HC11, and the 6301. The subsumption compiler

takes a source �le as input, and depending on the target machine either produces an

assembly source �le or an incore data structure that can be assembled by some other

assembler.

The behavior language was inspired by [Maes 89] as a way of grouping AFSMs

into more manageable units with the capability for whole units being selectively acti-

vated or de-activated. In fact, AFSMs are not spe�cied directly, but rather rule sets

of real-time rules compile into AFSMs in a one-to-one manner. Sharing of registers

and monostables within the AFSMs produced by a single rule set, or behavior, is the

norm. The behavior compiler is machine independent and compiles into an interme-

diate �le of subsumption AFSM speci�cations. The subsumption compiler can then

be used to compile to the various targets. Some enhancements were made to the

original subsumption language in order to support the behavior language.

The behavior language is sometimes referred to as the new subsumption. A be-

havior language program appears as groupings of real-time rules, which are written

in a subset of Lisp, and which run in parallel.

All code for the behavior and subsumption compilers was written in Common

Lisp.

2 The User Interface

There are three forms for interacting with the behavior compiler at Lisp top level.

These specify the target machine, invoke the behavior compiler, and invoke the sub-

sumption compiler respectively.

2.1 Speci�cation

*** (set-current-machine machine)



2 THE USER INTERFACE 3

Sets the target machine for the subsumption compiler. If there is a Lisp resident

retargettable assembler it also makes the assembler's target this machine. The argu-

ment machine must be a symbol naming a machine. Currently supported machines

include

68k The 68000, running SOS (Seymour Operating System).

h6301 The Hitachi 6301. The operating system must be provided by the user as an

assembler macro in this case.

m68hc11 The Motorola 68HC11. The operating system is provided as an assembler

macro in this case.

clsim Common Lisp. This produces a �le of Common Lisp source code that can be

compiled by a regular Lisp compiler.

A current machine must be set before the subsumption compiler can be invoked.

*** (behave �le &key subcompile listing target)

Invokes the behavior compiler. The �le name defaults to the current directory and an

extension of beh. For instance: test.beh can be speci�ed with a �le name argument

of test. The output �le then defaults (and there is no way to change the default) to

an extension of lisp. So in the previous example the output �le would be test.lisp.

The subcompile argument is just a 
ag. If nil, it says to terminate after behavior

compiling. If non-nil it says to pass on to the subsumption compiler. In that case the

listing and target arguments are passed onto the subsumption compiler. Otherwise

they are ignored.

*** (subcompile �le &key listing target)

Invokes the subsumption compiler. The �le name defaults to the current directory

and an extension of lisp. For instance: test.lisp can be speci�ed with a �le name

argument of test. The output may be another �le with a di�erent extension, or an

incore assembly language program, depending on the target machine. For the 68000,

an assembly source program is written into a �le with extension asm (e.g., test.asm).

For the 6301 and 68hc11 the result is an incore assembly object. A symbol whose

print name matches the �le name main part (e.g., TEST in our example) is created

and is bound to this assembly object. In this case the symbol is returned as the result

of the procedure call. For Lisp, a �le with extension clisp is produced.



2 THE USER INTERFACE 4

The listing keyword, when non-nil, says to create an assembler listing �le that

contains compiler comments1. In the case of the 68000, this means that a normal asm

�le is produced but now comments are included. This option slows the subsumption

compiler down by a factor of two but can be very useful for debugging. In the case

of machines which don't normally produce an assembly �le, the listing argument can

force the production of one. If listing is T, then the �le name with an extension of

txt is used. Otherwise listing can be a �le name itself which will be used directly.

The target keyword lets you specify a target machine without having to explicitly

set it. If this argument is supplied then a call to set-current-machine is done

globally, changing the target.

2.2 Examples

In the following two example interactions, exactly the same e�ects are achieved. In

each case the 68000 is chosen as the target machine. The source �le cmor;seymour.beh

is compiled into the intermediate �le cmor;seymour.lisp. Then an assembly lan-

guage compilation of that is produced, with comments, in the �le cmor;seymour.asm.

? (set-current-machine '68k)

68K

? (behave "cmor;seymour")

Behavior compiler.

Processing: cmor;seymour.beh

Processing: cmor;base.beh

Processing: cmor;basemon.beh

Processing: cmor;linc.beh

Outputting to: cmor;seymour.lisp

Generated 24 afsms and 11 wire trees.

29 event-dispatches and 36 dispatch clauses.

T

? (subcompile "cmor;seymour" :listing t)

1These are comments generated by the compiler explaining what it is doing|they can help an

experienced user.



2 THE USER INTERFACE 5

Subsumption compiler. Target: 68K

Processing: cmor;seymour.lisp

Outputting to: cmor;seymour.asm

#.(pathname "cmor;seymour.asm")

?

The �le seymour includes references to three other �les, which is why they are

shown getting recursively processed.

The same results can be attained with a single call to behave as below.

? (behave "cmor;seymour" :listing t :target '68k :subcompile t)

Behavior compiler.

Processing: cmor;seymour.beh

Processing: cmor;base.beh

Processing: cmor;basemon.beh

Processing: cmor;linc.beh

Outputting to: cmor;seymour.lisp

Generated 24 afsms and 11 wire trees.

29 event-dispatches and 36 dispatch clauses.

Subsumption compiler. Target: 68K

Processing: cmor;seymour.lisp

Outputting to: cmor;seymour.asm

T

?

In the two examples above, the assembler code was annotated with compiler com-

ments. Here is an example of two pieces produced in the above runs.

* AFSM171:S178 must be suspended



2 THE USER INTERFACE 6

* test event AFSM171:(DELAY 0.2)

move.l d7,d6 ;pick up system clock

sub.l regs-24(a6),d6 ;compare to time suspended

cmpi.l #200,d6 ;check (delay 0.2)

blt.s endmod277

dispatch279

clr.l regs-24(a6) ;unsuspend AFSM171:S178

bsr afsm171_s179 ;dispatch

endmod277

.....

afsm171_s179

clr.b _BC_tcurrmax(a6) ;primop: CLEAR-BASE-STATUS

clr.b _BC_rcurrmax(a6) ;primop: CLEAR-BASE-STATUS

afsm171_s180

tst.b regs+7(a6) ;primop: <

ble.s afsm171_s182

afsm171_s181

moveq #-5,d2 ;stash output HEADING in temporary location

or.w #256,d2 ;set up message arrived flag from HEADING

move.w d2,regs+18(a6) ; deliver to AFSM188:HEADING

The same code when the listing argument is nil looks like:

move.l d7,d6

sub.l regs-24(a6),d6

cmpi.l #200,d6

blt.s endmod277

dispatch279

clr.l regs-24(a6)

bsr afsm171_s179

endmod277

.....

afsm171_s179

clr.b _BC_tcurrmax(a6)

clr.b _BC_rcurrmax(a6)

afsm171_s180

tst.b regs+7(a6)



3 THE BEHAVIOR LANGUAGE 7

ble.s afsm171_s182

afsm171_s181

moveq #-5,d2

or.w #256,d2

move.w d2,regs+18(a6)

3 The Behavior Language

Real-time rules are the key to the behavior language. They can be isolated or grouped

into behaviors.

The rules manipulate constants and variable quantities held in registers|usually

no more than 8 bits wide.

There are monostables that can be triggered and monitored.

Once a real-time condition is met, some small amount of Lisp-like code gets acti-

vated. There are a number of special forms in the behavior language. Their semantics

are detailed below, along with the form that expressions can take. There is no notion

of procedure de�nition|all abstraction must be done in macros, rules or behaviors.

At the same time, for complex new robots it is usally necessary to de�ne some

new interfaces. This is the role of primops. See section 10 for details.

In most cases the subset of Lisp de�ned below is downward compatible with

Common Lisp.

It is worth noting that programs using real-time rules and calling fragments of

Lisp code as de�ned below have run on processors with as little as 128 bytes of RAM.

3.1 Expressions

Expressions use usual Common Lisp syntax.

An expression is either an arithmetic expression or the application of a predicate to

zero or more arithmetic expressions. A predicate is one type of primitive procedure|

the type that returns true/false.

An arithmetic expression can be a constant (although it does not have to be an

arithmetic constant|it could be a string or a keyword for example), or a primitive

procedure applied to zero or more arithmetic expressions. In this case, the primitve

procedure must return a number (typically in the range [�128; 127]; 8 bits signed).

Sometimes it is not de�ned which such number they will return.



3 THE BEHAVIOR LANGUAGE 8

Primitive procedures (or primops) are de�ned in implementation speci�c ways by

the use of code templates. The actual primitive procedures de�ned may vary between

implementations.

At the very least, one can expect every implementation to include: +, -, max,

min, =, /=, <, >, <=, >=, etc. Individual implementations will document the available

primitives in separate documents.

3.2 Logical Expressions

Logical expressions are used as tests in conditional branches. Logical expressions can

be either:

� a monostable

� a predicate applied to argument expressions

� (NOT logical-expression)

� (AND &rest logical-expressions)

� (OR &rest logical-expressions)

3.3 Special Forms

A special form is a structure used for 
ow of control. A special form's evaluation

usually includes one or more expression evaluations at some recursive level.

The valid special forms in the behavior language are as follows. Note carefully

the places which are referred to as expressions. These really must be expressions

as de�ned in the previous subsection. Otherwise subforms can generally be either

expressions or special forms.

*** (if test then &optional else)

This is much like the Common Lisp if. The only restriction is that test must be a

logical expression.

*** (cond &rest cond-clauses)

Again, this is like the Common Lisp cond. Each clause has the form

(test &rest consequents)



3 THE BEHAVIOR LANGUAGE 9

where test must be a logical expression (or the special expression t) and the conse-

quents can be anything.

*** (repeat (variable range) &rest bodyforms)

This is an iteration construct. range must be an expression which evaluates to a

positive integer no bigger than 127. The variable (it can be named nil if it is not

referred to in the bodyforms) is bound to the range value minus one, then stepped

down by one to zero. At each bind, (including zero) the bodyforms are evaluated. The

bodyforms can make reference to the variable and get the variable's current binding

at all times.

*** (sequence &rest forms)

This is identical to the Common Lisp progn. I.e., it provides a sequence construct|

hence the name.

*** (nothing )

Does nothing. Useful as a place holder sometimes.

*** (let bindings &rest bodyforms)

Just like Common Lisp let. Each variable binding has the form:

(varname valexpression)

where valexpression must be an expression.

*** (let* bindings &rest bodyforms)

Just like Common Lisp let*. Each variable binding has the form:

(varname valexpression)

where valexpression must be an expression.

*** (setf varname expression)

This is much like the Common Lisp setf, or more precisely setq. It sets the value

of varname to the result of evaluating the expression.

*** (trigger monostable)



4 SPECIFYING AFSMS 10

Triggers the monostable namedmonostable. The monostable must have a time period

declared elsewhere. Triggering an already triggered monostable simply elongates the

time the monostable is \on" for its full time period from the moment the monostable

is most recently triggered.

*** (output portname expression)

This evaluates the expression and sends it to the named output port, portname.

Depending on the context, there is more than one possible meaning for output port.

Multiple meanings are explained below, in the section on sharing.

*** (send portspec expression)

This is like output, but one speci�c input port on another entity is named, and the

message is sent directly there. This is not such good programming style, as it lets

destinations get buried deep inside user code, where a casual observer might miss

them. Maybe this should be 
ushed.

Besides these special forms, whenever and exclusive can also be seen as special

forms when they are not at the top level of a process speci�cation.

4 Specifying AFSMs

An AFSM is built for every toplevel real-time rule seen by the behavior compiler. We

will specify the meaning of toplevel later, but for now it su�ces to include the case

of typing a real-time rule as a toplevel s-expression in the input �le|i.e. one that is

not enclosed in any extra parentheses (list structure).

There are two ways of specifying a real-time rule.

� As a whenever form.

� As an exclusive form.

The computational model is that for each rule, a single computational process is

devoted full time to evaluating it.

4.1 Rule Syntax; whenever

The most common way to specify a rule, and hence an AFSM is as a whenever clause.

The general syntax is:



4 SPECIFYING AFSMS 11

*** (whenever condition &rest body-forms)

The semantics of this are that a computational process will be devoted full time

to executing this rule. The process starts in a wait state. Whenever the triggering

condition becomes true, the list of body-forms are evaluated sequentially. Then the

process returns to the wait state until the condition again becomes true. It is legal

for the process to get stuck forever in the body|this can easily happen if there are

recursive whenever forms, but see below for details.

There are a number of possibilities for the form of a whenever condition. We list

them below.

t This says that every certain amount of time, the body of the whenever form will

be unconditionally evaluated. The certain amount of time here, is often re-

ferred to as the characteristic time of a particular implementation of the behav-

ior/subsumption system. On all our processors so far, this time has been 0:04

seconds giving a fundamental frequency to the system of 25Hz.2

monostable The condition is true for the duration of the triggering of the named

monostable.

(not monostable) The condition is true only while the monostable is not triggered.

(delay �) This is like the case of t above, but now any explicit time period � can

be used to set the frequency of evaluating the body. It should be expressed in

units of seconds.

(received? register) This is true if a message has been deposited in the named

register since the start of waiting in this whenever clause.

(and|or &rest forms) This is true if the logical and or or of the remaining forms are

true. The remaining forms can be any of:

� monostable

� (not monostable)

� (delay �)

� (received? register)

2At compile time the Lisp variable *characteristic-time* contains the characteristic time.



4 SPECIFYING AFSMS 12

predicate-form Such an arbitrary lisp predicate (except that it cannot be an and, or,

or not form as that would make it ambigous with the case above) is evaluated

repetitively at a repeat rate determined by the characteristic time of the imple-

mentation. Whenever the predicate-form is true, the body-forms are evaluated.

In essence, using a predicate-form is identical to having used:

(whenever t (if predicate-form (sequence . body-forms)))

4.1.1 Changing the characteristic time

For any particular whenever condition, the characteristic time can be changed by

wrapping it in a with-time form. The syntax is

(with-time period whenever-condition)

The semantics are simply that the whenever-condition is evaluated with a char-

acteristic time speci�ed by the time period.

4.1.2 Non-local exits

It is legal to have a whenever form (or exclusive form) wherever a special form is

allowed. Thus for instance, one might write the following code to make the physical

status of a door correspond to the current state of an internal variable.

(defconstant $open 0)

(defconstant $closed 1)

(whenever (= message $open)

(open-the-door)

(whenever (= message $closed)

(close-the-door)))

There is a problem here however, as once the inner whenever is entered, there

is no way to exit it. The inner whenever will continually check its condition and

perhaps repeatedly initiate the door closing action. In order to break out of such

inner whenever forms, there is a form named done-whenever. For instance:

(whenever (= message $open)

(open-the-door)



4 SPECIFYING AFSMS 13

(whenever (= message $closed)

(close-the-door)

(done-whenever)))

In this case, as soon as the door closing action is initiated, the computational

process running this rule reverts to checking the outer condition. Thus, both the

door opening and the door closing actions only get initiated once for each change in

state of the message variable.

The syntax of the form is:

*** (done-whenever &optional (height 0))

When the optional height argument (which defaults to 0) is 0, it means simply to

exit the lexicallymost recent whenever. For larger values, it means to exit successively

less lexically recent whenever forms, each lexical layer traversed decremementing the

height by one. E.g.:

(whenever (received? mess1)

(whenever (received? mess2)

(whenever (received? mess3)

(print "Got 1, 2, and 3 sequentially")

(done-whenever 1))))

In this example, the process waits for a sequence of messages to arrive in registers

mess1, mess2, and mess3, and as soon as the process gets the third it prints the

message, then reverts to waiting for a message in register mess1. Note that other

messages may arrive in the meantime and they are ignored|thus the process will

respond to a sequence like 1; 2; 2; 1; 3 for instance.

4.2 Rule Syntax; exclusive

An exclusive rule provides a way to simultaneously monitor many conditions and

then exclusively service the �rst one that occurs, ignoring any of the other conditions

which might happen during that servicing.

The general syntax is:

*** (exclusive &rest whenever-forms)



5 BEHAVIORS, MACHINES, ETC. 14

where whenever-forms is a collection of whenever rules.

The model is that there is a computational process assigned full time to this

exclusive rule. This process monitors all the whenever conditions simultaneously,

and as soon as the �rst condition happens, the process devotes all its attention to

evaluating that whenever's body, temporarily ignoring the other whenever conditions.

As soon as the body is exited, the process goes back to monitoring all the parallel

conditions anew.

The following example distinguishes between messages arriving in an isolated way

in the bar register, from those that arrive less than or equal to two seconds after a

message arrives in register foo.

(exclusive

(whenever (received? bar) (print "Isolated BAR"))

(whenever (received? foo)

(exclusive

(whenever (received? bar)

(print "BAR received within two seconds of FOO"))

(whenever (delay 2.0) (done-whenever 0)))))

Note that if it is ever the case that more than one of the whenever conditions

becomes true simultaneously, then the leftmost one lexically is the one that is chosen.

5 Behaviors, Machines, etc.

Real-time rules can appear as top-level lisp forms in a source �le. As such, they get

compiled into single AFSMs, with no user-visible name. Such rules cannot be referred

to in order to connect virtual wires to their inputs or outputs. Furthermore, such

real-time rules are lexically closed. Any registers these rules refer to are purely local.

It is impossible to refer to any monostables as there is no syntax for declaring the

monostables' activation time periods within the rules. Therefore, isolated real-time

rules at top level are of rather limited value, although they are sometimes useful to

initiate background housekeeping processes.



5 BEHAVIORS, MACHINES, ETC. 15

5.1 Single Named Rules

A slightly more useful way of specifying an isolated real-time rule is by giving it a

name with defmachine. The syntax is:

*** (defmachine name declarations rule)

The name becomes the name of a single AFSM which implements the rule speci-

�ed. The declarations slot lets the user specify monostable periods and initial values

for registers. The declaration syntax is delineated below.

5.1.1 Registers

Registers as such and output ports are not necessarily declared in the behavior lan-

guage. Rather their existence can be inferred from seeing references to them. Output

port names can be identi�ed syntactically by appearing in an output statement. All

free references to variables must be either registers or monostables. Monostables must

have their time period declared somewhere so they can be disambiguated from regular

registers.

Given the name of the AFSM declared in the defmachine construct and the

implicit output names and inferred register names, the connect form described later

in this document can be used to connect individual inputs and outputs in so de�ned

augmented �nite state machines.

5.1.2 Declaration syntax

The declarations slot of a defmachine is simply a list of declarations. There are three

forms declarations can take:

� (name :init value) which both declares name to be a register and gives it an

initial value.

� (name :monostable period) which declares name to be a monostable and de-

clares its activation period.

� (name :additive (l h))which says that all incoming messages to this register

should be added and the sum should be bounded in the range [l; h]. No over
ow

checking of intermediate values is done in these computations, although the

bounding computation is done after each message is sent to such a register.



5 BEHAVIORS, MACHINES, ETC. 16

For instance consider a machine using 8 bit signed arithemetic with an additive

register with the range (0 120). Suppose its value is 120 and a message of 15

arrives. The sum will be 135 which over
ows the capacity of an 8 bit machine,

and this will confuse the max instruction done. Thus, users must beware of the

possible size of the arguments that will be added.

Any register not declared by an :init has an initial value that is unde�ned.

Multiple declarations on a single register can simply be appended as a set of

keywords and values.

5.2 Collections of Rules: Behaviors

Collections of real-time rules can be grouped into behaviors. There are a number of

advantages to such grouping:

1. Registers, monostables and outputs can be shared across many real-time rules.

2. Behaviors provide a coarse scale abstraction barrier which even strong tempta-

tion cannot broach.

3. Fewer names are needed in the name space.

4. Complete sets of rules (i.e., behaviors) can be activated through multiple acti-

vation mechanisms.

There are two ways to specify behaviors; with definterface and with defbehavior.

For now we will consider these two forms to be indentical. Later we will distinguish

them.

The form of a behavior speci�cation is:

*** (defbehavior name &key inputs outputs decls processes)

or equivalently

*** (definterface name &key inputs outputs decls processes)

The arguments are as follows:

name The name of the behavior.



5 BEHAVIORS, MACHINES, ETC. 17

inputs A list of registers which are available as inputs from outside the behavior.

outputs A list of output ports which can be connected to external entities.

decls A list of declarations having the same syntax as those in defmachine.

processes A list of real-time rules, having the same syntax as those described earlier.

These rules can be expressed as whenever, exclusive, or even defmachine

statements. In the latter case the rule has a somewhat useless name.

As with single-rule machines, any undeclared free variable in a behavior descrip-

tion is assumed to be a register. Any name appearing in an output statement is

assumed to be an output. However, unless a name appears in the outputs speci�ca-

tion list, it cannot be exported from the behavior. If the name also appears elsewhere

as a free variable, it is given dual treatment described below and handled as a register

also.

5.2.1 Sharing within behaviors

All registers and monostables, with the exception of those that also appear on the

input list, or as output names somewhere within a rule, are shared across all the

AFSMs generated for the behavior. We will treat registers which appear as outputs

separately in the next section.

Consider the following example behavior:

(defbehavior tester

:inputs (f1 f2)

:decls ((total :init 0))

:processes ((whenever (received? f1)

(setf total (+ total f1)))

(whenever (received? f2)

(setf total (- total f2)))))

Here the register total is shared between two AFSMs, one of which increments

it, while the other decrements it.

Likewise, monostables can be shared between rules, and when one rule triggers a

monostable the other rule will see it as having been triggered.

When two rules in the same behavior refer to a name they are referring to the

same entity.



5 BEHAVIORS, MACHINES, ETC. 18

There are two exceptions to this sharing concept; registers that are named explic-

itly as inputs and registers which accept internal sends. The latter case is discussed

in the next subsection. Registers that are named explicity as inputs are replicated

in each AFSM where they are referenced. This is so that the (received? ...) con-

struct will work in each rule independently. Thus, di�erent rules within a behavior

will refer to di�erent copies, and the values will diverge if one rule includes a setf of

the appropriate name.

5.2.2 Message passing within behaviors

It is possible to pass messages between rules within a single behavior. This mechanism

was referred to above has having internal sends.

If there is an output to a port name that is the same name as is used in syntactic

positions reserved for registers, then such output messages are sent to each copy of

that register|one copy for each real-time rule that refers to it. It is not necessary

in this case that the port name also appear as a declared output of the behavior,

although it may, and in that case all messages are also sent out along any virtual

wires connected to that port.

The reason for having internal message passing rather than just shared registers,

is to enable synchronization between rules|that is exactly what happens when one

rule is waiting to trigger on a received? clause when a message from another rule

arrives.

5.2.3 Behaviors and interfaces

There are two di�erences between behaviors and interfaces (speci�ed with defbehavior

and definterface respectively).

The primary intent of the di�erentiation is that interfaces should implement vir-

tual sensors and actuators.

Note that this is di�erent from saying that interfaces are used to di�erentiate

central from peripheral systems. Any sensor is a virtual sensor at some level|the

time taken for a sonar return to arrive is represented on one particular wire as a direct

physical analog by the time taken for a voltage to go high, whereas a little further

down the processing line the analogy is stretched a little as it becomes data on a

16 element wide binary bus. Interfaces in the behavior language simply push that

abstraction another step until the sensor readings and actuator commands become

virtual at the level of appearing as messages on connections between sets of real-time



6 CONNECTIONS 19

rules. There is no necessary sense here in which perception becomes peripheral to

the central system. Perception still may be done in and at the behest of behaviors.

The distinction between interfaces and behaviors is that behaviors deal only with

messages on connections and internal state.

The implementation of this primary intent is through enforcement of the primitive

procedures that may be used in rule sets speci�ed with defbehavior. Certain prim-

itives are designated as communicating, either from sensors or to actuators, outside

the realm of behavior language entities. Their use is forbidden except in interfaces.

A secondary, and indeed subsidiary, intent is that behaviors but not interfaces can

be activated and deactivated as complete units. There are two schemes for such be-

havior control, described below in the activation section. These schemes are accessed

by additional keywords to defbehavior that are not legal for definterface.

6 Connections

The method for connecting isolated AFSMs and behaviors together is the connect

form. Isolated AFSMs and complete behaviors can be mixed and matched within such

declarations of virtual wires. Isolated AFSMs and behaviors are treated equivalently.

A source or destination of a wire is written as a port identi�er. The general form

for such a thing is:

(objectname portname)

where objectname is the name of either an explicitly constructed isolated AFSM, or

the name of a behavior. The portname is either an implicit register or output in the

case of an AFSM speci�ed with defmachine, or in the case of a behavior it is an

explicitly declared input or output.

6.1 Explicit Wires

The general form for explicit connection is:

*** (connect source dest1 &rest more-dests)

This says that for every output at the source port, a copy will be delivered to

every destination speci�ed as dest1 or in the list more-dests. If a destination port

name is part of a behavior, then a copy of the message gets delivered to every rule or

explicit AFSM that references the named input.



6 CONNECTIONS 20

Connects can also be used to implement suppression and inhibition. In this case

the destination is either

((suppress input-port))

or

((inhibit output-port))

or

((default input-port))

In each case input-port and output-port take the form of port identi�ers decribed

earlier.

The sematics of suppression are that the new connection sends its messages to the

old input-port. When such a message is sent, it completely blocks any messages for

the old port from other sources for some time period|twice the characteristic time

of the implementation.

The semantics of inhibition are that the new connection inhibits any outputs

getting out of the old output-port for some time period after an inhibiting message is

sent. That time period is again twice the characteristic time of the implementation.

The semantics of default are just like those for suppression, except that it is the

old wire that has dominance over the new wire.

6.2 Implicit Wires

Wires can be implicitly built into a rule speci�cation, by using the send special form.

It looks like:

*** (send destination value)

In this case no declared output is used. In fact, this syntax is internally used to

transform the source behavior so that it has an explicit new output port name. The

send form is transformed into a syntactically identical output form, and an explicit

connect form is added.

Thus:

(defbehavior foo

:processes ((whenever (with-time 1.0 t)

(if (check-clock)

(output bar 33)))))



7 MACROS OF ALL FLAVORS 21

(connect (foo bar) (some place))

is completely equivalent to:

(defbehavior foo

:processes ((whenever (with-time 1.0 t)

(if (check-clock)

(send (some place) 33)))))

7 Macros of All Flavors

Common Lisp-like macros can be de�ned at the top level of a �le by using defmacro.

Such de�nitions are actually treated using the underlying Common Lisp mechanism

so all the syntax and semantics of Common Lisp apply.

Macros can be used anywhere within the behavior language. They will be ex-

panded appropriately. They can, of course, expand into other macro calls and all will

be handled appropriately. Note however, that only macros which occur within be-

havior language source �les will be expanded. Any lisp macro which already happens

to be in the environment will be ignored.

7.1 Top Level Macros

It may be convenient to have a top level macro return many items, for instance a

couple of behaviors and some connections between them. To enable this to happen,

there is a special form which can occur only at top level, or recursively nested within

itself, named collection. It takes the form:

*** (collection &rest forms)

The forms are treated exactly as if they themselves had occured at toplevel of the

source �le (and hence they too can include a collection).

7.2 Units

A special restricted form of macro that is easy to de�ne is used to declare units of

measurement for any constant. This is necessary because in most implementations



8 ACTIVATION MECHANISMS 22

of the behavior language/subsumption architecture, numerical quantities (apart from

time periods) are restricted to be 8 bit signed integers|i.e., they range from �128

to 127 inclusive.

The general form is:

*** (defunit unitname (arg) form)

The idea is that the form provides a mapping from quantities in the named units

into the range [�128; 127]. For instance representing degrees ranging from [�360; 360]

in the range [�120; 120], we could de�ne:

(defunit degrees (x) (round x 3))

Then we could refer in behavior code to quantities like (degrees 270) which

would translate into 90, small enough to �t into 8 bit registers.

8 Activation Mechanisms

Behaviors can have two states; an active state and an inactive state. The rules

that make up a behavior can actually be segmented into three classes that operate

di�erently depending on the state of the behavior. The classes are speci�ed using

additional keywords. The rule speci�cation keywords for behaviors are:

:processes These rules always operate as speci�ed earlier.

:h-processes These haltable processes cannot run at all when the behavior is in its

inactive state. It is as if every whenever condition has an additional term that

is not satis�ed.3

:i-processes These inhibitible processes always run, but all outputs are inhibited

while the behavior is inactive.

There is a monostable called active-p which is available to any rule. The

active-pmonostable says whether the behavior is active or not. Of course, it makes

no sense to access this monostable from a haltable rule, since whenever a haltable

rule is running it must be the case that active-p is triggered.

3And indeed that is how it is implemented!



8 ACTIVATION MECHANISMS 23

8.1 Activation

There are four keyword slots to defbehavior concerned with describing when a be-

havior is active. These are:

:precondition This is an aribtrary expression which should return true or false.

When it is true it triggers a user visible monostable preconition-p with a

period of twice the characteristic time. This monostable must be activated

before a behavior can be activated, as below. This slot is optional and can be

omitted. In that case it is as though the precondition is always true.

:activation This is an arithmetic expression which is evaluated at a frequency de-

termined by the characteristic time of the implementation. Typically it is eval-

uated at 25Hz. The expression in this slot can refer to any register within the

behavior. Other possibilities are described in subsequent subsections. The eval-

uation of the expression results in a number in the range [�128; 127]. This is

user visible as the contents of the pseudo register activation-level.

:threshold This is a number in the range [�128; 127] which is compared to the

computed activation level of the behavior. If that activation level is greater

than or equal to the threshold and, when a :precondition was satis�ed, if

the precondition-p monostable is active, then the active-p monostable is

triggered. The behavior is active if and only if the active-p monostable is on.

:continuance By having a monostable in addition to the regular comparison with

the threshold, some hysterisis and stability is built into the system. This slot

speci�es the time period of the monostable. If the slot is omitted the time

period defaults to 2:0 seconds.

8.2 The Hormone System

The hormone system is a crude form of a behavior activation mechanism.

There are two types of non-procedural entities:

condition These are named excitation quantities which decay over time (see below)

but which can be excited by any process which chooses to excite them. A

condition's value ranges from 0 to 15, although there is no explicit way for this

value to be examined.



8 ACTIVATION MECHANISMS 24

releaser These are functions of the conditions. Releaser values are kept up to date

by background processes, with a time lag of no more than the characteristic

time of the implementation.

Together, conditions and releasers form a low bandwidth global communication

mechanism.

A coarse analogy is that conditions are emotions and releasers are hormones.

The forms for de�ning conditions and releasers are defcondition and defreleaser.

Their general forms are:

*** (defcondition name &key ...)

*** (defreleaser name &key ...)

In both cases, name is a symbolic name for the quantity. Both forms take a

number of optional keywords listed below.

For conditions, there is an initial value declared (see below). That value can be

increased at any time (up to the maximum value of 15) with the excite primitive

which takes the form:

*** (excite condition-name &optional (amount 1))

excite can be used in the body of any real-time rule in the whole system. There

is no lexicographic requirement. The named condition is incremented by the desired

amount (defaulting to 1).

The value of each condition decays over time. The decay rate can be determined

by the user. It defaults to a linear rate of one unit every 12 seconds, but it can be

changed, and also made bi-linear. The decay mechanism is quite general, but the

underlying assumption in the syntax for specifying it, is that in the bi-linear case

there is a region of hyper-activation where the decay rate is lower.

The keywords for defcondition, along with their default values are:

init 0 The initial value for the condition.

decay-period 12 The number of seconds between a reduction of one unit of the

condition level.



8 ACTIVATION MECHANISMS 25

hyper-level nil If this is non-nil then at this level or above, a slower rate of decay

is used.

hyperize 24 The number of seconds between an increase of one unit of the condition

level when in the hyper active region.

There is only one keyword for defreleaser.

generation 0 An expression on constants and previously declared conditions. This

expression gets evaluated at a rate determined by the characteristic time of the

implementation in order to keep the releaser up to date.

Any releaser can be referred to in the :activation slot of a behavior. In this

way, the hormone system can activate selected behaviors.

8.3 Spreading of Activation

Besides hormones, there is a direct method for spreading of activation between be-

haviors. The current direct method has some drawbacks and will be modi�ed in the

future after experience is gained with it. The direct method will also be modi�ed to

allow the implementation of certain ideas in learning.

The principal idea behind activation (from [Maes 89]) is that any behavior can

spread some portion of its activation to other behaviors. This spreading is modelled

as a continuous process (although it is implemented discretely). Spreading activation

does not diminish the current activation level of a behavior.

As before, the activation level of a behavior is speci�ed by the expression in the

:activation slot. Besides registers and releasers the expression can also refer to the

virtual register received-activation. The contents of the received-activation

register is determined by activation messages (ideally thought of as continuous values

on wires, although it is possible to abuse this model) from other behaviors. There is

a primitive named direct-activate. It takes the form:

*** (direct-activate behavior-name portion)

Here, behavior-name is the name of some other behavior. The result of evaluating

this form is to add some activation to the received-activation register of that

other behavior. The amount received is the sending behavior's activation multiplied

by the portion. The portion must be a rational number with a denominator which is

a power of two (since some of our target machines have no divide instruction!).



9 ARRAYS 26

The received-activation virtual register, by default, has values in the range

[0; 63] where over
ow and under
ow are banged against these limits. This range can

be altered with the :received-activation-range keyword argument to defbehavior.

It should look like a list of the low value and high value. The range must include 0.

Although spreading of activation should be thought of as a continous thing it is

implemented discretely by having received-activation be an :additive register.

Every time the :activation expression is evaluated (at the characteristic frequency

of the implementation) this register is e�ectively reset to 0. Thus the correct way to

use direct-activate is to run it at the characteristic frequency, most typically as a

whenever t rule.

9 Arrays

An array is a one dimensional vector of registers, each of which acts like an individ-

ual register|e.g., a message arriving at an array element can be used to trigger a

whenever rule, things can be stored in the array, and elements can be read and used.

Note that an array can be an input to a behavior|in e�ect a vector of inputs. An

array can also be a one dimensional vector of outputs.

Like registers, all arrays are statically allocated at compile time. For arrays this

means that their size must be declared as a constant. An array is declared in the

:decls slot. An array declaration has two possible forms; one without element initial-

ization and one with all elements being initialized to the same constant. The forms

of these declarations are:

� (name :array size) which declares an array called name to have the constant

size number of elements.

� (name :array size :init value) which additionally declares that all elements

of the array have initial value value.

A declared array can also be listed as in input or as an output.

The primitive for accessing components of an array is aref.

*** (aref arrayname index)

Arrays are indexed with a zero base. An aref form can appear anywhere a regular

register or output portname can appear (assuming the array is declared appropri-

ately). In particular it can be a location to which a setf refers.



9 ARRAYS 27

When an aref is used in a connect statement as either an input portname or an

output portname the value of the index must be computable at compile time. Thus,

there cannot be any parameterized wires joining behaviors.

When an aref is used as the destination of an output statement the value of the

index must also be computable at compile time. Thus, there cannot be any output

redirected dynamically 4.

An aref form can appear in a received? test condition of a whenever clause even

when the index is not computable at compile time. Thus, input can be redirected

dynamically. Note, however, that unlike regular registers, arrays that are inputs are

not duplicated over multiple rules, so that there is only one chance to poll the 
ag

that says the message has actually arrived.

;;; we use come-from registers rather than goto registers because

;;; an output must be to a known location at compile time. but we

;;; can use simple indexing to select from a behavior's input registers.

;;;

;;; the following switch handles 8 inputs and 8 outputs. each output

;;; can have at most one input, and only the first attempt at checking

;;; an input will notice a message had arrived.

;;;

;;; to request a switch setting, send an input index to inpsel, an output

;;; index to outsel, and a 1 to each of inp-count and out-count. the

;;; latter two are for collision detection. the status output tells whether

;;; there was a collision or not and does nothing if there was. after

;;; a switch has been set, all messages get routed appropriately.

(defconstant $switch-success 1)

(defconstant $switch-failure 0)

(defmacro passon (index)

`(whenever (received? (aref a (aref b-i ,index)))

(output (aref b ,index) (aref a (aref b-i ,index)))))

(defbehavior switch8

4The implementation reason for this is that it would require making the various suppressed and

inhibited wire trees connected to a particular output be callable as a subroutine. The original BL

implementation was not set up in a way which makes this easy.



9 ARRAYS 28

:inputs (a inpsel inp-count outsel out-count)

:outputs (b status)

:decls ((b-i :array 8 :init 0)

(a :array 8)

(b :array 8)

(inp-count :additive (0 63) :init 0)

(out-count :additive (0 63) :init 0))

:processes ((whenever (and (received? inpsel)

(received? outsel))

(cond ((and (= inp-count 1)

(= out-count 1))

(setf (aref b-i outsel) inpsel)

(output status $switch-success))

(t (output status $switch-failure)))

(setf inp-count 0)

(setf out-count 0))

(passon 0)

(passon 1)

(passon 2)

(passon 3)

(passon 4)

(passon 5)

(passon 6)

(passon 7)))

;;; now for a silly behavior to demonstrate how connections are made

(defbehavior foo

:inputs (baz)

:outputs (bar)

:processes ((whenever (received? baz) (output bar baz))))

(connect (foo bar) (switch8 (aref a 3)))

(connect (switch8 (aref b 5)) (foo baz))



10 CONNECTING TO THE OUTSIDE 29

10 Connecting To The Outside

The behavior language is only useful if it can do something in the world. In this

section we discuss how to make the actual conenctions to the world.

10.1 Simulation Using Common Lisp

A simple way to make connections to the world is to use a simulation of it. This

can be most easily done in the behavior language by setting the current machine to

clsim5.

The behavior language compiles subsequent input �les into Common Lisp source

code in �les with an extension of .clisp. This �le can be compiled (by the Com-

mon Lisp compiler) and loaded. Then to run the behavior program use the form

(scheduler).

Any lisp procedure can be called by a behavior language program, but all free

variables will be treated as register names.

*** (lisp form)

This treats form as vanilla lisp and does not try to look through it for references to

registers. Instead this piece of lisp code will be compiled and called directly at the

appropriate place.

10.2 Reserving storage

For backends that produce code that run directly on other machines it is sometimes

necessary to allocate storage which is not behavior language registers. This can be

done with:

*** (defdata label size)

which allocates size bytes of data and gives a symbolic label to the zeroth one. This

label may be referred to inside primitive operators (see below) or with the two forms:

*** (examine 'label)

5If the CL simulator is not already loaded, you can use the form (load-clsim) to get it in.



10 CONNECTING TO THE OUTSIDE 30

*** (deposit 'label value)

These take a quoted label and either examine its contents or set its contents. In

reality these two operations are implemented as primitve operators (see below).

10.3 Initializing Other Processes

There is a way to escape to assembly language to make speci�c calls during initial-

ization. This is achieved through the form:

*** (initialize-forms &rest forms)

Each item in the list forms should be an assembly language instruction to be run

during initialization. Typically it will be a subroutine call to the operating system.

It is legal to have multiple initialize-forms spread throughout a behavior lan-

guage program. They are collected together automatically sequentially in the order

of detection.

10.4 Primops

Primops are code templates for procedures called within behavior language programs.

When a user wants to extend the interface between the behavior language and the

underlying hardware the typical thing would be to write a new primop. The primops

should be compiled and loaded in the lisp environment in which the behavior compiler

runs. In clsim all lisp procedures are treated as primops, so there is no need for this

section in that case.

A primop has the form:

*** (defprim name &io-p args extra result isrep code opt coll)

The idea is that this provides a procedure at compile time which, when given some

operands specifying the location of arguments, will generate appropriate code, and

also return an operand describing where the result of the procedure can be found.

Note that these operands are machine operands that machine instructions can refer

to.

name The name of the procedure|it can be called by this name from within the

behavior language.



10 CONNECTING TO THE OUTSIDE 31

io-p A 
ag (nil or t) which says (in the latter case) that this is an I/O procedure.

Such procedures can only be invoked from interfaces and not from regular be-

haviors.

args A list of argument speci�cations, giving the operands symbolic names, and

placing any restrictions on legal classes of operands. It is up to the compiler to

�nd a way to deliver the arguments in operands of the appropriate classes. Each

element of this list is a list of two things; an argument name, and an operand

class.

extra A list of extra operands that this primop would like to be able to use (e.g., some

extra registers). This list takes the same format as the argument speci�cations.

isrep This is either value or branch. The former says that this procedure returns an

actual value, the latter says that it sets a condition code which can be branched

on.

result In the case of an isrep of value, this is an operand describing where the

result of the procedure will show up. Note that this is an expression which gets

evaluated. It can be a backquoted form, for example. Any named locations in

the args and extra slots can be used as free variables in this form. In the case

of isrep of branch then this is a condition name (e.g., eq, ge, etc.,) which is

what to branch on in the true case.

code This is an expression which should evaluate to a list of instructions. Typically

it will be a backquote form which will make reference to the operands speci�ed

in args and extra.

opt A form which can refer to the free variable form, which will be bound to the

expression calling the named procedure. If this form returns a di�erent form

that the original source at compile time, then that new source is used instead.

This is used for example, to turn addition of many arguments into a series of

additions of two arguments.

coll When speci�ed this should be a procedure (e.g, #'*) which when applied to all

literal arguments gives the result that the procedure being de�ned would have

given at runtime. This is used by the compiler to eliminate procedure calls with

all literal arguments.



10 CONNECTING TO THE OUTSIDE 32

The operand classes are machine dependent. On the 68000 the legal classes are

dreg, meaning a data register, and any meaning an operand. On the 6301 and 6811

the legal classes are !accum-a meaning the A accumulator and anyna meaning any

non-accumulator operand (i.e., constant or memory). In both cases arguments can

also declared to be literal which means that at compile time the value must be

able to be determined, and that will be what the argument name is bound to, when

evaluating the code slot.

Consider the following examples from the 6301:

(defprim oddp

:io-p ()

:args ((x !accum-a))

:result ne

:isrep branch

:coll #'oddp

:code `((anda (! 1))))

(defprim max

:io-p ()

:args ((x anyna) (y !accum-a))

:result y

:isrep value

:code (let ((endlabel (gentemp "MAX")))

`((cmpa ,x)

((branch ge) ,endlabel)

(ldaa ,x)

,endlabel))

:coll #'max

:opt (dyadicize-form form))

(defprim examine

:io-p t

:args ((p literal))

:extra ((x !accum-a))

:result x

:isrep value

:code `((ldaa ,p)))



11 SUMMARY OF ALLOWED TOP LEVEL FORMS 33

The oddp example is a non-value producing primop. It sets condition codes, and a

subsequent branch operation will be a�ected by that condition code. In the example,

the argument comes in the A accumulator, which is anded with 1. If the result is

non-zero that means the argument must have been odd, so checking for the condition

ne ensures that the branch will be taken on the true case. The compiler is free to

optimize this and may decide to check for the negation of the condition, i.e., eq and

branch on falseness of odd.

The second example, max, must build a more complex piece of code with an branch

and labels.

The third example illustrates the use of a literal argument, in this case it is an

assembler label, possibly reserved with defdata.

11 Summary of Allowed Top Level Forms

The legal toplevel forms in a behavior source �le are:

� defconstant

� defmacro

� defmachine

� definterface

� defbehavior

� defunit

� defcondition

� defreleaser

� connect

� whenever

� exlusive

� collection



12 ACKNOWLEDGEMENTS 34

� defdata

� initialize-forms

� A macro de�ned in the current compilation context using defmacro

12 Acknowledgements

Pattie Maes provided much input and in
uence over the design of the activation

spreading mechanism. She and Maja Mataric have been the primary guinea pigs

subjected to use of the behavior language. Pattie and Anita Flynn had many useful

comments on earlier drafts of this document.

13 References

[Brooks 86] \A Robust Layered Control System for a Mobile Robot", Rodney A.

Brooks, IEEE Journal of Robotics and Automation, RA-2, April, 14{23.

[Brooks 89] \A Robot that Walks: Emergent Behavior from a Carefully Evolved

Network", Rodney A. Brooks, Neural Computation 1:2, Summer.

[Connell 89] \A Colony Architecture for an Arti�cial Creature", Jonathan H. Con-

nell, MIT Ph.D. Thesis in Electrical Engineering and Computer Science, June.

[Maes 89] \The Dynamics of Action Selection", Pattie Maes, AAAI Spring Sympo-

sium on AI Limited Rationality, IJCAI, Detroit, MI, 991|997.


