MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

A.I. Memo No. 1230 December, 1988

Olympic Robot Building Manual

Edited by Anita Flynn
with contributions from

Colin Angle, Rodney Brooks, Jon Connell, Anita Flynn,
Ian Horswill, Maja Mataric, Henry Minsky, Peter Ning,
Paul Viola, and William Wells

The 1989 AI Lab Winter Olympics will take a slightly different twist this year from previous
Olympiads. Although there will still be a dozen or so athletic competitions, the annual talent
show finale will now be a display not of human talent, but of robot talent. Spurred on by the
question, “Why aren’t there more robots running around the AI Lab?”, Olympic Robot Building
is an attempt to teach everyone how to build a robot and get them started. Robot kits will be
given out the last week of classes before the Christmas break and teams have until the Robot
Talent Show, January 27th, to build a machine that intelligently connects perception to action.

There is no constraint on what can be built; participants are free to pick their own problems and
solution implementations. As Olympic Robot Building is purposefully a talent show, there is no
particular obstacle course to be traversed or specific feat to be demonstrated. The aope is that
this format will promote creativity, freedom and imagination.

This manual provides a guide to overcoming all the practical problems in building things. What
follows are tutorials on the compenents supplied in the kits: a microprocessor circuit ‘brain’, a
variety of sensors and motors, a mechanical building block system, a complete software develop-
ment environment, some example robots and a few tips on debugging and prototyping. Parts
given out in the kits can be used, ignored or supplemented, as the kits are designed primarily to
overcome the inertia of getting started.

If all goes well, then come February, there should be all kinds of new members running around
the AI Lab!

Copyright © Massachusetts Institute of Technology, 1988

Funding for the Robot Olympics was provided by the Systems Development Foundation.

Table of Contents

1. Implementing Your Imagination
1.1 Goals
1.2 Groundrules
1.3 How to build stuff

2. The Motorola 6811 Microprocessor
2.1 OLM2 and OLM2S microcontroller boards
2.2 Using serial I/O
2.3 Assembling the OLM?2 board
2.4 The OLM2S surface mount board

3. Sensors

3.1 Pyroelectric motion sensors

3.2 Microswitched touch sensors

3.3 Photodiodes
4 Near-infrared emitters and detectors
.5 Microphones
.6 Photocells
.7 Inclinometers
8 Mercury switches
9 Cameras
1
1
1

.

: 0 Using the Polaroid ultrasonic rangin g sensor
1 The Futaba gyro

3
3
3
3
3
3
3
3
3.12 The Zemco flux-gate digital compass

.
.
.
.

4. Much Random Information Concerning Motors
4.1 Introduction
4.2 DC Motors
4.2.1 Rated voltage
4.2.2 “No load” shaft speed
4.2.3 Stall torque
4.2.4 Starting current
4.2.5 Loaded performance
4.3 Gearboxes
4.3.1 Spur gear boxes
4.3.2 Planetary gear boxes
4.3.3 Lead screws
4.3.4 Worm gears
4.4 Drivers
4.4.1 H-bridge
4.42 Relays
4.4.3 Power problems
4.5 Control
4.5.1 Position sensors
4.5.2 Rate sensors
4.6 Stepping Motors
4.7 Types of Stepping Motors
4.7.1 The stator
4.7.2 The rotor

4.7.2.1 The variable reluctance rotor
4.7.2.2 The permanent-magnet rotor
4.7.3 The controller
4.7.4 Implementation of stepper drivers
4.8 Futaba Servo Motors
4.9 Conclusion

5. Software Development System - 6811 Assembler.and Subsumption Compiler
5.1 Programming Tools for the M68HC11
5.2 The Assembler
5.2.1 Assembling code
2.2 Code format
.2.3 Assembler directives
.2.4 Data statements
.2.5 Instruction specification
.2.6 Macros
.2.7 Iterations
e Down Loader
e Subsumption Compiler
4.1 Organization
4.2 Invoking the compiler
4.3 Selectively compiling only parts of the system
4.
4.

RV RV RV RV NV]

=g

4 Specifying the target machine
5 Compilable forms

4.6 Available primops

5.4.7 The squirt-op environment

(Y RV, RV RV RV RV}

6. Cross-Development Using a Host Computer
6.1 Running the Development Environment
6.2 Cables and Connectors

6.2.1 Flavors of connectors
6.2.2 Cable connections
6.3 Bootstrap Mode

7. Batteries

8. Connectors
8.1 Prototyping electronics
8.2 Mobot connectors

9. Debugging - “If it doesn’t work, it’s probably the connectors...”
10. An Example Robot Control System - Squirt’s Brain

11. Designing the Photovore - A Case Study
11.1 Task
11.2 Sensors
11.3 Geometry
11.4 Chassis
11.5 Motors
11.6 Logic
11.7 Construction

1989 AI Lab Winter Olympics
Olympic Robot Building
“Implementing Your Imagination”
Anita Flynn
Goals

There are two primary goals for the Robot Olympics, the first and foremost of which is to-
have fun. In the spirit of the AI Lab Olympics, the idea is to get to know other members of
the laboratory in a setting where we not only work hard, but also play hard.

The second goal for gtlixe robot talcntbslhow is to I%le‘:le evc:ryo:ﬁy a chance to get some hands-on
experience and insight into the problems invo, in ‘actually building a robot. Hopefully,
we’ll create a labful of jacks-of-all-trades and there will be less temptation to build abstrac-
tion barriers. The spirit of the robot contest then, is to learn a bit about the things at which
you’re not already expert. So if you're a software guru, give a shot at the mechanical as-
pects; if you’re an electronics wizard, take a crack at software; if you’re an ace mechanical
designer, try building some sensors.

Groundrules

Golden Rule #1 - No Squashing!

We want the robot olympics to be creative, imaginative and most of all, fun. As a creative
environment is a very fragile thing, we have to always be sure we maintain the open atmo-
sphere of our laboratory. Brainstorming, daydreaming and wild ideas are welcome and en-
couraged. Be careful you don’t squash others when brainstorming in groups. Hammering
someone’s idea at the conception stage can ruin them for life. One Helpful Hint is to try
playing “Can you top this?”.

Golden Rule #2 - Treat the Tools with Love and Respect

After daydreaming, it’s time to start implementing your imagination. The leaders of our lab
have been more than generous in funding this tournament and everyone therefore is welcome
to keep the robots they build. However, there aren’t enough tools to go around and they must
be returned after the contest. Don’t mangle, destroy or lose the tools provided. For the most
part, t?ols, especially wiring tools, are ridiculously expensive, so please make sure they
aren’t lost.

How to Build Stuff

Part of the impetus for this robot building undertaking is the hope that we can transfer the
skills of quick prototyping to the general lab audience, unveiling the mysteries of craftsman-
ship. If all goes well, then we foresee a new research tool for every office - an “Al I/O” de-
vice; a real-time, real-world, sensory-i put/actuator-output mechanism that brings Artificial
Intelligence off a 2-D bit mapped display and into everyday activity.

The kits you’ve received are designed to help overcome the inertia of getting started. They
contain a wide variety of sensors, a mechanical building block system, a single-chip micro-
controller with an associated software development system, and a complete assortment of
connectors, fasteners and prototyping equipment. You’re free to build anything you like and
you can choose to add to the kit or not use anything from the kit. As Olympic Robot
Building is purposefully a talent show instead of a contest per se, the problems to be solved
are intentionally unconstrained. You get to choose your own problem and solve it (as in gen-
eral, much of the essence of good research is choosing the right problems on which to work).

Bon Voyage and have fun!
Lesson 1: How to Get Stuff

Where does all this material come from and how can you build things long after the
Olympics are over? A big part of knowing how to build stuff is knowing where to get stuff.
The first thing you should do before you get started, if you want to be a real robot hacker, is
call manufacturers and ask for free catalogs. They’ll be more than happy to send you one,
but it often takes three weeks as they come third ciass mail. ‘Get this in the queue as soon as
possible. Below is a list of the manufacturers from which most of the parts in your kit came.
Local distributors are also listed, as many parts aren’t sold directly from the manufacturer. A
few other vendors are also included even though we didn’t actually get anything from them
for these kits. However, you’ll probably want to collect their catalogs for future reference.
Many of the parts in your kit can be found in the lab’s electronic parts stockroom, Ron
Witken’s office, room 908. These parts are marked by an asterisk.

Yendors Jel.Nos, PartNos, Price PageNo,

3M Electronic Products 800-328-SPEC
225-1N 3M Center
St. Paul, NM 55144

Scotchflex prototype wiring technology. Distributed by Aztech Electronics.

*Plug strips, 24 pos. 3397-1240 82
*Sockets, 16 pin 3370-1000 2.02
*Sockets, 24 pin 3374-1000 2.62
Aztech Electronics 301-995-6800

8940-E Route 108
Columbia, MD 21045
Electronics distributor. Carries 3M Scotchflex wiring technology.

Berg 516-599-5010
499 Ocean Ave.

]

E. Rockaway, NY 11518
Mechanical parts - gears, linkages, pulleys, etc.

Bicc Vero 203-288-8001

Electronics Handbook Catalog

1000 Sherman Ave.

Hamden, CT 06514

Speedwire equipment

Speedwire pen 244-26213E 3$31.10
* Reel of 1000 terminals 244-262195 138.68
Insertion tool 244-299845 65.47

Cronin Electronics 449-5000

77 Fourth Ave.

Needham, MA 02194

Crystals 8.0000 Mhz crystals FOX080 95 p. 198

Digi-Key 800-344-4539

701 Brooks Ave. S.

PO Box 677

Thief River Falls, MN 56701-0677.

Microphones P9930 97 p.94
Piezoelectric buzzers P9924 1.05 p.94
Microswitches SW146-ND 258 p.97

Douglas Electronics 415-483-8770

718 Marina Blvd. 415-357-7305 (uploading)

San Leandro, CA 94577

6811 PC board fabrication (circuit diagrams sent in over modem)

Edmund Scientific 609-547-3488

101 E. Gloucester Pike

Barrington, NJ 08007

All sorts of good stuff: lenses, optical equipment, electromechanical widgets, tools, etc.

ELD’s Solid State Sales 547-7053

139 Hampshire St.

Cambridge, MA 02139

Close by and has all kinds of chips, power supplies, electronic instruments, etc.

SRS
~
NN

Eltec Instruments 800-874-7780

PO Box 9610

Central Business Park

Daytona Beach, FL 32020-9610

Pyroelectric sensor with amplifier 442-3 25.00
Fresnel lens with 1” focal length 6800408 1.00
Emtel 1-769-9500

375 Vanderbilt Ave.

Norwood, MA 02062

Low voltage inhibitor for 6811 reset Seiko part 8054HN 159
Ferranti Dege 547-8600

Harvard Square

Cambridge, MA

Camera store - sells good lithium batteries.

Duracell 3V, 160mAh lithium battery - DLI1/3N 345
Duracell 3V, 1300mAh lithium battery DLI23A

Also sold through Gerber Electronics.

Fordham 800-645-9518

260 Motor Parkway

Hauppauge, NY 11788

Wahl Cordless Soldering Iron Model 7800 47.95
Soldering iron tips Models 7566, 7545, 7535 3.95
Gerber Electronics 1-769-6000

128 Carnegie Row

Norwood, MA 02062

* Perfboard - Epoxy glass Vector boards 170H48WE 7.03

(for4.8” x 17" x 1/116”)

Hallmark Electronics 1-508-667-0902

6 Hook St.

Billerica, MA 01821

Distributor for the Motorola XC68HC811A2FN microprocessor 26.00

Hamilton-Avnet 1-508-532-9682

50 Tower Office Park

Woburn, MA 01801

Huge distributor for many semiconductor manufacturers.

Jameco 415-592-8097

1355 Shoreway Road

Belmont, CA 94002

Great catalog for electronic parts, wire, tools, etc.

Lego Educational Dept. 800-527-8339

PO Box 39

Enfield, CT 06082

Technic Control I Set 1092 195.00
Touch sensor packs 1346 15.00
Chain link - small 1317 14.00
Gears - large 1319 3.60
Worm gears, racks 1321 4.50
Connecting leads 1337 7.25
Pinions 1345 4.50
Motors 1334 21.00
Angle plates, turntables 1338 725
Differentials 1320 3.60
Universal joints 1339 4.50
Gears - small 1318 3.60
Lego Mail Order 800-243-4870

Shock absorbers 5251 4.00
Bartery boxes 5005 6.00
Gear reduction kit 872 22.00

15x15 grey base 815 8.00

p49

p. 681

Pneumatic tubes 5102 250

Pneumatic cylinders 5104 2.50
Pneumatic valves 5106 4.00
Hinges and couplings 5179 3.00
Chain link - large 5244 350

Maxim Integrated Prods. 408-737-7600

510 N. Pastoria Ave.

Sunnyvale, CA 94086

MAX233 serial driver chip - call Maxim for the special data sheet on the MAX233 level
translator chip for driving RS232 serial ports. The chip is distributed by Pioneer
Electronics.

Maxon Precision Motors 415-697-9614

838 Mitten Rd.

Burlingame, CA 94010

3V DC motor 2313-910-21-141-001 28.00
9V DC motor 2312-916-21-141-010 28.50

Methode Electronics 312-867-9600
7444 W. Wilson Ave.
Chicago, IL 60656
Socket for the 68HC811A2 - 52 pin through board chip carrier socket
Part No. 213-052-101 2.38 p.3G

Micro Mo Electronics 1-813-822-2529

742 2nd Ave. S.

St. Petersburg, FL 33701

6V DC motor 1212N006G 28.50

Motorola Sales Office 932-9700
300 Unicorn Pk, 4th floor

Woburn, MA
Photodiodes (optoelectronics book) MRD721 95 p4.3
Low volt. inhibit for 6811 MC34046P-5 .95 :

Data books for all Motorola parts including 68HC811A2 data sheets. You can call and ask
for data books (which will take three weeks) or Yyou can drive there and pick them up your-
self.

NASCO 201-625-5870

270Rt46 E

Rockaway, NJ 07866

Extraction tool for 52 pin (PLCC) sockets ATI1767 18.35

Newark Electronics 935-8350
10 G. Roessler Rd.
Woburn, MA 01801-6284

*Heat shrink tubing FIT-221-3/64 41.46/100feet p.784
*Cinch serial port connectors DB-9 plug DE-9P 2.47 p. 606
*Cinch serial port connectors DB-9 socket DE-9S 3.48 p. 606
*Cinch serial port connectors DB-25 plug DB-25P 3.74 p. 606
*Cinch serial port connectors DB-25 socket DB-25S 525 p.606
*Cinch DB-9 hoods DE-24657 3.94 p.610

*Cinch DB-25 hoods DB-24659 2.38 p.610

w

North Star Electronics 1-508-657-5155

100 Research Dr.

Wilmington, MA 01887

SV-5V DC-DC converter S5RS 30.75

Pacer Electronics 935-8330
70 Holton St.

Woburn, MA 01801

* Kynar 30 gauge wire, solder

* Belden 3-wire serial port cable 8641

Pioneer Electronics 861-9200

44 Hartwell Ave.

Lexington, MA 02173

Level translator chip for serial ports MAX233 3.00

Polaroid Corporation 577-4681
Commercial/Battery Division

575 Technology Square - 3
Cambridge, MA 02139

Instrument-grade transducer 604142 16.00
Environmental transducer 607281 18.00
Single frequency driver board 607089 26.50
Cable assembly 604789 2.00
Radio Shacks:
Central Square 547-7332
Harvard Square 354-7836
197 Mass Ave., Boston 536-4773
Microphones 270-092B 2.79
Infrared emitter and detector 276-142 1.99
Photocells 276-116A 1.79
Flux-gate analog compass 63-641 49.95
Reliability Incorporated 713-492-0550
PO Box 218370
Houston, TX 77218
Small DC-DC converters. S5RS5 5V-5V 30.00
Distributed by North Star Electronics
Samtec 1-812-944-6733
PO Box 1147
New Albany, IN 47150
*Terminal strips for 6811 connectors TS-132T-AA 1.00 per 20 pins
*Socket strips for 6811 connectors SS-132-T-2 1.00 per 20 pins
These get expensive. They add up fast! Distributed by Pacer Electronics and Schaal.
Schaal 272-2506
Burlington, MA
Samtec socket strips $§-132-T-2 1.45 per 32 pins

Schweber Electronics 275-5100
25 Wiggins Ave.

[@aY

Bedford, MA 01730
Motorola’ s replacement for the 6811A2 XC68HC811E2FN 24.00

Small Parts Inc. 1-305-751-0856
Small gears, pinions, mechanical linkages

Spectron 1-516-582-5600

595 Old Willets Path

Hauppauge, NY 11788

Inclinometers L-211U 196.00
Mercury Switches M1202 4.00

Tower Hobbies 1-800-637-4989

PO Box 778

Champaign, IL 61820

Futaba Standard model airplane servo motors S-28 BHI1116 26.00
Futaba single axis gyros FP-G132 74.99
Glue

Yardney Battery 1-203-599-1100
82 Mechanic Street
Pawcatuck, CT 02891

The best batteries.

Western Micro 273-2800

20 Blanchard Rd.

Corporate Place 3

Burlington, MA 01803

Siemens IR sensors SFH484 IR LED emitters 1.00
SFH217 IR photodiode detectors 1.50
BPW34 IR photodiode detectors 1.00

Zemco 1-415-866-7266

3401 Crow Canyon Rd., Suite 201
San Ramon, CA 94583
Flux-gate digital compass DE710 74.94

Note that to build a robot, it takes parts from many vendors. For these Robot Olympics
alone, there are over 40 different vendors. Finding suppliers, ordering parts and hustling to
make sure everything comes in on time becomes a minor nightmare. Once we have our own
micromachining fabrication line, we’ll be able to design integrated robots in software, pick-
ing and choosing motors and sensors from among a variety of software libraries. Then we
can mass produce them by the thousands like integrated circuits . But that’s a bit of a project
(let’s save that one for next year’s Olympics). Enough of daydreaming though, let’s get on to.
the here and now of building robots!

The Motorola 6811 Microprocessor
Henry Minsky

The microprocessor we’ve chosen to distribute with the kits is the Motorola
XC68HC811A2FN 8-bit microcontroller (or 6811 for short). Although we’re only giving out
12 large kits of motors, sensors, tools, etc., (one to each subcaptain) there are over 40 kits of
microprocessor parts which you’ll find in small baggies. Each group building a robot should
take a 6811 processor and then hook up with a subcaptain to choose among the variety of
sensors, motors and mechanical building blocks available in their kit.

The 6811 was chosen because it comes in a small package and has some features that make it
useful for robotics. The chip has 8 A/D converters onboard which means external circuitry
for thresholding sensors and such can be eliminated. There are also 38 general purpose 1/O
pins and a variety of timers available. The chip includes 256 bytes of RAM and 2K bytes of
electrically erasable programmable read only memory (EEPROM) for program space.

Since the 6811 comes with 2K bytes of EEPROM, there is no need for burning EPROMs as
electrically eraseable PROMs can be burned in software. The 6811 has a serial port onboard
and when the 6811 is powered up in a special bootstrap mode, it immediately begins to listen
to whatever comes in over the serial port. It writes the first 256 bytes into the top of memory
and then jumps there and begins executing that code. Downloading code to the 6811 then, is
as simple as putting the processor in bootstrap mode, powering it up and sending a 256 byte
program that knows how to listern for more stuff coming in over the serial port and is able to
move that user program to another location in memory (EEPROM space) and burn it in.
After you’ve downloaded your code, you power the 6811 down, place it in single-chip mode
and power it up again. It will immediately start running your target code. This code stays in
EEPROM and will continue to run no matter how often you power down and on again.

We give you a software development system that takes care of all this. The development
system allows you to write code in 6811 assembly language and download it to your robot.
In addition to the assembler and downloader, there is also a subsumption compiler which you
can use if you want. It allows you to specify robot behaviors in terms of subsumption net-
works, and it compiles directly to 6811 code. The software development system is written in
Common Lisp and runs on several types of machines around the lab: Macs, Suns, Symbolics

and HPs. Further documenation on the software development system can be found at the end
of these notes.

If you look in your baggie full of 6811 parts, you’ll find a PC board, a 6811 microprocessor,
a MAX?233 serial port level translator chip, a hex display/buffer chip, a low voltage inhibit
circuit for reset, a 74HC244 buffer and some other parts such as a switch, a socket for the
6811, a crystal, a few resistors and a handful of connectors called socket strips.

Two printed circuit boards have actually been fabricated for these Olympics. One is for clas-
sic DIP style packages of integrated circuits and the other is for surface mount components
(these boards are called OLM2 and OLM2S respectively, as they’re Rev 2 editions). You'll
find the OLM2 version in your kit. The PC boards have been made as general as possible.
They contain the minimum amount of real estate necessary to get you going, yet there is
room onboard to allow you to add your own interfacing circuity by leaving room for

Speedwire terminals to be inserted, which you can then wire up any way you please. On the
other hand, if you’re trying to build a very small robot, you can cut the two sides off this
board, including the parts we’ve devoted to serial drivers and buffers.

One note of caution: a CMOS microprocessor should always have its outputs buffered.
Failure to do this can result in blowing out the microprocessor.

Here is a rundown of the PC boards supplied in your kit. Block diagrams, schematics and
board layouts are given in the next few pages.

OQLM2 and OLM2S MC68HC11 Microcontroller Boards
FEATURES

Board OLM2
* 8 bit 6811 HCMOS CPU
* Buffered output on Port B using 74HC244
* Numerous VSS and VDD connections on IO port connectors
* Optional board sections:
* RS232 driver
* LED display/buffer on bits 3-6 of Port A
* Two user-prototype areas with VSS, VDD connections

Board OLM2S (Surface Mount)
» Smaller size
* Buffered output on Port B using 74HC244

DESCRIPTION

The OLM2 microcontroller board contains a MC68HC11 microcontroller which contains 2K
of nonvolatile EEPROM program memory. See the Motorola Technical Data booklets in
your subcaptain’s kit for all details on the internal architecture of the 6811A2.

The OLM2 board has .100” spaced connector areas for all [/O ports of the 6811, as well as
the interrupt lines, clock and address and data strobes.

There is a serial-port connection area directly below the 6811 socket. This area is connected
directly to the 6811, and thus has TTL level 5V signals. Connecring this port directly to an
RS232 level signal will likely damage the CPU and other components on the board. Please
see the USING SERIAL /O section of this data sheet.

A 74HC244 octal driver chip is mounted next to the 6811 to buffer the outputs of PORT B.
You should use these for driving any power circuits, like transistors or relays. Check the
specs on how much current you can pull with the 244 driver before trying to drive any large
loads such as small motors or relays.

I/O Connectors for ports B and C have alternating VSS,VDD supply pins running next to
them, for powering sensors or other peripherals.

The board is designed to be cut into sections if you want to save space. The optional sections
contain an RS232 driver chip, an LED display/buffer, and two prototype areas drilled with
.100” spaced .062” holes. The boards can be cut with the shears in the machine shop or Ron’s

office, room 908.

The TI309 LED BCD display/buffer displays the value of PORT A bits 3:6, and also buffers
these lines as outputs.

USING SERIAL I/O

To talk to the OLM2 board, you will need to make a serial port cable. In order to program
your board directly from the serial-port of your host machine, you will want to use the R$232
serial-port on the board. This is the connector area located directly above the MAX233
RS232 driver chip on the left of the board.

Pinout of RS232 port:

vss |O O | MODB
vss |O O] vbD
vss |0 O] ™XD
RXD OO0 vDD

When you make your cable, have it connect MODB to Ground. That will automatically put
the 6811 in bootstrap mode upon reset. MODB is pulled up on the board, so when your board

is programmed, you can remove the cable and upon reset the processor will come up in run-
mode.

If you want to save space or conserve power, you can omit the RS232 section, and talk di-
rectly to the TTL level serial port of the 6811. These TTL signals are available from a con-
nector area right below the 6811 socket. The trick to making this space saving hack work is
to get the MAX?233 driver chip off your board by building it into the end of the serial port
cable coming from your host computer. Then you can actually saw your 6811 board down to
about half its original size. Pinout of TTL level serial port:

vss|O O] TxD
N |0 o] rRxD
vcc|lo o mops

10

Again, your cable should jumper MODB to Ground, putting the 6811 into bootstrap mode.

ASSEMBLING THE OLM2 BOARD:
PARTS PLACEMENT

Since there is no silkscreen on the board, parts should be placed by referring to the included
diagram, and comparing with an actual finished board.

The 6811 socket should be soldered into place first, and then the crystal and reset switch.
Pullup resistors are next, and then connector strips. Make sure to make good solder joints by
heating the pads slightly with the soldering iron tip before touching the solder to the pad.
Note you shouldn’t touch the piece of solder to the soldering iron directly. Rather, it should
melt by heat conduction from the soldering iron to the pad and then to the piece of solder. As
soon as it melts, hold the soldering iron tip there just for a second and then take it away. You
just need a small amount of solder. Don’t glob it on. Also, make sure the solder pool hard-
ens smoothly so as not to make cold soder joints.

HOW TO SOLDER

The 5V voltage regulator (not to be confused with the low-voltage detect/reset device) is op-
tional. Only the LED display chip needs a 5 volt TTL supply level. The other components
have a wider range of allowable power-supply voltages. Note that with the low-voltage
sense/reset device installed, power supplies below about 4.5 volts will shut down the CPU.

There is one slight oddity about the 6811A2 version, the version which contains EEPROM.
There is a problem on power down in which if the reset signal follows the supply voltage,
certain instructions may stop working correctly and overwrite the CONFIG register (which is
implemented in EEPROM and sets the memory map of the microprocessor) before power has
completely been shut off. Then next time power is applied, the memory map is pointing off
to somewhere strange, and the processor doesn’t know where to find your program.
Consequently, a low voltage inhibit circuit is required on the reset line, which forces the reset
line low whenever the power supply falls below a certain threshold.

11

Note that power to the board should be supplied from the points near the voltage regulator.
THE OLM2S SURFACE MOUNT BOARD

This board contains a minimal configuration of a surface mounted 6811 and an octal buffer

on port B. If we can figure out how to solder the chips to this board, it will be a good alterna-
tive for designs which need to save space and weight.

Note that there is no RS232 driver chip on this board, so an external level converter must be

used. The serial port area has the same pinout as the OLM2 board. Other connector areas
have different pinouts. See the attached placement sheet for details.

12

MOTOROLA

BR289
R SEMICOND U C T O R /5mmm s

TECHNICAL DATA

~N

MC68HC811A2

Technical Summary

8-Bit HCMOS Microcomputer

The HCMOS MC68HC811A2 is an advanced microcomputer (MCU) containing highly sophisticated
on-chin peripheral functions. An improved instruction set provides additional capability while main-
taining compatibility with the other members of the M6801 Family. The fully static design allows
operation at frequencies down to dc, further reducing its already low power consumption. Features
include:

Power Saving STOP and WAIT Modes
Separate RAM Voltage Supply Pin (Vkam)
2K Bytes of EEPROM (Byte Eraseable)
256 Bytes of Static RAM (All Saved During Standby)
Enhanced 16-Bit Timer System
Four Stage Programmable Prescaler
Three Input Capture Functions
Five Output Compare Functions

A Real Time Interrupt Circuit

An 8-Bit Pulse Accumulator Circuit

An Enhanced Non-Return-to-Zero Serial Communications Interface (SCI)
A New Serial Peripheral Interface (SP!)

Eight Channel 8-Bit A/D Converter

A Computer Operating Properly (COP) Watchdog System

Muitilevel Interrupt Priorities (21)

BLOCK DIAGRAM

MODA/(TIR) MODB/(Vkap) l‘[AL EXTAL E iRQ Fﬁf RESET

MODE OSCILLATOR
RRUPT
CONTROL CLOCK LOGIC INTE rosie
EEPROM 2K BYTES
o | e [o
§ | svsm |3 CPU CORE
T w
we [RAM 256 BYTES j
§ ocC1
r SERIAL SERIAL
BUS EXPANSION I
ADORESSDATA | PERIPHERAL | | communicanion v
g gm ADDRESS DORESSDATA 1Z o INTERFACE INTERFACE e
12 ryy (sPy) (scl) ss
Q
S99997 | tvevvebd S3EII00Y L
9 STROBE AND HANDSHAKE g3 x28| lao —VRH
258838 PARALLEL /O & 13295 [=& —Va
1

14

T HE R s

BT B R LR

PDO
PE7
PE6
PES
PE4
PE3
PE1
PEO

-

B3 P
NOT BONDED ON

48-PIN VERSIONS

This document contains information on a new product. Specifications and information hersin are subject to change without notice.

©MOTOROLA INC., 1986 13

@ MOTOROLA mm

+5V Powered

-~ - -
! RS-232 Drivers/Receivers
-5V Nyt
0
IWE .
‘ "I)
- "
Veo 2
! 5V 10 ~10V Ve
1+ [T ./ ,lH.l Vee VOLTAGE DOUBLEA v
; 0 IOV TO - ~10v
: = [GND VOUTGE WVENTER V- 0_1
i €1-3] (3] Tlgyr 10uF
! Mmaxim pr L
: C2+(3] max232 [BIR1, . =
! c2- (5] 2] Rlayr 1§ Tiw % n Tlour J14
: V-] 53] T1y 5 rem
; T2y (2] (59 T2 n‘i‘%g: rz ‘“'“% ok ouTPUTS
» A2 (] (3] R2qur -—% b =
N {A—-‘\
B TTL/CMOS RS-232
- uTPUTS INPUTS
Figure 5. MAX232 Typical Operating Circuit -
+5V INPUT
I,
-5V Veo
mn%
2{Tm n Tlour |5
By RS-232C
~ m]fr:g: haal ouTPUTS
12 N (1] 7 A2 0UT {2 % 200 |10
T iN(E] 1) A2 IN
R oUT 3] 18] T20uT
R At
A1 "‘E EV‘ 3|Rlour % ‘&nu(
TTL/CMOS RS-232¢
. ot Maoe [@c2- aurPuTs i INPUTS
6N [E] 15] c2+ ol L e IS 1 [
Vee [T [14] y+ ‘%-sm
c1+ @ 13] ¢1- . ot "
- - 00 NOT MAKE —-T:xo o2
Guo (3] 2] v CONNECTION m! . s
c2- [7] c2+ THESE PINS L ———T34¢)- c2+|
-
. SUPP\J{ S V- c2- D
Small Outline Not Availabie INTERNAL uf,
+10V POWER ~ ———————qV+
suppLy GND ND

C

Figure 6. MAX233 Typical Operating Circuit

VAKXV

14

6EC-0CCX VN

eezLemouLL oy 000 T 108-01dWA10:L080H

)
oo |
OMA N[NFA _
_omrley owwen |
n

O0A
88A S{aN®
O00A 5 {1ndN HOSNGS
LY ek Al
138 lz..'lyv.oca |

38184

33283858
jerlef

|

l:'..!. -l

%%
[EX T}

[!

|
| s
-

*
<
-

4

8 £
)

*
e

Ly 2 U
) B 0

- A
N D] R -

-
-
‘

-
(]
”

TTL SERIAL

COMPONENT RAIL IS VDD
SOLDER SIDE RAIL IS VSS

Jasmine HD:Lisps:Allegro CL:squirt:blink.lisp
;;:;Code for blinking portb leds

(defprog count-test
:machine 6811
:start #x£800
:code ((=v portb #x1004)
(=v porta #x1000)
(=c stack #xff)

start
(1ds ! stack)
(ldaa ! #x00)
loop

(staa porta)
(jsr delaysome)
(inca)

(jmp loop)

delaysome
(1dx ! #x1fff)
dlots
(lterate ((i 4)) (nop))
(dex)
(bne dlots)
(rts)

(= #xfffe)
(!16 start)
))

16

11/30/88 11:44:43 AM

Page 1

(M) MOTOROLA

SEMICONDUCTORS

PO BOX 20912 « PHOENIX. AHIZONA 85036

MC34064
"MC33064

Product Preview

UNDERVOLTAGE SENSING CIRCUIT

The MC34064 is an undervoltage sensing circuit specifically
designed for use as a reset controller in microprocessor-based
systems. It offers the designer an economical solution for low
voltage detection with a single external resistor. The MC34064
features a trimmed-in-package bandgap reference, and a com-
parator with precise thresholds and built-in hysteresis to prevent
erratic reset operation. The open collector reset output is capable
of sinking in excess of 10 mA, and operation is guaranteed down
to 1.0 volt input with low standby current. These devices are
packaged in 3-pin TO-226AA and 8-pin surface mount packages.

Applications include direct monitoring of the 5.0 voit MPU/logic
power supply used in appliance, automotive, consumer and
industrial equipment.

® Trimmed-In-Package Temperature Compensated Reference

® Precise Comparator Thresholds Guaranteed Over
Temperature

Comparator Hysteresis Prevents Erratic Reset

Reset Output Capable of Sinking in Excess of 10 mA
Internal Clamp Diode for Discharging Delay Capacitor
Guaranteed Reset Operation with 1.0 Volt Input

Low Standby Current

Economical TO-226AA and Surface Mount Packages

UNDERVOLTAGE
SENSING CIRCUIT

SILICON MONOLITHIC
INTEGRATED CIRCUIT

REPRESENTATIVE BLOCK DIAGRAM

Input QO 2 (2) —
Reset

{4 2e)

1(1)

1.2 Vref

Gnd O 3 (4) _ Sink Only
Positive True Logic

Pin numbers adjacent to terminals are for the 3-pin TO-226AA package.
Pin numbers in parenthesis are for the D suffix SO-8 package.

P SUFFIX
PLASTIC PACKAGE
CASE 29-04

PIN 1. RESET
2. INPUT
3. GROUND

D SUFFIX
PLASTIC PACKAGE
CASE 751-02
SO-8

PIN 1. RESET 5. N.C.

8 Q& 2. INPUT 6. N.C.
1 3.N.C. 7.N.C.
4.GROUND 8 N.C.

ORDERING INFORMATION

Temperature
Device Range Package
MC34064D-5 Plastic SO-8
0°C to +70°C
MC34064P-5 Plastic TO-226AA

MC33064D-5 Plastic SO-8

—40°C to +85°C

MC33064P-5 Plastic TO-226AA

This document contains information on a product under development. Motorola reserves the right
to change or discontinue this product without notice. 17

©MOTOROLA INC., 1988

NP220

MC34064 e MC33064

FIGURE 7 — LOW VOLTAGE MICROPROCESSOR RESET

[s
* 2 (2) SR
gowc;r P ———— Reset |Microprocessor
uppiy e I 1(1) Circuit
>
- I 3 ~ l T‘“ CoLy T
= Iz | = =
' :.’ I A time delayed reset can be accomplished
L<' 1.2 Viyef _I with the addition of CpLy.
— T — : i . 1
DLY = RCpLy in
= (1 - Vth(MPQ[)
in
FIGURE 8 — VOLTAGE MONITOR FIGURE 9 — SOLAR POWERED BATTERY CHARGER
+
I L <
Power 2 (2) _; /
Supply [Nt
L]
- | $ s 1(1) =
-4 < D 4 Solar
- I g l Cells
Hes
S
L 1.2 Vief I
Q3@ -
FIGURE 10 — LOW POWER SWITCHING REGULATOR
5 uH
o MPSW51A VA = 5.0V
Vin = 115V o . . o VO S0V
to 145V + AL é 470 |+ 0=5m
470 VWA
- $12k -
4.7k e
ﬂ" AVA'A'
= 2(2) 330 L' 1N756
ri——————
| 3) 1)
>3 ~ :: I Test Conditions Resuits
+ﬂ3 I Line Regulation |Vjn = 11.5Vt0 145V, Ig = 50 mA |35 mV
I :E TV I Load Regulation | Vinh = 126V, I0 = 0mAto 50 mA |12 mV
E < ref __| Output Ripple | Vin = 126V, Ig = 50 mA 60 mVp.p
_—— rela Efficiency Vin = 126V, lp = 50 mA 77%

3 (4)

@ MOTOROLA Sem{coonductor Products Inc.

STICS

RELATIVE LUMINOUS INTENS| Ty
vs

TIL308, TIL308A, TIL309, TIL309A
NUMERIC DISPLAYS WITH LOGIC

D1096, MARCH 1072 — REVISED JUNE 1982

SOLID-STATE DISPLAYS WITH INTEGRAL TTL MSI CIRCUIT CHIP
FOR USE IN ALL SYSTEMS REQUIRING A DISPLAY OF BCD DATA

¢ 6,9-mm (0.270-inch) e Easy System Interface
CASE TEMPERATURE ' Hei
n Character Height o Wide Viewing Angle
L Vec=5V o TIL308 and TIL308A o _
Have Left Decimal e Internal TTL MSI Chip with Latch, Decoder, and Driver
— e TIL309 and TIL309A nt-Current Drive for Light-Emitting Di
—~— Have Right Decimal Constant-Current Drive for Light-E ng Diodes
\\ . . . ’ - . . .
T Thess assemblies consist of display chips and a T7L MS! chip mounted on a header with either a red molded plastic
body for the TIL308 and TIL309 or a red plastic cap for the TIL30BA and TIL309A. Multipie displays may be
mounted on 11,43-mm (0.450-inch) centers.
—
e
128 013
SEATING P ’
(S0n Now s mﬁ‘ ol lp-07 o0 . PIN ASSIGNMENTS
i~ FOR BOTH TYPES
4 PIN 1 LATCHOUTPUT Qg
- e (BINARY WEIGHT 2}
0 10 20 30 4 5 60 R PIN2 LATCH OUTPUT Q¢
I \ Y HT
Tc—Case Temperature~"C Qormnt — - s : :ET" - hatheii PIN3 ‘&?&5 035;37 a;’ “'>L
FIGURE 3 a0 = 20T Rows (BINARY WEIGHT 8) ®
» H \d PIN4 LATCH OUTPUT Qp -a
250 0,100 i (BINARY WEIGHT 1) F
gormN L+ 1 PINS LATCHSTROBE INPUT -4
t ! ! |‘l v PING6 LATCH DATA INPUT C a
fom e n 50280 [(BINARY WEIGHT 4)
H :ﬁ . ALL NS PIN7 LATCH DATA INPUT D (]
¢l L | (BINARY WEIGHT 8) o]
v - PIN8 GROUND -
0,08 (0.028 | 0.08 (0.008 2087 11.080) ‘! ! PIN9 NO INTERNAL -
38 10.150 201900 a0 g CONNECTION c
- ' PIN 10 LATCH DATA INPUT B o
] (BINARY WEIGHT 2) o
" . PIN 11 BLANKING INPUT =
ocia o i 1 PIN 12 LATCH DATA INPUT DP =
rowr) @ ; ; PIN 13 LED TEST [
e e - 0 PIN 14 LATCH OUTPUT DP =
' Rl el PIN 16 LATCH DATA INPUT A -
waesr N /] Feo Mo (BINARY WEIGHT 1)
PIN 18 SUPPLY VOLTAGE,
SERTTYOEN vee
NOTES: a. All linear di are in s and paren y in inches,
b. Lead dimensions are not controiled above the seating plane.
c. Centeriines of or s and points are shown as dashed lines. A i i are inal,
d. The true-position pin spacing is 2,54 mm (0,100 inch) between centeriines, Each centeriine is located within
0,26 mm (0.010 inch) of its true longitudinal position relative to pins 1 and 186,
e. On TIL30BA and TIL3I09A devices, the 4 mold i S 878 NOt present.
TiL308 : TIL309
A TIL308A A TIL309A
[e]e ‘=]
A
0.p, femm o O.P.
PRODUCTION DATA decuments soatain Copyright © 1982, Texas Instruments incorporated
current as of dete. %
specifications por the terms of Texas Imm EXAS 4-19
Sovetaetily el taeteg o OF poremmmion INSTRUMENTS

75285

Poj:l' gﬂcs BOX 8585012 * DALLAS, TEXAS 75268

TIL308, TIL308A, TiL309, TIL30SA
NUMERIC DISPLAYS WITH LOGIC

functional block diagram ————
description

These |
driver i
F
LATCH

vee
4
4

b 4
¥
T1L308 AND TIL3I0BA HAVE LEFT DECIMAL

rowﬁu:cmr.—l
L
M b
AN 1.7
b
S
-
d
ParTm
G

TIL308 AND TILI09A HAVE RIGHT DECIMAL

‘ LED Tt

FUNCTIO!

IR

) 0

1

LATCH OUTPUTS
[
L
) 4
o
'

[»
-
~

sAejdsig @37 uebyieiul

9

A

MINUS SIG!

c

BLANK
E

[

B
Gl
=4

LED
TESY
INPUT

BLANK

LED TEST
|
H = high fevel,
DP input has a

BLANKING
INPUT

STROBE

NPuUT

LATCH

TeEXAS
4-20 INSTRUMENTS

POST OFFICE BOX 855012 * DALLAS. TEXAS 75265

20

Sensors
Anita Flynn

We claim that robotics is a superset of Al because robotics is the study of the computations
that connect perception to action, and robotics therefore forces Al to deal with the real world.
However, it’s hard to build an interesting thinking component if the decision system has no
variables to juggle. Getting these ‘perception variables’ into an intelligent control system
seems to be one of the black holes of current research.

In these Olympics, we’re going to attempt to push through that problem by supplying as wide
a variety of sensors as we possibly can. In your kit, you’ll find such things as pyroelectric
motion sensors, sonar rangefinders, microswitched touch sensors, infrared emitters and de-
tectors, photodiodes, microphones, photocells, flux gate compasses, inclinometers, gyros and
mercury switches. Such a large variety of sensors should be inspirational for all sorts of in-
telligent robot action. Notice there aren’t any cameras in the kit. As of this writing, cameras
are too expensive to give away ($800 typically), but there are a number of cameras around
the lab which are available and you should feel free to use them.

That brings up a point about choosing whether or not to go with onboard or offboard compu-
tation in these projects. The microprocessor you’re supplied with contains only 2K of eep-
rom program space and 256 bytes of RAM. If your code is lean, this should suffice. If you
need more computational power, you can attach more memory through one of the 6811’s
ports and run it in extended mode. On the other hand, another very viable solution is to con-
nect all sensors and actuators to the A/D ports or other port pins and use the serial port on the
chip to communicate to a larger computer offboard. This could be a very convenient way to
interface such things as your thesis or other research code you’ve already finished, to a vari-
ety of sensors and actuators. Thus a camera could be attached to a small robot, computations
done offboard, and then commands shipped down to the 6811 over a cable. The point is
then, that there is a wide assortment of sensors available and you shouldn’t feel constrained
in terms of logistics.

What follows is a rundown of some of the sensors provided, including the physics of their
operation, a synopsis of their capabilities and limitations and some electronic interfacing ex-
amples.

Pyroelectric Motion Sensors

A pyroelectric sensor detects a change in temperature per unit time. These types of sensors
are most commonly used as burglar alarms in security systems. Filters are usually placed
over the sensors to pass the range of infrared energy emitted by humans. Pyroelectric sensors
can be thought of as warm body motion sensors. Relative motion is always required between
the pyroelectric and the target for there to be any signal. Note that this is very different than
a thermocouple or an infrared night vision camera. Those types-of sensors will output differ-
ent voltages for different steady state temperatures. Pyroelectrics have no response in the
steady state. If a person walks into the field of view (which can vary depending upon the op-
tics used), the sensor will trigger. However, if the person stands very still, the sensor will no
longer be able to detect that person.

Fresnel lenses are most often used with pyroelectrics because they absorb less infrared ener-

21

gy than a typical convex glass lens. A fresnel lens is a thin plastic sheet with a surface tex-
ture equivalent to discretizing the curvature of a convex lens and laying it out on a flat sheet.
This type of optical system has a side effect of segmenting the image hitting the sensor, an
effect which is used advantageously. The data sheet for the sensor given in your kit, the
Eltec 442-3 is shown on the next page. The 442 is actually two pyroelectric crystals connect-
ed in a parallel-opposed configuration. This means that the voltage actually output by the
sensor is the difference in voltages between the two crystals (an amplifier is also integrated
into this sensor to boost the gain). Due to the segmentation effect of the optics, only one of
the crystals sees the person at a given time. Nominally, the output voltage would float at
2.5V, but if a person walks into the area of detection, the output signal will first rise above
2.5V and then below 2.5V as the person walks through each sensor’s field of view. If a per-
son walks throught the field of view in the other direction, the signal will do the opposite -
first drop below 2.5V and then rise above it.

A simple way to interface this sensor to your robot then, is to apply +5V and Ground to the
appropriate sensor pins, and connect the signal wire straight into one of the analog to digital
converter channels (Port E on the 6811). Then just write software that polls this pin and
when the value goes over a threshold, declare a person has been found. In general, pushing
your technology to the software stage as fast as possible is a good heuristic for getting things
up and running quickly.

The 442 sensor has roughly a six degree field of view, so it is relatively straighforward to de-
termine the orientation to a target, but no range calculation is possible with this simple sen-
sor. You may want to use a pyroelectric sensor in conjunction with a rangefinding sensor if
this information is desired.

The fresnel lenses given with the kit have 1” focal lengths. You’ll need to build some type of
structure to hold the lens. Construction paper cut to the appropriate cone shape with a few
drops of super glue works well.

Mi itched Touch S

Microswitches are some of the simplest sensors available. The microswitches given in your
kit are the smallest ones I’ve been able to find, but they come in all shapes and sizes and have
a wide variety of specifications for the force required to close the switch. Microswitches
could be used as whiskers or touch sensors: attach a feeler to the lever switch and connect
the normally open output to a port pin on your 6811 and you have a very simple but effective
one-bit sensor. You may want to add a simple debouncing circuit so that your 6811 polls a
nice clean signal.

You’ll also find some microswitches in your Lego kit. They come in the form of a Lego
block and fit right in with the rest of the system. There aren’t very many of these, but you
can build your own out of the ones given in the kit.

Photodiodes

Photodiodes are diodes that are sensitive to light and create a current when photons hit the
junction. They can come in several varieties. Most commonly, they are sensitive to either
visible light or infrared radiation. A specification sheet for the photodiode given in your kit,
the Motorola MRD721, is shown on the next page. A Motorola Optoelectronics Data Book
is also included in your kit, and you should scan through it for a better idea of the types of
optical sensors available. An simple interface circuit, that of a photodiode in a logarithmic
amplifier configuration connected to an A/D on the 6811, is given in the chapter on the ex-
ample robot, Squirt, at the end of these notes.

amd et Gmed Gwest st Gemel el Gl et e e e Beed s e on S o

The Model 447 IR-EYE™
Integrated Sensor is a
Lithium Tantalate pyroelec-
tric parallel opposed dual
element high gain detector
with complete integral
analog signal processing.
This unit offers greatly im-
proved detection capability
over an extended tempera-
ture range of 40 to + 70°C
with no significant change in
noise or sensitivity,

Features

100 x Signal Amplification
100 x Voltage Regulation

2 x Detection Capability
Wide Operating Temperature

Applications

People/Object Detection

Intrusion Detection

Lighting Control

Robotics

Motion Sensing

Automatic Door Control

Safety Warning

High Stability Industrial &
Military Applications

E@c MODEL 447

PRELIMINARY DATA

IR-EYE™ INTEGRATED SENSOR
Parallel Opposed Dual IR Detector
With integrated Signal Processing*

Eliminate Burn-In Tests
Improve RF Immunity
Eliminate False Alarms

Miniaturize Circuijtry
Reduce Components
Reduce Repairs

o]
-___— r ’ ™~ —n o
|
g’ = g = S = 3 CY—
g8 o ”' 1=l__ |
| / py
3 .won-',' 530
8 ! 13.9) '
maml LN\
it window thickness is greater
DIMENSIONS IN INCHES (mm) oumwms 11 1200 Inaches this dimension ls
MODEL 447 Specifications
Operating Characteristics Output Characteristics
D* (cm Hz"/w, Voltage (Max.) V+
NEBPWO.A ;:lz)" BWAAHg) %g X :g‘w Current (Rec.) 0.02 mA
2% BW-1Hz) 7.4 x Output Load (min.) 15 Kohm
Responsiﬂvify VW) 27x10° Refgence Vo(uoge)' .
Common Mode pin 3/4 +25V
Rejection (Min.) 51 Offset Vol p
Typ.) 15/1 et Voltage +30mv
Noise (mV/Hz") 0.2
Breakpoint: Ambient Operating Conditions
E?e.:mgclnl g;.:stz Storage Temp. 5510 +125° C
Power Supply Operating Temp. 40to +70° C
Voltage 515 VDC Sensitivity to:
Current Max.) 20 mA Temperature +.3%I°C

NOTE 1- Characteristics are at 25°C, 14.7 psia, V+ = 5VDC,
f = 1Hz, Bandwidth of 8-14 micrometers.

NOTE 2- The information contained in this sheet has been obtained
from development samples. Data is believed to be
representative.

*Patent pending. Manufactured under one or more of the
following U.S. patents: 3,839,640 - 4,218,620 - 4,326,663 - 4,384,207 -
4,437,003 - 4,441,023 - 4,523,095

* *See reverse for additional information.
23

"

For -3 window only. For other windows
consider refractive index and thickness.

FIELD OF VIEW FREQUENCY RESPONSE
Model 447 - Horizontal MODEL 447
° (EACH ELEMENT)
30 _ 30 ™
1 | ponne——
s \\ \) Y 100K N
nL ”» \
100 %0) M 100 10K
RESPONSE % \
Model 447 - Vertical \
[
"
100
100 L] 0 L 100] 10 100 1K 10K 1004
RESPONSE %

FREQUENCY (Mz) - HORIZONTAL AXIS
RESPONSITIVITY (V/W) - VERTICAL AXIS

A
ELTEC
\ - 4

Mounting, Soldering and Handling:

These Sensors have been improved over
previous Models and can withstand normal
hondlln? and automatic assembly as well as
wave soldering at 280°C for 10 seconds, at 114"
(6.3mm) from the case bottom.

Contamination and fingerprints on the window
suga?eﬂs\hould be cleaned with aicohol and a
soft cioth.

Avoid mechanical stresses on case and leads.

Static Discharge

Additional safety features are used internally to
make these sensors almost immune to electro-
static discharge.

Transmission Characteristics of -3 Window (HP-7)

23 W 15 16

78% Transmission Awverage A 70" ranamission Absowte

Reference Voitage

The internal biasing voitage is accessible on
pin 3. This voltage is used to drive the internal
output ampilitier. Offset voltage is referred to
this point.

This reference provides a low dirift zero to allov
for direct DC coupling of a subsequent com-
parator or AID converter.

The recommended maximum load on this pin
is 20 uA (source only) to maintain electrical
and thermal stability. Current loads greater
than 20uA may adversely affect performance:;
however, the output is short circuit proof.

Light Leakage

Slight sensitivity to visible Iight leaking througt
the glass-to-metal seal on the base may be
observed.

BLOCK DIAGRAM

| vouaes | ve

I
H]
;

i
3

- -

N

;Il—l
i

ELTEC INSTRUMENTS, INC. BOX 9610 DAYTONA BEACH, FLORIDA 32020 TWX 810/832/6294 (800) 874-

24

POSTFACH 564 CH-8304 WALLISELLEN-ZURICH SWITZERLAND TELEX 826 205 eltc ch (01) 830 ¢

DELTEC INSTRUMENTS, INC. 1187 Printea

MOHFEONDUCTOR
TECHNICAL DATA
AN
N
Photo Detector MRD721
\\ PIN Diode Output
A}
... designed for application in laser detection, light demodulation, detection of visible —
and near infrared light-emitting diodes, shaft or position encoders, switching and logic
circuits, or any design requiring radiation sensitivity, ultra high-speed, and stable PHOTO DETECTOR
characteristic DIODE OUTPUT
W w0 S 100 VOLTS
® Ultra Fast Response — (<1 ns Typ)
® Sensitive Throughout Visible and Near Infrared Spectral Range for Wide Application
Jonse ® Annular Passivated Structure for Stability and Reliability
® Economical, Low Profile, Miniature Plastic Package
® Lens Moided Into Package
® Designed for Automatic Handling and Accurate Positioning
BLUE
BACK
= CASE 343-01
PLASTIC
— MAXIMUM RATINGS (Tp = 25°C uniess otherwise noted)
Rating Symbol Vaiue Unit
Reverse Voltage VR 100 Voits
Total-Power Dissipation @ Tp = 25°C Pp 150 mwW
50 Derate above 25°C (Note 1) 2 mWrC
NT (mA) Operating and Storage Junction Temperature Range Ty Tstg -40to +100 °C
sllector Light Lead Soldering Temperature (5 sec. max, 1/16” from case) (Note 2) - 260 °C
4 Current ELECTRICAL CHARACTERISTICS (T4 = 25°C unless otherwise noted)
Characteristic Fig. No. Symbol Min Typ Max Unit
Dark Current (VR = 20 V, R = 1 MQ2; Note 3) 3and 4 p nA
Ta = 25°C - 0.06 10
, Ta = 100°C — 14 -
— i
N MAX i Reverse Breakdown Voitage (IR = 10 uA) - V(BR)R 100 200 - Voits
 REIEN { Forward Voitage (I = 50 mA) - Ve _ = " Volts
. A i
gg?g I‘ g;ﬁ { Series Resistance (If = 50 mA) - Rs - 8 - Ohms
745 10085 : Total Capacitance (VR = 20 V; f = 1 MHz) 5 cr — 3 - pF
0.100 8SC
0.060 8SC | OPTICAL CHARACTERISTICS (Tp = 25°C)
2003 | 002
31505 0,7592 ; Light Current (VR = 20 V, Note 4) 2 I 15 4 - uA
2120 | 0130 —
* Sensitivity (VR = 20 V, Note 5) _ S{A = 0.8 um) — 5 — wA/MW/
2030 | 0.060 :
2150 | 0188 ' — S{A = 0.94 um) - 1.2 - cm2
Response Time (VR = 20V, R = 50 Q) - t(resp) -_ 1 — ns
Wavelength of Peak Spectral Response 6 Ag - 0.8 - um
——————————— Notes: 1. Measured with the device soldered into a typical printed circuit board.

1.

2. Heat sink should be applied to leads during soldering to prevent case temperature from excseding 100°C.
3. Measured under dark conditions. {H ~ 0).

4. Radiation Flux Density (H) equal to 5 mW/cm2
5. Radiation Fiux Density (H) equal to 0.5 mW/cm<.

d from a source at a color temperature of 2870 K.

MRD721 ? MRD721

TYPICAL CHARACTERISTICS
2 ‘
N B 1 { —
TUNGSTEN SOURCE TEMP = 2870 K H = 20 mWem?
+V 10 10
H - f—
\\‘. QP 1: ,r S ——
=
g ! T
Vei 3 2 —— 2 4]
signal = ; 8
) ERN = = 1
50N = Kem
05 05 e T
= 03 1
0.2
0 10 20 30 4 5 6 0 8 9% 100
VR, REVERSE VOLTAGE (VOLTS)
Figure 1. Operating Circuit T~
Figure 2. Irradiated Voitage — Current Characteristic c
1
10,000 f 0.2 T
VR =0V] T = 25 -
1000 H=0 j—— H=0
. - 015 —
2w : z —
- z
% 1 - : £ |
T ¥ 2 0
= t : -
g | = < . 3
e = > 2
0.05 /
0.1 - /]
001 0
5 50 75 100 125 150 [] 20 3 4« 50 60 7 8 % 100
Ta, TEMPERATURE (°C) VR, REVERSE VOLTAGE (VOLTS) .
Figure 3. Dark Current versus Temperature Figure 4. Dark Current versus Reverse Volitage

8 100 -
T]
L | 90 T\
: T oo
6 i f = 1MHz _® // :
‘E] ;:L 70 4 T 1A
g 5 5 Z g A \ .
5 ¢ : % 50 ,/ Y
-4
g 3 \K g n / \
3 <, /
2 & //
20
! 10 / t N\ .
‘ I
0 0
0 10 20 30 4 S 60 W 8 %W 100 02 03 04 05 06 07 08 09 1 11 12
VR. REVERSE VOLTAGE (VOLTS) A, WAVELENGTH (um)
Figure 5. Capacitance versus Voltage Figure 6. Relative Spectral Response

4-32

Near-Infrared Emitters and Detectors

Transduction of near-infrared energy can be used as a basis for building fast-response time
proximity detectors. As proximity sensors, infrareds have an advantage over sonars in that
they work at the speed of light instead of the speed of sound. They also have a much narrow-
er cone of detection. The disadvantage however, is that infrared sensors give almost no rang-
ing information and are very dependent on the surface albedo of what they’re looking at.
Nevertheless, they’re cheap to make and do a fine job for close-in collision avoidance.

IR proximity sensors are made out of two components: a near-infrared LED emitter with a
typical wavelength of 880nm, and a matching receiver - either an infrared photodiode or a
phototransistor. In order to get around confusion with ambient infrared energy levels, the
transmitting LEDs are usually pulsed at a certain frequency and the receiving circuit is de-
signed so as to bandpass filter for that frequency. Shown on the next page is an example
from the infrared heads on Herbert, (“The Collection Machine”) robot. The tranmitters are
Radio Shack XCB880A near-infrared LEDs and the detectors are TIL414 phototransistors,
also from Radio Shack. In your kits, however, you’ll find parts from Siemens (feel free to
drop by Radio Shack and get some of their parts) - data sheets are on the next page. Note the
detectors given in your kit are photodiodes, not phototransistors, so adjust your circuit ac-
cordingly. Also note, in the receiver schematics, that the first stage op-amp circuit is a band-
pass filter tuned to the frequency that Herbert’s emitters were pulsed. Your design should
bandpass for the frequency you choose.

Microphones

Electret microphones are sensitive to acoustic energy and can be useful in simple noise rec-
ognition sorts of tasks. The microphones included in the kit come from Digi-Key and are
fairly small. They’re simple two-wire devices and can be biased and amplified according to
the example circuit shown below (Digi-Key catalog, p. 94). Radio Shack also carries micro-
phones. They sell a three terminal device which takes +5V, Ground, and which outputs the
signal on the third pin. The signal should be amplified before being interfaced to your micro-
processor. Depending on how you want to use this information, there are several options for
connecting to the 6811.

Example circuit for microphone amplifier.

27

rFre €

98-3/-ol g_ _) |)

[A)
Q "Yo28oy vy g
- 2
7088 3 ¢
avn
XMl sl g b . 13 4] 014y LoH Lo
¥ _A_J.M i , " Py QR
Pt <
gan
No!
YN St
S+ ;St,..ifé_a_»

. 1

\ 94 19
v Ner b Arg
Neal} %.?..e - 5/ G A..M
Yy, wH v 28 ° F‘A §Moe
t _zm.,.w , Q“’(: AL BN IS 1 ~ San :l..ﬂ%
1Y]
1894)
5\2«4._.
Nhah

7y

H.: o
+

Qy ww—— G4
<Vu Al AW

ADS.Jui

28

LogIR V2 BN 2 T N R L

100 °C

——————

“NX 910-338-0022

' SIEMENS

SFH

=

GaAlAs INFRARED EMITTER

rv Package Dimensions in Inches (mm)
/ \ 24 24
) ¥ B i -
Lowd |
. so ~-
10 _ <
1254
024(0.6) i
016 (0 4 3
1
Maximum Ratings
Storage temperature Teo -55t0 +100 °C i
Soldering temperature at dip soldering: 4
(2 mm distance from the case bottom:]
soldering time t< S sec) Toons 260 ‘c »
Soldering temperature at iron soldering:
(22 mm distance from the case bottom;
soldering time t = 3 sec) Tooi 300 °C
Junction temperature T 100 °C
Reverse voltage Ve 5 v
FEATURES Forward current Ie 100 mA F
Surge current (r = 10 ps) isc 25 A
+ Good Spectral Match with Silicon Photo Power dissipation (T = 25°C) Por 200 mw
Detector Thermal Resistance* Ry 375 Kw
¢ Gallilum Aluminum Arsenide Material Characteristics (T, ., = 25°C) .
* Low Cost Wavelength at peak emission at le =10 mA Apeak 880 nm
* T1% Package Wavelength at peak emission at I, = 100 mA;
+ Clear Plastic Lens touse =20 ms, Duty cycle = 1:12 Apesk 883 nm
. LW Torm Shblllty Wavelength at peak emission at le=1A;
Be 18° touse = 100 us, Duty cycie = 1:100 A\peak 886 nm -
¢ Narrow Beam, Spectral bandwidih at ir = 10 mA a 80 nm
L] VOfv ngh POW.I’, 20 mw Typ'“' Half angle ¢ +8 degrees
at 100 mA Active chip area A 0.16 mmz 4
¢ High mmuy' 100 mWi/sr at 100 mA Dimensions of active chip area LXW 04x04 mm z
+ For Smoke Detection Appllcatlon: gugtange cﬁno ?uﬂace to case surface 2] 49.55 mm i
witching time: »
Use SFH484-E7517 (4 from 10% t6 90%: and from 90% to 10%
lg =100 mA) Y 0.6/0.5 us
DESCRIPTION Capacitance (Va =0 V. f = 1 MMz) c, 25 oF
Forward Voitage (I, = 100 mA; tose = 20 Ms) Ve 1.5(<18) v
SFH 484, an infrared emitting diode, emits radi- (I =1 A; 10 =100 us) Ve 3.0(53.8) v
ation in the near infrared range (880 nm peak). Breakdown voltage (I, = 10 pA) Van 30 (25) v
The emitted radiation, which can be modulated, Reverse current (Vy =5 V) [N 001(%10) pA
's generated by forward flowing current. The Temperature coefficient of |, or #, TC -05 %IK
device is enclosed in a Smm plastic package. Temperature coefticient of v, TC -0.2 %K
Uses for SFH 484 include: IR remote control of Temperature coefficient of Apeak TC 0.25 MUK
color TV receivers, smoke detectors, and other Radiant intensity I, in axial direction at a steradian 0 = 0.01 sr or 6.5°
applications requiring very high power, such as Radiant intensity (1 = 100 MA, 1o, = 20 ms) o 100(2500 mwisr
IR touch screens. (e = 1Aty 00 =100 ps) R 900 mwisr
#, (Total) typ. (Ic = 100 mA) *, 20 mw

“At 10mm maximum clearance between PC board and bottom of piastic body.

Specifications are subject to change without notice.
7-43

29

spectral emission l_n' Intenalty
.=t =
- TomA=!Y -
1 —] 100 -
EEEYAREED ,
[
Lo g8 } ’I ‘\Jf T
: N AT
v !
by R
NERaw
I RN
. ! ;
T :
Qb —- [. Q r_
i [R
ezL"/‘ . \] a0 o
L RN VI
R ‘ : . SSi
SV AEENEANY TN WAt
750 800 950 00 50 W00mm 1 L 00 000 0000mA
—) —I.
permissable forward cument
L=tT, L)
"
I
[I
H i H
[N L
IR NENEEEE
Fi
L2
L]
L]
Y-
L]
L]
*
L]
o *
Forward ourrent (maxk
Permissable puise loed dependent upon the lead length D
le =1() from the package bottom to the '
aa Outy cycie D = Parameter ~ PC bosrd.
0 T 20 ——y - S:
T | S
ST ! T T er
Lo S0:0008 i b5 100 bt — (&
gl RN R : SERN
T SRR BEREE . w
w e st » i L ! h . f
" i AREREEERER N
B mein ; RS er
: Al “ T U,
'.,1} . i BEEREN o
“t B T ! de
-~ A : : ; ;
fo JLIL IS NUREEE; | in
[I i SC
i T
WY RT0R B 0 0 W 5 "y ™ an
-Tr et |
Siemens Components Inc., Optoelectronics Division, 19000 Homestead Road, Cupertino, California 95014 (408) 257-7910/ TWX 910-338-0022
7-44
30

SIEMENS

SFH21;
SFH217r

PIN PHOTODIOD;

Package Dimensions in Inches (mm)

Surtace not et 42

= m

- = 0 on
o5 08 5.5
e @ | o il

—— 1 i
A
[1
L

(see Note below

Note: Temporarty thase cences may be suucked wih eed engihs of %ﬂ%

FEATURES

¢ Silicon Planar Pin Photodiode
¢ Cost Effective Device

* T-1% Package

¢ Flat Top

* High Speed, 1 ns

* Low Dark Cumrent, 1 nA

IR Filter (SFH217F)

DESCRIPTION

The SFH217 and SFH217F are planar PIN
photodiodes in a piastic T-13% package with
a flat lens. The flat window has no effect on
the beam path of optical lens systems. It is
characterized by its low junction capaci-
tance and fast switching speeds.

Because of its high cut-off frequency, this
diode is particularly suitable for use as an
opticai sensor of high modulation band-
width,

31

1
as

Maximum Ratings

Reverse vottage Va 30 v
Storage/operating temperature range T -40t0 +80 c
Power dissipation P 100 mw

Soldering temperature
(Solder 2 mm distance from case
153 sec) T 300 °C

.

Electrical/Optical Characteristics (T, = 25°C)

SFH217 SFH217F
Radiant sensitive area A 1 1 mm:
Dimensions of radiant sensitive area Lxw 985x.985 985x.985 mm
Distance chip surface to package surface H 04 0.7 04 Q7 mm
Wavelength of the max. senstivity Ag
e 850 900 om
Quantum yield Elocyay
(Electrons per photon) (A = 850 nm) " 088 089 Phoor
Spectral senstivity (A = 850 nm) S 0.62 0.62 AW
Rise time of the photocurrent
(ioad reustance R, =50 0: V, = 5V:
A=880nm. I, =14 yA) t, 2(s4) 2(<4) s
Forward voltage
(le=100mZ E,=0.T,=25°C) Ve 13 13 v
Capacttance
(Va=0V.f=1MHz E=0Ix) c, 1 " oF
Oark current (V, =20 V. E=0) la 1 ($10) 1(s10) nA
Photosenstivity
'a =5 V. standard fight A, T = 2856 k) S 95(25) - A
Photosensitivity
(Va=5V. A =950 nm. E,=0.5 mWicm? § - 30(218) A
Spectral range of photosensitivity
(S=10%0fS,) A 400 1100 800 1100 nm
Open circuit voltage
(E, = 1000 I, standard light A,
T = 2856 K} Vo 350(2300) — my
(E,=0.5 mWicm3, A =950 nm) Vo - 300 (2250) mv
Short circutt current
(E, =1000 Ix, standard light A,
T=2856 K) s 93 (25 - A
(E,=0.5 mWicm?2, A =950 nm) s - 31(218) 4
Notse squivalent power (Vs = 20 V) NEP 29x10- 29x10 %
v
M
Detection limt (V, = 20 V) O 35x10 35x107 ﬂw-ﬂ
Temperature coetficient for I TC 02 02 WK
Tamperature coetficient for Uy, T -26 -26 mvA

11 The Hiuminence indicated reters 10 untiitersd radistion of & TUNQELEN (HEMEN! IBMD B & COlr TempNrINS o
2080 K (stenderd ight A 1n sccordance with OIN 3033 snd 1EC pudl 308.1)

Specifications are subject to change without notice.

8-54

Siemens C

SFH217
SFH217R

PHOTODIODE

r 99
- 3 Z: 155

018 2

200

]

AR

139

N 0.4
“—ChoLocanon 016
30 v
-40t0 +80 °c
00 mw
300 °C
3°C)
SFH217F
1 mmz

985x 985 mm
04 Q7 mm

900 nm
Electron

089 hoton 2

0.62 AW

2(s4) ns

13 Vv

1" pF

(510} nA

- NA/lx

30(218) uA
20 800 1100 nm

- my
300(22500 mv

- uA
31(218) LA

29x10-4 -
35x102

02 OvK
-26 mVik

* amp at s color tempersture of

Relative Spectral Sensitivity
S =f(N

v S 217

Seut
]

00 600 800 1000 1200 am

e

Relative Spectral Sensitivity
Se=fN

% STHITE

100 :rﬂx__:’ ,
1] -

0

—_— —
Photocurrent |, = (E) Directional Ch ristics
Sret =1 ()
sPHaE
uA hd 00 g0 e
w0 '\ ! D e

Capacity C = (vy)
Tumo= 25°C
pF
R

Photoem'ml,,.—_f(EV)

Power Dissipation
Prot =1 (Ta)

mw

e e R
R

——— L

; L

1

O W W e a0 woec
—~Ta

= Ta

Siemens Components inc., Optoelectronics Division, 19000 Homestead Road, Cupertino, California 95014 (408) 257-7910/ TWX 910-338-0022

8-55

32

iragraetiys

2 4,

B 1A i

o pgime

SIEMENS

BPW 34

PIN PHOTODIODg

FEATURES

® Sllicon Planar PIN Photodiode
Transparent Plastic Package
2/10” Lead Spacing

Low Junction Capacitance
Short Switching Time

High Sensitivity

Lead Bend Option (for SMD)

DESCRIPTION

The BPW 34 is a silicon planar PIN
photodiode, which is incorporated in a
transparent plastic package. Its termi-
nais are soldering tabs arranged in
5.08 mm (2/10") lead spacing. Due to
its design the diode can also very easily
be assembled on PC boards. The flat
back of the epoxy resin case makes
rigid fixing of the component feasible.

Arrays can be realized by muitiple
arrangements. This versatile photode-
tector can be used as a diode as well
as a voltaic cell. The signal/noise ratio
is particularly favorable, even at low
illuminances. The open circuit voltage
at low illuminances is higher than
with comparable mesa photovoitaic
cells. The PIN photodiode is outstand-
ing for low junction capacitance, high
cut-off frequency and short switching
times. The photodiode is particularly
suitable for IR sound transmission.

. . . ™~
Package Dimensions in Inches (mm)
213 (5.4
e e
127 (4 9) o,
-~a AR TTE
o | |08
@ 087 (2.2)
- (2.
3 075 (1.9)
i [}
! 138 3.5
014(0.35) | na
031 (0.9) }
2807 —— 008 (0.2) L__I
Frame ‘l -
0.2(5.08) 0..5¢
- Radiant Sensitive Arsa
107 (2.71) x 107 (2.71)
—
Maximum Ratings
Reverse Voltage (V) Ry
Operating and Storage Temperature Range ~40 to +80°¢
Soldenng Temperature in a 2 mm Distance
from the Case Bottom (t < 3) Ty . 230°¢
Power Dissipation (T, = 25°C) (P 150 mw
Characteristics (Tyy, = 25°C)
Photosensitivity
(Vg = 5V, Note 1) S 80 (250) NAJIx
Wavelength of Max. Photosensitivity Asmax 880 nm
Spectral Range of Photosansitivity
(S = 10% of Smax) N 400...1100 nm
Radiant Sensitive Area A 734 mma2
Dimensions of the Radiant
Sensitive Area L xw 271 x 2.7 mm
Distance Between Chip Surface
and Package Surface H 05 mm
Half Angle "3 +60 Deg.
Dark Current (V5 = 10 V) [2(<30) nA
Spectral Photosensitivity
(\ = 850 nm) S 0.62 AW
Etectrons
Quantum Yieid (\ = 850 nm) " 0.90 “Photon
Open Circuit Voltage
(E, = 1000 ix, Note 1) Vo 365 (2300) mv
Short Circuit Current
(Ey = 1000 Ix, Note 1) lse 80 (250) pA
Rise and Fall Time of the Photo-
currant from 109% to 90% and
from 909% to 10% of the Final Vaiue
(RL =1 KB Vg =5V X =830 nm
Ip = 70 pA) Lot 350 ns
Forward Voltage
(I = 100 mA, E, = 0
Tame = 25°C) Ve 13 v
Capacttance
(Va =0V, E=0f=1MHz) Co 72 pF
Temperature Coefficient of V,, TC, -2.6 mv/iK
Temperature Coefficient of I, .o lp TC, 0.18 /K
w
Noise Equivalent Power (Vg = 10V) NEP 41 x 10-"4 VHz
em vHz
Detection Limit (Vg = 10 V) o} 6.6 x 1012 w

' The ifiurminance indicated refers 1o unfitered rackation
sre of 2856 K ight A in

Specifications are subject to change without notice.

8-14

of a tungsten flament lamp at a color
with OIN 5030 and IEC publ. 306-1)

BPW 34 "

PHOTODIODE

320

[:»

2.2)
19)

@ |ss

3 5)
183

wA

'600 nm

Photocurrent [, = '(E,}
Open circuit voitage v, = (E,)

Oiractions: eherastertonse $.,, = / (v}

Power dissipation P, = t(T,)

|

Oar current /, = (Va)
Time= 25°CE= 0O

32v
-40to +80°C
230°C))
0 10]) Ayl
150 mw —=%
1 current -
Coswsitance C = ! (V) metorurrent 0 = il e iy ™ e
P iMME £ 0
N ———
30 (2 50) nA/lx I
880 nm T8 e e
’
400. 1100 nm
734 mm? ‘0 e
Tt x 271 mm " —_——
05 mm T S
=60 Deg —
2530 nA W oo
0.62 AW H]
Electrons
280 Photon)
XN-0 10 ANCHNR T X
38 (2300) my — .
300 e Open atrount vertage - < 117
?12%0 A EmIm T - o
" T
LN
ke
9 N
350 nsg) NS
_ N
bt} N
13 v :
72 of *— i —
-26 mv/K —_———
218 %K F S S S
W [
« 10-4 \.—AH=' —— ey
z_ S S
cma Hz +
3 x 072 W ' I
Tent arc at a coor RSV R
¢ EC pupi 306-1) —

Siemens Components Inc.. Optoelectronics Division. 19000 Homestead Road.
8-15

34

Cupertino. Cahfornia 95014 (408) 257-7910/ TWX 910-338-0022

FEEEr)

s

You may want to use the A/D port, or alternatively, you may want to do some timing and in-
terface the microphones to the timer pins. An example of the latter is shown in the Squirt
chapter. Your 6811, running with an 8Mhz signal should be able to measure time steps of
0.5 microseconds, which should be good enough for two microphones to discriminate orien-
tation to a noise source.

Photocells

Photocells are variable resistors that change their resistance in proportion to the incident
light. Photocells are available from Radio Shack, as are a wide variety of sensors. Browse
through a Radio Shack catalog for ideas. An example of a robot which uses photocells to
avoid dark corners and run towards light spots is given in a later chapter on Photovore, The
Light-eater.

Inclinometers

Inclinometers measure the angle of tilt of a body. Typically, they measure tilt along one-ax-
is, but sometimes two. Inclinometers can range from something as simple as a ball rolling in
a curved tray to electrolytic fluid-based sensors. Inclinometers are useful for walking ma-
chines, flying objects or any machine not restricted to a flat plane. There are only a few
electrolytic inclinometers, so see me if you need one for your project.

Mercury Switches

Mercury switches are inclinometers that produce only one bit of tilt information.
Consequently, they’re much cheaper than inclinometers. Put a bunch of them together how-
ever, and you can get a spectrum of information. A mercury switch is basically a switch

closed by a flow of mercury. Consequently, if your vehicle tips, you can discern that fact if
an upright mercury switch is connected to one of the 6811°s port pins.

Cameras

Cameras are more expensive than most of the sensors listed here, but they’re getting cheaper
all the time. The best buy in town for a video camera has got to be the Pixar 2000, sold by
Toys ‘R Us for $99. It’s a low-resolution, slow-scan system that records video and audio in-
formation onto a normal (but fast running) audio cassette. You get approximately 5 minutes
of recording information per side, but it really works and you can play it back on a regular
television set.

If you’re looking for something smaller, Sony Watchcams are available in pocket size, with
good resolution and normal NTSC video output for about $800. Single chip video digitizers
have just come out too (Analog Devices AD9520); so extremely small video systems are pos-
sible, but it’s a bit of a project.

I recommend running a video cable offboard to either the Sun, Macintosh or Symbolics-
based frame grabbers we have around the lab. Run your code there and send commands out
the serial port to the 6811 to control your robot. This way you’ll have plenty of computer
power to do image processing and very little new hardware will need to be built.

35

spectron

glass and electronics incorporated

595 Oid Willets Path, Hauppauge, N.Y. 11788
Telex 968.296 (516) 582 5600

Automatically Produced

MINIATURE
MERCURY SWITCHES

GENERAL INFORMATION
SPECTRON mercury switches are Small, Silent, Sealed, Safe and Low Cost.

* Small — less than one inch long and under half an inch in diameter, they are capable of switching currents of 0.5 to 2 amps.

* Silent — quietly switching with tilt, there is no sound and no electrical “noise” as the mercury moves to close or open a
circuit.

* Sealed — hermetically sealed, they are immune from dirt, water, oil, and other contamination.
* Safe — sealed and filled with an inert gas, they cannot generate exposed electrical arcs during switching.

* Low cost — made in volume on automatic sealing equipment, they are low in initial cost. Because of their long useful life and
high reliability, they also have a low useful life-cost.

Ideal for use in hostile environments, these miniature tilt switches will not degrade in switching action or develop “hot spot” high
resistance contacts. Neither will they generate reactive shock forces normally encountered in spring loaded switches. Absence
of this shock adds to the life of surrounding electronic assemblies and components as well as to the life of the mercury switch.

SWITCH SELECTION:

In selecting a miniature mercury switch from the accompanying table, the primary consideration is the level of currentto be swit-
ched. The M 1205 tilt switch has been designed to switch 2 amps at 220 volts with a resistance load. As such, itis most used for
large power applications.

For low power applications such as PC board power supplies, the M 1204 switch is appropriate because of its low contact
resistance.

The M 1207 is a switch to be considered for applications requiring switch closure in the inverted as well as the upright position.
By commoning one electrode on either side. the switch becomes a SPDT device.

Our engineers are always available to answer any question you may have regarding the application and installation of our
miniature mercury switches.

Whenever there is a need for a versatile switching device actuated by a change in attitude, choose a SPECTRON mercury
switch. These rugged, miniature mercury switches will provide hundreds of thousands of switching cycles in a power efficient
and reliable manner and greatly add to the life of your equipment.

36

——— e e oy o -

TECHNICAL DATA

spectron
glass and electronics incorporated.

595 Oid Witlets Path, Hauppauge, N.Y. 11788
(516) 582 5600

Telex 968.296

M1202 | SPST | 1 2 220 10 100 | 300 10 RE—

M 1204 | SPST 0.5 2 220 0.1 20 50 15

M1205 | SPST 2 4 220 10 200 150 15 z : ot .

| :-o.m-r-—- om —-T—o.n-‘
M1206 | SPST | 2 4 220 10 100 | 100 15 %m
L i
1--0:!)-'&— 09! e 0

M1207 | SPDT | 1 2 | 220 | 10 | 100 | 300 | 15 g%—é

M1216 | SPDT 0.5 2 220 0.1 20 50 15 see dimensions below
Notes:
Min. Differential Angle (MDA):
This is the included angle between the “just closed” and “just open” Sron i T
positions. For long term, high reliability of closure, a change in angle ¢ ;;\\ | o @
of 1.5to 2 times the MDA is recommended. P LY, | %

‘‘‘‘‘‘ '
Terminals: .0024‘51 | '_'? 1
Allterminals are solid, easily soldered to leads, 0.022" diameter min. 15039 } |
and extend out from the body of the level a min. of 0.30"". As an op- : 1.19 - ‘.37-1
tion, switches can be supplied with leads as specified by the user.
Mounting & Encapsulating:
Standarq clip type mountings are available as well as potting or en- Ref. 1216
capsulation services. Available from stock in
. . . plastic housing and specifically

Te"""‘.‘“' Serylges.) o) designed for PCB mounting

In addition to providing technical application information, SPECTRON
provides design and fabrication services for unique switches and

interface hardware. j

37 ‘

Bt TR

I~

ELECTROLYTIC TILT SENSOR L-211U

This SPECTRON series of vertical sensing electro-
lytic potentiometers is composed of miniature
single-axis units that provide a linear voltage out-
put as the unit is tilted gbout the horizontal axis.
The unit is a onepiece glass enclosure, with
platinum terminals and contacts sealed flush into
the glass walls, thus eliminating any drain off of
electrolyte from protruding contacts. Each sensor
comes wired with all terminals and wire connec-

tions covered by gyro grade epoxy cement. As
such, it qualifies as a truly hermetically sealed tilt
sensor.

The series has characteristics similar to the L-210
series, but also has a dampening orifice which
controls the rate at which the fluid responds to
sudden angular inputs. This improves operation
in moderate dynamic environments.

TECHNICAL CHARACTERISTICS L-211 U (at 20 Degrees C) {11 C4100)
STANDARD AVAILABLE
1. Tilt Angle Range (Degrees) + 60 —
2. Output{mV/Degree/Volt Excitation) 7.2+ 20% +5%
3. Total Nuil {(mV at 3V 400 Hertz Excitation) 2 0.5
4. Null Repeatability (Degrees) 0.03 0.008
5. Repeatability atany angle (Degrees) 0.03 0.008
6. Linearity, Full Scale (% of Full Scale) 5 2
1/2 Scale (% of Full Scale) 2 1
7.Symmetry at 1/2 Scale (%) 5 2
8. Time Constant (Seconds) 0.3 +25% —
9.Impedance, end to end (K Ohms) 6+ 20% +5%
10. Excitation Voltage (Volts AC) 0.5to5 —_
11. Excitation Frequency (Hertz) 20t020,000 —
Operating Temperature Range (Degrees C) -40to+80
Storage Temperature Range (Degrees C) -55t0+ 100

Dimensions: See Drawing

Weight: 2 Grams

NOTE: See Graphs on Other Side for Additional Characteristics

Time ConstantVs. Temperature:

Temperature (Degrees C)

Time Constant (Seconds)

+80 <0.1+25%
+20 <0.1+25%
-40 0.1+25%

TECHNICAL DATA L-211U

up upP
YELLOW —_
BLACK f f
NOMINAL STANDARD TEST CIRCUIT
2 0.12 (EPOXY) l (A.C. BRDIGE)
QRANGE 3.05mm -
‘ ac !
pa - ol 3IVOLTS
¢ EXCITAT
T B 1400'Hz-|1oo':m§ % '?OM'NA"’
! ! | | 48max.
y [131emm CENTER TAP
I
INNNE
. CBA%S' SENSITIVE
LTMETER
10 MAX .35 MAX.
254 mm 8.89mm |
NOMINAL 13
> .25(EPOXY) 3.30mm
6.35 mm
Scale factor vs temperature Null impedance vs temperature
9.0 25 +
S - 400%
s — +10%
5 86 0 20 -
x)
= E]
[— £
> 8.2 O 15
3 x
2 SN Ref.] ! — 200%
S 78 — g 10
B : ‘ ° ™ . Il
o | FE N o 8, L |
274 : ; A 5% g s — ‘ Ref.
'8 : v l e~ 50%
> ! N
E 70 L 0 T T T T
-40 0 +20 +40 +80 -40 0 +20 +40 +80
Temperature (degrees C) Temperature (degrees C)
Accuracy
+4
— 4 5
@
?c» +2 -
2 9) — = : @
3 ~ = 5
o _t : = 5
s 2 2
5 27
w -5
-4
-60 -30 0 +30 +60

True tilt angle (degrees)

39

13

Using the Polaroid Ultrasonic Ranging Sensor

Maja Mataric

The Polaroid Ranging Sensor is one of the simplest and best sensors available for directly
measuring distances to objects. The sonar can be used to measure the distance to the nearest
point within a 30-degree cone and can deliver range information from 0.9 to 35 feet. The
sensor system supplied by Polaroid consists of a transducer and a controller board. The
boards we are supplying are single-frequency boards, not to be confused with the four-
frequency boards also described in the available Polaroid documentation.

A complete manual for the Polaroid sonar transducer is included in your kit and you should
refer to it for complete details. What follows is a quick overview.

The Polaroid sonar controller board receives a signal to ping the sonar from your 6811 mi-
croprocessor (this signal is called VSW in the Polaroid documentation). The sonar board re-
turns a flag (called XLG) which identifies the exact instant at which the transducer actually
fires a burst of acoustic energy. Another flag (called FLG in the documentation), is returned
by the sonar board when an echo is detected. Connect these three wires to three port pins on
your microprocessor and then write appropriate software to assert VSW, which will direct the
controller board to ping the transducer. Then simply measure the time interval between the
arrival of the XLG and FLG flags. By multiplying this time by the speed of sound, software
can determine distances to obstacles. Measurement of this time interval can be facilitated by
using the 6811’s timer inputs on port A to interface to XLG and FLG.

Assembling *he Sonar

Connect the transducer to the controller board with a coax cable (Figure 1). Connect the
three flags (green, blue, and red) to your 6811 microprocessor. Use a pull-up resistor on the
flags indicating the signas have returned (e.g. 2.2K Ohms).

Figure 1. The Polaroid sonar controller board.

40

Power Supply and Related Issues

The Polaroid transducer requires 2.5A of current for about a millisecond in order to ping
(about 250ma when not pinging). The sonar board requires a 6V power supply whereas 5V
is required for the microprocessor. Either use separate power supplies, or a voltage regulator,
to get around the different power requirements. Additionally, a transistor is needed between
the microprocessor and the sonar board in order to amplify the signal telling the board to

ping.
Do not apply power to the sonar board if the transducer is not connected.

The VSW signal telling the sonar to ping must be timed properly. It should be high for
100ms and low for a minimum of another 100ms. (See the waveforms in Figure 2). If VSW
is applied for too long, this will probably send a load to the transducer which pulls the current
for longer than a millisecond. Consequently, the MPS-A14 Motorola transistor on the
Polaroid board (#22 in Figure 3) will promptly fry. This may happen without you realizing
it. The transistor may fry without emitting the telltale smoke and noxious fumes, and make
debugging more difficult. If you do fry it, rather than just soldering a new one directly,
consider attaching a socket onto the Polaroid board for easier removal in case of future fail-
ures of the same component.

the reference.

min, is the carliest esho recsived, .9 fest (1.6ms).
man. is he furthest esho recsived 35.0 fest (62.2mes).
is 177.8ma from LC.

113
L 3

[.
L | | | | | J

-

Ve — LS

Figure 2. Timing diagram for Polaroid controller board signals.

General Debugging T

1) Power-related problems are not unusual with the Polaroid sonar. Always be sure that the
sonar board is receiving the proper voltage, and that the VSW signal is strong enough.

2) Build good connectors.

41

g g & E

1TeM | ags. DESCRIPTION reM | ner. OESCRIPTION
] A10_| RESISTOR (22K S%. %W 12 A4 ESIS K. S%. W
2 [P _SOARD_ 13 RS | VARIABLE RESISTOR (Z5K. «W)
Q1A | TRANSISTOA 1] (300 note 2)
&3] CAPACITOR 1,/. 35V 14 €3 | CAPACITORN B0Z%ur. OV 1
Ry | RES %00 18 T 1 TAANSFORMER 1
Y2 I7. 10 3]] (1-70K, A
-] CAPACITOA 0014/, 10V (see note 1)
ANAL 17 [] [l] i
CAPACITOR 0147, 10V) 2 I
I L1_T TUNED CIRCUY INDUCTOR | e A2 (X113 iv . % WW)
1 CAPACITOR 014/, 10V 2 ci0 LA
(800 note 2)
I s/ L T |
2 1 G2A
2 A1 | RESISTOR (2.2K %, %

Figure 3. Parts placement on the Polaroid controller board.

42

The Futaba Gyro
Paul Viola

The Futaba gyro is a one axis rate gyro. It contains a single gyro whose rotation axis is
perpendicular to the intended rntation of the chassis. As the chassis is rotated, the gyro
experiences a torque that is dependent on the rate of rotation. Since the gyro is spring mount-
ed, its deflection angle is linearly related to that torque. The deflection angle is measured and
is interpreted as the rate of rotation of the chassis.

Pulse Width Encoding

The gyro assembly is controlled by a small box packed full of complex analog and digital
hardware. This gyro assembly needs to be driven with a pulse width modulated signal in
order to run. In return, it emits a pulse width modulated signal signifying the rate of turn.
That is, the Futaba gyro controller takes a pulse encoded value and modifies it (increasing or
decreasing the pulse width) based on the current rate of rotation.

The Futaba standard pulse width encoded output signal is a 20 msec cycle where 1500
micro seconds ON is the center of the range that can be measured (i.e. a 50 hertz square wave
with a 7.5 percent duty cycle). A smaller ON period (lower duty cycle) implies smaller pulse
width encoded values while a larger ON period (or higher duty cycle) implies a larger pulse
encoded value (the range is approximately 1000-2000 micro secs).

Interface to the 6811

To interface a 6811 to the gyro controller amplifier, the 6811 needs to provide a 1.5ms
wide pulse train tuned to 50 hertz. This provides the base from which the rate of rotation is
measured. The output is then another square wave at 50 hertz with a modified pulse width.
This width corresponds to the rate of rotation.

The gyro has two inputs and one output. The input of interest is labeled RX 1-4 on the data
sheet. It is normally connected to a radio controlled receiver for a model airplane. This
should be connected to your 50 hertz 1.5ms pulse generator (one of the pins on your 6811
which you’ve programmed). The output, labeled SX, should be connected to one of the
6811's timer input capture lines.

On each of the connectors, the output signal is white, ground is black and red is power.

Snip off the external battery power lines (unless you have a 6 volt battery power supply
around). You will power the the gyro through the red and black power lines on the RX 1-4
input port. The 6811 has a sophisticated set of timers and a timer output compare register
can be used to generate the base 1.5ms signal. This should be a straightforward use -of some
simple interrupts. Similarly, the timer input capture register can be used to measure the
width of the incoming pulses; another simple interrupt application. Both of these facilities
are described in the 6811 data sheet’s section on timers.

Adjustments

The documentation included with the gyro describes some adjustments such as gain, center
and reverse. The gain adjustment controls the amount of amplification. Center controls the

43

neutral or center of the pulse width encoding (what I have been assuming is 1.5ms). Reverse
inverts the effect on the pulse width of a particular rotation (this is more important when used
in a model aircraft - you could do the same by changing a sign somewhere in your program),

Warnings
Readings are not especially reliable. The device is a rate gyro; it is useless for determining

angular position over even a small period of time. Even when stationary, the gyro will
“drift” and additionally, there is a hysteresis effect.

44

Futaba.

DIGITAL PROPORTIONAL

RADIO CONTROL

INSTRUCTION MANUAL

SINGLE AXIS RATE GYRO

IR

FP-G152 o uM, and sG Series)
FP-G132 ok, F, 6, H, and L Series)

FUTABA CORPCRATION OF AMERICA

/fﬂ)’
8 EUTABA core raTIoN

The FP-G132/G152 is a single axis rate gyro designed to
stabilize aircrafts. Like full size aircrafts, stabilisation is ac-
complished by detecting angular acceleration with the rate
gyro. Detected motion information is fed to the control
amplifier, which then sends a counteraction signal to the

appropriate control surface.

FEATURES OF FP-G152
FEATURES OF FP-G132
®The FP-G152 is for Futaba J, M, and SG Serie§ (1520 us,

neutral) digital proportional radio control sets.

®The FP-G132 is for Futaba E, F, G, H, and L Series digital
proportional radio control sets.

®\Voltage regulated gyro motor supply maintains constant
motor speed and allows consistent gyro performance. The
voltage regulator is effective only when used with an ex-
ternal 6V. (five cell Nicad battery).

®Direction of correcting mix can be switched at the control
amplifier (internal reverse amp switch).

®Centering of the channel being stabilized can be adjusted
by a neutral trimmer built into the control amplifier.

D60226

45

I'hank you tor buving a Futaba dicital
proportional radio contral ~et.
Please read this manuaal carcfully betore

USHIE YOUT new set.
.

FUTABA CorPORATION OF AMERICA

H5Hh West Victona Street Compton S
537 9610 Telex 23 0690122 acsimide 213 637 8529

F'UTABA CORPORATION

Phone 2

Tokyo Othce Dado Blag . 31 1€ okanda, Chiyoda ka, Tokyo. Japan
Phone (03) 255 5881 Telex 26532

Prortedan Japan 85112000

®A very sensitive magnetic motion sensor with excellent
voltage characteristics, linear sensitivity, high speed
response is used. This results in superior neutral char-
acteristics. Such characteristics make it ideal for use in the
rudder channel of a model hilicopter or in the aileron/
elevator channel of a model aircraft.

®large 2mm diameter gyro motor shaft for long life and
strength.

®The gyro can be bypassed without affecting normal oper-
ation by turning the gyro power switch “‘off",

®Mount the gyro with grommets and screws or use two-
sided foam tape.

® Gyro output (“sensitivity’’) can be switched to one of two
preset outputs at the transmitter (use the retract switch if
possible, or any avail. channels).

RATEINGS

Power supply voltage

4.8V shared with receiver (6V for external supply)

Current drain

Motor: 100mA, Amplifier: 20mA (at 4.8V)

Gyro body: 1.57 x 1.65 x 1.69 in.(40 x 42 x 43mm) - 2.86 oz. (80g)

Dimensions and weight

Control amplifier: 1.73 x 2.28 x .63 in.(44 x 58 x 16mm) - 1.61 02.{45g)

Control box: .94 x 1.34 x .59 in.(24 x 34 x 15mm) - .54 0z.(15q)

CONNECTIONS

/ﬁ

Connect to receiver
retract or auxiliary channei
(for gyro sensitivity switching)

Gyro direction
reverse switch

The case can be opened by removing these acrews.

Connected servo (rudder servo for helicopter)
neutral trimmer (this trimmer is operative even
when the control box power switch is off).

C

{A) Connector
G132

— Gyro power switch
anmxﬂ{:e r ‘aba (& o<
"""""""" RATE GYRQ FPGIS2| P

REv FOR

Connect to receiver channel
to be stabilized
(rudder channel for helicopter)

The G152 and G132 are interchangeable by
changing the connectors and readjusting the
neutral trimmer.

Connect to the servo (rudder servo for hel icopter)

Control amplifier

Special 6V five cell Nicad battery
pack connector for motor reg-
ulated power supply. (Insert the
jumper connector when a shared
power supply is used.)

G132

46

The Zemco Flux-Gate Digital Compass
Peter Ning

The Zemco Digital Compass will provide a reasonably accurate measure of orientation with
respect to the earth's magnetic field. You can extract 4-bits of resolutiun from the compass.
There are basically two ways of interfacing the compass with your main CPU, either digitally
or analog; the former requires no hardware modification to the compass electronics but new
data may take up to 3 second to stabilize. The latter method provides data on the order of
1/10 second but requires another level of data translation from analog to digital. Here are all
the hints you need to use this compass:

1. Digital Interface Method

There is essentially one chip in the compass electronics that you need to be concerned with,
the microprocessor (COP421-MLA). This processor sends out three signals DO (Pin 24), SK
(Pin 16), and SD (Pin 15). DO is low when SK and SD signals are valid. The SK signal is
used to clock in serial data on the SD line on the RISING-EDGE.

What is this data? - The first four bits are starting bits and should be ignored. Then come
three 8-bit numbers, each representing a digit of degrees (0-360) for the direction. The last 8-
bit number is always zero and should be ignored. Unfortunately, the 8-bit numbers are
encoded in 7-segment led display format.

Number Bits:.cbafged

a e
—_— 0 01111011
f] b 1 01100000
5 2 00110111
3 01110101
4 01101100
e, e 5 01011101
6 01011111
o -_— 7 01110000
A 8 01111111
9 01111101

Scope these signals on an oscilloscope or a logic analyzer to verify the data bits as you move
the compass around. For both methods be sure to have proper GROUND signals between
the interface of the compass electronics and your CPU circuitry. Remember that the
compass is NOT foolproof; there will be occassional spurious readings when the compass
nears metal objects, as with most needle-based hand held compasses.

2. The Analog M

You will not have to deal with the COP421-MLA processor in this case. All you need from
the compass are the analog outputs X (Pin U1-8, U1 is the CA3403 quad op-amp) and Y (Pin
Ul-14). As you rotate the compass 360 degrees you should see these two outputs produce
sine waves with a phase shift of 90 degrees.

47

How does one get these signals to a CPU? - Use an A/D converter. Fortunate
you use the 68HC11 CPU which has an on-chip A/D converter. As with th
you should look at the data on an oscilloscope to verify the X and Y analog

ly this is easy if
e digital method,
outputs.

48

MUCH RANDOM INFORMATION
CONCERNING MOTORS

Colin Angle

MUCH RANDOM INFORMATION CONCERNING MOTORS
Colin Angle

Introduction
This paper is meant to provide practical knowledge about how to

choose the right motor for a particular actuator, and how to
drive it.

DC MOTORS
Nothing is more pitiful than a wimpy, under-powered robot. It is
important to choose a motor which meets your requirements. Some

of the motors provided for the contest have data sheets which
characterize them, while for the others a few simple tests will
give an idea of what to expect. Listed below are some of the
basic characteristics of DC motors.

Rated voltage

This voltage is the voltage at which all the tests were run, and
is the voltage at which the motor is guaranteed to operate for
long periods of time without burning up. It is a very conserva-
tive number. DC motors can be overdriven by over one hundred
percent if the use of the motor is intermittent. This will ap-
propriately increase the motor’s performance. If your motor gets
very hot, however, you are driving it too hard and therefore you
should not be surprised if it dies. If this voltage is unknown,
assume it is a 5v motor, because most small DC motors are either
4.5v or 6v.

"No load" shaft speed

This speed is, as the name implies, the speed of the output shaft
with no load on it. This speed is a good indication of whether
or not you will have to gear down the output shaft in order to
suit your application, and by how much to do it.

If you must measure this quantity, and do not have access to a
dynamometer, hook the shaft to a gear train which slows the out-
put speed of the gear train to something you can count and mul-
tiply by the gear ratio. If an appropriate gear train is un-
available, it is possible to hook the output shaft to a spindle
of known diameter, and winch in string for a specified amount of

time, and calculate the shaft speed from that as shown on figure
1.

50

I string

rev/sec

w = 2(pi)rt tatime

spindle

figure 1
finding shaft speed

Stall torque

Knowing the amount of torque a motor will provide perhaps the
most important single piece of knowledge required to prevent
your robot from falling on its face. It is important to remember
that this number represents torque and not force. A 1 oz-in
stall torque motor turning a 2 inch diameter spindle will winch
in a string attached to it with a maximum force of 1 oz before it
stalls. If the spindle was .25 inches in diameter, the force
would be 8 o0z. To find the stall torque of a motor, attach an
arm to the .output shaft, and set up a device such as the one
shown in figure 2. Decrease the weight in the basket until the
arm pulls the weight, then measure the weight.

motor

v—7 torque=9.8md [NI

figure 2

finding the stall torque of a motor

Starting current

A rotating DC motor creates a voltage which tends to cancel the
applied voltage, and is proportional to the output speed. If the
motor is not rotating, this back voltage is zero, and the motor

draws its maximum current. This current can be very high. For
example, a Maxon 10 watt motor draws .067amps with no load, but
has a starting current of 17amps. This fact should be considered

when choosing a power source for your motor.

It is possible to determine the starting current by measuring the
resistance between the power leads. If you know the voltage which
will be used,

Starting current= V/R.

Loaded Performance

The motor will not run at no Joad speed for all loads until it

reaches stall torque. A linear approximation of speed vs load
performance, as shown in Figure 3, is useful if loaded data is
needed. Note: A motor loaded to .5 stall torque has an output

shaft speed of .5 no load speed.

52

GEARBOXES

DC motors typically will offer much higher shaft speeds and much
lower output torques than desired. There are many different ways
to gear down a motor.

Spur gear boxes

Using spur gears boxes is the most common way of gearing down a
motor. The output shaft speed is merely the input shaft speed
multiplied by the ratio of the number of teeth on the gears
(called the gear ratio) as shown in Figure 4. Theoretically, the
output torque is the input torque multiplied by the inverse of
the gear ratio. This however, is not the actual case. Ef-
ficiency, defined as what percentage of the theoretical output
torque actually is realized, declines with the amount of reduc-
tion used. Typical numbers for efficiency of a spur gearbox are
80% for reduction of 10:1, 65% for a reduction of 100:1, and 50%
for a reduction of 500:1.

A second consideration when choosing a gearbox is the maximum
output torque that the gearbox can handle. This number is again
dependent on the amount of reduction the gearbox gives. Typical
numbers are .1 oz-in continuous/0.3 oz-in intermittent for 10:1,
and .6 oz-in continuous/1.8 oz-in intermittent for 100:1.

teeth

L teeth

——

A /
toeth\l —~—D
L

shaft

(i/ —"__ Output
B

Input
shaft teeth

A
Qear ratio = B D

Figure 4
Spur gear train

53

totg

Speed ve Torque

ﬁ:svm 3

, S-Motor .
spee .
@ poee ne 10ad speee Precious Metal Brushes
E © 1,8
o f——
~ 3
no w [=]
- 38 o i
A oY S el
- (-]
T| 3 = !
+ sl ® -
, 3
6, 2 |0, 15 max.2 max|. 0, 5
Lol
S.0. 8 max.17 4,2
F“.':yfc. 3 <
128 114{ 11010
P 1 1 rrrrrT-ltrTrTtT r 1
(Order Number) [] I__] __.J | l l l
70
1 Assigned power rating w! 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 ?&53
2 Nominal voltage Voit | 0.80 | 1.20 | 1.20 | 1.50 | 1.50 | 2.40 | 3.00 | 3.00 | 450 | 8.00 | 9.00
3 No load speed rpm | 10000 13800(11300{11600| 9270 |12100|12300| 9480 | 10800(13200} 12800
4 Stall torque mNm | 0.505 | 0.611]0.496 | 0.498| 0.405 | 0.514] 0.507 | 0.400| 0.450| 0.505 | 0.485
5 Speed/torque gradient rem/mNm | 21000]23700{24200| 24600 24500 25000{ 25700 25400/ 25500{27800| 28100
6 No load current mA| 384|394 1303|249 | 188|186 | 135|967 | 758 7.47 | 477
7 Starting current mA | 701 | 774 | 520 | 427 | 281 | 288 | 231 | 142 | 120 | 124 | 768
8 Terminal resistance Ohm | 1.14 | 1.65 | 2.31 | 351 | 533 | 833 | 13.0) 21.1 | 374 | 488 | 117
9 Max. permissible speed rpm | 14700{14700]|14700| 14700| 14700|14700{ 1470014700 14700{ 14700 14700
10 Max. continuous current mA | 500 | 500 | 500 | 424 | 344 | 275 | 221 173 | 130 | 114 | 73.4
11 Max. power output at nominai voltage mW | 127 | 214 | 141 145 | 938 | 157 | 157 | 946 | 121 168 | 156
12 Max. efficiency % | 59.7 | 61.3 | 58.8 | 58.8 | 56.2 | 59.1 | 58.8 | 55.9 | 57.4 | 583 | 57.8
13 Torque constant mNm/A 10.72110.790|0.954| 1.17 { 144 | 1.79 | 220 | 2.81 | 3.74 | 409 | 6.32
oz-in/A} 0.10 | 0.11 | 0.14 | 017 | 0.20] 0.25 | 0.31 | 0.40 | 053 [0.58 | 0.90
14 Mechanical time constant ms | 31.031.0| 308 307(305| 305 (305|304 3041307 307
15 Rotor inertia gem? 1 0.141{0.126|0.122{0.119{0.119]0.117]0.113| 0.114] 0.114 0.106 | 0.105
16 Terminal inductance mH | 002 | 0.03 [0.04 | 0.06 | 0.09 | 0.14 | 0.21 | 035 0.81 | 0.73 | 1.75
17 Thermal resistance housing-ambient K/W | 59.00 | 59.00| 5§9.00| 59.00 59.00 | 59.00| 59.00| 59.00| 59.00 59.00 | 59.00
18 Thermal resistance rotor-housing K/W | 18.00(18.00| 18.00| 18.00| 18.00 18.00(18.00} 18.00| 18.00| 18.00| 18.00
Operating Range Comments (details on page 19) Important Points

A iminTY

we
S
S,

120C0

>
o

O

A e R e

oo

8000

4
4000 '4:;

AN

RN

\L\X‘X\
Ry
Oy

,'

ne

Continuous operation
In observation of above listad thermal resistances
(lines 17 and 18) the maximum permissible rotor
temperature will be reached during continuous

Recommended operating range

operation at 25°C ambient.
& Thermal limit

AN

g
vl

0.1t 0.25

Short term operation
The motor may be briefly overioaded {recurring).

- Stock program
® Axial play

® Max. sieeve bearing loads

axial (dynamic)

radial (5 mm from flange)

press-fit force (static)

® Radial play/sleeve bearings
® Ambient temperature range

® Max. rotor temperature
® Number of commutator segments

@ Weight of motor

0.05—0.15 mm

0.25 N
0.60 N
20N

0.012 mm
-20/+65°C

+85°C
5
9g

Micro Mo® GEARHEADS

Gearhead Series 10/1

B Fits Motors Series 1016M - 1212M ... & 1219M ...

® Case Material: Nickel-plated brass
m Sintered bearings

Maximum Ratings:

Input Speed: 5,000 RPM.
Temperate Range: -20°C to +125°C
Shaft Loading:

AXIAL: 7.2 oz. (2N).
Press-Fit Force: 36 oz. (10N).
Bearing Play:

RADIAL : 0.03 mm

F"ﬁv ve. Ha

Dimensions are given in mm (in.)

Dimensions with no tolerance

For Dimensions:

Less than or equal to 6 mm.
Less than or aqual to 30 mm.
Less than or equal to 120 mm.

indicated are as foliows:

Tolerance
+.1mm. (.0039")

+.2 mm. (.0089")
+.3mm. (.0118")

(.0012")
AXIAL: 0.10 mm (120122003
(.0039") (1016) 10:0.03 ?},85?“ 0a: 8% (1687238:’03 02:8°
Backlash: < 3° 13931 ' e o078
Continuous Torque Output: 14.16 0z.-in l
Intermittent Torque Output: 28.32 0z.-in T ,
-
N | .
-"%‘:3' —_—— H ‘
. . . . I py
Dimensional Outlines: I | [
------- 4
[i1571]
5 -
1.96)
6.3
248"
L2:0.2 7.520.2
‘“’.‘ 1295}
1
Front View 14 L1205
(0.55)
/
1 2 3 4 5 6° 7
Gear Waeight Length Length With Length With Max. Continuous | Rotation Efficiency
Ratio Without Without Motor 1016 Motor 1212 Duty Torque Direction
Motor Motor Output
L2 L2 L1 L1 L1 L R=Cw
] oz mm in- mm in mm in mNm 0z-in | L=CCW %
41 7.1 .25 78 0.307 25.4 1.000 226 0.890 5 0.7 R 90
16:1 8.0 .28 10.9 0.429 28.5 1.122 25.7 1.012 15 2.12 R 80
64:1 8.3 .30 14.0 0.551 31.6 1.244 28.9 1.138 54 7.65 R 70
256:1 8.7 .31 171 0.673 34.7 1.366 32.0 1.260 100 R 60
1024:1 9.2 .33 20.2 0.795 37.0 1.457 35.2 1.386 100 1418 R 55

‘R=Clockwise.
All Ratios Are Bidirectional.

55

L=Counterciockwise as viewed from Shaft End with Driving Motor Turning Clockwise.

Planetary gear boxes

Greater efficiency and higher output torques can be achieved

through the use of planetary gear boxes. They use fewer gears to
achieve the required reduction, and therefore can make the gears
bigger allowing higher output torques. Typical efficiencies and

torques are 72% efficient, with a max output torque of 2 oz-in
at 20:1, and 61% efficient, with a max output torque of 3 oz-in
at 150:1.

Lead screws

Lead screws are used to change rotary motion into linear motion.
The relation between angular velocity of the screw and linear
speed of attached nut depends on the number of threads per inch

on the screw as shown in figure 5. Typically, lead screws cannot
be back driven. This means pushing on the nut will not turn the
screw. When the nut is heavily loaded, the efficiency of a lead

screw drops dramatically (<30%).

output

<
N

/ﬂ
7777777

)
7777777777
%

input

Lead Screw screw
Figure 5

Worm gears

Worm gears are very similar to lead screws, except the nut is re-
placed by a disk with threads on the outside(see figure 6). The
worm gear offers high reduction and high output torque. However,
as with lead screws, the efficiency of the gearing drops drasti-
cally under high loads.

22
(/1117777777777

S
input @— output />
gear |

screw

figure 6
Worm Gear

DRIVERS

Providing power to DC motors can be as simple as soldering wires
from the motor to a battery, but if the motor is to be controlled
electronically, some sort of motor driver is necessary. Below
are three different types: an H-bridge driver made of discrete
components, an H-bridge driver on an IC, and a driver made of
relays.

H-bridge

H-bridge drivers allow the motor to be controlled by applying a
TTL level signal to either of its inputs. Direction is specified
by choosing which input, forward or backward (as shown on Figure
7), to pull down. A problem with these drivers is that there is
a voltage drop across the device, so some of the applied voltage
is wasted. A driver made of discrete parts has a much higher
power rating than the discrete IC.

H—BRIDGE DRIVER
vgc
680 E
TIP 125

TIP 125
PNP

620

PNP
2k

PA "OUTPUT CURRENT CAPABILITY To simplify use as two bridges each pair of chan-
b nels is equipped with an enable input. A separate

- ANNEL ‘ supply input is provided for the logic, allowing

. éAK OUTPUT CURRENT (NON RE- operation at a lower voltage and internal clamp
MITIVE) PER CHANNEL diodes are included.
: ,',1‘_ LE FACILI1:Y This device is suitable for use in switching appli-
SRV RE PROTECTION cations at frequencies up to 5 kHz.
..RTEMPERATU The L293D is assembled in a 16 lead plastic
§ICAL “0” INPUT VILTAGE UP TO package which has 4 center pins connected
(HIGH NOISE IMMUNITY) together and used for heatsinking.

MERNAL CLAMP DIODES

D is a monolithic integrated high voit-

current four channel driver designed to Powerdip
standard DTL or TTL logic levels and 12+2+2
ductive loads (such as relays solenoides,

_stepping motors} and switching power ORDERING NUMBER: L2930

ouT1 oOuT3 Vss

®—0 &

INY O—q
ENABLE 1 O—F|

IN 2 O—

4,5,12)3

-L $ Cl) 5-657) F_‘ 3‘,\1‘6 Cg

outr2 outs

58

Relays

The relay driver circuit is harder to control because it is
necessary to drive the coils of the relay. This may require open

collector buffers, or discrete transistors. There is no voltage
drop across the relay however, and use of the appropriate relay
will allow the circuit to handle very high motor currents. An

example driver circuit is shown in figure 9.

RELAY DRIVER CIRCUIT

-
ensoff > £
= RELAY |SPST
MOTOR SERVO
1 PaS
_— ' -
M‘
foruvsEack > F

= RELAY DPST

figure 9

Power problems

Driving motors requires great care if the motors are going to be
even remotely connected to the rest of the electrical circuitry.
This is because voltage spikes caused by the inductance of the
motor and current spikes caused by starting a motor can wreak
havoc with the sensitive digital components. These problems can
be avoided by careful circuit design, or you can decouple your
motors from your circuit with relays.

Capacitors go a long way in reducing the effect of voltage
spikes. If you are driving motors in your circuit, every chip
should have a .01 microfarad capacitor across power and ground.
In addition, a VBFC (very big capacitor, “100mf) should be across
the master power and ground going to a particular board.

Improved spike protection and voltage stabilization can be had if

each board has a regulated DC-DC converter on it. These convert-
ers output a steady voltage as long as the input is in a range of
acceptable values. The bigger the range of these values the bet-
ter.

Connecting the motors to the power supply should be done using
what is called a single point ground. A single point ground con-
nects the power and ground going to the motor with the power and
ground going to the rest of the circuit at the power source.
This minimizes inductive voltage drops in the wires due to cur-

rent spikes. A single point ground power structure is shown in
figure 10.

CONTROL
DC motors can be controlled very precisely given the proper feed-
back sensors. Position and velocity sensors are available which
can be used as feedback elements to construct a full blown PID
controller. Usually position sensors are sufficient.

Position sensors

There are two main types of position sensors. The first, a
potentiometer, is the simplest to use. A potentiometer attached
to the output shaft yields a voltage proportional to position.
This voltage can be hooked to the analog to digital port on the

68HC11 microprocessor to give a position reading. A limitation
to this method is that there is a limited range of motion for the
potentiometer, and accuracy is limited to .about 1%. A second,
and more complex method is with an optical encoder. It consists
of a rotating disk attached to the output shaft, and an LED
emitter/detector pair. The disk has many slots and the

emitter/detector pair gives a pulse when each slot comes between
them. Thus a pulse train results from spinning the output shaft.
By counting the number of pulses, position can be determined.
The supporting hardware for this is fairly involved, however.

Rate sensors

Again there are two types of rate sensors. Both operate on the
same idea. A spinning motor generates a voltage proportional to
its velocity. If your motor is being driven using pulse width
modulation, that is, if the motor is being given power for only a
fraction of each period and then allowed to spin freely, it is
possible to measure the voltage generated directly from the motor
during the power off period. If the motor is not being driven in
this manner, it is possible to attach a small generator to the
output shaft in parallel with the rest of the motor’s load. A
voltage generated by this device will give a voltage proportional
to velocity.

60

Single Point Ground Wiring

OUO
motors

i note: power wires for motors
and electronics only meet

at the power supply

electronics

Figure 10

6l

Stepping Motors

A stepping motor is a motor which has a finite number of
discrete states at which the rotor can align. This property is
very useful in the area of control. To illustrate the advantage
of this in a common application, consider a computer printer.
The print head of the printer must traverse the page which is
being printed, stop in the appropriate position to type a letter,
and then move to the next position. The accuracy of the print
head positioning must be extremely high, or else the letters will
appear too close together, or too far apart. 1In order to imple-
ment a print head positioner using an ordinary DC motor, a posi-
tion transducer would have to be mounted on the system and a com-
plex feedback system would have to implemented. While this is
possible, it would probably require using a computer in the feed-
back path.

A stepping motor can simplify this control problem greatly.
Because it has only a finite set of discrete states it can be in,
a single number can completely describe where the rotor, and thus
the print head is. More important is that a stepping motor does
not run continuously. The rotor turns from discrete state to
discrete state one at a time. This allows the motor to be con-
trolled "open loop". No feedback is required. In the case of
the printer, if the print head needed to be moved one inch, the
computer would only have to tell the stepping motor to make say,
136 steps.

A stepping motor does have one major drawback. If you con-
nect it to a battery, it will not run. It requires some sort of
drive sequencing circuitry to operate. This circuit, however, in

most cases does not need to be very complex, and the ease of con-
trolling the motor far outweighs the driver’s complexity.

Types of Stepping Motors

The stepping motor has a rotor and a stator like traditional
motors. However, the arrangement and operation are quite dif-
ferent.

The Stator

The stator on a typical stepping motor is shown in the
diagram below. It consists of many separate windings which can
better be thought of as a series of electromagnets sequentially
attracting the rotor poles, rather than as producing a traveling
flux wave which carries the rotor along with it. The electrical
connection of these windings depends on the type of rotor the
stepper motor has. In the case of the variable reluctance rotor

62

which is discussed later, these windings typically occur in
pairs. Each pair of windings is called a phase. An example of a
winding for a variable reluctance rotor is shown below. Windings
for a permanent magnet rotor, also discussed in following sec-
tion, are independent. The number of windings is equal to the
number of poles in the stator which is equal to the number of
phases.

Stator. Wound For
VArwapee Resvcmn ce

Roma Wit ong Pyase
AND TWO POLES

Ficure 1)

The Rotor

There are two main types of rotors which are used in step-
ping motors. The type of rotor used is the most important factor
in characterizing the operation of the motor. The rotor may
either be of the variable-reluctance type, or the permanent mag-
net type.

The Variable Reluctance Rotor

A variable-reluctance type rotor is made out of a highly
permeable material and looks like a cylinder with many square
beams running lengthwise down the cylinder. A typical rotor
cross-section is shown below, along with a four phase stator.

STATOR

Meton AssemaLy (o winping 5 SHouwn)

ROTOR

Figurs 12

%3

The operation of the motor involves sequentially exciting
the individual stator windings. A typical drive sequence is il-
lustrated below. In Figure 13, winding A is excited. The rotor
experiences no torque, This can be shown by looking at the
energy method. The energy method tells us that the rotor will
move, in the absence of other torques, to a position which maxi-
mizes the inductance of the system. Since only winding A is on,
this arrangement occurs when a pair of the poles on the rotor is
directly aligned with each of the poles in stator winding A. In
Figure 14, winding B is excited. There will therefore be a
clockwise torque on the rotor which will cause it to turn until
it reaches an equilibrium similar to that in Figure 14. Note that
if winding C is excited instead of winding B, the rotor turns in
the opposite direction. Thus the rotor can be stepped around in
either direction.

Steeemt (NoTon s"’m NNo e s

Figure 13 Figure 14

The variable reluctance rotor is used because very small
step sizes can be achieved. For example, in the configuration
above, which has 8 stator poles and 6 rotor poles, the step angle
is 15 degrees. By stacking rotors on top of one another with a
slight offset, it is easy to get step angles of less than one
degree. This technique of stacking rotors and stator windings is

shown below (Figure 15).

S~dé’ - _____j 9/%) Fro/\‘(_ Vied
V.aw ,
| —— OU

R%v\(‘e s Hy8rap RDT‘OR

The Permanent-Magnet Rotor

A permanent-magnet rotor is intuitively simpler in operation
the than variable-inductance type. A simple rotor could Just be
a cylindrical bar magnet with a shaft through the center such as
the rotor in a simple permanent magnet motor shown below. To un-

64

derstand the motor operation, we model the stator windings as
electromagnets which can be independently controlled. 1If winding
A is driven with a current such that an induced south pole faces
the rotor, the rotor’s north pole will turn, in the absence of
other torques, until it is directly lined up with winding A. If
winding B is also turned on, the rotor’s north pole will be at-
tracted by both windings and will align itself at a 45 degree
angle to both of them. By turning off winding A, the rotor will
turn another 45 degrees, and so on. Thus with four individual
windings, the motor is capable of 45 degree steps.

A
PermtnenT MacreT —;g

kOoToR WITH

R ARDINGS 4 2007
RTOR WIN Di_g ? Q‘ZB

C

‘oo

F\GL\Q? \Q?

By increasing the number of poles on the rotor, it is pos-
sible to significantly decrease the step size of the motor.
However it is more difficult to achieve small step sizes than
with the variable reluctance rotor type. Permanent magnet rotors
are commonly used in smaller stepping motors because they can
provide greater torques for their size than the variable reluc-
tance rotors.

The Controller

As noted above in the descriptions of the basic operation of
the different kinds of stepper motors, there must be some kind of
drive sequencing device in order for the stepping motor to run.
There are many different kinds of controllers, but they all do
basically the same thing. That is, a sequencer is given an input
square wave which has a peak for every step the motor is expected
to make, and the sequencer must drive the various stator windings
in the correct sequence to accomplish this.

The reason for the various kinds of controllers is that per-
formance of the stepping motor can be dramatically improved with
better power control. For example, the stator windings can have
very high inductances. For optimal performance of a stepping

PosiTion

motor the currents in these windings should build up as quickly
as possible when the winding is turned on, and die out as quickly
as possible when the winding is turned off.

The failure of a controller to deal with inductive current
spikes may result in the destruction of the power electronics
driving the motor. The inductance of the stator will attempt to
drive current through a power transistor in the off state and
blow it out. Even if the transistors survive the spikes, perfor-
mance will suffer. Problems such as the output shaft overshoot-
ing its desired position, and ringing for a long time can hap-
pen. Worse still, the motor may miss steps completely at higher
stepping rates.

These problems are beyond the scope of this paper, but they
are dealt with by various means such as adding viscous damping to
the motor, or by putting a diode in parallel with the winding, or
more complex means such as using more power electronics to ac-
tively kill the winding current, or using feedback to control
the winding current. To give a better idea of the problem of
overshoot, the following graph is included (Figure 17) which
shows the position of the rotor relative to the desired location
as a function of time in response to a single step. Also shown
is a graph of current through a stator winding as a function of
time following the shut off of the driving power transistor.

A

4 UNCom CENSATED S
RESPONSE (J 1 TH 2
OVERSHOOT AND g
/ RGN <
3
%
X _.— . - - e TN z
'o N— =
Ll
\ z
WeLL CompenisnTen s
N0 OVERSHOOT &
S
s
5]
01005 W
MRALL
WiTH w:NOwG
R)
— —
TimE Twme
Ster Responses Lo Vanious Winpine Curaenr Wi Dieferanr
Conmouens Fovence Diooe Conrmidura mgns
Fieure |F

Implementation of stepper drivers
Each different type of stepper motor requires its own type of
driver circuit. The most common stepper motor types are two and
four phase with permanent magnet rotors. Figures 18 and 19 are
schematics for a four phase and a two phase driver circuit
respectively.

66

g

U Q0T > 1N
vZ=1®AZL>3IA

g0 = %Sy 1Sy
Sy _mzmm
v/9ves-5 “INAS

_ sapotp 1584 YZ = §Q 01 14

€7

INOH J0¥INOD
YYVYY 1 ESTEI
90 (0 (30 |sa St] 70 €€t 1
50 L 1 ThN 1] St fl.l.ﬂ
_ &y B i NERGLCE
SONIONIM € u 6 olpe——rr
amwﬂw%m © nesz ¢ 1621 1353¢
€ o L [-13 o omanm——
20] 2 1NS/37IVH
ﬁ ¢ 5] ° #5013
Yy o & 6° g™ o] momo
%0 Jeo wo %_a _.uu 50 _ Tono
3
uNz Hut ¢
-]
A9EO AsO
Ps ‘bry4
g 01 dn stuannd Buipuim yiim siolow saddals sejodiq SaALIP 1NDIID SIY]
1N9419 |013U09 Jojow 1addays sejodiq aseyd om |
JON _.LQ Lwamv.fw a%oud T %l 85@._&
N 1340
02759
aniq
N 134c
027549 2DA DDA
224 ASTTSH m
T
4 PLIDHPL2 P2 IDHP L2
512 3 12]
mx.._w. TT H1D4 I
J8ddals asefd-yp z B a o 4 = ® m a -
ain M in
= 23 o3a

FUTABA SERVO MOTORS
A Futaba servo motor is essentially a DC motor with gear train,
feedback potentiometer, and servo processor all integrated in one

box. Controlling these servos requires merely sending the cor-
rect control signal to the motor. This control signal is a pulse
code modulated signal. This means the signal is a repeated

waveform which is high for a given time corresponding to an out-
put shaft position. An example of this is given in Figure 20.
The center positioning frequency for a Futaba servo is ap-
proximately 1.3 milliseconds, and the signal should be repeated
approximately every 20 milliseconds. TIf the output shaft needed
to be turned 45 degrees to the right, all that would be required
would be to shorten the pulse.

It is possible to get an approximate force measurement on these
position based servo motors. The servo processor chip takes the
actual position the servo is in, and compares it with the desired
output shaft position. Subtracting these two signals, it creates
an error signal which tells it how hard to drive the actual
motor in the servo. The greater the error, the harder it will
drive the motor. Since, in steady state, the error in shaft
position is proportional to the torque on the shaft, measuring
the error signal gives an approximation of the force.

Output shaft position can be detected in the same way the inter-
nal servo chip detects it. This is by using the potentiometer,
and tapping off the center lead.

Ims8 < T ¢<17ms

figure 20
Futaba Control Timing diagram

68

CONCLUSION
This is a very general and shallow overview of DC motors, but it
should provide enough material to make an educated decision as to
the correct motor to use. Make sure you use a powerful enough

motor, and if at all possible add a factor of two in all your
loading estimates. GOOD LUCK.

Software Development System
6811 Assembler and Subsumption Compiler

Rodney Brooks

in 1s for M 11.

There is a collection of tools available for programming the M68HC11, written in
Common Lisp, that run on a variety of machines: Macs, Suns, HPs and Symbolics . They
include a macro assembler, a downloader/eeprom burner, a subsumption compiler, and a
serial line monitor.

All these tools can be loaded by loading the appropriate load.lisp file, or for smaller
machines, the assembler and downloader can be selectively loaded by loading only a
subset of the files.

The Assembler

The assembler is a dynamically retargetable macro assembler. The file ass.lisp defines it
and describes target machines for the Hitachi 6301 and the Intel 8085A. A second file,
m68hcl1.lisp, provides a target definition for the m68hc11.

The assembler is used by the down loader and by the subsumption compiler as its back
end. If you only want to use the subsumption compiler as your development system you
can completely skip this section.

The assembler runs in two passes. In the first pass, it resolves all symbol values and
instruction lengths. In the second pass, it computes the actual code bytes. This could all
be done in the first pass, save for the the fact that branches, jumps and subroutine calls
are allowed to do forward referencing. All other references are resolved in the first pass
and so no other forward references are allowed. E. g. in using the == directive described
below, any symbols referenced in definition must precede the directive.

Assembling Code

There are two components to assembling code. First, a program, an instance of the
%oprogram defstruct, must be created, and then it must be passed to the assemble
procedure.

The simplest way of defining a program is with the defprog macro. Putting it at top level
in a file and loading that file is sufficient. (Note that there are some problems with
compiling files with defprogs in them on the Macintosh---it is not recommended.) The
general format of defprog is:

(defprog <name>
:machine 6811
:start <some address>
:code <code>)

70

Note that none of the arguments are evaluated.
Instead of 6811 you can also use m68hc11; they are completely synonomous.

The <name> must be a symbol. It gets globally set to the created %program. The
<some address> entry should be a number. It is the address at which assembly will start.
On the version of the chips used for the Al Olympics (the A2 version, which contains 2K
eeprom) this should be #xf800.

The <code> entry is a list of assembler statements. See the following sections for
complete descriptions of their format. In the meantime, here is an example program:

(defprog example
:machine 6811
:start #xf800
:code ((=v portb #x1004)
(=c stack #xff)
(def-ass-subst set-lec ()
(Idaa ! #b11111111)
(staa portb))
(def-ass-subst clear-led ()
(clr portb))
start

(Ids ! stack)
flash

(set-led)

(jsr delaylots)

(clear-led)

(jsr delaylots)

(bra flash)
delaylots

(1dx ! #xffff)
dlots

(iterate ((i 4)) (nop))

(dex)

(bne dlots)
(rts)

(= #xfffe)

(116 start)

)

The result of evaluating this is that the symbol EXAMPLE has as its value a %program
defstruct. It can be assembled using the procedure assemble. The result is a.data structure
which is stashed in a slot of the same %eprogram defstruct. As a side effect a listing can
be produced on the terminal, or in a listing file. The format of the call is:

(assemble <name>) ;assembles the %program which is <name>'s value
(assemble <name> t) ;also generates an on screen listing

(assemble <name> <filename>) ;writes a listing to the designated file.

For instance:

71

? (assemble example "exampl.txt")
32

assembles the above defined program and generates a listing in the file "exampl.txt". The
32 which is returned is the total number of bytes of code assembled. Notice that these are
not contiguous bytes. The listing file would be something like:

Program EXAMPLE, assembled for the M68HC11, 6 Nov 1988, 12:57:37

F800 (= 63488)
1004 (=V PORTB 4100)
FF (=C STACK 255)
F800 START
F800 8E 00 FF (LDS ! STACK)
F803 FLASH
F803 86 FF (LDAA ! 255)
F805 B7 10 04 (STAA PORTB)
F808 BD F8§ 13 (JSR DELAYLOTS)
F80B 7F 10 04 (CLR PORTB)
FS8OE BD F8 13 (JSR DELAYLOTS)
F811 20 FO (BRA FLASH)
F813 DELAYLOTS
F813 CE FF FF (LDX ! 65535)
F816 DLOTS
F816 01 (NOP)
F817 01 (NOP)
F818 01 (NOP)
F819 01 (NOP)
F81A 09 (DEX)
F81B 26 F9 (BNE DLOTS)
F81D 39 (RTS)
FFFE (= 65534)
FFFE F8 00 (116 START)

Program EXAMPLE, 32 (decimal) bytes of code (20 hex)

The leftmost column is the hex address of the assembled instruction. The following two
digit hex numbers are the assembled bytes. On the m68hcll, a single instruction may
occupy up to five bytes. Then the post macro expansion source code is shown. For lines
which are labels, the address of the label and its name are shown. For other directives
(e.g., =, =v, =c, etc.) the value of the directive is shown. In the source code all numbers
are printed in decimal. Elsewhere they are printed in hexadecimal.

Code Format

Each line of code can either be a symbol, which is taken as a label, or a list, which we
will call an expression.

As with all assemblers an address is associated with every expression which assembles

1nto a non-zero number of bytes. Likewise, the current address becomes the value of any
symbol used as a label. Thus in the example above the symbol DLOTS has value #xf816.

Expressions can be assembler directives, data statements, instruction specifications,

72

macro definitions or an iteration construct. In each case it is vali; to include at 1e end of
the list defining the expression an arbitrary number of comm::nt subexpre: ons. A
comment subexpression has the form:

(comment <format-string> . <args>)

Such comments are ignored except in producing listings, when they are printed following
a tabbed semi-colon. They are printed by feeding the <format-string> and any <args> to
FORMAT. The <args> must all be constants, special variables, or functions of constants
and special variables as there is no lexical environment available. Human writers will
probably just use a simple string without additional arguments (except perhaps in a macro
or iteration construct). This extra functionality is really for the benefit of compilers
which wish to produce comment annotated code.

s ssembler Direct

There are two forms of assembler directives. The first, =, specifies a new address, or
origin, at which the following instructions should be assembled, while the others (==, =c,
=v, and =v2) provide ways of defining values for symbols with some error checking.

The origin specification simply takes the form:
(= <some-address>)

where <some-address> is a number. In the example program above, the address for the
reset vector (#xfffe) is specified with an = construct, and we see in the listing that the
assembler introduced an additional = construct to specify the :start address from the
%program defstruct.

To specify the value of a symbol the simplest thing is to use == as in:

(== foo #xbfcd)
(== bar #xf3)
(== baz (+ foo bar 3))

The first argument must be a symbol, whose value is to be defined, and the second
argument must be a lisp expression whose terminals are either numbers or symbols which
have previously been defined.

The == directive provides all the functionality that this assembler has, but there are three

similar versions which provide an extra level of error checking for the user. They obey
precisely the same syntax as ==. They are:

1. =c. This defines a symbol as being a numeric constant. If the symbol is anywhere
used as an address, then an error is signalled.

2. =v. This defines a symbol as the name of a location. If another symbol is defined to
name the same location, an error is signalled.

3. =v2. The same as =v, except that this reserves both the named location and the follow-
ing location. This can be thought of as defining a two byte variable.

Data Statements

73

Data can be placed at the current location within a program with the following
statements:

(18 <expression>)

(116 <expression>)

(!string <string>)

(‘table <expl> <exp2> ... <expn>)

For !8, 116, and !table, each expression can be an arbitrary lisp expression whose
terminals are all numbers or previously defined symbols. !8 produces one 8 bit byte, 116
produces two, and !table produces as many as it has argument expressions. For 116 the
high order byte comes first. The !table construct macro expands to a series of !8
constructs in a listing.

For !string statements the <string> must be enclosed in double quotes as in:
(!string "Some random string")

In a listing of such a statement only the first three data bytes are printed.
Every instruction has the form:

(<operator> . <operand-specs>)

where for some instructions (e.g. nop, or dex) there are no <operand-specs>. Simple
instructions have precisely one operand. Weird instructions have more.

First consider the simple instructions which have an operand. There are six addressing
modes: immediate, direct, extended, pc-relative, index-x, and index-y. There is no
syntactic difference between direct, extended and pc-relative---it simply depends on
whether the address comes out to be smaller than 256 or if the operator (a branch)
requires a pc-relative mode. The six modes are:

(<operator> ! <expression>) immediate

(<operator> <expression>) direct or extended
(<branch> <label>) pc-relative

(<operator> & <expression>) index x

(<operator> &x <expression>) index x (alternate form)
(<operator> &y <expression>) index y

The weird instructions are BSET, BCLR, BRSET, and BRCLR which have three possible
addressing modes each: direct, index-x and index-y. The first two of these operators,
BSET and BCLR, take two arguments, while the latter two take three. They are specified
in the same order as they appear in memory in the assembled version of the instructions.
Here are the formats for these instructions.” Note that <address> in the direct mode must
evaluate to the range 0 to 255, as must the <index> in the two indexed modes, Note also
that the <mask> is not prefixed with ! as one might expect as it is always unambigously
an immediate operand.

direct:

(bset <address> <mask>)
(belr <address> <mask>)

74

(brset <address> <mask> <branch-label>)
(brclr <address> <mask> <branch-label>)

index x:
(bset (& <address>) <mask>)
(belr (& <address>) <mask>)
(brset (& <address>) <mask> <branch-label>)
(brelr (& <address>) <mask> <branch-label>)

or
(bset (&x <address>) <mask>)
(belr (&x <address>) <mask>)
(brset (&x <address>) <mask> <branch-label>)
(brelr (&x <address>) <mask> <branch-label>)

index y:
(bset (&y <address>) <mask>)
(belr (&y <address>) <mask>)
(brset (&y <address>) <mask> <branch-l.. el>)
(brelr (&y <address>) <mask> <branch-label>)

Macros

There are two flavors of macro definitions. Once a macro is defined it can be used in the
place of a normal operator and macroexpanded into zero or more instruction expressions
which are then spliced into the instruction stream. These instruction expressions can be
labels, directives, data statements, instructions, calls to macros, or anything else that is
normally valid as a top level form within program code. Macros are defined in line as
though they were instruction expressions.

One of the macro forms is a substitution form. The other can invoke general lisp code to
produce the resulting set of instructions.

They are:

(def‘-ass-subst <name> (<paraml> <paramn>)
<form1>

:formk>)
and

(def-ass-macro <name> (<parml> ... <paramn>)
<body>)

In a def-ass-subst, the supplied parameters are simply substituted textually in the k body
forms and those forms are spliced into the output stream.

For instance:
.(aef-ass—subst incf (var amount)
(Idab var)

(adab ! amount)
(stab var))

75

(incf foo 3)
(jsr bazola)
(incf bar 6)
... is the same as:

(1dab foo)
(adab ! 3)
(stab foo)
(jsr bazola)
(1dab bar)
(adab! 6)
(stab bar)

In a def-ass-macro, the supplied arguments are bound to the formal parameters and then
the body is evaluated.

For instance:

(def-ass-macro incf (var amount)
(if (numberp amount)
“((1dab ,var)
(adab ! ,amount)
(stab ,var))
“((Idab ,var)
(adab ,amount)
(stab ,var))))
(incf foo 3)
(jsr bazola)
(incf bar foo)
... is the same as:

(1dab foo)
(adab! 3)
(stab foo)
(jsr bazola)
(1dab bar)
(adab foo)
(stab bar)

Iteration

The ITERATE special form allows iteration at assembly time. One way to think of it is
as loop unrolling. It has the general form

(iterate (<iteration1>
<iteration2>

<iterationn>)
<bodyform1>
<bodyform2>

:bodyfon'nrn>)

76

The idea is that n variables are stepped in parallel over k values each, and that the m
forms with each of these values substituted for the variables, are repeated k times in the
instruction stream.

There are two forms for an iteration:

Form1: (<variable> <number>)
Form2: (<variable> (<vall> <val2> ... <valk>))

In forml, the variable is stepped through values 0, 1, 2, through one less than the
<number>. In form2, the variable is stepped though each of the specified k values. In
form2, a value can be anything. Examples are:

(iterate ((i 4))
(nop))

==>
(nop)
(nop)
(nop)
(nop)

(iterate ((j 3)
(v (val2 vall val0)))
(Idaa & j)
(staa v))
==>
(I1daa & 0)
(staa val2)
(daa & 1)
(staa vall)
(Idaa & 2)
(staa val0)

Here is an example taken from the six legged walker. We are repeating the same code for
six different legs. Each code instance stores the contents of accumulator B in a different
location, depending on whether a particular (different in each case) bit in accumulator A
is set. Note that this example also iterates over a label set and generates the labels.
Notice also, that this example is more powerful than loop unrolling as there is no data-
driven indexable bita instruction.

(iterate ((bit (12 4 8 16 32))
(bt (btO bt1 bt2 bt3 bt4 bt5))
(forb (forb0 forb1 forb2 forb3 forb4 forb5)))
(bita ! bit)
(beg bt)
(stab forb)
bt)

The Down Loader

77

The down loader provides precisely one user level procedure, dl. It takes one argument
which should be a %program defstruct instance which is to be loaded into the eeprom of
the m68hcll.

The serial port used by default on the host machine must be connected to the serial port
of the m68hcll, with appropriate level translator chips. The m68hcll must be in
bootstrap mode. Some downloader cables may arrange this automatically. Consult your
schematics.

The downloader defaultly operates over the ‘A’ serial port of a Macintosh.

The downloader operates at 1200 baud. This is a requirement of the m68hc11 and cannot
be altered.

The downloader assembles the %program it is given as an argument and then proceeds in
two phases. First it downloads an eeprom programmer into the RAM of the mc68hc11.
This is only 256 bytes, and as each byte is loaded it is echoed as a period on the host, in
four rows of 64 periods. Then it proceeds to download the requested program and burn it
into the eeprom. This is rather slow and is limited not by the baud rate, but by the 10ms
per byte programming time necessary in the eeprom. The downloader is smart and only
writes actually specified bytes, so small programs load faster than long ones. Progress is
monitored by printing a period roughly every 32 bytes of downloaded code.

Besides the assembler it is necessary to load the files dload and load6811. Note that on
the Macintosh it is buggy to compile load6811. On the Macintosh it is also necessary to
have the library file serial-streams loaded. On other machines there will also be a
machine specific file to load.

The Sut ton Compil

The subsumption compiler provides a way of compiling Brooks' subsumption
architecture to run on a single processor simulating many parallel processors. The
subsumption architecture provides an incremental method for building robot control
systems linking perception to action. A properly designed network of finite state
machines, augmented with internal timers, provides the robot with a certain level of
performance, and a repertoire of behaviors. The architecture provides mechanisms to
augment such networks in a purely incremental way to improve the robot's performance
on tasks and to increase the range of tasks it can perform. At an architectural level, the
robot's control system is expressed as a series of layers, each specifying a behavior
pattern for the robot, and each implemented as a network of message passing augmented
finite state machines.

The network can be thought of as an explicit wiring diagram connecting outputs of some
machines to inputs of others with wires that can transmit messages. On the m68hc11, the
messages are limited to 8 bits. Each augmented finite state machine (AFSM, see Figure
1), has a set of registers and a set of timers, or alarm clocks, connected to a conventional
finite state machine which can control a combinatorial network fed by the registers.
Registers can be written by attaching input wires to them and sending messages from
other machines. The messages get written into them replacing any existing contents. The
arrival of a message, or the expiration of a timer, can trigger a change of state in the
interior finite state machine.

Finite state machine states can either wait on some event, conditionally dispatch to one of
two other states based on some combinatorial predicate on the registers, or compute a

78

combinatorial function of the registers, directing the result either back to one of the
registers or to an output of the augmented finite state machine. Some AFSMs connect
directly to robot hardware. Sensors deposit their values to certain registers, and certain
outputs direct commands to actuators.

Augmented FSM

Figure 1. An augmented finite state machine consists of registers, alarm clocks, a combi-
natorial network and a regular finite state machine. Input messages are delivered to reg-
isters, and messages can be generated on output wires. AFSM:s are wired together in net-
works of message passing wires. As new wires are added to a network, they can be con-
nected to existing registers, they can inhibit outputs and they can sappress inputs.

A series of layers of such machines can be extended by adding new machines and
connecting them into the existing network in the ways shown in the figure. New inputs
can be connected to existing registers, which might previously have contained a constant.
New machines can inhibit existing outputs or suppress existing inputs, by being attached
as side-taps to existing wires. When a message arrives on an inhibitory side-tap (see fig-
ure 1, circled ‘i’), no messages can travel along the existing wire for some short time
period. To maintain inhibition, there must be a continuous flow of messages along the
new wire. (In previous versions of the subsumption architecture explicit, long, time
periods had to be specified for inhibition or suppression with single shot messages.
Recent work has suggested this better approach.).

When a message arrives on a suppressing side-tap (circled ‘s’), again no messages are
allowed to flow from the original source for some small time period, but now the
suppressing message is gated through and it masquerades as having come from the
original source. Again, a continous supply of suppressing messages is required to
maintain control of a side-tapped wire. One last mechanism for merging two wires is

79

called defaulting (which can be indicated in wiring diagrams by a circled ‘d’). This is
just like the suppression case, except that the original wire, rather than the new -side-
tapping wire, is able to wrest control of messages sent to the destination.

All clocks in a subsumption system have approximately the same tick period (0.03277
seconds on the m68hc11), but neither they, nor messages, are synchronous. The fastest
possible rate of sending messages along a wire is one per clock tick. The time periods
used for both inhibition and suppression are recommended to be two clock ticks or say
0.08 seconds. Thus, a side-tapping wire with messages being sent at the maximum rate
can maintain control of its host wire. In later versions of the compiler, this
recommendation may be enforced unilaterally.

On the m68hcl], it is realistic to expect to simulate no more that 20 to 25 augmented
finite state machines (AFSMs), running at about 30Hz (a Hz measurement indicates the
peak number of event-dispatch states which an AFSM might enter in a second). The
limiting factor is neither RAM nor cycle time, but rather the amount of eeprom available.

Oreanizati

The optimizing compiler takes a file (which may contain ‘include’ statements for other
files) and compiles it into a %program instance which can be assembled by the standard
assembler, then downloaded with the downloader. In fact, only the downloader need be
explicitly called, as it invokes the assembler.

Shown below is the contents of a file called Test.lisp which contains subsumption code
describing two augmented finite state machines. The assembler code that this compiles
down to (with the embedded operating system, called the scheduler, included) is shown at
the end of this chapter.

3 level O

(defafsm test1 0
:inputs ()
:outputs ()
:instance-vars (led-state)
:states ((nil (event-dispatch (delay 1.0) s2))
(s2 (progn (set-led))
s3)

(s3 (event-dispatch (delay 1.0) s4))
(s4 (plr)o)%n (unset-led))
ni

s level 1

(defafsm test2 1
:inputs ()
:outputs ()
:instance-vars (char)
:states ((nil (event-dispatch (delay 0.001) n2))
(n2 (setf char 0) n3)
(n3 (event-dispatch (delay 0.5) n4))
(n4 (cond (= char 26) n2 n5))
(n5 (progn (write-hex (+ #.(char-code #\A) char))) n5a)

80

(n5a (event-dispatch (delay 0.04) n5b))
(n5b (progn (write-string " foo "))
n6)

(n6 (setf char (+ char 1))
n3)))

The source file(s) specify a set of augmented finite state machines and the wires
connecting them. Some such AFSMs and wires are specified directly. Others are the
results of macro expansion. The compiler produces a customized scheduler plus the code
of the bodies of the augmented finite state machines and the message delivery networks
specified by the wires. It imbeds this in an ‘operating system’ which lets the complete
compiled program run stand alone on a processor. The bodies of AFSMs cun include a
susbset of lisp expressions to compute functions of registers and robot i/o ports. The
results of these computations either get sent out to other AFSMs as messages, get stored
in local registers, or are used to set motor parameters via the [/O ports. These expressions
rely on all the primitive lisp functions which they reference having been described to the
compiler as primops.

The compiler compiles both an open coded scheduler and the bodies of the AFSMs. The
scheduler works by checking every event-dispatch state in every AFSM in turn. If the
scheduler finds such a state in which an AFSM is suspended, it checks the event condi-
tions which the AFSM is waiting on. If one of them is satisfied, the scheduler transfers
control to the appropriate state of the AFSM. That AFSM runs until it reaches an event-
dispatch state, and immediately suspends itself without bothering to check whether any of
the event conditions are satisfied. The AFSM returns control to the scheduler which goes
on to the next AFSM in some predetermined sequence. The scheduler is thus quite
simple. The penalty for this simplicity is that the user must guarantee that no AFSM will
compute for more than a small time period before reaching an event-dispatch state. Thus,
busy waiting, for instance, will starve out all the other AFSMs.

The ‘operating system’ is specified in the file squirt-op.lisp. It provides a number of
macros needed by the compiler. Certain features the operating system provides are vital
to successful running of subsumption code. It also provides tools for a debugging
interzace back to a host computer. In that sense it is self contained. However, if you
need to add new device drivers you may well need to copy squirt-op.lisp and roll your
own version. Notice that addressing modes are not flattened out as in the final version of
assembly code; rather, they are grouped as in:

(I1daa (! 4))
(staa (&x offest))

It takes some care to write the device drivers this way, but the added inconvenience is
necessary in order for the compiler to work so easily.

Invoking the Compil
The simplest ways to call the compiler are:

(subcompile <filename>)
(subcompile <filename> :listing <listfile>)

81

Both <filename> and <listfile> should be strings. If a listing is requested, it is written
into the <listfile> with detailed comments which let the user deduce what target code
comes from what part of the source.

The result is a %program instance bound to a symbol produced by processing the
<filename> string in some way. In fact, it will be the upper case name of the “first part”
of the directory-free file name.

E.g.:
(subcompile "test.lisp")

will produce a %program, and setq TEST to it.

Selectively Compiling Only Pas of the §

The compiler scans all the forms within a file (and any indirect file it refers to).
Typically, these will be defafsm and defwire statements. There is a mechanism to selec-
tively compile only some of these defafsm’s and defwire’s. In its simplest form all
AFSMs and wires are split into numbered levels. E.g., some machine might be
designated level 3. There is a reserved position in the syntax for specifying both an
AFSM and a wire where the level is specified. This means that only when level 3 or
higher is requested will that machine be compiled. An additional keyword argument to
subcompile lets the user specify what level of network should be compiled. E.g.,

(subcompile "test.lisp" :max-level 5)

says that all machines in levels 0, 1, 2, 3, 4, or 5 should be compiled. If max-level is
bound to T then ihat says that all known levels should compile.

In fact, the ‘max-level’ facility is much more general than this.

Suppose for instance you have written a control system which has three major compo-
nents; a navigation system, a striper orienter system, and a manipulation system.
Suppose further that each of these subsystems is logically arranged in layers. Then you
might at some point want to compile all of the navigation systems and the manipulation
system, but only the orientation system up through level 2. This could easily be achieved
by giving each AFSM and wire a level specification like (NAV 3), or (ORIENTER 1), or

(MANIP 2), and then supplying a value like (NAV (ORIENTER 2) MANIP) for max-
level.

The general mechanism is that all AFSMs and wires can implicitly be organized into sub-
sets which live at the nodes of a tree. The max-level argument to subcompile specifies a
set of subtrees which are to be compiled. One can think of the AFSMs and wires being
organized like a file/directory tree in a file system, with optional version numbers on leaf
nodes. The max-level argument specifies a number of subdirectories, with the wrinkle
that any version number means ‘include all versions of the same file with a lower
number’,

In more concrete terms each AFSM and wire must have a level specification that is ei-
ther:

a number specifying a simple number level
an atom specifying a simple named class

82

list of atoms specifying a specialized AFSM or wire
listendin# similar, with an ordering

Thus a level of A says that the AFSM (or wire) is in the A class. A level of (A B C) says
itis in the C subclass of the B subclass of the A class. And a level of (A B C3) says that
is in the third layer of that same class. Now the max-level argument must be a list of sub-
classes to include in the compilation. E.g., ((A B) E) would include all members of the B
subclass of class A, and all members of class E. Hence it would include an AFSM with a
level of (A B C) or even (A B C 50). A max-level of ((EF) (A B C 4)) would include an
AFSM specification of (A B C 3) but not one with specification (A B C 5). It would not
include AFSMs whose level was simply E, but it would include those with (EF)or(EF
G)or(EFGH3).

More generally any entry within max-level can be a list of subclasses at that level. So for
instance, a valid value for max-level would be:

(@a®d) (fhj)

which says to include all b and d subclasses of a, and all h and j subclasses of the f sub-
class of e. So a (a b x) AFSM will be included, but an (a c) AFSM will not. Likewise an
(e fj) AFSM will work, but not an (e f i). :

Specifying The Tacget Machi

The compiler is dynamically retargetable. Le., it can have multiple backends present in
core. For this reason it is necessary to specify which backend is to be used. One way is
to use an additional keyword argument in the call to it, as in:

(subcompile <filename> :target 'm68hc11)

which says that <filename> should be targeted to the m68hc11. Another way to do it
more globally is to say:

(set-current-machine 'mé68hc11)

Compilable Forms

There are four compilable forms with the subsumption compiler: ‘include’, ‘defafsm’,
‘defwire’, and ‘defthings’.

*** The ‘include’ form is used to include other files. The call is of the form:

(include <filename>)

where <filename> is a string. All the usual defaults apply to the file name in order to find
which file is meant.

*** The ‘defafsm’ form is used to define an augmented finite state machine. The general
form is:
(defafsm <name> <level>

‘registers <register-list>

:outputs <output-port-list>

:monostables <monostable-list>

:states <state-list>)

83

The <name>, <level>, and <state-list> items are compulsory and the others are optional.
In more detail each entry is as follows.

<name>
A symbol that is the name of the specified augmented finite state machine.
<level>
The level is a number which gets compared to the :max-level argument of
subcompile in order to decide whether this AFSM should get included in
the current compilation.
<register-list>

An unquoted list of symbols, each of which is the name of an 8 bit regis
ter. These registers contain all the state of the augmented finite state ma
chine, besides the actual state of the machine.Any register can be an input
to the AFSM, by connecting it as the destination of a wire coming

from the output of another AFSM.

<output-port-list>
An unquoted list of symbols, each of which is the name of an output
port. This must be referenced as the source of a defwire in order
to direct the output to an appropriate place.

<monostable-list>
An unquoted list of things of the form (<mname> <time>) where
<mname> is the name of a monostable element, and <time>, a number
is the monostable’s characteristic period measured in seconds.
Monostables are two-state elements which are set by a ‘trigger’
state and which time out after the characteristic period. The
monostable is again quiescent until retriggered.

’

<states>
An unquoted list of state descriptors. See below for more details.
#HHH#The first state in the list must be named NIL.###HH#
The <states> describe the possible states of an Augmented Finite State Machine (AFSM).
The possible forms of a state are (where asterisks mean you can have as many instances
of the things in { }s as you want):
(<name> (event-dispatch {<event> <dispatchstate>}*))
(<name> (setf <register> <expression>) <nextstate>)
(<name> (conditional-dispatch <cond-expression> <thenstate> <elsestate>))
(<name> (output <port> <expression>) <nextstate>)
(<name> (trigger <monostable>) <nextstate>)

(<name> (sequence . <sequence of expressions>) <nextstate>)

84

There are certain synonyms for many of the state identifier words. They are:

Formal name Synonyms
event-dispatch ed
conditional-dispatch cond, cd
sequence progn

In all of the above state forms, <expression> can be an arbirary lisp-like form which uses
available primops. All the leaves of the expression must be constants or register names,
where the registers have been specified for the particular AFSM. Example expressions
are:

(+AB3)
(+(ASHB 3) (- A57))
(MAX (LOGAND A 15) (- (+ BB) 3)

A <cond-expression> above is similar, except the outermost primop must be a predicate.
Examples include:

(<(+AB3)37)
(=(MAX A B) MIN A B))

Each of <dispatchstate>, <thenstate>, <elsestate> and <nextstate> must be names of
states; i.e., they must appear as the heads of other state descriptions.

In more detail now, the types of allowable states can be described as:

(<name> (event-dispatch {<event> <dispatchstate>}*))

There can be multiple (more than one) pairs of <event>s and
<dispatchstate>s. Each time the scheduler checks an event-dispatch
state it goes through each pair in order, and triggers at the

first <event> clause that is satisfied. An <event> clause can

be a register name, a monostable name, a delay clause, or any
boolean combination (using and, or, or not) of these. The semantics
of each of these possibilities are:

register is true if a message has arrived as an input to
this register since the previous event-dispatch
state was left.

monostable is true if the monostable is in its triggered
state and false otherwise.

(delay <n>) where <n> is a number measuring seconds. Is
false until <n> seconds after the event-dispatch
was entered (i.e. the time at which the AFSM
was suspended) and thereafter is permanently
true. Note that this is equivalent to preceeding
the event-dispatch clause with a trigger of a
monostable of the same time period, and then
checking for (not <monostable>) in the event-
dispatch clause.

85

(<name> (setf <register> <expression>) <nextstate>)

This simply sets the named <register> to have the value
given by <expression> then transfers control to <nextstate>.

(<name> (conditional-dispatch <cond-expression> <thenstate> <elsestate>))

This checks the outcome of the <cond-expression> and transfers
control to <thenstate> if it was true and to <elsestate> otherwise.

(<name> (output <port> <expression>) <nextstate>)

This passes the value of <expression> to the output named <port>
then passes control to <nextstate>.

(<name> (trigger <monostable>) <nextstate>)
This triggers the named monostable for its declared time period
then transfers control to <nextstate>. If the <monostable> was
already triggered this retriggers it for the full time period.

(<name> (sequence . <sequence of expressions>) <nextstate>)
This is just a means of evaluating a bunch of expressions involving
primops which are really meant for side effects rather than returned
values. For instance most primops which actually interface to the
robot (or the serial port) fall into this category.

*** The ‘defwire’ form is used to specify a wire connecting one output to many inputs.
The general form of a ‘defwire’ is

(defwire <level> <output-spec> <input-spec1> <input-spec2>... <input-specn>)

The <output-spec> is the name of an output port on a particular named AFSM. It has the
general form:

(<AFSM name> <output port name>)

There are five forms for specifying an <input-specj>. They are

regular has the form (<KAFSM name> <register name>)
and connects the wire so that it writes into the
specified register.

reset has the form ((reset <AFSM name>)) and

makes any message on the wire force the
specified AFSM into the NIL state.

inhibit has the form ((inhibit (<AFSM name> <output
port name>) <time>)) and lets messages inhibit
all output from the specified port for a time
period specified by the number <time>. The

86

<time> specification may disappear from later
releases.

supress has the form ((supress (<AFSM name>
<register name>) <time>)) and lets the message
supress and replace all input to the specified
register for a time period specified by the
number <time>. The <time> specification may
disappear from later releases.

default has the form ((default (<AFSM name> <register
name>) <time>)) is identical to supress except
that the semantics of the two wires are swapped.

Note that ‘defwire’s are incremental. So that:

(defwire 2 (foo a) (bar b))
...<other stuff>
(defwire 2 (foo a) (baz c))

is entirely equivalent to
(defwire 2 (foo a) (bar b) (baz c))

**¥* The ‘defthings’ form is used to specify macro expansion forms.
It has the general form

(defthings <name> <formal-parameter-list>
<forml>
<form2>

<formn>)

This defines a macro which expands to n top level forms by substituting the supplied
arguments for the elements of the <formal-parameter-list> in each of the <formi>s. For
instance after:

(defthings foo (a b ¢)

(defafsm a 3

:registers (b)

:outputs (¢)

:states ((nil (ed (delay 1.0) baz))

(baz (output ¢ b) nil)))

(defwire 3 (central out) (a b))
(defwire 3 (a c) (central in)))

Then we get the following expansion:
(foo mod1 inreg outport)

==>

(defafsm mod1 3
rregisters (inreg)

87

:outputs (outport)
:states ((nil (ed (delay 1.0) baz)
(baz (output outport inreg) nil)))
(defwire 3 (central out) (mod1 inreg))
(defwire 3 (mod1 outport) (central in))

Thus defthings is -somewhat similar to def-ass-subst except that it produces multiple
results.

\vailable Pri

Most primops concern arithmetic. All arithmetic is 8 bit signed integers. Some primops
are built into the compiler. These include:

primops args predicate?
+ 2-inf

- 2

+trunc both args pos

~-trunc first arg neg, second pos

ashr 2 (2nd arg must be literal)

evenp 1 t
oddp 1 t
abs 1

max 2-inf

min 2-inf

logand 2

logior 2

logxor 2

lognot 1

< 2 t
> 2 t
<= 2 t
>= 2 t
= 2 t
/= 2 t
memq 2 (2nd arg is constant) t
examine 1 (assembler symbol)

deposit 2 (symbol, value)

The primops examine and deposit refer to symbols anywhere in the assembled program.
Sometimes they might be useful for interfacing subsumption programs to background
things (e.g., a token ring that writes into and reads from certain locations).

Other primops, such as the following, are built into the squirt-op.lisp file. They all
operate over the serial line of the m68hc11 at 9600 baud. For the writing primops, all
operate in the background, and it is up to the caller to leave enough time for them to
transmit before calling another writing primop.

args
read-char 0
write-char 1

88

write-space 0
write-crif 0
write-hex 1
write-strin 1 string must be quoted: (write-string "'foo")

come with the squirt-op file and can be retained or deleted as you wish if you decide to
make your own private version.

The Squirt-op Envi

The default squirt-op.lisp file provides an implementation of the subsumption
architecture where the granularity of the clock as seen by delay clauses, monostables, and
inhibit, supress and default is one tick per 32.77ms or approximately 30.5Hz.

It also provides a set of primops for communicating over the 9600 baud line. This takes
about 150 bytes and can be removed from the generated program by setting the global
variable *INCLUDE-IO-CODE* ' nil before invoking the subsumption compiler via
subcompile.

The 9600 serial convention used by squirt-op does not allow either 0 or 255 to be sent. In
fact, many such characters get randomly interspersed in the character stream. On the
68HC11 end, the read-char primop returns 0 when there is no new character in the input
buffer. On the MAC or host end, the procedure CV sets up the baud rate correctly then
prints out any transmitted characters after disposing of Os and 255s. Calling (CV) is use-
ful then for checking the information coming up from the robot on its way to be pro-
cessed with offboard computation.

89

Cross-Development Using a Host Computer

Ian Horswill

Running the Development Environment

A set of programming utilities (assembler, compiler, etc.) are available to run on a host
computer (an Apple Macintosh, Unix machine, or a Symbolics lisp machine). This will
allow you to edit and compile programs using the host machine, and download them to the
6811 processor using a serial cable. The utilities are written in Common Lisp, so unless
you are using a lisp machine, your first task will be to get lisp running. If you-are using a
Macintosh, you can do this by taking the floppy disk provided with your kit and double-
clicking on the file "load.lisp" in the folder "Compiler" on the floppy disk. Note that your
Mac must already have a copy of Coral Common Lisp.

To invoke lisp on a Unix workstation, either a Sun or an HP, invoke Emacs, and type the
command "M-x load-file <return> /com/olympics/clisp.elc". Then type "M-x run-clisp".
Lisp will be run as a subprocess of emacs in an emacs buffer. Once clisp.elc has been
loaded, files with the extention ".lisp" will be put in Common Lisp mode. The major
feature of clisp mode is that you can pass functions from clisp mode buffers to the lisp
process for evaluation by typing "C-C C-E". Note that Lisp should only be run on a single
user workstation, not on a multi-user timesharing system such as rice-chex or wheat-chex.

Once you have lisp running, you need to load the development environment. To do this,
first load the file "load.lisp". If you are using a Mac, then load.lisp was automatically
loaded when you double-clicked on it. If you are using a Unix machine, you need to type
“(load "/com/olympics/load”)" at lisp. On a lisp machine, you should type "(load
"wh:/com/olympics/load")" or ":load file wh:/com/olympics/load". Having loaded the file,
you need only type "(loadup)" at lisp and wait for it to load its files.

Unix and Lisp Machine users may wish to check the file /com/olympics/README
occasionally for news of software changes, etc.

Cables and Connectors

To actually connect your host machine to your 6811 processor, you will need to build a
cable. There are two things which make this a little complicated. One is that the
connectors on the different machines have different shapes and pinouts (assignment of
functions to the various pins making up the connector). The other is that the connector on
the 6811 must also determine whether the 6811 is in normal mode or bootstrap mode.

Flavors of Connectors

Most host machines use the DB-25 connector which looks like this:

90

The lisp machines have three DB-25 conectors on the back of the processor cage in addition
to another on the back of the console monitor. Sun workstations generally have them
either on the CPU box if there is one, or on the back of the base unit for the desktop
models. HP workstations have them on the back of the CPU cage. By default, the
development software will use the console connector on lisp machines and port A on Unix
machines. Mating connectors can be obtained at most electronics stores or at the electronics
stock room, room 908. Check whether the connector on the back of your host is male or
female so you can be sure to get a mating connector.

The Macintosh uses a funny circular connector which looks like this:

(Female
Connector)

NOTE: do not use the DB-25 connector on the back of the Macintosh, as it will fry the
Macintosh's logic board. This is an $800 mistake, more if you have a Mac II or an
accelerator card. Since the Mac connectors are hard to obtain and hard to solder, it is
probably easiest to buy the Apple Peripheral cable which has one of these connectors on
each end and cut it in half, soldering to the existing wires rather than trying to open up the
connector. Alternatively, you could buy a ready-made cable with the Mac connector on one
end and a DB-25 on the other, and make a DB-25 cable to connect to the processor. The
ready-made cables are available from the the MIT Microcomputer Center.

Finally, the 6811 board uses its own type of connector fabricated from mobot connectors
(terminal strips and socket strips). You will use the same mobot connectors for this that
you used in building the 6811 processor board. Simply take two strips of four pins each
and glue them together. Note that there are two serial connectors on the 6811 board - TTL
and RS-232. It is very important that you use the RS-232 connector (the connector with 8
sockets for pins in the upper left-hand corner of the board), and not the TTL connector
(with six at the bottom). Wiring the host straight into the TTL connector could fry the
processor board.

Cable Connections

Our cable needs only needs three wires: receive, transmit and a ground. The DB-25
connector always carries ground on pin 7, and the Macintosh carries it on pin 4. This
should be routed to the ground (VSS) in the connector for the processor board. The
Macintosh also uses a slightly different type of serial line driver and so it also needs pin 8
(RxD+) connected to ground. The receive and transmit lines vary because some host
machines use DCE format and other use DTE format. One will always be pin 2 and the

91

other pin 3 however. Look up the connections in the table below and wire them to the
receive and transmit lines on the connector for the 6811 processor.

Machine VSS RxD TxD

Sun 3/160 7 2 3

Symbolics 3600 7 3 2

HP 7

Macintosh 4 3 5 also tie pin 8 to VSS

As of this writting, we don't have the pinouts for HP workstations. Check the file
wheaties:/com/olympics/cables for more information on HPs or if you have any problems.

Bootstrap Mode

Finally, the MODB signal has to be Jjumpered to VSS on the 6811 processor in order to put
the processor in bootstrap mode. Connect the MODB signal on the processor connector to
the VSS signal using a little bit of wire. When the cable is plugged into the processor
board and the reset button is pushed, the processor will g0 into bootstrap mode. To run the
processor in normal mode, simply unplug the cable, reset the processor, and (optionally)
plug the cable back in. If you expect to be using the cable frequently in both normal and
bootstrap mode, it may be worth your while to replace the jumper with a switch.

92

Batteries
Anita Flynn

Power supplies are always one of the biggest problems in building autonomous robots. If
your robot isn’t mobile, you can save yourself alot of trouble and use an external power sup- -
ply. Even if your robot is mobile, we recommend you use the power supplies given in the kit
for debugging and prototyping and save the batteries for test runs.

You’ll find two types of lithium batteries in your kit. One, the Duracell DL123A, (which
Duracell was kind enough to donate) is a 3V, 1300mAbhr battery and can deliver a nice punch
of current for its size. The other is the Duracell DL1/3N, a 3V, 160mAbhr battery. Although
smaller, two of these 3V batteries ran the microprocessor and an (unloaded motor) on Squirt

for 3 hours straight in one test with plenty of juice left over. Specification sheets for these
batteries are shown on the next page.

Other batteries are available and feel free to use them, although they may be a bit heavy.
NiCads are rechargeable, have high current capability and can be found in nearby Radio
Shacks. Alkaline cells can be acquired from the basement supply room. Top of the line bat-
teries are silver-zinc or silver-cadmium cells from Yardney Battery, but they typically run 10
times the cost of normal lead acids, although they also run 3 or 4 times smaller in size and
weight.

Other sources of power are possible, but usually have some drawbacks. Solar cells are clean
but don’t supply much power in indoor environments. A small gasoline engine would be
ideal to have, but they get kind of smelly indoors. An alternative is CO2 cartridges, such as
the type used on model airplanes. Rubber bands work pretty well too.

Any innovations in the power supply arena are always welcome. Barring major advances,
your best bet is to be conservative with your power budget. All the electronics supplied with
your 6811 card are CMOS and the processor itself draws only 15mA. You can always leave
out the MAX?233 chip too, if you really want to trim power consumption. If your entire robot
is very small, it may be possible to get by with wimpy motors. The Micro Mo and Maxon
motors supplied can run at about 30mA. We haven’t been able to find motors any smaller. If
you want smaller motors, you’ll have to micromachine your own. That’s a bit of a project
too.

93

DURACELL

Lithium/Manganese Dioxide Battery

Size: 2/3A

DL123A

- SPECIFICATIONS
Inches | mm Nominal Voltage: 3.0V
1.338 | 33.99 -
1300 | 33.02 Typical Voltage: 3.2-3.3V
-652 12-33 Rated Capacity: 1,300 mAh on
e 200010 2.0 V
< 665__| 020 |03 089 at 21°C (70°F)
630 010 ™025 | 063 Average Weight: 0.564 oz. (16.0 g)
= 020 | 0.51 ;
 (+) T 910 T 025 Volume: 0.422in.3 (6.92 cm?3)
Terminals: Flat, Neg. End
1.338 Recessed
1.300 -
Operating Temp. —-40°C to 60°C
:832 Range: (—40°F to 140°F)
j_v_ 2 NEDA/ANSI: 5018LC
f ' 475 l IEC: —
TYP. Note: Designed for 3-volt user-replaceable applica-
tions. Battery is comprised of one DL2/3A cell.
DELIVERED CAPACITY vs. LOAD MIDPOINT OPERATING VOLTAGE vs. LOAD
T — 1 | [
; = R e
£ ' — P2 ST 3 |
;' 10 J T Poc i ot - g 3.0]‘
§ 08 » ‘ L ‘ ; g r ,
w 1 3 1 ‘r E 25
w 06 -/ ~20C | i 14 R
P A | ‘ I 3 20 +
X /. '
0.2 — A I } i i
1 2 ; I 5‘“‘10 ‘ 20‘310 ‘ gO‘ ;(;0 200 151 ‘ 2 3 5 10 20 30 ‘50‘ 1'00 200
CONTINUOUS DISCHARGE LOAD (OHMS) CONTINUOUS DISCHARGE LOAD (OMMS)
TO 2.0 VOLT CUTOFF

“
DURACELL INC.

0.E.M. Technical Sales and Marketing

Berkshire Industrial Park

Bethel, CT 06801 U.S.A.

Telephone: Toll-free 1-800-431-2656 (In CT, 203-791-3274)
Telex: 697-2165 DURTSUW

PRINTED

INUSA

94

DL123A-6/87

DURACELL Li/MnO, Battery

DL123A

CONTINUOUS DISCHARGE AT 55°C (131°F) CONTINUOUS DISCHARGE AT 21°C (70°F)
35 35 ,
| TEST CONDITIONS
i TEST CONDITIONS i | om0 omam
- LOAD DRAIN :.. :; ?g "':
- mA -3 BN
3.0 ERTRe A 3.0 .
8 = 334 m: -
S S \ oo z ¢ \ \
- ~~ w
2 25—\ R ™~ Q25 N\ N
- \ 5 \
3 3
> \ > 7
2.0 20 \
L 30nMs | s0Hms OHMS 16 ORMS 5 47 OHMS 94 OHMS 188 OHMS
| 0 T A N
0 2 4] 8 10 20 40 60 80 100 120
DISCHARGE TIME (HOURS) DISCHARGE TIME (HOURS)
CONTINUOUS DISCHARGE AT -20°C (-4°F) CONTINUOUS DISCHARGE AT 5000 OHMS
35 7 3.5
TEST CONDITIONS
LOAD DRAIN TEST CONDITIONS
[~ 47 () = 47 mA - LOAD DRAIN
34 1 = 24 MA 3000 €2 - 333 u~
188 (1 = '2 mA
3.0 30 2\ T
s s x |
w w
] u ;
< 25 a 25 —t q
] \ - ! ‘
6‘ \ 6‘ |) !
> \ > H i
2.0 \ \\ \ 2.0 X ' LA g
] 47 OHMS 94 OHMS 188 OHMS [i
1.5 1.5 . I
0 20 40 60 80 100 500 1000 1500 2000 2500 3000
DISCHARGE TIME (HOURS) DISCHARGE TIME (HOURS)
P EA
FULSE DISCHARGE AT 900 mA PULSE DISCHARGE AT VARIABLE LOADS
i ’ 1.5 OHM/7 SEC -5 OHM/G. SEC, REPEATED
TEST CONDITIONS
asc O 60| VOLTAGE AT 5 CHms OAP ORAN = 43
27 | w 530206 ma
. T \ o - —— -~
- ' 3 S — i
s | 1 < 4 7 P
w | c [~ VOLTAGE AT 1.5 OHMS e 2)
2 25 —— g | R 3
3 ‘ \ 20°¢ \ . S, S 2
> 1660 Cycles 4 0F 1 =
‘o ‘ | - 810 Cycles N ;
: T | 3 [~ CELL WALL TEMPERATURE
20°c | ' |
- \\L 1o o7so 8 or 10
\ /Cycles
15 / L L 1 A L |
(¢} 200 400 600 800 1000 0 8 16 24 32 40 48
DISCHARGE TIME (MINUTES) NUMBER OF CONSECUTIVE PULSES
5

DURACELL e

Lithium/Manganese Dioxide Battery

SPECIFICATIONS
Inches | mm Nominal Voltage: 3.0V

.457 11.60
fﬁ o5 7080 Typical Voltage: 3.2-33V
+ Rated Capacity: 160 mAh on
&y 27kQ102.0V
at 21°C (70°F)

Average Weight: 0.116 0z. (3.3 g)

(-) Volume: 0.069 in.3 (1.13 cm3)
_f Terminals: Flat, PC Pins, Tabs
425 Operating Temp. -40°C to 60°C
Range: (—40°F to 140°F)
(+) NEDA/ANSI: 5008LC
fe—.457—» IEC: -

Dimensions shown are maximum.

CONTINUOUS DISCHARGE AT 21°C (70°F)
4.0 TEST CONDITIONS
S 30] 528 o3
=0 jsaiem
T —— =1 m
= v N AN
6-' 9 680 () 1.5 kQ 2.7k
> 1.0
0 T T T 1 T
0 50 100 150 200 250
DISCHARGE TIME (HOURS)

\

DURACELL INC.

O.E.M. Technical Sales and Marketing

Berkshire Industrial Park

Bethel, CT 06801 U.S.A.

Telephone: Toll-free 1-800-431-2656 (In CT, 203-791-3274)
Telex: 697-2165 DURTSUW

PRINTED INUS A DL1/3N-6/87

96

DURACELL Li/MnO, Battery

DL1/3N

w s
o o

VOLTAGE (V)
N
o

CONTINUOUS DISCHARGE AT 21°C (70°F)

TEST CONDITION

4

1

LOAD DRAIN
68 k1 = 04 mA

—

15.0 k2 = 0.2 mA
270 kQ = 0.1 mA

DISCHARGE TIME (HOURS)

) Y T~
- 6.8 k2 15 kQ 27 kQ
1.0
0 1 1 1 1 1
0 500 1000 1500 2000 2500
DISCHARGE TIME (HOURS)
EFFECT OF TEMPERATURE ON PERFORMANCE
4.0 | TEST CONDITIONS
. o LOAD DRAIN
S 3.0 goc 27k ~ 1mA
-~ TEMPERATURE
("g 21°C -20°C (-4°F)
< 20 N L -10°C (14°F)
ar A 0°C (32°F)
.OJ J -20°C 10°C g 21°C (70°F)
> 10 60°C (140°F)
0 1 T 1T 1 1
0 50 100 150 200 250
DISCHARGE TIME (HOURS)
PULSE DISCHARGE CHARACTERISTICS
4.0 TEST CONDITIONS
1 PULSE LOAD:
S 3.0 50 0
< | TIME ON:
(lg 20 —— 1 second
——
g < TIME OFF:
':I 1 \ 2 seconds
g 1.0 TEMPERATURE:
21°C (70°F)
0 1 T i 1 1 T
0 2 4 6 8 10 12

97

Connectors
Anita Flynn

The running joke in the Mobot Lab is that robotics is a deep theoretical study in connectors.

A robot has tremendous numbers of wires running between various subsystems such as
power supplies, computers, sensors and actuators. Although computers, even Connection
Machines, have huge interconnect problems, the topology is fairly uniform. On a robot how-
ever, geometry comes into play and signals have to be carried to sensors or actuators which
are geographically scattered. Genghis, the foot-long six-legged walker, has 72 connectors.
Herbert has over three hundred and Seymour is « nightmare waiting to happen.

It’s important to connectorize everything, though, especially in the prototyping stages, be-
cause you’ll tend to want to take things apart, fix them and add to them more often than you
actually run the machine. If systems are soldered or hardwired, they’ll be too much of a has-
sle to fix. The ideal to aim for is to be able to completely strip down your machine in a mat-
ter of minutes and to accomplish that feat without the aid of a single hand tool.

The main problem with putting connectors everywhere is that they take up too much room
and a nice electronics board that you’ve carefully designed to be as small as possible is typi-
cally overwhelmed by the space required for connectors. After four years of deep theoretical
study, we’ve finally chosen a connector technology that fits our bill - it easily interfaces to
the prototyping technology we’ve selected for board layout, it’s easy to fabricate and it’s
dense. We call these connectors Mobot Connectors, for want of a better name, as the parts
we used originally had a very different purpose. First however, some background on board
wiring technology for prototyping is required.

Prototyping Electronics

You'll notice some protoboards are given out in your kit. These contain power supplies and
typically are used for breadboarding circuits using 22 gauge solid wire. We don’t recom-
mend you use protoboards. They’re included in the kit solely to act as power supplies so that
you won’t drain your batteries. The problem with protoboards is that, invariably someone
before you has jammed 20 gauge solid wire into the holes and then when you ‘go to use it,
you get flaky connections.

What are the alternatives available for quick and modifiable prototyping? Wire wrapping
sockets into perfboard used to be the technology of choice, but it takes a long time because
you have to strip both ends of each wire and daisy chaining with one piece of wire is impos-
sible.

Scotchflex sockets and plug strips are much simpler and faster to use. The resulting profile
of the bottom of the card is also much lower. Scotchflex sockets come in all the standard
DIP package sizes for integrated circuits. A socket is placed on top of a piece of perfboard
and corresponding plug strips are inserted from the back. Kynar 30 gauge wire is merely
pushed into pins on the back. Two wires at most can be pressed into any pin, but daisy
chaining is possible and no wires have to be stripped. It’s possible to mix wire wrap and
Scotchflex technology if necessary. For instance, if a wire wrap ribbon cable connector has
to be used, wires can be wire wrapped to the ribbon cable connector and then pushed into
Scotchflex pins elsewhere on the board.

98

There are a few drawbacks to Scotchflex technology. For long-term use, they can be unreli-
able. Most of the problems come from pulling chips out of the sockets (for instance,
EPROMs that are often changed). Using Scotchflex technology, which is composed of two
pieces on either side of the perfboard, the problem of pulling the sockets apart from the pins
and off the board arises. Repeatedly doing this can cause intermittent connections. Another
problem with Scotchflex is that sockets only come for DIP package sizes. Square chips, like
the 6811, which come in plastic leaded chip carrier (PLCC) configurations, cannot be bread-
boarded using Scotchflex. However for testing out a normal quick circuit, which you may
later want to turn into a printed circuit board, Scotchflex is the way to go.

What other alternative is there? Speedwire is a good choice and is the technology we recom-
mend. Speedwiring consists of taking Speedwire terminals (which come in reels of 1000)
and pushing them into the holes in a piece of perfboard. The perfboard we’ve supplied has
holes on 0.100” spacings. The terminals are pushed through the board and on one side have
a receptacle for an IC pin, and on the other side, have a pronged end for holding wire. Again,
30 gauge wire is pushed into the back side of these terminals. A special wiring tool, called a
Speedwire pen, is needed to do this wiring. As with Scotchflex, daisy chaining is possible
and a maximum of two wires is allowed per pin.

The advantage with Speedwire however, is that since each terminal is not made out of two
pieces, there’s no chance of separation when removing chips. In addition, since you place
each Speedwire terminal individually on the perfboard, there is no constraint as to the pack-
age configuration of the chips you use. It would be very simple then to Speedwire a 6811
board similar to the printed circuit version we’ve supplied in your kit. The only disadvantage
to Speedwire is that you have to spend the time pushing pins, but that’s the tradeoff for reli-
ability. Note that there’s one trick in pushing the pins: they should all be lined up so that the
little holes in the pins on the wiring side face 45 degrees to the rows of holes in the board.
This leaves more room for bending the wires when you start wiring up your circuits.

Speedwire technology can be combined with printed circuit board technology and in fact,
that’s exactly what we’ve given you on your 6811 board. Notice the empty holes to each
side of the 6811 socket. Those holes are “breadboard” space. You can insert Speedwire pins
there and wire up any external circuitry you need. If you need more space, you can build a

separate board out of perfboard using Speedwire pins and then use Mobot Connectors to con-
nect the two boards.

Mobot Connectors

Mobot Connectors are a simple hack to solve the interconnect problem between Speedwire
pins and external objects such as sensors or motors. What they really are, are things called
terminal strips and socket strips, which are normally used to make a row of vertical connec-
tions between two stacked printed circuit boards. A terminal strip is a a long piece of plastic
with a row of pins sticking out the top and bottom at 0.100” spacings. These normally fit
into sockets strips, which are like terminal strips except that one surface has receptacles in-
stead of pins. Socket strips would typically be soldered into a printed circuit board and then
the terminal strips pushed into them to make a removable connector.

On the 6811 card you’ve been given, you’ll solder socket strips into the holes that have sol-
der pads meant for port output connectors. In the breadboard area, you can push Speedwire
pins. In either case, terminal strips (mobot connectors) can be inserted into them. However,
instead of stacking another card on top, you’ll want to make connectors that g0 to sensors,
motors or power supplies.

The procedure is to use a vise, tin the top leads of the mobot connectors, get some stranded

99

wire, slip on a piece of heat shrink tubing (I guarantee that everyone will forget to do this at
least once), solder the wire onto the pin, slip the shrink tubing over the joint and then blast it
with a heat gun. Voila! - now you have a connector. This is an important skill. Learn how
to do this fast and you’ll be all set.

You can often do this on the other end of the cable too. For instance, for interfacing to a py-
roelectric sensor, you can build a 2x2 mobot connector (use an exacto knife, super glue and a
socket strip) and push the 3 pins of the pyro sensor right into the mobot connector. If you
drop a glob of solder into the unused quadrant, you’ll have a connector that is keyed so that
you can never plug it in wrong.

Keying connectors is an important point. Always add an unused square of mobot connector
so that you can key your cable. This is CRITICAL for power connections. Attention to de-
tail in this department will save vast pain and agony later.

EEETD st o

100

Debugging
“If it doesn’t work, it’s probably the connectors...”
Anita Flynn

What are the tricks for debugging your robot? The first heuristic is ‘Attention to Detail’.
That means build it carefully in the first place. Don’t be sloppy and gloop globs of solder all
over your board. Don’t skimp and build shoddy cables. Don’t hurry and plug power in
backwards. Before you ever insert any chips or apply power for the first time, use .an ohm-
meter to convince yourself that +5V is not shorted to Ground and that all +5V points are con-
nected together, as are all Ground points. Check your work and make sure there aren’t any
solder bridges or cold solder joints. Layout your Speedwire area neatly and make sure that
ends of wires don’t touch other pins. Never put more than two wires in any Speedwire termi-
nal. Use stranded wire rather than solidwire on all cables.

What if it still doesn’t work? The best way to proceed is to go back to square one and find
something that does work. Check first that power is getting to all your chips. Look at your
power supply on the scope to make sure it’s not too noisy. If it is, add a capacitor. It’s good
practice to put capacitors near the power cables running to sensors (such as pyroelectrics - if
you give them junk, they’ll return junk).

The next thing to do is check to make sure your 6811 is running. First check the clock.
There’s a signal on pin 5 called E, which is the bus clock. E is equal to the frequency sup-

plied by your crystal divided by 4. With the 8MHz crystals you’ve been given, E should be a
2MHz square wave.

Now you should try and download a program. Turn the power to your 6811 off and plug in
your downloader cable. Insertion of the cable causes the processor to be put in bootstrap
mode. Turn the power on. Once you’ve evaluated a buffer containing the program you want
to download, you should download it by typing (dl <prog-name>). You should see several
lines of periods printed across your screen as downloading proceeds. If it just hangs instead,
check to make sure your cable is correct. An easy way to do this is to run a terminal program
such as Kermit and connect together the receive and transmit pins at the end of your cable.

Then start typing at Kermit. You should see the characters you typed echoed back on your
screen.

If that works, plug the cable back into your board and check the pin on the MAX233 which is
Receive In. Trace it through to the Receive Out pin on the MAX233 and finally to the
Receive pin on the 6811. Try replacing the 6811 if that all looks okay. In general, just go
step by step, starting from something that has to be right, like power being correctly applied,
all the way to the signal you’re checking.

If downloading is successful, try to run your program. Turn the power to the 6811 off.
Remove the downloader cable (now the 6811 will be in single-chip mode). Turn the power
back on, and your program should run. A simple first program to run is a test routine for the
hex-digit LCD display which is connected to portA, pins 3-6. Try a simple program which
counts from O to F, as shown below:

101

Jasmine HD:Lisps:Allegro CL:squirt:blink.lisp 11/30/88 11:44:43 AM

;::Code for blinking portb leds

(defprog count-test
:machine 6811
:start #x£800
:code ((=v portb #x1004)
(=v porta #x1000)
(=c stack #xf£f)

start

(1ds ! stack)

(ldaa ! #x00)
loop

(staa porta)

(jsr delayscme)

(inca)

(3mp loop)
delayscme

(ldx ! #x1f£ff)
dlots

(iterate ((1 4)) (nop))

(dex)

(bne dlots)

(rts)

(= #xfffe)

(!16 start)
))

When that all checks out, you’re ready to hook up motors and sensors. Again, go incremen-
tally, coercing small subsystems to work at a time. If there’s a point in your circuit which
has a signal that’s not what you wanted or expected, try removing the load from that point
on. Possibly some part of the circuit after that was shorting to Ground or loading it down.

The worst part about debugging hardware is tracking down intermittent failures. Usually the
problem here is flaky connectors. Hopefully with the printed circuit boards we gave you, the
number of these types of problems should be small. Check Speedwire layouts for broken
wires, wires that may have been bent too acutely and are about to break, or cut ends of wires
touching other pins. Try bending cut ends of wires upwards. Ohm out cables to your sensor
or motor and make sure they’re reliable. Flair the pins of Mobot Connectors out slightly with
a pair of pliers if it wobbles in the socket strip.

If all that fails, blame it on software.

102

Page 1

An Example Robot Control System - Squirt’s Brain
William Wells

An example of how to build a very simple robot using a 6811 microprocessor and a few simple
sensors and actuators is provided by the robot Squirt, presently under development in the Mobot
Lab. Squirt is a three-sensor, one-actuator robot and his basic operating mode is to act like a
- bug. He has one photodiode light sensor to enable him to search for and hide in dark corners and
he has two microphones which allow him to move in the direction of noise (but only when it’s

and therefore create the world’s smallest robot. Consequently, there isn’t much room for lots of
motors and sophisticated drive trains. Squirt’s entire propuision system consists of one motor
driving two wheels, along with two castors - allowing the robot to only either go forward or back
and turn. Minimalism is the order of the day.

Figures one and two show the control system of the robot. Squirt's circuitry is a simple example
of a control system with computer, sensors, and effector. The complete circuit can be built on a
one inch square printed circuit board if surface mount parts are used. Figure one shows the cpu,
power, and serial downloader circuits. The entire robot is powered by two 3V lithium cells. The
34064 chip is a low voltage inhibitor connected to the reset circuit which holds the 6811A2 cpu
in a reset condition if the operating voltage isn't high enough. This prevents the cpu from
crashing and eating the code in the on-chip eeprom (electrically eraseable programmable ROM)
when the battery voltage sags below legal operating levels.

The circuitry in the lower left is a ‘downloader cable’. When the downloader cable is connected
to the cpu board, it forces the cpu into a mode such that the ecprom can be loaded from the serial
port. (Note that this cable can't be used as an ordinary serial link as it stands, because of the
Jumper which forces the Cpu into bootstrap loading mode. Add a switch here if both download-
ing and communicating modes are desired.) The MAX233 chip is a level translator which
converts the logic levels of the 6811A2 to EIA levels for the serial port of the host computer.
After downloading, the cable should be disconnected and the circuit power cycled to set the 6811
running in single-chip mode.

The signals on the right side of the 6811A2 connect to the sensor and motor control circuits of
figure two. The port B (PB) lines are logic signals used to drive the motor controller. The port E
(PE) lines are analog to digital converter input lines. One is used to read the tachometer signal
from the motor (to be used in a servo loop to control the motor’s speed). Another reads the
ambient light level. The rest of the A/D inputs are grounded. The port A (PA) signals are
connected to timer-counter circuits in the 6811A2. They are used to measure the time difference
of the onset of sounds near the robot.

The top of figure two shows the motor controller. This is an H bridge realized with CMOS bus
driver parts. 74HC series parts are used for their wide operating voltage tolerance, which is
convenient for battery operation. The motor driver circuit is enabled when AZ and BZ are held
low. The motor may be driven in either direction by placing logically opposite signals on A and
B. The motor may be proportionally controlled by duty cycle modulating the drive. Reasonable
chop frequencies are in the range of 10 hz to 50 khz. The protection diodes in the CMOS parts

103

3V >+ 5V

LITHIUM ’Jl:
CBLLS
T :Doﬂf!'//"’c 6N A R
*bv
E Vo
Van
] VRL
, EXTAL
TMu,] % 22m
[XTA L PA2_7%ﬁ
PAV—— mic 2
34064 PAGT mic)
+6

— RES
JuER
MAX233
T
2+ {2~
ECZ+ C2-
13 éT.x—-‘R‘\y R\OUT < & RXD
9 5—-1“ T200r T2 10 < & TX
*6 pk
Vee p—— % MODA
. ¢ G |, -
T MODE
DB 9
Sw

PE?)

PEG
PES
Pey
PE3
PE2
PE/
PEG—= Tdc H

77
e

rHCTC

PB3 —— B2
PR —— 1
P8 > AR
PEO—> A

X THIS JOmb R
PLALES THC ¢pO
1IN BOOTSTRAP
LOADING MODE

Fieource
104

i

Z.

EACH 5 T4HC 240

+b
¥
— Yec
: %
- EA
AZ o | g
A >__.___,: En
4 —D;,’I——-
+é MICRO ~1m0
veC
d‘ 1212 NN oo g
= s @
BZ >——m] p—
B > =
D G
TACH &«
L LM3BAS
+6
0k
o PHOTO
MRD 7R\
EACH &% LM324
+6
2-2k O/ﬁ? Z.ZM— Q.Q.M-
£4430 ‘6 MLC
mMmLC
220k
+b
2.2k 7
MmiC
P9gqso 0
miC SV LA 224

A tachometric signal for velocity control can be derived by measuring the voltage generated by
the motor during the off period of the chopped drive. The switching transient dies out in about
20 microseconds. There is some commutator noise on this signal, but it isn't too bad. To insure
a positive tachometer signal, the end of the motor away from the tach signal should be connected
to either Ground or VCC through the driver, depending on which way the motor is spinning.
The other end of the motor should be allowed to float by tri-stating that section of the driver,

The light level sensing circuit appears in the center of figure two. This circuit has a large
dynamic range. The MRD721 photodiode is operated in voltage mode, which is logarithmic in

A primitive hearing (“noise recognition”) circuit is shown at the bottom of figure two. Each
section consists of a high gain microphone amplifer (an inverting amplifier) connected to a
schmitt trigger. These circuits provide logic signals which go active at the onset of moderate
noises (and every other half cycle, for that matter). This circuit has been tested with an
oscilloscope. Given the resolution of the counters of the 6811A2, the time differential in the
edges of the onset of the logic signals is adequate for a crude directional hearing sense. The code
for this subsystem hasn't been written yet, and will likely be somewhat hairy. Note: the
microphone amplifiers are a bit odd; one of the gain setting resistors is actually the impedance of
the microphones. Furthermore, it was tested with different microphones than those provided with
the kits, so some tweaking is likely to be in order.

Squirt’s brain can actually fit on this one square inch printed circuit board if surface mount com-
ponents are used.

106

Designing the Photovore:
A Case Study

Jonathan H. Connell
1. Task

We report here on the design of the Photovore, a toy robot described in the October 1988 issue of
QMNI magazine. The goal of this project was to design a simple autonomous robot that was cheap,
fun to play with, and demonstrated the subsumption architecture. A lot of the design decisions
were uriven by cost considerations. We avoided microprocessors, used the cheapest base vehicle
available, and employed incredibly simple sensors - all in an effort to keep the overall price
down. Given these constraints, the rest of this report goes on to describe the basic design of the
robot and discusses the engineering trade-offs involved. While the details here are specific to the
Photovore, we hope the general approach, and maybe even scraps of the circuitry, will be useful to
other robot designers,

To give you some context for what follows, let us describe the final design. The Photovore is about
9 inches long and was built from a Radio Shack dune buggy. This car has two independent drive
motors which let us drive it forward and backward as well as left and right. For sensors, we used
3 photocells hooked to comparators. Each sensor simply determines whether the environment is
brighter or darker than some preset level. The first layer in the subsumption architecture uses
these photocells to orient the creature toward light sources. Switching in the second layer
modifies this behavior and, in certain situations, causes the robot to back away from dark areas.
All the control logic for this is implemented with two quad NAND gates. By paying attention to
details we arrive at a simple but interesting autonomous mobile robot which can be built for
under $75. The complete circuit diagram for the Photovore is shown on the next page.

2. Sensors

The key to robotics is sensors. Finding good sensors is hard work, yet robots are not particularly
interesting unless they react to their surroundings. For this project we decided to stick to
established devices and avoid spending large amounts of time developing new sensor technologies.
Given this bias, just about the easiest thing to build is an ambient light sensor using a photocell.
Photocells are nice because they have a low impedance which makes it easy to obtain a useful
signal without a lot of amplification and buffering. Furthermore, there are large changes of
ambient light in the typical indoor environment which means the detector circuitry does not have
to be particularly sensitive.

v
V = VOR/(R+X) \1
G = gain = dV/dX = -VQR/(R+X)2 Vo

dG/dR = Vo(R-X)/(R+X)3 X R

To design with a particular sensor, it is important to first understand its capabilities and
limitations. The photocells we used were made of cadmium sulfide and were roughly 1/2" in
diameter. The resistance of a photocell varies with the amount of light hitting it; the more light,
the lower the resistance. For the shielded configuration described later, the resistance in a bright

107

2 !\P MNP

ncjs.;

.
9 A40ANQLO vaash ! T A
toud L

()00 IHHL

(%44

T I

(e 0]
o
St —-5 -
e 1 aiid H Hw\ ,an
o/
....u...ﬁ_. " L _ T m *S
/ L P
cl_ ! h @ @ JdJU
w
oF o St

(1) 00IHhKL

room is about 5 kilo-ohms. This can go up to 30K in a dim room or down to 200 ohms in direct
sunlight. To convert resistance changes into a voltage we put the photocell in one leg of a resistive
divider as shown above. To get the maximum voltage swing for a given change of illumination (set
dG/dR = 0), the base resistor should be the same value as the operating point of the detector (e.g.
about 5K). We can then model the sensor as a variable voltage source having a source impedance of
about 2.5K.

Unfortunately, although the illumination in a room may seem fairly constant, there is a large 120
Hz flicker component from the lights. For instance, when the photocell is aimed upward, its
resistance oscillates by over 10%. One way to get rid of the AC flicker noise is to use a simple
first order passive filter. A 10 microfarad capacitor across the output of the voltage divider gives
a break frequency of about 6Hz. This still gives the car a fast response time while attenuating the
flicker by a factor of 20. On the center sensor we use a 1000uf capacitor, not so much to suppress
noise, but rather to give us a slow response time. We could have used a smaller capacitor by
adding an extra, high value resistor between the divider and capacitor on the input of the op-amp.
Yet, since a 1000uf capacitor is not exceptionally large physically, we omitted it in order to keep
the parts count down. The utility of the long delay will be discussed later.

As mentioned before, we threshold the photocell signal to arrive at a binary signal. One way to do
this is to take the raw analog signal and compare it to an adjustable threshold. However, remember
that the divider is most sensitive when the two legs are the same. If we had a fixed resistor of 5K
and the photocell was around 25K, the gain of the circuit would be reduced by a factor of 9 - the
sensitivity decreases as the room gets darker. To avoid this, we use a fixed voltage reference and
adjust the analog signal by changing the base resistor (i.e. we tweak the pot for the ambient light
level in a particular room). Since the ratio of the base resistor to the photocell resistance is
always constant, the gain does not change with the light level.

However, instead of using the optimum reference voltage of 1/2 the supply voltage, we actually use
1/4. This is because we want all the parts to be available from Radio Shack and they only carry a
limited selection of trimmer potentiometers in the easy-to-grip style. At first glance, 50K seems
to be a good value since we could set the pot all the way to 30K. Yet for a bright room we would
need to set the pot to a mere 10% of its nominal value. Not only does this make tuning difficult,
but potentiometers often have a residual resistance of around 5% of their maximum. To use the
next value down, 10K, we have to fiddle with the reference voltage. To sense at 30K we must set
the reference to 1/4 the supply. Now we have lost a factor of 4 in sensitivity, but for a bright room
we can set the pot to 16% of its maximum.

The thresholding is actually performed by 3 sections of an LM324 quad op-amp. This device was
selected because it works well at low voltages and has a reasonably high input impedance.
Although the LM324 has a much slower rise time than the LM?339 (a low voltage quad comparator)
this does not matter for our application. Furthermore, the LM324 has true push-pull outputs (not
open-collector) which makes it better for driving logic chips. We could also have given the
sensors some valuable hysteresis by wiring the op-amp in a Schmitt trigger configuration. Yet
this would have added a total of 6 extra resistors, so we decided against it,

3. Geometry

Once we have picked sensors, we must craft a suitable arrangement of them for our task. We start
by examining the receptive field of a single photocell. Since it is a large planar sensor, its
sensitivity varies as the cosine of the incident angle. To make it slightly more directional, we
wrap the photocell in electrical tape to form a 1/4" high shield around the edges. This should
limit the field of view to about 120 degrees full angle, although experimentally we find it to be
closer to 90 degrees.

109

For the first level, we need a sensor geometry

which lets the robot home in on a light source.

We use two photocells aimed forward but toed

outward by 30 degrees. This gives a "lock in" 150

range of about 150 degrees full angle - the <% »
vehicle pays no attention to light sources behind

it. Since the sensors each have a half angle of 45

degrees we get a 30 degree full angle "sweet

spot” directly in front of the vehicle. This is 90 30(e |30

where it will try to keep the light source.
However, it is important to note that the reported
size of the lock in zone and sweet spot are only
valid in the plane that contains the centerlines
of both sensors. This is because we are
intersecting cones not square-sided pyramids.
Actually, at a certain angle (about 15 degrees off
the plane) there is no overlap at all and we get a
dead spot instead. Since there are no interesting
sources at floor level, we mount the two front
sensors angled upwards about 15 degrees.

The basic first level algorithm is to turn left if only the left sensor is activated, turn right if only
the right is activated, and go straight forward if both see something. Although similar to some of
Braitenberg's vehicles, the non-linear thresholding nature of our sensors gives Photovore a
qualitatively different type of behavior. Instead of always heading for the brightest spot, the

‘Vore happily wanders around in bright areas and only turns when it gets too close to a dark
region.

This algorithm works well with table lamps and reasonably well with flashlights (flashlights are
not isotropic radiators so where they are aimed matters). More interesting, however, is the fact
that it also works with ambient light. This is the other half of working with sensors -
understanding how they respond to various environmental situations. Consider a white wall with a
black molding at the bottom. Far away from the wall the photocell is looking at a mostly white
surface, yet when it gets closer the dark baseboard dominates its field of view. We can tune the
comparators to recognize this change, which in turn will cause the vehicle to veer away from the
wall. In fact, the vehicle will try to avoid any looming dark object. This includes sofas, shadows,
and people's legs (if they have dark pants on).

For the second level, our original idea was to have the robot stop when he got close enough to the
light source. To do this we added a photocell mounted so that it looked straight upward. When the
vehicle got close enough that the light source was 45 degrees up, our new sensor would be
activated and the vehicle would stop. If only the top sensor was activated, the vehicle would back
up until the front sensors saw light again. Given the sensor geometry specified above, the
receptive fields of the sensors would overlap for elevations between 45 and 60 degrees. This sets
the following distance - the lower down the light source, the closer the car will approach it. In
ambient light, we also get interesting behavior. The robot runs around the room until it finds a
sufficiently bright spot to stop in.

For several reasons, however, we rejected this algorithm. In practice it did not keep its set
distance from a flashlight well. This was partly due to the fact that a flashlight is a directional
radiator so sometimes the top sensor would not be in the beam. It was also due to the fact that the
servo null spot was too small because, once again, we are intersecting cones not pyramids. It
would probably have worked better if we had constructed a square, versus round, shield for the

110

top sensor. Yet the real reason we flushed this behavior was it simply was not interesting in
ambient light. While it seems theoretically appealing to stop in bright spots, the reality is quite
boring as a toy. The car is always stopping somewhere and requires constant kicking to keep it

alive and moving,.

Instead, for the second level we noticed that there are certain situations in which the light
seeking behavior gets the robot in trouble. If it heads directly toward a dark object or scoots
under a table, both front sensors drop out at the same time. This causes the robot to freeze in
place rather than veer away. To fix this, we added a third photocell to the vehicle. Since we want
to sense obstacles both overhead and in front, we aimed this new sensor forward and angled it
upwards 45 degrees (versus straight up as before). Now when this sensor goes dark we tell the car
to back up. If both front sensors are dark, the robot backs straight away. If one is light and one is

dark, it tries to face the light by turning as it backs.

Still, when the robot backs out from under a table it only goes until the top sensor is sufficiently
bright, or until both front sensors see light again. This causes the car to jitter near the edges of
tables and often come to a complete stop. To remedy this, we merely jacked up the value of the
capacitor on the central comparator to give it a longer time constant. This is the only true piece of
"state” in the robot and causes the car to continue backing up for a while after it has gotten away
from a dark area. Actually, the robot usually backs out far enough to activate both front sensors
which cause him to stop until the front sensor ramps up again. Thus, he seems to stop and
"deliberate” before choosing a direction to go forward in. It is amazing how much smarter this

makes him seem.

4. Chassis

Now that we have picked sensors and figured out how to use them for our task, it is time to choose
a body for our creature. Our selection for the Photovore was motivated primarily by cost
considerations. The cheapest steerable vehicle we could find was the wire-controlled Red Fox
Racer from Radio Shack. Simple toys have two modes: forward and stop. More sophisticated models
have three modes: forward, stop, and left turn in reverse. The Red Fox has seven modes; it can turn
in either direction while going forward or backward (see table). Unlike most radio-controlled
cars, the Red Fox has a tank drive configuration. There are two large wheels in the back, each of
which has its own separate drive motor. To steer, we selectively drive only one of the two wheels.
This causes the car to pivot around the stationary wheel and drag its front two wheels sideways.
Therefore, if we want the car to be able to turn, we must be careful not to have these wheels carry

too much weight.

t oo+ +
o o+ O ¢

+ o

+

straight forward
forward to right
forward to left

stop

straight backward
backward to left
backward to right
swivel right (unused)
swivel left (unused)

The Red Fox has several other good features. For instance, it has a built-in rollcage to help
protect any fragile electronics from violent crashes. Also, it is very fast (6 ft/sec, which is a
scale speed of 70 mph!). This is important because we have found from giving many demos that the

faster a robot moves, the smarter it seems (whether or not it is doing anything particularly
intelligent). Finally, the Red Fox's motors normally run on 3 volts. This is an advantage because it
means we can easily drive the motors from the 5 volt supply required by the logic chips and op-
amps. To change the direction of the motors we must reverse the polarity of the applied voltage. A
simple way to do this is to just tie one end of each motor to 2.5 volts, and then connect the other
end to 5 volts or ground depending on the direction desired.

Another important part of robot design is choosing a power source. The original Red Fox ran off of
two 1.5 volt C cells. Since we want at least 5 volts to run the car, we need four standard batteries.
We could use two 3 volt lithium cells instead, except that they are much more expensive and are
not rechargeable. Since four C cells would be awkward, we chose to use 4 AA nickel cadmium
cells. Nicads are nice because they can provide high peak currents and have a fairly flat
discharge profile (they are 1.25V when full and still 1.2V when mostly discharged). Four AA
cells gives us 5 volts at 450 milliamp hours, or a total of 2.25 watt hours. Since the robot
consumes 1.5 watts on average (motors take 300ma at 2.5V) this lets us run for an hour and a half.
Many people have suggested using solar cells to power the robot but, unfortunately, you would
need an unreasonably large array to do this. Solar cells deliver about 100mw per square inch in
bright sunlight and about 500 times less in normal indoor lighting. Thus, to power our vehicle we
would need a 7 foot square array! If we took a reasonable sized array, say 4" by 4", and let it
charge the batteries for 8 hours, there would only be enough energy to run the car for 1 minute.

§. Motors

The next problem is to figure out how to drive the motors using logic level signals. A typical TTL
gate can source 0.4ma and sink 4ma, while buffer chips can go up to 15ma. Still, this is a long way
from the 300ma required by the motors. Obviously some amplification is needed. Another point to
keep in mind is that inductive loads, like motors, typically have much higher starting currents
than running currents. For instance, the Red Fox's motors have a stall current of about 1 amp,
roughly a factor of 3 over its average. Whatever power device we use has to be able to withstand
these peak currents. One thought would be to use power MOSFETs since they have very low "on"
resistance (less than 1 ohm) and hence don't dissipate much power (about 50mw in our case).
Regrettably they require about 8 volts to turn on, whereas we only have a 5 volt supply. There are
some "logic level” MOSFETs but they only come in N-channel devices and we need P-channel
MOSFETs as well for our half-bridge driver. While we could build charge pumps and level
translators, it doesn't seem worth the work.

Another thought would be to use bipolar transistors. For instance, darlington pairs are available
with current gains (betas) of over a thousand. Unfortunately, the collector-emitter saturation
voltages for these units are about 1.5 volts. That is, when they are as turned on as they are going
to get, they still exhibit a significant voltage drop. This ruins our plan for using a split 5§ volt
supply; we would have to go to a 6 cell, 7.5 volt supply to make up for the difference. More
importantly, however, our motors draw 300ma at 2.5V and so consume 750mw each while the
transistor driving them would consume an additional 450mw. Half of the robot's power would be
going into heating up these transistors! Even using normal transistors, the ones that can handle
high collector currents typically have substantial voltage drops (and the ones that don't aren't
easily available).

Our final solution was to use relays. Since a relay is just a switch there is no voltage drop across
its contacts and no power dissipated. To activate it, however, we must energize its coil. Typical
small 5 volt relays have coil resistances from 50 to 100 ohms. Since they require at least 3.5 volts
to activate, this translates into about 70ma or 250mw. Thus, they do not dissipate as much power
as transistors and have an effective current gain of between 4 and 14 (stalled) for our application.
Still, we must buffer the logic outputs to activate the relays. Since the current is less and we can

112

tolerate some voltage drop, bipolar transistors seem appropriate. For currents under 100ma it is
possible to find transistors with saturation voltages around 0.4 volts. These transistors typically
have betas of at least 100 whereas we only really need a gain of about 20.

The second page shows the relay driver circuit we use. Since plain TTL chips can sink more
current than they can source (unlike CMOS chips) we decided to use PNP transistors. To calculate
the value of the base resistor we assume a beta of 100, an emitter to base voltage of 0.6V, and a
logic signal of 0.4V (the maximum for a logic zero). To generate a base current of about 1ma across
a voltage drop of 4V we use a 4.7K resistor. We could use a smaller resistor here without
exceeding the drive capabilities of the logic chip but there is a problem with turn-off. Lightly
loaded logic outputs are usually at least 4.5V when high. This back biases the transistor's base so
no current flows and the transistor turns off. The problem is that one of the relays is driven by an
op-amp output. The maximum high level signal for this chip is 1.5V below the power supply rail.
If we lowered the base resistor to 2.2K and our transistor actually had a beta of 300, we could get
a collector current of 120ma which would be enough to turn the relay on! Instead of fiddling with
this resistor or hand-picking transistors, a better solution would have been to use an NPN driver
for this relay since the op-amp can drive all the way to ground. We only made all the drivers the
same to avoid confusing which transistor went where.

There is one more part to the relay drivers: the
flyback diodes. When you drive an inductive load I —I
you generate a magnetic field. When you turn off the applied

current to the device, this field collapses and

generates a voltage across the coil. This voltage is ————
the opposite polarity from the previously applied V“ﬂ
~ voltage and can soar to several hundred volts. Most

transistors have a collector-emitter breakdown

voltage of less than 100V and these spikes burn

them out. To prevent this, we put a diode across the

relay's coil. Note that when the relay is being

driven, this diode is back biased and hence does not

conduct. When the transistors turns off, however,

this diode clamps the reverse voltage spike to

ground thus saving the transistor. We use the same

setup on the motors themselves and clamp the coil

voltage to one of the rails using two diodes. Like ———
transistors, relay contacts can be damaged by high vclamped
voltages. When they repeatedly spark over the

contacts eventually get pitted and carbonized which

keeps them from switching well.

The actual relay configuration used is rather interesting. Instead of using two half-bridge
drivers, we put in a reversing relay and two individual gating relays, one for each motor. This
saves us one relay but means we can never simultaneously drive one wheel forward and the other
in reverse. It turns out that this doesn't matter for our application. Another interesting feature is
that when we are not powering the motors, they are shorted to 2.5V which causes the creature to
stop faster. This works because, if the wheels keep turning, the motor acts as a generator and tries
to pump current through a very low resistance load. Finally, notice that each motor is always
driven off different halves of the power supply. When the right motor is across +5V and +2.5V,
the left motor is across +2.5V and ground. This lowers the peak current required of any
particular cell and also evens out the lifetimes of the two halves of the battery pack since they are
usually equally loaded.

113

Another interesting feature of this design is that activating one of the two gating relays causes its
associated motor to turn off. This lowers the peak power demand since the relay and the motor are
not both dissipating power at the same time. We use a similar trick on the reversing relay. Since
the vehicle is usually going forward, we make this the de-energized setting. The inversion in the
gating relays also prevents oscillation when the power is running low. Imagine that the relays are
wired in the opposite fashion and that the 'Vore has just enough power to activate one of the
relays. This then connects the motor to the power supply which may be too much load for it. If the
power supply voltage sags, the relay will drop out and then the cycle repeats. Qur unusual relay
wiring also has the added advantage that it actively disconnects the motor by pulling on the
contacts instead of just letting them be opened by a spring. This can be important because relay

contacts often begin to weld together when carrying high currents (especially true for reed
relays).

6. Logic

Now that we know have built the sensor and actuator interfaces it is time to connect them. For the
first level following behavior we want the robot to respond as shown below. The circles represent
the LEDs on the vehicle and correspond to the two forward looking sensors and the top sensor. If
one of the side circles is colored in, it means that side is bright. The middle circle has the
opposite semantics; if this circle is colored in, then the environment is dark overhead.

/ o O e \ Stop }' Q o \ Forward to the Left
O Strai @) i

ght Forward Forward to the Right
/e @) o @ ?

Combining this with the motor direction table shown previously, we see that we want the right
motor to run forward when the left sensor is activated, and vice versa. We can use a direct
connection to the relay drivers because there are two inversions in the path. The relays are
activated when their control line is brought low, yet when they are activated they turn their
associated motor off.

When the second level behavior is switched in, the creature should follow the additional
situation-action patterns listed below. Notice that whenever the top sensor is dark (circle colored
in) the car is always backing up in some manner. Once again, because of a double inversion, we
can tie the output of the central comparator directly to the driver for the reversing relay.
Choosing the turning direction is now a little more complicated. If the right sensor is pog
activated we want the left wheel to turn and vice versa.

Backward to the Left

Stop Backward to the Right

114

Notice that the logic for backing up is identical to that for going forward except that the side
sensor signals are interpreted in the opposite fashion. A simple way to achieve this is to use an
exclusive-or gate to combine each side sensor signal with the back-up signal (the inverse of the
top sensor comparator output). Thus, we could use 3 sections (one wired as an inverter) of a quad
XOR such as the 7486 to control the whole robot. If we built an NPN driver for the reversing relay
and swapped the inputs to the top sensor's comparator we could get by with exactly 2 XORs.
Unfortunately, Radio Shack doesn't stock this chip so we decided to synthesize this functionality
from a collection of NAND gates, instead. To build the two XOR gates needed we require 6 NANDs
and 3 inverters. Two of the inverters are made from NANDs while the third is built out from a
spare section of the op-amp chip. Luckily, the reference voltage we use for the sensors is at an
appropriate level to make logic comparisons as well.

The Photovore is a unusual in that it does not have a lot of power line conditioning to keep the
logic from glitching. There are capacitors across the motor terminals to suppress brush noise, and
the analog reference for the comparators is stiffened with a capacitor. However, there are no large
power supply capacitors or individual decoupling capacitors on each chip to reduce switching
spikes. In fact, the supply isn't even regulated due to the fact that nicads have fairly constant
voltages and a high surge capacity. The reason we can get away with this is that the only state in
our system is the voltage on the 1000uf capacitor, and this is not affected by power supply
variations. It doesn't matter if the central logic goes temporarily awry. The relays and the car
itself have such long response times the network will return to normal long before the creature
ever notices the error.

7. Construction

The final step in creature design is to integrate all the subsystems into the body. The biggest
single component is the battery holder, so let us place this first. A seemingly good location would
be on the floor of the car, inside the rollcage. Yet this makes them hard to replace and, more
seriously, puts so much weight on the front wheels that the car is no longer able to steer.
Therefore, we instead attached a flat board to the back of the vehicle and mounted the batteries on
this (see below). Unfortunately, this exacerbates the car's tendency to pop wheelies. To counteract
this, we installed several lead weights at the front of the vehicle to balance the load.

Batteries

Side Sensor

Top Sensor

Circuit Board

115

The next most critical thing to mount are the sensors. We had hoped to keep them all inside the
rolicage to prevent them from getting banged up, but the geometry precludes this. The upward
looking sensor at least can be mounted inside the vehicle, provided that we are careful to give it
an unobstructed view around two nearby structural members, Since the side sensors look forward
and slightly outward, we put them on the edges of the car underneath the battery holder to give
them a totally clear field of view. The fiberglass board that the batteries and controls are mounted
on affords these sensors Some protection from impacts.

In general, protecting the robot from smashing itself is a big problem. Fortunately, we were able
to bury most of the electronics inside the car within the protective envelope of the rollcage. Still,
some parts, such as the controls, had to be left exposed for accessibility, Although we attached
the back board to the frame of the vehicle with sturdy nylon tie-wraps this still doesn't shelter
the pots and switches. For instance, as soon as the car tries to zoom under a low bridge, the board
stays put but the switches peel right off., We eventually bent a coat hanger into an extra rollbar to
protect these pieces. The circuitry is not the only part that suffers, sometimes the frame itself
sustains damage. For instance, after a month of banging into concrete walls the front bumper
fractured and had to be replaced with a large piece of rubber tubing. To put this in perspective
however, if a human was driving at 70 mph with 30 foot visibility, his car wouldn't look so good
either!

values were arrived at by trial and error substitution and the §ensor geometry came from
experimentation with different configurations. The final control algorithms were derived by
playing with the vehicle and seeing what was fun. Only when something went wrong did we go back
and analyze it to help us find a solution. In general, we believe empirical studies to be of great
value in mobile robotics. You can spend years developing a theoretically perfect set of control
algorithms but chances are they will not work in the real world. OQur approach has been along

engineering lines: we find out what works then go back and try to extract useful generalizations
from it.

116

