MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

Al Memo No. 1231 May 1990

Repairing Learned Knowledge Using
Experience

Patrick H. Winston and Satyajit Rao

Abstract

Explanation-based learning occurs when something useful is retained
from an explanation exercise, usually an explanation of how some par-
ticular problem can be solved. If explanation is based on sound theory,
then the learning process speeds up future problem solving, but the
scope of the learning-augmented theory remains unchanged. In con-
trast, if explanation is based on fragmentary and often defective ex-
perience, explanation can be a guide to when that experience can be
deployed. Thus one kind of explanation provides speed up; another
kind of explanation provides new knowledge. Experience is not sound
theory, however, and wrong things may be learned accidentally, as sub-
sequent failures will likely demonstrate. In this paper, we describe ways
to isolate the facts that cause failures, ways to explain why those facts
cause problems, and ways to repair learning mistakes. In particular,
our program learns to distinguish pails from cups after learned knowl-
edge about cups leads a recognition program to think pails are cups.

Copyright (©) Massachusetts Institute of Technology, 1990

This report describes research done at the Artificial Intelligence Laboratory of the Massachusetts
Institute of Technology. Support for the laboratory’s artificial intelligence research is provided
in part by the Advanced Research Projects Agency of the Department of Defence under Office
of Naval Research contract N00014-85-K-0124.

Becoming an Expert Requires Repair as well as Acquisition

For most of us, in most domains, we get by with simple rulelike knowledge, handling ordinary situations
well enough. But if we choose to become an expert in some domain, we begin to see the unusual cases,
which we handle by way of an exception-recognizing mechanism or by repairing our original, rulelike
knowledge.

In this paper, we show how to repair rulelike knowledge by exploiting situations where the rulelike
knowledge leads to incorrect conclusions. Our implemented program learns to distinguish pails from cups
after a leamed cup recognition rule incorrectly identifies certain pails as cups.

Our work builds on the vast literature on explanation-based leaming (see Mitchell er al. [1986] for
a review). In particular, we build on the ideas in Winston et al. [1983], which explained how to acquire
rulelike knowledge about what cups look like in the course of explaining how cups achieve their function.

Our Repair Work Builds on Analogy and Explanation

To understand our approach, it is helpful to review the explanation-based analogical reasoning that produces
the original rulelike knowledge.

Glass Precedent

Object is glass

AN

Object made-of glass)ﬁ enablew
Object is stable Object carries liquids Object is liftable
/J ‘ A
Object has bottom
Object is light
Bottom is flat Object has body

Body is hand-sized

Figure 1. The glass precedent. Precedents include relations that are tied together with cause relations, all of which
constitute an implied AND tree. The boxed part of the glass precedent helps to bridge a gap in a problem situation
shown in the next figure.

First, note that the cause relations in precedents constitutes an implicit AND tree with each node in each
AND tree corresponding to a relation and each branch corresponding to a relation-linking cause relation.
Figure 1 shows the cause relations in the precedent that describes what it takes to be a glass.

An implicit AND tree can help to bridge the gap in a problem between something that is to be
explained and things that arc already known. In figure 2 the problem is to show that an unknown object
is a cup by connecting the relation, object is cup?, 10 some of the other relations using implicit AND tree
fragments from various precedents. In figure 3, the relation, object is cup, is connected to some of the other
relations using fragments from the brick, glass, bowl, and briefcase precedents along with a functional cup
definition expressed itself in the same form as the precedents.

Object is cup?
Object has bottom
Bottom is flat Object has concavity Object is light
Object has handle
Object has decoration Object made-of porcelain

Figure 2. A problem. It contains a relation to be explained, shown with a question mark, and some relations that are
known.

/Ob ject is C\ Definition

jbgect is stable Objic} enables ‘gnnkmg Glass
Object has bottom Object carries liquids (;lgect is liftable
Bottom is flat Object has concavity Object is light
Brick
Bowl Object has handle
Briefcase
Object has decoration Object made-of porcelain

Figure 3. Boxes indicate the origins of the various precedent-supplied AND tree fragments that bridge the gap between
the relation to be explained and some of the relations that are known. Only the relevant parts of the precedents are
shown.

The gap-filling AND tree, consisting of fragments from one or more definitions and precedents, can
be retained for future use. Moreover, the leaves of the AND tree in the new chunk of knowledge can be
viewed as the if conditions in an implicit if-then rule. The root of the AND tree can be viewed as the
then condition. The other nodes can be viewed as providing conditions. The providing conditions, like the

terminal then condition, are explained by the if conditions.
Here the cup-recognition recollection is viewed as an if-then rule:

Cup-recognition Recollection:

If The object has a bottom
The bottom is flat
An object has a concavity
The object is light weight
The object has a handle
Then The object is a cup
Providing The object is stable
The object enables drinking
The object carries liquids
The object is liftable

Note that although the retained knowledge can be viewed as an if-then rule, it is really a full-blown,
gap-filling AND tree. We call these retained chunks of AND tree recollections to emphasize both that
something has been remembered and that there has been an explicit re-collection of knowledge that was
formerly distributed implicitly across one or more precedents.

Because we choose to express recollections in the same representation as ordinary situation descriptions
and definitions, our analogical reasoning machinery does not care whether the source of a gap-bridging
AND tree is a precedent, definition, or an already-leamned recollection.

Censors shut off conclusions

Finally, because precedents and precedent combinations involve only plausible explanation, there has to be
a way of shutting off conclusions. If there is strong, obvious evidence that indicates one of the providing
conditions cannot be true in a particular situation, then the explanation that links the if conditions to the
then condition collapses in that particular situation.

A recollection or precedent is called a censor whenever it provides evidence that a providing con-
dition in another recollection or precedent cannot be true. Thus censors are just ordinary recollections or
precedents used in a special way.

Explanation-based learning offers more than speedup

Importantly, explanation-based learning based on precedents is particularly useful when the learner has
weak or faulty knowledge of how individual precedents can be combined into larger explanations. The
reason is that particular problems, often supplied by a knowledgeable teacher, provide heuristic evidence
about which precedents can be stuck together usefully. Thus the learning is more than just a speed-up
phenomenon.

Cups and Pails Illustrate the Problem

The cup-recognition recollection introduced in the previous section can recognize a variety of cups, in-
cluding porcelain cups and metal cups. Unfortunately, it also recognizes a variety of pails, including metal
pails and wooden pails.

Our general approach to improving the situation involves three desiderata. First, the old recollection
should be repaired, rather than a totally new one constructed, on the ground that incremental change is
less risky than radical change. Second, the repair procedure should exploit failures on the ground that
programs should learn from mistakes. And third, the exploitation procedure should use precedents on the
ground that experience is the best guide in the absence of sound theory.

These desiderata lead to the following questions:

4

e How can a program use failures to isolate suspicious relations that should perhaps prevent a recollec-
tion from being misapplied?

e How can a program use precedents to explain why those now isolated suspicious relations should
prevent a recollection from being misapplied?

¢ How can a program use explanations (o repair a recollection, preventing further misapplication?

Near-Miss Groups Isolate Suspicious Relations

If a metal pail differs from a porcelain cup only in the position of handle attachment, then we would say
that the pail is a near miss. Unfortunately, there are many differences, both relevant and irrelevant: the
pail is metal, but the cup is porcelain; the metal pail is gray, but the porcelain cup is white with balloons
painted on the side; the metal pail carries oats, but the porcelain cup carries coffee.

The metal pail is a false-success situation. Let us assume that our recollection-repair system knows
that the metal pail in figure 4c is a false success either because a teacher says so or because an effort to
drink from it leads to failure.

Figure 4. A near-miss group. The dots represent relations. Suspicious relations, the ones in the shaded area, are
suspicious because they are in all the true successes but none of the false successes or because they are in all the false
successes but none of the true successes.

Let us also assume that our recollection-repair system knows the wooden pail in figure 4d is also a false
success. Both pails differ from the porcelain cup in figure 4a in many ways, and similarly, both pails differ
from the tin cup in figure 4b in many ways.

5

Importantly, however, there are fewer ways in which both the metal pail and the wooden pail differ
from both the porcelain cup and the tin cup: for example, the cups have fixed handles, whereas the pails
have hinged handles.

As the Venn diagram in figure 4 shows, all four objects can be used together to separate signallike
explanations from noiselike distractions. Because the recollection allows all four objects to be recognized
as cups, the antecedent relations in the recollection, viewed as an if-then rule, must lie in the intersection
of all the relation sets describing those four objects. Similarly, the relations, if any, that distinguish the
true-success situations from the false-success situations must lie in the union of the two relation subsets
shown shaded in figure 4,

Because the relations in the true-success set and the false-success set are likely candidates for forming
explanations, we say that those relations are suspicious relations. Also, we say that the situations used
to identify the suspicious relations constitute a near-miss group because they work together as a group to
perform like an single example and a single near miss.

Clearly, the isolation of suspicious relations is just a simple matter of unioning, intersecting, and
differencing the relations that appear in the true successes and false successes.

In general, there will be more than one suspicious relation, but the more true successes and false
successes we have, the fewer suspicious relations there are likely to be. Note, however, that isolating
failure-causing relations is not the same as explaining failure and repairing the flaw.

Suspicious Relation Types Determine Overall Repair Strategy

For suspicious relations that are common to true successes only, there are several possible explanations
for how the recollection, viewed as an AND tree, is flawed. For example, a node may involve the wrong
relation, a branch corresponding to a particular cause relation may be missing, or a chain of two or more
branches may have been collapsed into one, eliminating one or more providing conditions that would
otherwise be vulnerable to attack by censors. The recollection should be repaired accordingly.

In our example, the relation handle is fixed is found in both cups but it is not found in either pail. If
a program can find a way to include this relation in the rule, then the rule would be more discriminating.
It would still recognize the cups, but it would not recognize either pail.

One explanation-free recollection repair would be to include the handle is fixed relation in the rule
form of the recollection as a new if condition:

Repaired Cup-recognition Recollection:
If The object has a bottom
The bottom is flat
An object has a concavity
The object is light weight
The object has a handle
The handle is fixed
Then The object is a cup
Providing The object is stable
The object enables drinking
The object carries liquids
The object is liftable

For suspicious relations that are common to false successes only, the failure is the result of not
knowing that a providing condition cannot be true. In our example, the relation handle is hinged is found
in both pails but is not found in either cup. If a program can find a way to include this relation in a new
censor that attacks one of the providing conditions, that censor would make the rule more discriminating.
The rule would still recognize the cups, but it would not recognize either pail.

One explanation-free approach is to manufacture a censor directly out of the handle is hinged relation
and the object is not a cup relation:

New Censor:

If The handle is hinged
Then The object is not a cup.

As described, both the cup repair and the censor creation are ad hoc because there is no explanation
for why the new if condition or the new censor should work., We can do better.

The Solution May Be To Explain the True-Success Suspicious Relations, Changing
the Recollection

Before showing how we actually handle true-success suspicious relations, we display the result in our
cup-and-pail example. Figure 5 shows both the recollection tree of the original, faulty recollection and the
recollection tree of the repaired, correct recollection,

/ e c\

Object is stable Object enables 'dn{
Object has bottom Object carries liquids ?ect is liftable
Bottom is flat Object has concavity Object is light
Object has handle
/ e c\
7&! is stable }mabl&s inking
Object has bottom Objcct?can'ies liquids Object is manipulable
Bottom is flat Object has concavity /
Object is liftable Object is orientable
Object is light Object has handle Object has handle Handle is fixed

Figure 5. A recollection tree before and after repair. The repaired recollection recognizes only cups; it does not
recognize pails.

7

Comparing the recollection trees of the faulty and repaired recollections, you see that the handle is fixed
relation, which is common to the true successes, now appears in the repaired recollection tree. There are
also two other new relations object is manipulable and object is orientable.

The old recollection was too general because you cannot be sure you can drink from an object just
because it carries liquids and is liftable—it has to be orientable by virtue of having a fixed handle. The
new recollection still recognizes the cups, but the increased specificity of the recollection prevents it from
recognizing the pails.

To make the repair, our program does a breadth-first reexamination of all the relations in the recollec-
tion tree, looking for a relation with an explanation that needs replacement. For each relation reexamined,
our program looks for a collection of precedents that ties the reexamined relation to at least one of the
true-success suspicious relations along with some or all of the relations that lie in the intersection of all
the successes.

If such a collection of precedents is found, it is used to replace the subtree beneath the reexamined
relation, thus explaining the reexamined relation in a new way.

The new explanation should be as short as possible because the longer the chain of precedent-supplied
cause relations, the less reliable the conclusion. After all, the contributing precedents supply cause relations
that are only likely, not certain. Consequently, we initially limit the reexamination effort to the following
precedents:

e The precedents originally used to form the recollection. These are included in the expectation that
much of the recollection will be unchanged and therefore constructable from the original precedents.
These original precedents constitute the initial top set.

e Those precedents in which one of the true-success suspicious relations causes something. These
precedents constitute the initial bottom set.

When our program reexamines a relation, it looks for a way of explaining that relation using all but one
of the precedents in the combined top and bottom sets. The exception is the precedent that contained
the cause relations that explained the reexamined relation. This precedent is omitted so as to explore the
hypothesis that it has provided an incorrect explanation, leading to the recollection’s defective behavior.

In the cup-and-pail example, the top set consist of the cup definition along with the brick, glass,
bowl, and briefcase precedents. The bottom set consist of all those precedents in which the true-success
suspicious relation, handle is fixed, causes something,

For our cup-and-pail example, our database contained about 100 miscellaneous precedents, including
the brick, glass, bowl, and briefcase precedents, the cup definition, and two other precedents that turn out
to be relevant, namely the door and straw precedents,

The handle is fixed relation appears in our database in only the door precedent, in which it causes
door is orientable. Thus the bottom set consists of the door precedent alone.

Accordingly, when our program reexamines the object is cup relation, it uses the brick, glass, bowl,
briefcase, and door precedents. It does not use the cup definition because the object is cup relation is
caused by something in the cup definition. Qur program fails because the top and bottom sets do not
connect the reexamined relation, object is cup, to the suspicious relation handle is fixed.

Similarly, when our program reexamines the object is stable relation, it uses the cup definition along
with the glass, bowl, briefcase, and door precedents, but fails again. When it reexamines the object enables
drinking relation, it uses the cup definition along with the brick, bowl, briefcase, and door precedents. Again
it fails, because it cannot connect object enables drinking to handle is fixed, as shown in figure 6.

Our program also fails when it goes on to try reexamining the object transports liquids and the object
is liftable relations. Evidently, more precedents have to be used.

Incorporating true-success suspicious relations may require search

Once our program concludes that more precedents have to be considered, it augments the precedents in
either the top or the bottom sets.

To augment the top set, our program identifies new precedents in which there is a relation with two
properties: the relation must cause something in an existing top set precedent; and the relation must be

Object is cup Definition

OBica is s:able Object enables drinking

Object has bottom Object carries liquids

Bottom is flat Object has concavity

Bowl

Object is liftable Object is orientable

Al

Object is light Object has handle Object has handle Handle is fixed
Briefcase Door

Top Set Bottom Set

Figure 6. Reexamination fails for the top and bottom sets are not connected to one another. Only the relevant parts
of the precedents are shown.

caused by something in the new precedent. Thus the new top-set precedents extend the cause chains that
lead up through the existing top-set precedents.

Symmetrically, to augment the bottom set, our program identifies new precedents in which there is a
relation with two properties: the relation must be explained, in part, by something in an existing bottom set
precedent; and the relation must help to explain something in the new precedent. Thus the new bottom-set
precedents extend the cause relation chains that start down in the existing bottom-set precedents.

To keep the number of precedents as limited as possible, our program augments the set with fewer
precedents. In our example, this means augmenting the bottom set because it currently has only one
precedent, the door precedent. The straw precedent is added because it contains the relation straw is
orientable: in the straw precedent, straw is orientable causes straw is manipulable, and in the door
precedent, handle is fixed causes door is orientable.

Now the reexamination process starts over with the augmented bottom set. As before, reexamination
fails on the topmost relation, object is cup, and on the first of the relations in the next layer, object is stable.
However, when our program reexamines the object enables drinking relation, it succeeds in connecting
object enables drinking with the handle is fixed relation via the definition, the new straw precedent, and
the existing door precedent, as shown in figure 7. Of course, all of the precedents shown in the figure
contain details that are not shown so as to avoid clutter,

Note that the recollection’s AND tree is restructured as necessary without reasoning explicitly about
wrong or missing nodes and branches. The restructured AND tree can be viewed as the following if-then
rule:

Object is cup Definition
Object is stable Object enables drinking Straw
1% - *.
Val
Object has bottom Objecft carries liquids Object is manipulable
Bottom is flat Object has concavity
Brick
Bowl
Object is liftable Object is orientable
Object is light Object has handle Object has handle Handle is fixed
Briefcase Door

Figure 7. A recollection tree after repair with contributing precedents is shown. Note that the straw precedent, having
augmented the bottom set, bridges the gap between the old recollection and the suspicious relation, handle is fixed.
Now only cups are recognized as cups; pails are not. Only the relevant parts of the precedents are shown.

Repaired Cup-recognition rule:

If The object has a bottom
The bottom is flat
An object has a concavity
The object is light-weight
The object has a handle
The handle is fixed

Then The object is a cup

Providing The object is stable
The object enables drinking
The object carries liquids
The object is manipulable

Our program tries to explain all true successes

Because we want to incorporate all of the true-success suspicious relations into the revised recollection
tree, our breadth-first reexamination procedure works top-down. That way, later repairs cannot conflict
with the contribution of earlier ones. The reexamination process stops when all true-success suspicious
relations are incorporated into the revised recollection tree.

10

The Solution May Be To Explain the False-Success Suspicious Relations, Creating a
Censor

The repaired recollection tree works on all of our cup-versus-pail problems because none of the pail
descriptions contains a handle is fixed relation. There remains a danger, however, that our problem solver
will try hard to show that a given pail has a fixed handle even though it already knows that the pail’s
description contains a handle is hinged relation.

Fortunately, however, our system not only repairs recollection trees but also builds new ones that can
serve as censors. In the cup-and-pail example, the censor constructed, expressed as an if-then rule, is quite
simple:

Hinged-handle Censor:

If Handle is hinged
Then Handle is not fixed

Once this censor is created, our system blocks any attempt to show that a handle is fixed, given that
it is hinged. The recollection still recognizes the cups, and fails to recognize the pails, but now the censor
blocks useless effort directed at showing that pails have fixed handles.

Censors are created after our repair program has finished explaining the true-success suspicious rela-
tions. To create censors, our program does a breadth-first reexamination of all the relations in the repaired
recollection tree, looking for precedents that tie the negation of each reexamined relation to a false-success
relation. The resulting explanations establish why the false-success suspicious relations should block
recognition. These explanations, in turn, permit the creation of new censors.

Initially the precedent set is limited to the following to keep explanations as short as possible:

e Precedents in which the negation of the reexamined relation is caused by something. These precedents
constitute the initial top set.

e Those precedents in which one of the false-success suspicious relations causes something. These
precedents constitute the initial bottom set.

Here the idea is to find an explanation for the negation of the reexamined relation that includes at least one
of the false-success suspicious relations along with some or all of the relations that lie in the intersection
of all the successes. If our program finds such a collection of precedents, it creates a new censor from that
collection of precedents.

In the cup-and-pail example, our program reexamines the object is cup relation, looking for a chain
of precedents that link object is not a cup to the suspicious relation, handle is hinged. This reexamination
must fail because there are no precedents in our database that show that something is not a cup.

Eventually, however, our program’s breadth-first reexamination tries to show the handle is not fixed
relation, given the false-success suspicious relation, handle is hinged. At this point, our limited database
provides only one precedent, the briefcase, which finds its way into both the top and bottom sets because
handle is hinged is connected to handle is not fixed by a cause relation. This explains the presence of the
false-success relation and generates the new censor.

In general, when all false-success suspicious relations are incorporated into the revised recollection
tree, the reexamination process stops because everything is completely explained. While false-success
suspicious relations remain, the breadth-first reexamination procedure continues.

There Is a Panoply of Heuristic Choices

The keys to our program’s operation are the isolation of suspicious relations using near-miss groups and the
use of those suspicious relations in reducing the search for an explanation-based repair. In implementing
our program, many choices were decided by heuristic arguments, or lacking anything else, plain simplicity.
Here are some examples:

e Our program could search for the simplest explanation for a suspicious relation according to, say, the

number of precedents involved in the explanation, or the number of links in the causal chains contained
in the precedents, or the total number of links in the causal chain leading from the recollection’s root,

11

through the precedents, to the suspicious relation. For simplicity, we decided to have our program be
content with the first explanation found.

¢ Our program could terminate when just one suspicious relation has been incorporated into the recollec-
tion AND tree or into a new censor. We decided to have our program keep on looking for explanations
for the other suspicious relations, within resource limits, so as to learn as much as possible.

e Our program could use smaller initial top sets when trying to explain true-success suspicious relations.
We decided to include all of the original precedents to retain as much of the old recollection’s AND
tree as possible.

o There are many possible give-up conditions. We have our program give up after two rounds of
precedent-set expansion on the ground that the more precedents involved, the flimsier the argument.

Many Situations May Contribute to Recollection Repair and Censor Creation

Minimally, only two descriptions are required to learn something as a byproduct of analogical problem
solving: an exercise and a precedent. In the cup-recollection repair, many descriptions are involved: there
are five precedents held over from the creation of the original recollection, two true-success situations,
two false-success situations, two new precedents used to revise the recollection, and one precedent used to
create the censor. Evidently, considerable knowledge can be brought to bear, in general:

e Many precedents and previously-generated recollections can contribute to the creation of a new rec-
ollection,

e Many successes and many near misses may be involved in isolating the suspicious relations.

e Many precedents and previously-generated recollections can contribute to a repair or to the creation
of a new censor.

e Many cycles of isolation, repair, and censor creation may be needed to correct all problems.

Failure Stimulates a Search for More Detailed Descriptions

Note that it is the job of a benign teacher to be sure that recognition errors can be traced to suspicious
relations. If there are no suspicious relations, there are two ways to correct the situation:

e First, although the lack of suspicious relations indicates that there is no common explanation for failure,
there may be just a few explanations, each of which is common to a subset of the true successes or
the false successes. The problem is to partition situations into groups, inside each of which there is a
consistent explanation for failure.

o Second, the lack of suspicious relations may indicate that the situations needs to be described at a
finer grain, adding more detail, so that an explicit explanation emerges.

Of these two ways to correct the situation, the more interesting is the one that leads to more detailed
description. Typically, AI programs must be supplied from the beginning with all they need to know.
Here, however, failure to find an explanation could initiate a search for more information.

Boris Katz has suggested a way of narrowing that search by hypothesizing oversights. Suppose, for
example, that we fail to mention that the metal cup in figure 4 has a fixed handle. Then nothing lies in
the intersection set, but the cup examples exhibit many relations, including the handle is fixed, object is
white, and object made-of metal relations, that are not found in any pail description. Accordingly, we
can temporarily assume that these relations are true-success relations, one at a time, looking for a relation
that would enable our program to repair the recollection. Once such a relation is found, we can then
ask the teacher to affirm that the relation holds in all the true-success situations and holds in none of the
false-success situations. In our example, the question posed would be something like “I think the metal
cup’s handle must be fixed. Is it?”

Generalizing the oversight-hypothesizing approach, if the handle is fixed relation appears in some
cups, but in none of the ones that happen to be involved in the near miss group, it still makes sense to test
them with our procedure rather than asking about random relations.

12

Near-Miss Groups Solve an Old Problem

In 1970, Winston showed how the notion of what an arch looks like can be learned from samples and
near misses. At that time, it was necessary to rank the importance of various relations a priori because it
was rare that only one relation would emerge when comparing the current arch model with a near miss.
In figure 8, the near miss can be explained in more than one way. The ambiguity can be resolved by
supplying a second near miss and treating the two near misses as a near-miss group. Figure 9 illustrates
this.

Arch Near Miss

Figure 8. An arch and a near miss. One explanation is that the near miss is not an arch because it loses the supported-by
relations between the lintel and the posts; another is that it is not an arch because it gains a right-of relation between
the lintel and both of the posts.

A Near Miss Another Near Miss

Figure 9. A near-miss group. The only common differences perceived between each of these and an arch is the lack
of supported-by relations between the linte]l and the posts.

Related Work

The work in this section is based mainly on early near-miss oriented learning work [Winston 1970] and
on more recent work on extracting rules from Shakespearean plots {Winston 1980, 1982] and on deducing

13

what cups look like from precedents [Winston et al. 1983]. All of this is described in Artificial Intelligence,
Second Edition [Winston 1984],

The idea of using differences to focus learning resonates with the difference-based reasoning work of
Falkenhainer [1988] in which he uses differences between working devices and nonworking devices, plus
domain knowledge, to deduce why the nonworking devices fail.

One defect of the idea described in this paper is that every concept has to have a name, but in many
of our experiments, the concepts do not correspond well to English words, forcing us to invent awkward,
multiply-hyphenated names. An approach to dealing with this defect is explained in a forthcoming thesis
by Rao.

References

Falkenhainer, Brian [1988], “The Utility of Difference-Based Reasoning,” National Conference on Artificial Intelli-
gence, Saint Paul, Minnesota.

Kratkiewicz, Kendra {1984}, “Improving Learned Rules Using Near Miss Groups,” B.S. Thesis, Department of Elec-
trical Engineering and Computer Science, Massachusetts Institute of Technology, with Winston, Ms. Kratkiewicz
showed that near-miss groups could pull informative differences out of complicated descriptions of historic
conflicts.

Mitchell, T. M., R. M. Keller, and S. T. Kedar-Cabelli {1986], “Explanation-based Generalization: A Unifying View,”
Machine Learning, vol. 1, no. 1.

Winston, Patrick Henry [1970], “Learning Structural Descriptions from Examples,” Ph.D. Thesis, Massachusetts Insti-
tute of Technology. The arch example is introduced, along with the notion of near misses. A shortened version
is in The Psychology of Computer Vision, edited by Patrick Henry Winston, McGraw-Hill Book Company, New
York.

Winston, Patrick Henry [1980], “Learning and Reasoning by Analogy,” Communications of the Association for Com-
puting Machinery, vol. 23, no. 12.

Winston, Patrick Henry [1982], “Learning New Principles from Precedents and Exercises,” Artificial Intelligence
Journal, vol. 19, no. 3.

Winston, Patrick Henry [1984), Ariificial Intelligence, Second Edition, Addison-Wesley. Analogical reasoning using
precedents is described in detail Chapter 12. Ignore the description of the matcher—there are much better
matchers now.

Winston, Patrick Henry, Thomas O. Binford, Boris Katz, and Michael R. Lowry [1983], “Learning Physical Descrip-
tions from Functional Definitions, Examples, and Precedents,” National Conference on Artificial Intelligence,
Washington, DC. Also described in Artificial Intelligence, Second Edition, Addison-Wesley, by Patrick Henry
Winston, 1984.

N S D

SE DL BT e I a8l F T AT 0F T e S PAGE Mhen L ara Frierec

REPORT DOCUMENTATION PAGE BEFORE COMPLETING E o rm

! REPORT NUMBER 2. GOVTY ACCESSION NO[3. RECIPIENT'S CATALOG NUMBER
AIM 1231 /¢7
ZZ8 7/
4 TITLE fand Subtitle) $. TYPE OF REPORT & PERIOD COVERED
Repairing Learned Knowledge Using Experience memorandum

§. PERFORMING ORG. REPORT NUMBER

7. AUTHORY(s) 8. CONTRACT OR GRANT NUMBER(e)
Patrick H. Winston and Satyajit Rao N0O0014-85-K-0124
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT PROJECT, TASK

L . AREA & WORK UNIT NUMBERS
Artificial Intelligence Laboratory

545 Technology Square
Cambridge, MA 02139

1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPOAT DATE
Advanced Research Projects Agency May 1990
1400 Wilson Blvd. 13, NUMBER OF PAGES
Arlington, VA 22209 14
14 MON!TQRING AGENCY NAME & ADDRESS(/f dilferent from Controliing Oflice) 18. SECURITY CLASS. 7o/ this report)
Office of Naval Research UNCLASSIFIED
Information Systems
Arlington, VA 22217 TSa. EEE&;S?{'C‘"°“’°°'"°“‘m“°

16. DISTRIBUTION STATEMENT (of this Report)

Distribution is unlimited

17. DISTRIBUTION STATEMENT (of tHe ebatract entered in Block 20, I different from Repert)

18. SUPPLEMENTARY NOTES

None

19. KEY WORDS (Continue on reverse side il necessary and identily by block number)

learning precedent-bdased learning
knowledge repair explanation-based learning
near-miss groups

20. ABSTRACT (Continue on reverse aide If necessary and ideniity by block number)

Explanation-based learning occurs when something useful is retained
from an explanation exercise, usually an explanation of how some par-
ticular problem can be solved. If explanation is based on sound theory,
then the learning process speeds up future problem solving, but the
scope of the learning-augmented theory remains unchanged. In con-
) ' ’ (continued on back)

DD , 55’3, 1473 Eeoition oF 1 nov €sis ossoLETE UNCLASSIFIED
S/N 0:02-014- 6601 |

SECURITY CLASSIFICATION OF THIS PAGE (When Dets Bnterec

Block 20 continued:

trast, if explanation is based on fragmentary and often defective ex-
perience, explanation can be a guide to when that experience can be
deployed. Thus one kind of explanation provides speed up; another
kind of explanation provides new knowledge. Experience is not sound
theory, however, and wrong things may be learned accidentally, as sub-
sequent failures will likely demonstrate. In this paper, we describe ways
to isolate the facts that cause failures, ways to explain why those facts
cause problems, and ways to repair learning mistakes. In particular,
our program learns to distinguish pails from cups after learned knowl-
edge about cups leads a recognition program to think pails are cups.

CS-TR Scanning Project
Document Control Form Date: [0 /J7 /94

Report# _ Al =123

Each of the following should be identified by a checkmark:
Originating Department:

M Artificial Intellegence Laboratory (Al)
O Laboratory for Computer Science (LCS)

Document Type:

[0 Technical Report (TR) X Technical Memo (TM)
O oOther:;

Document Information Number of pages: 4

Not to include DOD forms, printer intstructions, etc... original pages only.

Originals are: Intended to be printed as :
X Single-sided or [0 Single-sided or
O Double-sided X Double-sided
Print type:
[J Typewriter [] Offset Press g Laser Print
[C] inkJetPrinter [} Unknown [other:

Check each if included with document:

(' DOD Form 086 [Funding Agent Form [0 cover Page
O spine *(Pes) O Printers Notes O Photo negatives
O Other:

Page Data:

Blank PageS(by page number):

Photographs/Tonal Material ey page numben:

Other (note description/page number):
Description : Page Number:

Scanning Agent Signoff:
Date Received: /0 /&7/ 74 Date Scanned: /0 /X7 /¢ Date Returned: _/{ /83194

Scanning Agent Signature: %,{L/Ae WV QMQJV

Rev 9/84 DS/LCS Document Control Form cstrform.vsd

