MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

A1 Memo No. 1256 October 1990

Supporting Reuse and Evolution in Software Design
by
Yang Meng Tan

Abstract

Program design is an area of programming that can benefit significantly from
machine-mediated assistance. A proposed tool, called the Design Apprentice
(DA), can assist a programmer in the detailed design of programs. The DA sup-
ports software reuse through a library of commonly-used algorithmic fragments,
or clichés, that codifies standard programming. The cliché library enables the
programmer to describe the design of a program concisely. The DA can detect
some kinds of inconsistencies and incompleteness in program descriptions. It au-
tomates detailed design by automatically selecting appropriate algorithms and
data structures. It supports the evolution of program designs by keeping ex-
plicit dependencies between the design decisions made. These capabilities of the
DA are underlaid by a model of programming, called programming by succes-
sive elaboration, which mimics the way programmers interact. Programming by
successive elaboration is characterized by the use of breadth-first exposition of
layered program descriptions and the successive modifications of descriptions.

A scenario is presented to illustrate the concept of the DA. Techniques for
automating the detailed design process are described. A framework is given
in which designs are incrementally augmented and modified by a succession of
design steps. A library of clichés and a suite of design steps needed to support
the scenario are presented.

Copyright (© Massachusetts Institute of Technology, 1990

This report describes research done at the Artificial Intelligence Laboratory of the Massachusetts Institute
of Technology. Support for the laboratory’s artificial intelligence research has been provided in part by the
following organizations: National Science Foundation under grant IRI-8616644, Advanced Research Projects
Agency of the Department of Defense under Office of Naval Research contract N00014-85-K-0124, IBM,
MCC, NYNEX, and Siemens.

The views and conclusions contained in this document are those of the author, and should not be
interpreted as representing the policies, neither expressed nor implied, of these organizations.



Contents

The Design Apprentice

1.1 Overview. . . . . . . . ¢ i i i i i e e ..
1.2 The Design Process . . . .. ............
1.3 Automating Detailed Design . . . ... ......
1.4 Current Status and Route Map . . ... ... ..
Scenario
21 Whatthe DAKnows . ...............
2.2 Paragraph Justification . . . ... ... ... ...
23 Scenario . .. ........ ... ...,
2.4 Scene 1: Initial Program Description .. ... ..
2.5 Scene 2: Elaboration and Interaction . ... ...
2.5.1 Elaboration ... ..............
25.2 Interaction..................
253 OutputCode ................
2.6 Scene 3: Explaining Design Rationale . . . . . ..
2.7 Scene 4: Adding a Guideline . . . .........
2.8 Scene 5: A Correction . ..............
2.9 Scene 6: The Complete Description . . ... ...
The Design Process
3.1 What the Programmer Does . . . ... ... ...
3.2 Whatthe DADoes . ................
3.3 A Framework for Automating Detailed Design . .
3.3.1 An Example of Automatic Detailed Design
3.3.2 Further Challenges . ... ... ......
3.4 Recording Design Dependencies . . ... ... ..

Representing and Manipulating Design Artifacts
4.1 ThePlan Calculus . ................

42 CAKE ... ... .. ... . ...
43 SERIES ... ..... ... ... . . .. .....
44 The Cliché Library . ... ... ..........

i

...........

ooooooooooo

ooooooooooo

ooooooooooo

...........

...........

-----------

...........

-----------



CONTENTS

4.4.1 Abstract Data Types . . . . ... .. ... ...........
4.4.2 Taxonomy of Related Clichés . ... ..............
4.4.3 Going Beyond the Plan Calculus . ...............
4.4.4 Families in the Cliché Library . . ... ... ... .......
4.5 Representing Design Artifacts . ... ... ...............
4.5.1 Translating Input Descriptions into Plans. . . ... ... ...
4.5.2 Finer Points about Representing Designs . . . ... ... ...
4.5.3 Representing Design Dependencies . ... ...........
4.6 Manipulating Design Artifacts . . . ... ... .. ...........
4.6.1 DesignSteps. . . . . . .. ...
4.6.2 Propagating Constraints . . . .. ... .............
4.6.3 When is a Design Complete? . . . . ... ............
Related Work
51 KBEmacs .. ... ... .. ...,
5.2 Deductive Synthesis. . . . ... .....................
5.3 Program Transformation . ... .....................
5.4 Very High Level Languages . ......................
5.5 Program Generators . ... ............... .0 .......
5.6 Algorithm Design . . . ... ... ....................

oooooooooooooo

5.7 Selection of Data Structures and Algorithms

Future Work and Conclusions
6.1 Conclusions

--------------------------------

iii

63
63
68
68
69
69
70
70
71
71
83
86

88
88
89
89
90
91
92
92

94



CONTENTS

iv



CONTENTS v

Acknowledgments

I am very grateful to my thesis advisor and mentor, Dick Waters, for guiding me in
this work patiently. His steady moral support, advice and insights help me through
thick and thin. Chuck Rich has been a constant source of ideas for me; I want to
thank him for his time and patience. Many of the good ideas reported in this work
originate from Dick and Chuck; the bad ones are all mine. My office-mates, Howard
Reubenstein and Linda Wills are invaluable moral and technical supports for me,
so are visiting Professor Rudolph Seviora and other members of the Programmer’s
Apprentice group: Yishai Feldman, Paul Lefelhocz, and Bob Hall.

My apartment-mates, Shail Gupta and Vishak Sankaran, generously share their
Indian condiments which help spice up my life, and in return, I share my ups and
downs with them. I like to thank the following for their camaraderie: Kah Kay Sung,
Choon Phong Goh, Siang-Chun The, Sandiway Fong, and Beng Hong Lim.

My family is always there for me with patience and support, despite the great
distance apart. My elder brothers, especially Yang Whye, have worked hard and
provided for the family during many difficult years, keeping us alive and well. I am
mindful of their contributions to everything I do.

Tze-Yun Leong is always there for me. I am deeply indebted to her for the caring
support, enduring patience, confidence and love she has given me all along. I want
to thank her for her assistance in preparing the illustrations. Thanks, Tze-Yun, for
making everything in life looks better.

This publication is a revised version of Supporting Reuse and Evolution in Soft-
ware Design, a report submitted to the Department of Electrical Engineering and
Computer Science on August 31, 1990 in partial fulfillment of the requirements for
the degree of Master of Science.



CONTENTS

vi



Chapter 1

The Design Apprentice

Software is difficult to construct and maintain reliably and cost-effectively. The in-
creasing cost of reliable software needs to be countered by increases in programmer
productivity. In this thesis, we explore one approach toward increasing the pro-
ductivity of programmers. We put forward a new programming paradigm that is
knowledge-based and assistant-based.

This paradigm is explored in the context of a proposed design support system,
called the Design Apprentice (DA), which can assist the programmer in detailed de-
sign. The DA supports software reuse through a library of commonly-used algorithmic
fragments, or clichés. The input language of the DA, together with the cliché library,
enables the programmer to describe the design of a program concisely. The DA au-
tomates program design by automatically selecting appropriate algorithms and data
structures. It can also detect some kinds of inconsistency and incompleteness in pro-
gram descriptions. It supports the evolution of program designs by keeping explicit
dependencies between the design decisions made.

In addition to the practical value of the DA, the codification of programming
knowledge required in building the DA helps explore the adequacies of formalisms for
representing and reasoning about programming knowledge. It can also serve as a step
toward understanding how programmers approach detailed design based on their past
experience.

1.1 Overview

This work is part of the Programmer’s Apprentice (PA) project [27] whose goal is
to design an intelligent software tool to support expert programmers in all aspects
of software development. As a research strategy, most of the focus has been put
on the two ends of the software development process: a Requirements Apprentice [24]
acquires software requirements from informal descriptions, and the Design Apprentice
assists the programmer in the detailed design and synthesis of programs.

Figure 1-1 summarizes our rationale for the design of the DA and the technologies



CHAPTER 1. THE DESIGN APPRENTICE 2

Higher Software Productivity

Easier Maintenance Faster Development Better Reliability
Concise Automatic Detailed Support for Design Error Detection
Descriptions Design Changes
Cliches Automated Reasoning Design Knowledge

with Explicit Dependencies

Figure 1-1: Motivation and Features of the DA.

that can be used to build the DA. The second row of the figure shows the subgoals
which contribute to higher software productivity: easier software maintenance, faster
software development, and more reliable software. The key capabilities of the DA that
support these subgoals (shown in the third row of Figure 1-1) are discussed below.

Concise and Comprehensible Program Descriptions: The DA will allow
the programmer to describe a program in a concise and comprehensible manner.
The key advantage of using short and familiar descriptions to specify programs is
that the descriptions are easier to write and to understand. The succinctness of the
description eases the task of validation, and its familiarity helps to make specifications
self-evidently correct. This support can contribute to faster software development and
easier software maintenance.

Automatic Detailed Design: Much of detailed design of programs is routine,
yet error-prone. With the DA, the programmer need not specify a program to the
fullest details. The DA will be able to select appropriate data structures and algo-
rithms to implement a given program description. The automation of detailed design
will relieve the programmer from such mundane chores so that more attention can
be paid to the high-level design of programs. This capability can contribute to more
efficient software development and maintenance.



CHAPTER 1. THE DESIGN APPRENTICE 3

Support for Design Changes: Specifications in the real world evolve over
time. To support program evolution, the DA will allow programmers to retract design
decisions and make changes incrementally, and in any order. The DA provides support
for changes by keeping explicit dependencies between decisions. This helps program
maintenance, because past design rationale are accessible, and the impact of a design
change can be studied.

Error Detection: Program descriptions are frequently incomplete and often
inconsistent. The DA will be able to deal with some of this incompleteness in program
descriptions by detecting them and informing the user. It will also be able to detect
some kinds of inconsistencies and occasionally, offer fixes. This capability can help
to improve reliability and quicken software development.

These capabilities of the DA can be supported by the technologies shown in the
last row of Figure 1-1.

Clichés: A key component of the DA is a library of clichés, which codifies its
knowledge of algorithms and design. A cliché contains three kinds of parts: parts
that are fixed, parts that can vary from one use to another, and constraints on the
parts. The variable parts are called roles. Many of the commonly-used programming
concepts that comprise the technical vocabulary of programming can be viewed as
clichés. Clichés connote frequent reuse. In software engineering frequent reuses of
specifications and code are desirable, because they are more likely to be bug-free
and because we are more familiar with them than with newly-written ones. The
programmer will describe an intended program to the DA in terms of clichés in the
library. Through the use of clichés, the programmer can describe a program in a
compact and understandable way. To support detailed design, the library can contain
clichés codifying different algorithms and data structures and how they can be used
to implement more abstract specifications. Errors can be detected when constraints
of different clichés interact to produce inconsistencies.

Automated Reasoning with Explicit Dependencies: A deductive engine
provided by an automated reasoning system serves as a medium for the DA to propa-
gate design constraints. These constraints help limit design choices in the automatic
design process and allow for error checking. Explicit dependencies between the con-
straints, if maintained, can be used to support design changes in the DA. Dependencies
between design decisions made in the DA can be encoded as constraints so that design
decisions can be retracted or re-installed when their supporting decisions are removed

or added.

Design Knowledge: Design knowledge guides the selection of algorithms and
data structures. It also indicates how design decisions depend on each other. This is
needed to determine dependencies between design decisions to support design changes.
Design knowledge also includes design strategies for making progress in detailed de-
sign. Given that design is an under-constrained problem, heuristics are needed to
automate detailed design.



" CHAPTER 1. THE DESIGN APPRENTICE 4

1.2 The Design Process

Underlying the capabilities of the DA is a process model that mimics the way pro-
grammers interact. In particular, an expert programmer typically describes, using
some intermediate level vocabulary, to a junior programmer what is needed. Such
descriptions typically specify some input-output behavior and the high-level design of
a program intended to meet this specification. The junior partner may ask the senior
programmer questions to clarify doubts. They collaborate in the programming task
in a co-operative manner.

Communication between programmers seldom takes place at the level of formal
logical specifications. Rather, effective communication relies on a large body of shared
experience or knowledge. Much of the shared knowledge between programmers can
be codified as clichés and used by the DA acting as an assistant to a programmer.
Clichés serve as convenient contexts for bringing related concepts into the description
of programs. They serve as compact description tools.

With the DA, a programmer describes an intended program using program de-
scriptions that refer to clichés and indicate the relationships between them. The
high-level design of the program can be provided through explicit control clichés.
The programmer can also indicate abstract properties of data and functions, and
provide implementation guidelines. In addition, specific design steps to be carried
out can also be given.

This style of program description is characterized by the use of breadth-first ex-
position of layered program descriptions and the successive modification of descrip-
tions. Starting out with a few main clichés, a programmer works outward, describing
each use of the clichés in more detail. This process is similar to the interaction be-
tween human programmers when a complicated computer program is being described.
Frequently, to facilitate understanding, programs are described at different levels of
details, in a layered fashion. We termed this process programming by successive elab-
oration.

In this process, the descriptions given by the programmer need not be strict re-
finements of program descriptions already said. Rather, earlier program descriptions
may be retracted, modified, superseded, redefined, and re-stated. Viewed as struc-
tured natural language discourse, this process of program description elaboration
encompasses the program refinement approach and goes beyond it.

The DA supports a fundamental shift of focus in the programming process. Dif-
ferent programming tools view programs in different lights. The DA interacts with
the programmer in terms of design decisions. Adding new design decisions, changing
old ones, and removing contradictory decisions are the currencies of this process. In
contrast, a text editor helps a programmer edit programs as text, a syntax-directed
program editor edits programs as syntax trees, and an algorithmic structure editor
[33, 34] supports editing in terms of the algorithmic structure of programs. The DA
maintains design dependencies among design decisions made, and helps focus the



CHAPTER 1. THE DESIGN APPRENTICE 5

Input
Program Program
Description Feedback  Text

T 1

Cliche
Library DA

Design Record

Figure 1-2: The Design Apprentice.

programming process on the decision structure of programs.

1.3 Automating Detailed Design

The DA uses the Plan Calculus formalism [25] to represent program designs as plans.
Steps one takes in designing programs are codified as design steps. These design
steps manipulate and transform program designs represented as plans. Given the
design of a program, there may be many different well-motivated design steps the DA
can take. Design heuristics can be used to choose among the alternatives. Design
steps also record the decisions that support their applicability and make explicit the
dependencies among the subsidiary design decisions they engender.

Figure 1-2 shows the inputs and outputs of the DA. The DA has a cliché library
which codifies the shared knowledge between the programmer and the DA. The cliché
library contains knowledge about commonly-used algorithms and data operations on
modeling types such as set and sequence. These allow the programmer to specify the
program in a familiar and concise form, and support the selection of algorithms and
data structures.

The input program description given to the DA is translated into plans and serves
as the initial design. The DA goes through a design cycle during which design steps
are successively taken to transform the initial design into a final design. The output
code is extracted from the final design that results from this design process. A design
record documents the design process. Besides program text, the DA also outputs
interactive warning and error messages whenever it encounters errors in the program
description.

A key component of the DA is a hybrid knowledge representation and reason-
ing system called CAKE [9, 26] which implements the Plan Calculus and a number



CHAPTER 1. THE DESIGN APPRENTICE 6

of reasoning facilities including a truth maintenance system (TMS). CAKE provides
the infrastructure on which the needed programming knowledge is represented and
reasoned about. CAKE is used to propagate constraints and to maintain design depen-
dencies. Constraints help to limit the design, detect contradictions, and propagate
design information along data flow arcs. CAKE also supports automatic retraction of
assertions and their consequents, and contradiction detections.

Design is an under-constrained problem. The DA uses a strategy that forges ahead
by making assumptions and tries to complete the design as far as possible. Whenever
a dead end in the design process is reached, the DA retracts some of the assumptions
that led to the dead end. This strategy is especially effective in the presence of in-
complete knowledge and incomplete specifications because many analysis techniques
require either complete knowledge or complete specifications. Explicit dependencies
between design decisions are essential to ease the book-keeping required by this strat-
egy. These dependencies are installed by the design steps which transform designs.
Examples of design steps include steps that select algorithms, select data structures
to implement data types, select implementations for mappings, coerce types, pre-
compute mappings, and cache mappings.

1.4 Current Status and Route Map

This thesis reports on progress made in building the DA. To illustrate the features of
the DA, a detailed scenario has been created. This scenario is shown in Chapter 2. The
conceptual design of the DA has been advanced based on work towards implementing
the scenario. A library of clichés, mostly codified in the Plan Calculus, has been
created to support the scenario. The design steps required to bridge the gap between
the input description and the target code have been worked out.

In Chapter 3, we describe the design process the DA supports from the perspective
of the programmer who uses it. In the same chapter, we also describe our initial idea
of how the DA can automate the process of detailed design. There, we also indicate
some challenges that need to be addressed. Chapter 4 shows how the knowledge
needed to achieve the target scenario along with the different design artifacts can be
represented and used. Work related to this thesis is discussed in Chapter 5. Chapter
6 suggests directions for the future, and summarizes the key results of our work.



Chapter 2

Scenario

The following scenario shows how a programmer can use the DA to develop a program
for paragraph justification. The objective of a paragraph justification program is to
break up paragraphs into lines as evenly as possible: to avoid narrow, cramped lines
as well as to avoid widely-spaced, loosely-set lines. In this scenario, it is assumed that
the DA does not know about paragraph justification. It knows about some general-
purpose programming clichés and some graph algorithms. The example program is
chosen because we think it is a realistic and non-trivial program. There is sufficient
complexity in the specification of the problem to challenge both the program descrip-
tion language as well as the synthesis of the program. Also, the clichés that are used
to motivate this example are commonly used concepts, familiar to many people with
a programming background. In addition, the chosen scenario uses some clichés which
are represented as program generators. This hints at how program generators can be
incorporated into the DA.

Below, we first provide a brief description of the clichés and the kinds of knowl-
edge we expect the DA to know about. We then describe the paragraph justification
problem and its solution. Next, we sketch the scenario in which a description of the
solution to the paragraph justification problem is given to the DA.

2.1 What the DA Knows

The DA is expected to know various pieces of knowledge about programming. Some of
these general clichés are described informally and briefly below. They are described
in more details where they are used.

Tokenize: Tokenize is a cliché that converts a sequence of characters into a
sequence of tokens. It is represented as a program generator. The grammar to be
parsed is specified using regular expressions. It is similar to the popular UNIX facility
LEX. Some auxiliary concepts and functions defined by the tokenize cliché includes:
the content of a token, the type of a token, and the set of all tokens of a specified
pattern type.



CHAPTER 2. SCENARIO 8

Build Graph: The build-graph cliché captures the concept of building a graph
from some given inputs. It embodies standard ways of constructing graphs. It has
a number of roles. The most important ones include the following: the input-to-
node-map role expects a function that maps the input items to the nodes of the
output graph, the arc-test role is to be filled in by a predicate which decides whether
two given input items should be connected in the output graph, and the node-test
role is analogous to the Arc-Test role but works for nodes instead. The build-graph
cliché has many other different roles because there are many ways of building a graph.
Different graphs motivate different graph construction procedures which are captured
in different build-graph clichés. Many roles in this cliché are optional; the user need
not specify all of them in order to use it.

Single-Source Shortest Path: This cliché takes in a graph and finds a single-
source shortest path. The output of this algorithm may be the length of the shortest
path or the shortest path itself, or both. There are a few different shortest path
algorithms, including those by Dijkstra, Bellman-Ford, and one for directed acyclic
graphs (7). For some of these algorithms, there are different data structures which
can be used and they may yield different running times. The output of the algorithm
may also be represented in different ways. This cliché captures some of the knowledge
involved in selecting the appropriate algorithm based on the characteristics of the
input graph.

Prorate: The prorate cliché codifies the concept of proration, and embodies the
different ways of prorating an amount among a set. In the simplest case, it prorates
an amount evenly among all members of the given set.

There are some subtleties involved in the seemingly simple proration cliché, e.g.,
when the total shares of the members does not divide the amount to be prorated,
where should the “remainder” go? It could be distributed at random, or in the
case of a given ordered set, it could be distributed so as to favor earlier elements or
later elements, or to favor elements from both ends. This cliché abstracts from the
detailed proration computation and allows the user to specify needs in terms of the
abovementioned intermediate-level concepts. Prorate obeys the Non-Shareholders get
nothing principle: it takes care to prorate only among the members of the given set
which have non-zero shares in the proration process. In addition, some proration
constraints are explicitly kept: there can be no negative shares. Here, we restrict the
variations of Prorate to those that run in linear time. More sophisticated schemes of
proration that involve sorting may take longer.

Segment: The segment cliché takes a sequence of items and breaks it up into
a sequence of sequences of items. This cliché handles the beginning item and the
end item of the sequence as boundary items when needed. This is a useful cliché in
segmenting sequences, because it encapsulates some details about how to handle the
end points appropriately.

Ascii-File: If a file is an AsciI file, it contains only characters belonging to the
ASCII character set. The cliché encodes knowledge about the AsciI characters; for



CHAPTER 2. SCENARIO 9

example, that there are 128 characters in the ASCII character set, and that the space
character and the return character belong to the blank-printable character subset.
Familiar concepts like the non-blank printable character set, the printable character
set, and the control character set are codified in this cliché.

Concatenate: The concatenate cliché is a program generator that generates an
abstract program for concatenating arbitrary numbers of input arguments. Some in-
put arguments may be known to be non-sequences, in which case, they are coerced
into sequences statically by the program generator. The program generated is ab-
stract in the sense that it is made up of calls to the abstract functions such as insert
which adds an element to the front of an abstract sequence, endcons which adds an
element at the back of the sequence, and abstract-append which appends two abstract
sequences.

2.2 Paragraph Justification

The paragraph justification example is inspired by the way the TEX program breaks
a paragraph into lines [15]. As a document typesetting program, TgX performs sub-
stantially more functions than paragraph justification. This example adopts TEX’s
model of paragraph typesetting but omits much of its complexity.

A paragraph is viewed as a sequence of word tokens and gap tokens. Word tokens
have fixed widths, whereas the size of gap tokens may be stretched to fill up any
slack. Each gap token has a width property and a stretchability property. The latter
property indicates the relative amount a gap can be stretched. Each gap token in
the sequence is a potential point to break a line. The word tokens and gap tokens
between two adjacent break points form a line.

A graph is constructed from the sequence of tokens that represents the paragraph
with the following intentions in mind: nodes of the graph are to be made from gap
tokens from the input sequence, they represent places where the paragraph may be
broken. A starting gap token is added to start the paragraph out, and a trailing gap
token is added to end the paragraph. These two gap tokens are break points in the
final typeset paragraph. An arc represents a line since the end point nodes are break
points in the paragraph. The arcs of the graph are constructed in such a way that
paths from the start token to the end token represent different ways of breaking the
paragraph into lines.

One way to construct such a graph is to make every gap token a node and build a
complete graph out of the resultant node set. Some nodes and arcs can be excluded
in the construction of the graph as an optimization. We can define a metric on any
two input gap tokens in the token sequence. For efficiency, we make an arc between
two nodes corresponding to two gap tokens only if the metric on the two gap tokens is
within some thresholds. Now, suppose we have chosen the metric such that it is high
when the lines are loosely set, and that it is low when the lines are close to the normal



CHAPTER 2. SCENARIO 10

(optimal) settings. Since every arc has a corresponding pair of input gap tokens, we
can view this metric as a measure of quality imposed on the arcs which indicates how
well the lines will look in the typeset paragraph. Thus, we can view the problem
of typesetting the paragraph as an instance of the shortest path problem. The path
from the start token to the end token that has the smallest metric corresponds to the
best way to break the paragraph into lines.

Specifically, we can define the metric to be the number of extra spaces to be
distributed among the available gaps. The ideal situation is when the metric is 0 for
all the lines. Since we cannot shrink the spaces in our model, this becomes the lower
bound of the threshold on the metric. The upper bound represents the maximum
number of extra blank spaces we will allow in each gap on a typeset line. To compute
this metric, we need to compute the total number of gap tokens and the extra spaces
remaining in a line.

Shortest path problems have standard efficient algorithms. In particular, the
graph which arises from the paragraph justification model turns out to be rooted,
directed, and acyclic.

After the shortest path has been computed, each arc in the path represents a line.
For each line, we can prorate the extra spaces among the gap tokens and output the
words and gaps in order.

In the scenario, we assume fixed width fonts. Hence gap tokens cannot be shrunk
and they can only be stretched by fixed quanta.

2.3 Scenario

To aid in viewing the scenario, the following typographical conventions are used:
keywords of the program description language are in uppercase, cliché names are in
initial capitals, and changes in the input description and the output code between
the steps of the scenario are underlined where appropriate.

The exact form of the description language is not important to the tasks at hand.
Some means for the programmer to specify the clichés to use, some means to fill in
the roles of the clichés, and some means to specify logical constraints should suffice.
The major forms in the input language used in the scenario are described below:

e (LET ({(Variable Value)}*) { Form}*): This creates a local scope in which local
variables can be named and manipulated. LET* is similarly defined except that
the bindings of variables are performed sequentially rather than in parallel.

e (FOR-EACH (({Variable} {Sequence})*) { Forms}*): This is an explicit iteration
construct. The {Forms} are ordered.

o (DESIGN {Name} ({Variable}*) {Forms}*): This form defines the Name func-
tion, which takes the given argument list, to be the forms. { Forms} is a sequence
of statements and/or assertions.



CHAPTER 2. SCENARIO 11

o (REDESIGN {Name} ({ Variable}*) { Forms}*): This is identical to DESIGN except
that it indicates to the DA that Name has been defined before, and that the
current definition supersedes the previous one.

o (WITHIN {Name} ({Variable}*) { Forms}*): This form is used to provide addi-
tional information about a cliché named Name used elsewhere in the program de-
scription. The optional argument list { Variable}* allows the arguments passed
to the use of the Name cliché to be used locally within the current description.
{Forms} is a sequence of assertions. (For the purpose of this exploration, we
ignore the need to refer to different uses of the same cliché in the same program.
Some conventions need to be adopted to allow the user to distinguish different
uses.)

o (MODIFY-WITHIN {Name} ({Variable}*) {Forms}*): This form is identical to
WITHIN except that it indicates to the DA that the instance of Name used earlier

is being modified. It supersedes any previous descriptions if they prove to be
contradictory.

o (DECLARE {Assert-Specs}*): This form can occur anywhere in the description.
Assert-Specs are logical predicates which are asserted to be true by this form.

o (Operator &rest Arguments): This is an application of the operator to the given
arguments. Operator may be clichés known to the DA or other new user-supplied
functions.

® (IS Role Form): This asserts that the Role is filled in with Form. This form
occurs inside WITHIN forms, the Role is interpreted with respect to the cliché
described by the WITHIN form.

e (== Form-1 Form-2): This asserts that Form-1 is logically equivalent to Form-2.

o (INSTANCE {type} {Keyword Form}*): This instantiates an object of the given
type. There may be mappings whose domain is type. If F is a mappings whose
domain is type, then :F is a valid keyword which can be used to associate the
result of F on the instance with the instance itself.

2.4 Scene 1: Initial Program Description

The scenario starts with a programmer describing to the DA the high-level sketch of
the paragraph justification program. This is done using specific clichés and explicit
control specifications as shown in Figure 2-1.

The (incomplete) program description in Figure 2-1 mirrors some of the English
description an expert programmer might provide to a junior programmer. The use of



CHAPTER 2. SCENARIO 12

(DESIGE justify (infile outfile)
(DECLARE (Ascii-File infile) (Ascii-File outfile))
(FOR-EACH ((paragraph (Segment (Tokenize infile) ’para-break)))
(FOR-EACH ((line (Single-Source-Shortest-Path (Build-Graph paragraph))))
(lineout outfile line))
(Output outfile #\newline)))

(DESIGN lineout (outfile line)
(Prorate (extras line) line)
(FOR-EACH ((token line))

(Output outfile (Content token)))
(Output outfile #\newline))

(IMPLEMENTATION-GUIDELINES
(PREFER time-efficiency)
(IGNORE error-checking))

Figure 2-1: Initial Program Description of Justify.

commonly-known programming concepts make the program description concise and
comprehensible, making it is easy to read and understand.

In the use of Tokenize in the description, infile is viewed as a sequence of
characters. The mention of the Tokenize cliché indicates to the DA that the output
from (Tokenize infile) is a sequence of tokens. The above design specifies that
this sequence is to be segmented at para-breaks (tokens). (At this point, para-break
is not yet defined.) The Build-Graph cliché, as used above, is given a sequence of
tokens as input from which an output graph is computed. The design says that a
single-source shortest path algorithm should be run on the graph. The output of the
single-source shortest path algorithm may be the distance of the shortest path or the
shortest path itself, or both. Since the output is used in an iteration construct in the
given design, it clearly cannot be the cost of the optimal path. Hence the DA assumes
that the result to be returned is an optimal path in the graph.

The 1ineout design says that the extras of the given line are first to be prorated
among the tokens on the given line. (At this point, the function extras is not yet
defined.) After the proration, the tokens on the line are output to outfile in order,
and each line is ended by a newline character.

The programmer also gives the DA some implementation guidelines: the program
should be efficient in its running time and error-checking should be ignored.

The DA is unable to generate any code based on the above description because it
is too incomplete. When the programmer requests the DA to produce code, the DA
informs the programmer accordingly as shown in Figure 2-2.

The dialog in Figure 2-2 illustrates the error detection capability of the DA. The
DA issues a warning when it detects that the output of Prorate is not used in the
description. The DA is following a general heuristic: an unused output is indicative
of an omission in the program description. It also indicates that several functions are



CHAPTER 2. SCENARIO 13

>>> (Write-Code ’justify)

DA> WARNING: The output of Prorate is not used.
WARNING: The following are undefined: para-break, extras.
Tokenize: Incomplete specifications, please define the token types.
Build-Graph: Incomplete specifications.
Single-Source-Shortest-Path: Incomplete specifications. Please
provide the Start-Node, the End-Node and the Distance-Function.

Figure 2-2: Dialog between the DA and the Programmer.

undefined and that the specifications for a number of the clichés used are incomplete.
In the case of the single-source shortest path cliché, it also indicates the mandatory
unfilled roles. Here, the DA is helping to catch any incompleteness in the specification.
In doing so, it is also guiding the programmer in the design, indicating places where
further design is to be done.

2.5 Scene 2: Elaboration and Interaction

In this scene the programmer elaborates on the main clichés used in the design.
The additional descriptions are shown in Figure 2-3. Using clichés, the programmer
sketches succinctly the main operations needed for the paragraph justification task
in the initial description. Together with the last scene, this scene illustrates the style
of program design the DA is encouraging: present a program in a layered fashion,
stating the main tasks using familiar clichés, and then developing each of the uses
incrementally. In this scene, the programmer also moves to correct some of the
mistakes and omissions made in the previous program description.

2.5.1 Elaboration

In lineout, the programmer distinguishes between two kinds of tokens: gap tokens
and non-gap tokens. For gap tokens, the number of space characters to be output is
equal to the width of the token. In Tokenize, the programmer defines the grammar
to be scanned with the help of the == operator. BOF and EOF are markers for the
beginning and the end of file. Para-breaks are blanks with at least two newlines, and
the beginning and the end of a file are also para-breaks. (Blanks are either spaces or
newlines.) Words are any non-empty sequence of non-blank printable characters. Any
non-empty sequence of blanks is a gap. Once these patterns are defined, a number of
auxiliary functions are automatically constructed from the tokenize cliché: the Gap-
Token type is now understood to be the set of gap tokens, and Para-Break-Token and
Word-Token are similarly defined. A few filter functions are also defined: Gap-Set



CHAPTER 2. SCENARIO 14

(REDESIGN lineout (outfile line)
(LET* ((token-seq (token-sequence line))
(prorated (Prorate (extras line) token-seq)))
(FOR-EACH ((amount prorated) (token token-seq))
(IF (gap-token-p token)
(Output outfile #\space :number
(+ amount (width token)))

(Output outfile (Content token))))

(Output outfile #\newline))

(WITHIN Tokenize ()
(== para-break
(regular-expression
“BOF (#\space | #\newline)* | (#\space | #\newline)* EOF |
(#\space)* #\newline (#\space)* #\newline (#\space | #\newline)#*"))
(== word (regular-expression "(Non-Blank-Printable-Characters)+"))
== gap (regular-expression "(#\space | #\newline)+")))
(WITHIN Build-Graph (paragraph)
(LET ((new-paragraph (Concatenate head paragraph tail)))
(IS (Domain Input-To-Node-Map) (gap-set new-paragraph))
(DECLARE (Directed (Output Build-Graph))
(Forward-Wrt-Input (Output Build-Graph)))
(IS Root-Item head)
(IS Arc-Test
(Lambda ((xn token) (yn token))
(LET ((tsequence (Sequence-In-Between xn yn new-paragraph)))
(AND (Node (Input-To-Node-Map xn))
(>= (ratio tsequence) 0)
(<= (ratio tsequence) *Threshold*)))))))
(WITHIN Prorate ()
(IS Proportional-To stretch) (IS Favor End))
(DESIGN ratio (seq) (/ (extras seq) (total-stretch seq)))
(DESIGE extras (seq) (- *Line-Length# (total-length seq)))
(DESIGN total-stretch (seq) (Sum (Map stretch seq)))
(DESIGN total-length (seq) (Sum (Map width seq)))
(DESIGN stretch (token) (IF (Gap-Token-P token) 1 0))
(DESIGN width (token)
(IF (Word-Token-P token) (Number-0f-Characters token)
(IF (Member (Last-Character (Preceding-Item token))
P\ #\7 #\.)) 2 1))
== (Domain stretch) (Output Tokenize))
== (Domain width) (Output Tokenize))
DESIGN token-sequence (arc)
(Sequence-In-Between (Node-To-Input-Map (Source-Node arc))
(Node-To-Input-Map (Destination-Node arc))))
head (INSTANCE ’gap-token :width *Para-Indent* :stretch 0))
tail (INSTANCE ’gap-token :width 0 :stretch 10000))

(
(
(

~~
([ ]

Figure 2-3: Additional Program Descriptions of Justify.



CHAPTER 2. SCENARIO 15

takes in a sequence of tokens and returns only the gap tokens, similarly for Word-Set
and Para-Break-Set.

The programmer specified, in build-graph, that a new paragraph is to be formed
from the old one by prefixing it with a leading gap, head, and suffixing it with a
trailing gap, tail. head serves as the root of the graph to be constructed from the new
paragraph. By making the width of head equal to the desired paragraph indentation,
kept in the global variable, *para-indent*, it can also handle paragraph indentation.
To ensure that the last line of a paragraph is broken properly the stretch of tail is set
to infinite (10000 here simulates infinity). This will force the algorithm to break the
paragraph at tail. It should be noted that the function that is used to fill the input-
to-node-map role is by default partial. This is so because in general we do not expect
all inputs to be mapped onto nodes. From the paragraph justification domain, it is
known that the resulting graph is a forward graph with respect to the input sequence
from which the graph is constructed: all arcs point forward with respect to the order
of the input sequence. The programmer also specifies that the domain of Input-To-
Node-Map is the gap set in the new paragraph. Finally the programmer gave the DA
an explicit test for arcs given two input tokens. The test says that if the first argument
token, xn, has a corresponding node (Input-To-Node-Map xn) and if the ratio of the
subsequence between the the two argument tokens is between 0 and *threshold*,
then there exists an arc from (Input-To-Node-Map xn) to the node corresponding to
the second argument token. Note that this implies that the second argument token,
under Input-To-Node-Map, is mapped to a node.

The programmer indicated in the descriptions that the proration is to be done
proportional to the stretch of the tokens. The programmer also instructed the DA
to favor the end of the line when prorating the line. This means that the DA should
first try to allocate “extras” to the end tokens of the given line. This is the desired
behavior since we want tail (the last token on the last line) to take up all the excess
spaces on the last line. By default, the Prorate cliché favors the beginning elements
of the input sequence.

The programmer also specifies how the various functions should be computed.
The total length of a sequence is simply the sum of the widths of the sequence. Other
functions are similarly defined.

A subtle point in the high-level design of the program should be noted here: the
last token on a segment is given a stretch of 10000 so as to force the algorithm to
make it a break point. Prorate will give such a gap token all the slack.

2.5.2 Interaction

With the additional information, the DA proceeds to analyze the descriptions. At
this point, para-break has been defined in the Tokenize cliché as a particular type
of token, and the extras function has been explicitly defined. The interaction that
follows is given in Figure 2-4 to Figure 2-7.



CHAPTER 2. SCENARIO 16

DA> Constraint Violation: The #\newline character is not an Ascii
character. Note: The following are standard ways of defining the
#\newline character in the Ascii character set:

(1) Define #\newline to be #\linefeed followed by #\return.
(2) Define #\newline to be #\return.

>>> Use(2).

DA> Constraint Violation: The characters possible in the input to
Tokenize must be spanned by the characters in the definitions of
token types. How should the remaining Ascii characters be handled?

Note: The following are standard ways of handling the remaining Ascii
characters:

(1) Ignore them.
(2) Treat them as #\Space.
(3) Flag them as errors.

>>> Explain,.

DA> The characters possible in the input to Tokenize must be spanned by
the characters in the definitions of token types because
(a) The characters possible in the input to Tokenize is the
Ascii character set.
(b) The characters in the definitions of token types in Tokenize consists
of the Non-Blank-Printable-Characters plus #\return plus #\space.
(c) "Infile" is an Ascii file.
(d) An Ascii file contains the Ascii character set.
(e) The Ascii character set is not spanned by the
Non-Blank-Printable-Characters plus #\return plus #\space.

>>> Use(2)

Figure 2-4: A Constraint Violation and an Explanation.



CHAPTER 2. SCENARIO 17

The dialog in this scene illustrates the interactive nature of the design process
that the DA supports through its active error-checking capability. In Figure 2-4 the
DA notes that the newline character found in the regular expressions of Tokenize is
not an ASCII character. The newline character is a Common Lisp character which is
frequently used to denote the sequence of ASCII characters: Linefeed Return, or the
Ascll Return character. These methods of recovering from the constraint violation
are codified in the Ascii-File cliché. The programmer chooses to define the newline
character to be synonymous with the return character.

Next, the DA notes that the given description of Tokenize is incomplete because
it does not handle all ASCII characters. This violation arose from the interaction of
constraints which came from two sources. First, the Ascii-File cliché has a constraint
that defines the ASCII character set. Second, the Tokenize cliché imposes a constraint
that the character set has to be fully accounted for, and it contains knowledge about
how the remaining characters may be handled. The programmer then asked the
DA to explain the question posed. Here, the DA shows its rudimentary explanation
capability: it pulls out the dependencies supporting the different assertions that led
to the constraint violation at hand.

DA> WARNING: ratio is undefined when total-stretch = 0.

>>> (REDESIGN ratio (seq)
(LET ((extras (extras seq)))
(IF (= extras 0) O
(LET ((total-stretch (total-stretch seq)))
(IF (= total-stretch 0) 10000
(/ extras total-stretch))))))

Figure 2-5: A Constraint Violation: Partial Function.

The DA next notices that ratio as currently given is undefined if the total-stretch
of the sequence is 0, as shown in Figure 2-5. If it could prove to itself that total-
stretch of the sequences passed to it is never 0, then it would not have bothered
the programmer with such a warning. Here, since it is unable to do so, it reminded
the programmer of a commonly-known potential pitfall. The programmer resolved
the warning by defining the function to have a value of 0 when extras is 0, and to
have a large value of 10000 when extras is not 0 and total-stretch is 0. The first case
allows for the situation when a long word takes up the entire line, and the second case
prevents the build-graph algorithm from building arcs with non-zero extra spaces and
no gaps to which to distribute the spaces.

In Figure 2-6 the DA complains that the default value for the preceding-item
computation is nil. The output of this function, however, is passed to the last-
character function which expects its input to be a string. This is a possible runtime
error. The programmer decides to change the design accordingly to specifically check
for this case before last-character is invoked.



CHAPTER 2. SCENARIO 18

DA> WARNING: By default Preceding-Item return Nil for the first
element in the implicit sequence. Last-Character expects a string.
There is a possibility of runtime error.

>>> (REDESIGN width (token)

(IF (word-token-p token) (Number-0f-Characters token)
(LET ((previous-token (Preceding-Item token)))
(IF previous-token
(IF (Member (Last-Character previous-token)
TR\ #\? #\.))
21)
0

Figure 2-6: A Constraint Violation: A Possible Run-Time Error.

DA> In Single-Source-Shortest-Path, what should the start node, the
end node and the distance function be?

>>> (WITHIN Single-Source-Shortest-Path (graph)

(IS Start-Node (Root graph)) (IS End-Node (Sink graph))
(IS Distance-Function ratio))

DA> Type Conflict: The domain of Ratio is of type Sequence but the

domain of Distance-Function in Single-Source-Shortest-Path is of type
Arc.

>>> (WITHIN Single-Source-Shortest-Path (graph)
(IS Distance-Function arc-ratio))

DA> WARNING: arc-ratio is undefined.
>>> (DESIGN arc-ratio (arc) (ratio (token-sequence arc)))

Figure 2-7: An Omission in Program Descriptions and a Type Conflict.



CHAPTER 2. SCENARIO 19

The DA notes in Figure 2-7 that the single-source shortest path description is in-
complete since the start node, the end node and the distance function to be minimized
were not given. The programmer then provides the DA with the needed information.

2.5.3 Output Code

Based on the additional descriptions given, the DA generates the code shown in Fig-
ure 2-8 to Figure 2-13. For the sake of brevity, the code for Internal-Get-Token
is not shown. Note that this could be built by the popular UNIX utility, LEX [17].
Some important salient features of the output code are noteworthy here: the size
of the output code is some four times larger than the input program descriptions.
The output code is quite complicated, at least when compared to most toy programs
used to exercise automatic programming techniques. There are also multiple mod-
ules in the output program. Some mappings are pre-computed in the output code
even though they were not so indicated by the user: token-width, token-next and
token-stretch. The arc-ratio mapping is cached while ratio is computed so that
it is efficiently implemented by a look-up operation rather than re-computed.

Given the program description, there are many detailed design choices left to the
DA. Some of the main choices available to the DA are described and the reasons why
the DA picked a particular implementation are briefly explained.

Tokenize: The Tokenize cliché allows the programmer to define the patterns to
look for in the input sequence of characters. It has knowledge about how to implement
a tokenize procedure. For simplicity, we are not showing the various ways tokenization
can be achieved in the current scenario. We assume a non-deterministic finite state
automata implementation of tokenization.

Independent of the tokenization algorithm used, there are lower level design choices
that need to be made before a program can be constructed. For example, the physical
representation of a token may vary. The sequence of tokens can also be represented
in many ways: it could be implemented as a list, a vector, a doubly-linked list,
a chain-shelf or kept implicit in some iteration structure. In [14] Knuth calls an
output-restricted deque a shelf. A deque is a linear list for which all insertions and
deletions are made at the ends of the list. Deletions are restricted from one end of an
output-restricted deque. Here we call a chain of structures which is output-restricted
a chain-shelf.

In the scenario, the DA chooses to represent a token, by default, as a Lisp structure.
A chain-shelf is used to represent the sequence of tokens since such a data structure
efficiently supports the adding of tokens from both the front and the back of the
sequence, and scanning subsequences of a token sequence. All these operations are
needed in the program.

Build-Graph: The Build-Graph cliché allows the programmer to describe the

abstract properties of the graph desired and of the input, in addition to the specific
roles needed to construct such a graph. The DA is told that the output graph is



CHAPTER 2. SCENARIO 20

forward-wrt-input. This special condition on the output graph implies that the output
graph is acyclic. This lemmas is recorded in the build-graph cliché. The user also
specified that the output graph is directed. Thus the DA deduces that the output is
a DAG. Based on the property of the given arc-test, and the special properties of the
graph to be built, the build—rooted-forward—dag-with-weak-left-am-test algorithm was
picked. This algorithm, however, leaves open the implementation of the graph. The
DA then used some codified knowledge about graph construction: the implementation
of graphs is influenced by the specific processing to be performed on them. In the
description, the DA is told that a single-source shortest path algorithm is to be run
on the output graph from Build-Graph. Shortest path algorithms typically relax the
arcs of the graph in some order or use the adjacency list information of nodes. At
this point, the DA left the implementation choice of the graph open: it could be an
arc set or an adjacency list since they are equally efficient.

Single-Source-Shortest-Path: As described in an earlier section, there are
many different shortest path algorithms applicable here. In the scenario, the DA
selects an algorithm, named DAG-SSSP, that is suitable for directed acyclic graphs
(DAGS), and which is the fastest applicable algorithm. This selection relies on the
fact that the input graph is a DAG which, in turn relies on the user assertion that
the output graph of build-graph is forward-wrt-input. The DAG-sssp algorithm re-
quires that the arcs of the graph be topologically sorted first before the relaxation
step. Here the best choice the DA found is one where the graph is implemented as
an ordered arc set. In such a case, the arc set is already topologically sorted by the
Build-Graph algorithm chosen, and hence the topological sorting step in the shortest
path algorithm for DAGS can be omitted.

Prorate: The DA selects the prorate-favor-end algorithm and computes the pro-
ration proportional to the given stretch function.

Segment: The DA selects the segment-chain-into-chain-shelves algorithm and
computes the proration proportional to the given stretch function.

Output: The DA chooses the Lisp primitive write-char function to implement
the use of the output cliché in the justify design. The other uses of the output cliché
are turned into write-n-chars, write-string and write-char in lineout, in order
of their uses in the lineout design.

Mappings: From the program description, the DA deduces that width and stretch
are mappings on tokens. They may be explicitly stored or computed on demand. If
we decide to store them, we can store them in various ways, in vectors, hash tables,
or fields on the structure of the token. Here, the DA pre-computes these mappings
and stores them in the fields of the token structure.

Similarly, the DA finds the following mappings on arcs: source, destination, and
arc-ratio. The DA chooses to represent an arc as a Lisp structure and the functions on
arcs as fields of the structure, similar to the implementation of the token. Note that
since total-length and total-stretch of an arc is not needed in later computation,



CHAPTER 2. SCENARIO 21

they are computed on demand.
Two local mappings in the shortest path algorithm, min-distance and best-previous-
arc are represented as local vectors by the DA.

Preceding-Item: The computation underlying this cliché expects a current item
and an underlying sequence of items in which to search for the item just before the
given item. In this use, the DA takes the underlying sequence to be the domain se-
quence associated with the top-level function that uses it, by default. In general, the
only way to find the item preceding a given one in a sequence is to scan the whole se-
quence, matching the given item with every item of the sequence. In the output code,
the DA chooses to pre-compute the width mapping, and since the pre-computation re-
quires scanning the entire domain sequence, the DA uses a series function previous to
pick out the previous item during the scanning. previous does this by remembering
the previous item during the scanning process so it is done efficiently.

A Brief Guide for Reading the Output Code

The output code to be generated by the DA uses the Common Lisp SERIES macro
package [35]. The series macro package is used because it contains a rich set of
powerful iteration abstractions that allow the DA to avoid reasoning about loops
directly. A few notes about the series functions used in the output code are also
sketched here to help the reader understand the output code. Detail specifications of
the series functions can be obtained from [35].

The beginning forms in Figure 2-8 show the main data structures used to represent
a number of types implicitly specified in the given program descriptions: tokens,
nodes, arcs, and graphs. Their fields are needed to implement several mappings
defined on their respective types.

The Justify Lisp function is similar to the program description given except that
the DA inserts code to coerce the input AscII file into an output stream. Iterate is
a series iteration construct, similar to Dolist in Lisp, but it works on series instead
of lists. Scan is a series function that scans a list into a series. Like Justify, the
structure of Lineout mirrors its program description.

The next function shown in Figure 2-8 is Build-Graph. It shows the extra to-
kens being made and appended to the input paragraph being passed on an auxiliary
function, Internal-Build-Graph. Choose-If is a series function that selects out of
a series those elements that passed the predicate test provided. Scan-Chain-Shelf
scans a chain-shelf into a series; it needs the successor function of the chain-shelf
by which the successor of an element in the chain-shelf can be obtained. Token-
Chain-Shelf-Endcons and Token-Chain-Shelf-Cons are operations to add tokens to
a token sequence represented as a chain shelf, from the front and from the back,
respectively. In Token-Sequence, Scan-Chain is a macro that scans subsequences
of a sequence represented as a chain when two elements of the sequence are given.
The keywords indicate whether the end elements themselves should be included. In



CHAPTER 2. SCENARIO 22

Extras, Collect-Sum is a series function that sums up a series of numbers. #M is a
series reader macro that expands into its Mapping macro which maps a function over
a series, similar to the Mapcar Lisp function but instead, it returns a series.

The first function in Figure 2-9 shows Tokenize. It is a series function as indicated
by an explicit series declaration. It relies on the Internal-Get -Token abstraction to
return a series of tokens as a result of tokenizing the input file. It is a non-deterministic
finite state automata implementation of tokenization, which is elided for brevity.

Tokenize precomputes three token mappings: width, stretch, and the successor
function of the output token sequence of tokenization. The second function in the
figure shows the code for Segment. This function is written in terms of series
primitives which are explained in [35]. It segments a sequence represented as a chain
into a series of chain-shelves according to the given predicate.

Figure 2-10 shows the actual build graph algorithm chosen by the DA, rendered as
Internal-Build-Graph. The main structure of the function is derived from the
build—rooted-forward-dag-with-weak-leﬂ-am-test cliché codified in the cliché library.
Collect-Fn is a series function that supports the concept of reducing a series of
data to some non-series data, similar to the Lisp Reduce function. It is a collector
with internal state. It takes four arguments. The initial state is provided by the
second argument in the form of a function, and how the states are to be transformed
from one state to another is specified as the third argument. The first argument
indicates the type of values returned by the third argument. The fourth argument is
a series of values. For example, for the inner Collect-Fn in Int ernal-Build-Graph,
its internal state has five data that are passed from one iteration to another, its second
argument is a function with six inputs, the first five are the data in the internal state
from the last iteration, and the sixth is the corresponding element in its input series.

Figure 2-11 shows the Single-Source-Shortest-Path function which comes from
the path-of-dag-sssp cliché. In that function, Scan-Fn-Inclusive is used. It is a
series function that produces a series starting with some non-series seed datum. Its
last argument, an end-test predicate, indicates when the scanning should stop. The
syntax of Scan-Fn-Inclusive syntax is similar to that of Collect-Fn. In the figure,
it is used to extract the optimal path at the end of the relaxation step in the shortest
path algorithm.

Figure 2-11 also shows the prorate-favor-end algorithm chosen by the DA. The
Collecting-Fn used in Prorate is a series function that is similar to Collect-Fn
but it returns the intermediate data values in the state as series.

All the auxiliary functions used in the above discussion are shown in the last two
figures, Figure 2-12 and Figure 2-13. The Scan-Chain macro in Figure 2-13 uses the
series function Scan-Fn. This is identical to Scan-Fn-Inclusive discussed earlier
except that unlike the latter, which returns the last datum that passed its end-test
predicate, Scan-Fn does not. Subseries is a series function that returns a sub-series
of the input series, similar to the Subseq function in Lisp.



CHAPTER 2. SCENARIO 23

; main data structures used by Justify

(Defstruct (Token-Struct (:Conc-Name Nil))
Token-Type Token-Next Token-Content Token-Width Token-Stretch)

(Defstruct (Node-Struct (:Conc-Name Nil))
Node-Index Node-Token Node-Next)

(Defstruct (Arc-Struct (:Conc-Name Nil))
Arc-Source Arc-Destination Arc-Next Arc-Ratio)

(Defstruct (Graph-Struct (:Conc-Name Nil))
Graph-Root Graph-Arc-Sequence Graph-Node-Set-Size Graph-Sink)
(Defun Justify (Input-File Output-File)
;i Justify: String X String -> Nil
(With-Open-File (Outstream Output-File :Direction :Output)
(Iterate ((Paragraph (Segment (Tokenize Input-File)
#’Para-Break-Token-P)))
(Iterate ((Line (Scan (Single-Source-Shortest-Path
(Build-Graph Paragraph)))))
(Lineout Outstream Line))
(Write-Char #\Return Outstream))))

(Defun Lineout (Outstream Line-Arc)
; Lineout: Stream X Arc -> KNil
(Let* ((Token-Seq (Token-Sequence Line-Arc))
(Prorated (Prorate (Extras Token-Seq) (Collect Token-Seq))))
(Iterate ((Amount Prorated) (Token (Token-Sequence Line-Arc)))
(If (Gap-Token-P Token)
(Write-N-Chars #\Space (+ (Token-Width Token) Amount) Outstream)
(Write-String (Token-Content Token) Outstream))))
(Write-Char #\Return Outstream))
(Defun Build-Graph (Paragraph)
(Let* ((Head (Make-Token-Struct :Token-Type ’:Gap :Token-Width
*Para-Indent* :Token-Stretch 0))
(Tail (Make-Token-Struct :Token-Type ’:Gap :Token-Width 0
:Token-Stretch 10000)))
(Internal-Build-Graph Head
(Choose-1If
#’Gap-Token-P
(Scan-Chain-Shelf
#’Token-Next
(Token-Chain-Shelf-Endcons
Tail (Token-Chain-Shelf-Cons Head Paragraph)))))))
(Defun Token-Sequence (Arc)
(Declare (Optimizable-Series-Function))
(Scan-Chain #’Token-Next (Node-Token (Arc-Source Arc)) :Include-Start Nil
:Before (Node-Token (Arc-Destination Axc))))
(Defun Extras (Tokens)
(Declare (Optimizable-Series-Function) (Series Tokens))
(- *Line-Length* (Collect-Sum (#Mtoken-Width Tokens))))

Figure 2-8: Initial code created by the DA (part 1).



CHAPTER 2. SCENARIO

(Defun Tokenize (Input-File)
(Declare (Optimizable-Series-Function))
; Justify: String -> (Series Token)
(Let» ((Tokens (Internal-Get-Tokens Input-File))
(Tokens-1
(Mapping ((Current-Token Tokens)
(Previous-Token (Previous Tokens Nil)))
(When Previous-Token
(Setf (Token-Next Previous-Token) Current-Token))
Current-Token))
(Tokens-2
(Mapping ((Current-Token Tokens-1))
(Setf (Token-Stretch Current-Token)
(If (Gap-Token-P Current-Token) 1 0))
Current-Token)))
(Mapping ((Current-Token Tokens-2)
(Previous-Token (Previous Tokens-2 Nil)))
(Setf (Token-Width Current-Token)
(If (Word-Token-P Current-Token)
(Length (Token-Content Current-Token))
(It Previous-Token
(If (Member (Last-Character
(Token-Content Previous-Token))
Y\ #\7 #\.))
2 1) 0)))
Current-Token)))

(Defun Segment (Tseries Predicate)
; Specific plan used: Segment-Chain-Into-Chain-Shelves
Segment: (Series T) X (T -> Bool) -> (Series (Pair T T))
This segments the input series into segments separated by input
elements that pass the predicate test. Each segment is represented
by a pair of the first element and the last element of that segment.
Input should be an explicit series of chain. Output is a series of
chain-shelves (having the same implicit successor function as
; the input chain). Returns empty series if input series is empty.
(Declare (Optimizable-Series-Function) (Series Tseries)

(0ff-Line-Port Tseries))
(Producing (Outs) ((Ins Tseries) Item Previous

Node (Result Nil) (Done-Flag Nil))

we we we we wo we

(Loop
(Tagbody
L (When Done-Flag (Terminate-Producing))
(Setq Previous Item)
(Setq Item (Next-In Ins (Setq Done-Flag T Node T) (Go S)))
(Setq Node (Funcall Predicate Item))
S (When (Null Result)
(If Node (Go L))
(Setq Result (Cons Item Nil)))
(When (Not Node) (Go L))
(Next-Out Outs (Progi (Rplacd Result Previous)
(Setq Result Nil)))))))

Figure 2-9: Initial code created by the DA (Part 2).



CHAPTER 2. SCENARIO 25

(Defun Internal-Build-Graph (Head Paragraph)
; Specific plan used: Build-Rooted-Forward-Dag-With-Weak-Left-Arc-Test
; Build-Graph: (Pair Token Token) -> Rooted-Dag
(Declare (Optimizable-Series-Function) (Series Paragraph))
(Multiple-Value-Bind (Arcs Queue Index Current-Node)
(Collect-Fn
*(Values TT T T)
#’(Lambda ()
(Let ((Root (Make-Node-Struct :Node-Token Head :Node-Index 0)))
(Values Nil (Make-Chain-Shelf Root Root) 1 Nil)))
#’(Lambda (Arcs Queue Index Current-Node Current-Token)
(Multiple-Value-Bind (Arcs Queue Index Current-Token
Current-HNode)
(Collect-Fn ’(Values TT T T T)
#’(Lambda () (Values Arcs Queue Index Current-Token Nil))
#’(Lambda (Arcs Queue Index Current-Token
Current-Node Queue-Node)
(Let* ((Queue-Token (Node-Token Queue-Node))
(Tokens (Scan-Chain #’Token-Next
Queue-Token :Include-Start
Nil :Before Current-Token))
(Total-Stretch
(Collect-Sum (#Mtoken-Stretch Tokens)))
(Extras (Extras Tokens))
(Ratio (If (= Extras 0) 0
(If (= Total-Stretch 0) 10000
(/ Extras Total-Stretch)))))
(When (And (>= Ratio 0) (<= Ratio *Thresholdx*))
(When (Null Current-Node)
(Setq Current-Node
(Make-Node-Struct
:Node-Token Current-Token
:Node-Index Index))
(Setq Index (+ Index 1))
(Setq Queue (Node-Chain-Shelf-Endcons
Current-Node Queue)))
(Let ((Arc (Make-Arc-Struct
:Arc-Source Queue-Node
:Arc-Destination Current-Node)))
(Setf (Arc-Ratio Arc) Ratio)
(Setq Arcs (Arc-Chain-Shelf-Endcons Arc Arcs)))))
(Values Arcs Queue Index Current-Token Current-Node))
(Scan-Chain-Shelf #’Node-Next Queue))
(Values Arcs Queue Index Current-Node)))
Paragraph)
(Make-Graph-Struct :Graph-Sink Current-Node
:Graph-Root (Chain-Shelf-Head Queue)
:Graph-Node-Set-Size Index
:Graph-Arc-Sequence Arcs)))

Figure 2-10: Initial code created by the DA (part 3).



CHAPTER 2. SCENARIO 26

(Defun Single-Source-Shortest-Path (Graph)
; Specific plan used: Path-0f-Dag-Sssp
; Single-Source-Shortest-Path: Graph -> (Series Arc)
(Let* ((Root (Graph-Root Graph)) (Sink (Graph-Sink Graph))
(Size (Graph-Node-Set-Size Graph))
(Min-Distance (Make-Array Size))
(Best-Previous-Arc (Make-Array Size)))
(Iterate ((Index (Scan-Range :Below (Graph-Node-Set-Size Graph))))
(Setf (Svref Min-Distance Index) *Infinity*))
(Setf (Svref Min-Distance (Node-Index Root)) 0)
(Iterate ((Arc (Scan-Chain-Shelf #’Arc-Next
(Graph-Arc-Sequence Graph))))
(Let* ((Destination-Index (Node-Index (Arc-Destination Arc)))
(Distance-Via-Node (+ (Svref Min-Distance
(Node-Index (Arc-Source Arc)))
(Arc-Ratio Arc))))
(It (> (Svref Min-Distance Destination-Index) Distance-Via-Node)
(Setf (Svref Min-Distance Destination-Index) Distance-Via-Node
(Svref Best-Previous-Arc Destination-Index) Arc))))
(Breverse

(Collect
(Scan-Fn-Inclusive T
#’(Lambda () (Svref Best-Previous-Arc (Node-Index Sink)))
#’(Lambda (Arc) (Svref Best-Previous-Arc
(Node-Index (Arc-Source Arc))))
#’(Lambda (Arc) (Eq (Arc-Source Arc) Root)))))))

(Defun Prorate (Amount Items)
; Specific plan used: Prorate-Favor-End
; Prorate: Number X (List Items) -> (Series Number)
; takes in a list of shares and returns a series of the amount
; prorated across the shares favoring the end. if all shares are
; zero the whole amount goes on the first share. the only time the
; sum of the output is not equal to amount is when there are no shares
; and therefore no output.
(Declare (Optimizable-Series-Function) (Series Shares))
(Let ((Total-Shares (Collect-Sum (#MToken-Stretch (Scan Items)))))
(Collecting-Fn ’(Values Integer Realnum Realnum)
#’(Lambda () (Values 0 Amount Total-Shares))
#’(Lambda (Last-Share Unallocated-Amount Remaining-Shares Share)
(Declare (Ignore Last-Share))
(Let ((Allocation
(If (= Remaining-Shares Share) Unallocated-Amount
(Floor (* Unallocated-Amount Share)
Remaining-Shares))))
(Values Allocation (- Unallocated-Amount Allocation)
(- Remaining-Shares Share))))
(#MToken-Stretch (Scan Items)))))

Figure 2-11: Initial code created by the DA (part 4).



CHAPTER 2. SCENARIO 27

i these are pre-defined functions available to the DA:

(Defun Last-Character (String)
; Last-Character: String -> (*0r Character Nil)
(Let ((Index (1- (Length String))))
(If (> Index -1) (Char String Index))))
(Defun Write-N-Chars (Char N Stream)
i Write-N-Chars: Stream -> Integer
; works by side-effects.
(Iterate ((I (Scan-Range :Below N)))
(Declare (Ignore I))
(Write-Char Char Stream)))

; the next 3 functions are generated by the Tokenize cliche
; with the given input specs.
(Defun Word-Token-P (Token)

; Word-Token-P: Token -> Bool

(And (Typep Token ’Token-Struct) (Equal (Token-Type Token) :Word)))
(Defun Gap-Token-P (Token)

; Gap-Token-P: Token -> Bool

(And (Typep Token ’Token-Struct) (Equal (Token-Type Token) :Gap)))
(Defun Para-Break-Token-P (Token)

; Para-Break-Token-P: Token -> Bool

(And (Typep Token ’Token-Struct) (Equal (Token-Type Token) :Para-Break)))
(Defun Make-Chain-Shelf (Head Tail) (Cons Head Tail))
(Defun Chain-Shelf-Head (Chain-Shelf) (Car Chain-Shelf))
(Defun Chain-Shelf-Tail (Chain-Shelf) (Cdr Chain-Shelf))
(Defun Scan-Chain-Shelf (Next-Function Chain-Shelf)

; requires chain-shelf to be non-empty

(Declare (Optimizable-Series-Function))

(Scan-Chain Next-Function (Chain-Shelf-Head Chain-Shelf)

:To (Chain-Shelf-Tail Chain-Shelf)))

Figure 2-12: Initial code created by the DA (part 5).



CHAPTER 2. SCENARIO 28

; convenient type declarations that Common Lisp lacks (useful names)
(Deftype Realnum () ’(0r Float Integer))

(Deftype Bool () ’(Member T Nil))

(Deftype Predicate () ’(Function T (Member T Nil)))

(Defmacro Scan-Chain (Next-Function Start &Key (Include-Start T)
(Before Nil Before-P) (To Nil To-P))
;i check to make sure that :before and :to are not both given.
(It (And Before-P To-P)
(Error """}, Scan-Chain: :before and :to cannot be both given."))
(If Include-Start
(If Before-P
‘(Scan-Fn T #’(Lambda () ,Start)
»Next-Function #’(Lambda (X) (Eq X ,Before)))
(If To-P
‘(Scan-Fn-Inclusive T #’(Lambda () ,Start)
sNext-Function #’(Lambda (X) (Eq X ,To)))
‘(Scan-Fn T #’(Lambda () ,Start) sNext-Function #’Null)))
(It Before-P
‘(Subseries
(Scan-Fn T #’(Lambda () ,Start) ,Next-Function
#’(Lambda (X) (Eq X ,Before))) 1)
(If To-P
‘(Subseries
(Scan-Fn-Inclusive T #’(Lambda () ,Start) sNext-Function
#’(Lambda (X) (Eq X ,To))) 1)
‘(Subseries (Scan-Fn t #’(lambda () ,start)
»next-function #’null) 1)))))
(Defun Node-Chain-Shelf-Endcons (Node Node-Chain-Shelf)
(If (Null Node-Chain-Shelf) (Make-Chain-Shelf Node Node)
(Progn (Setf (Node-Next (Chain-Shelf-Tail Node-Chain-Shelf)) Node)
(Make-Chain-Shelf (Chain-Shelf-Head Node-Chain-Shelf) Node))))
(Defun Arc-Chain-Shelf-Endcons (Arc Arc-Chain-Shelf)
(If (Null Arc-Chain-Shelf) (Make-Chain-Shelf Arc Axc)
(Progn (Setf (Arc-Next (Chain-Shelf-Tail Arc-Chain-Shelf)) Arc)
(Make-Chain-Shelf (Chain-Shelf-Head Arc-Chain-Shelf) Arc))))
(Defun Token-Chain-Shelf-Endcons (Token Token-Chain-Shelf)
(If (Null Token-Chain-Shelf) (Make-Chain-Shelf Token Token)
(Progn (Setf (Token-Next (Chain-Shelf-Tail Token-Chain-Shelf)) Token)
(Make-Chain-Shelf (Chain-Shelf-Head Token-Chain-Shelf)
Token))))
(Defun Token-Chain-Shelf-Cons (Token Token-Chain-Shelf)
(If (Null Token-Chain-Shelf) (Make-Chain-Shelf Token Token)

(Progn (Setf (Token-Next Token) (Chain-Shelf-Head Token-Chain-Shel?))
(Make-Chain-Shelf Token

(Chain-Shelf-Tail Token-Chain-Shelf)))))

Figure 2-13: Initial code created by the DA (part 6).



CHAPTER 2. SCENARIO 29

2.6 Scene 3: Explaining Design Rationale

In this scene, the programmer queries the DA about the detailed design of the pro-
gram. The tags on the DA’s output facilitate the interaction between the DA and the
programmer; they allow the programmer to refer to the keys for further explanation.
This scene serves to illustrate the design rationale used by the DA to arrive at the
chosen implementations (see Figure 2-14). There are many explicit design decisions
the DA has to make in order to arrive at the implementation shown earlier; only some
of the more interesting ones are shown here. Since the interaction reproduces some
of the reasons discussed at length in the last section, we shall not elaborate here.



CHAPTER 2. SCENARIO 30

>>> Explain-Design.
DA> The following subsidiary design choices have been made:
1. A structure named Token-Struct is used to represent a Token in Tokenize.
2. A Chain-Shelf is used to represent the token sequence.
3. The Build-Rooted-Forward-Dag-With-Weak-Left-Arc-Test cliche has been
chosen to implement Build-Graph.
4. A structure named Node-Struct is used to represent a Node in the Graph.
5. An ordered arc set has been chosen to represent Graph.
6. The Dag-Sssp cliche has been chosen to implement
Single-Source-Shortest-Path.
7. The Prorate-Favor-End cliche has been chosen to implement Prorate.
>>> Why(3)
DA> The Build-Rooted-Forward-Dag-With-Weak-Left-Arc-Test cliche is chosen
because
(3.1) It is a Build-Graph cliche.
(3.2) It is rooted.
(3.3) It is forward-wrt-input.
(3.4) Its Arc-Test is weak-left.
(3.5) Favor time efficiency.
>>> Why(5)
DA> Graph is represented as an ordered arc-set because:
(6.1) An ordered arc-set can be used to represent the graph.
(6.2) The graph is to be used by Single-Source-Shortest-Path
in which arcs are enumerated.
(5.3) The topological sorting step in the Dag-Sssp algorithm can be
eliminated.
>>> Why(5.3)
DA> The topological-sorting step in the Dag-Sssp algorithm can be
eliminated because:
(6.3.1) The first step in Dag-Sssp enumerates the input arc-set of
Graph in topologically-sorted order.
(6.3.2) The output arc-set of Build-Rooted-Forward-Dag-With-Weak-Left-Arc-Test
is topologically-sorted.
(6.3.3) The output arc-set of Build-Rooted-Forward-Dag-With-Weak-Left-Arc-Test
is the input arc-set of the Dag-Sssp algorithm.
>>> Why(6)
DA> The Dag-Sssp cliche was chosen because:
(6.1) Favor time efficiency.
(6.2) Dag-Sssp is a Single-Source-Shortest-Path cliche.
(6.3) Input graph to Single-Source-Shortest-Path is directed.
(6.4) Input graph to Single-Source-Shortest-Path is acyclic.
(6.5) Host~Efficient(Possible-Implomontations(Sssp)) = Dag-Sssp.
>> Value-Of(Time-Efficiency(Rooted-Dag-Sssp))
DA> DAG-SSSP has time complexity O(m+n) where m is the size of the
arc-set, and n is the size of the node-set.
>>> Why(2)
DA> A Chain-Shelf is used to represent the token sequence because
(2.1) A Chain-Shelf supports the following operations well:
EndCons, Cons and Sequence-In-Between.

Figure 2-14: The Rationale of Automated Design Decisions.



CHAPTER 2. SCENARIO 31

2.7 Scene 4: Adding a Guideline

The programmer observes that local vectors are used to implement the min-distance
and best-previous-arc functions in the shortest path algorithm. The DA tries
to keep information useful to local computations close to those computations. In
this case, the programmer prefers the storage to be distributed among the domain
elements.

(IMPLEMENTATION-GUIDELINES
(PREFER Distributed-Mapping Single-Source-Shortest-Path))

Figure 2-15: Adding a New Implementation Guideline.

Note that in Figure 2-16 and Figure 2-17, the node-index field of node-struct
is no longer used. The only reason why the node-index field was needed in the
earlier scene was so that the min-distance array could be accessed when given a
node. All the relevant information is kept on the node-struct structure itself, and
so the node-index is no longer needed. Similarly, the graph-node-set-size is no
longer needed and is replaced by graph-node-set. The latter is needed in the new
implementation of the two mappings. In the output code, the basic shortest path
algorithm is not changed, only the way the mappings are accessed and modified are
changed.

This scene shows how the user’s implementation guidelines can influence the
choices made by the DA. It also illustrates the use of explicit design dependencies kept
by the DA in order to remove the node-index and graph-node-set-size once they
are no longer useful. It shows the kinds of services the DA can provide in supporting
design changes.



CHAPTER 2. SCENARIO 32

(Defstruct (Node-Struct (:Conc-Name Nil))
Node-Token Node-Next Node-Min-Distance Node-Previous-Arc)
(Defstruct (Graph-Struct (:Conc-Name Nil))
Graph-Root Graph-Arc-Sequence Graph-Node-Set Graph-Sink)
; was Graph-Node-Set-Size
(Defun Single-Source-Shortest-Path (Graph)
3 Specific plan used: Path-0f-Dag-Sssp
(Let ((Root (Graph-Root Graph))
(Sink (Graph-Sink Graph)))
(Iterate ((Node (Scan-Chain-Shelf #’Node-Next (Graph-Node-Set Graph))))
(Setf (Node-Min-Distance Node) *Infinity*))
(Setf (Node-Min-Distance Root) 0)
(Iterate ((Arc (Scan-Chain-Shelf #’Arc-Next
(Graph-Arc-Sequence Graph))))
(Let* ((Destination-Node (Arc-Destination Arc))
(Distance-Via-Node (+ (Node-Min-Distance (Arc-Source Arc))
(Arc-Ratio Arc))))
(If (> (Node-Min-Distance Destination-Node) Distance-Via-Node)
(Setf (Node-Min-Distance Destination-Node) Distance-Via-Node
(Node-Previous-Arc Destination-Node) Arc))))

(Nreverse
(Collect (Scan-Fn-Inclusive T
#’(Lambda () (Node-Previous-Arc Sink))
#’(Lambda (Arc) (Node-Previous-Arc (Arc-Source Are)))
#’(Lambda (Arc) (BEq (Arc-Source Arc) Root)))))))

Figure 2-16: Scene 4: Modified Code (Part 1).



CHAPTER 2. SCENARIO 33

; note that node-index is no longer used.

(Defun Internal-Build-Graph (Head Paragraph)
; Specific plan used: Build-Rooted-Forward-Dag-With-Weak-Left-Arc-Test
(Declare (Optimizable-Series-Function) (Series Paragraph))
(Multiple-Value-Bind (Arcs Queue Index Current-Node)
(Collect-Fn
'(Values T T T T)
#’(Lambda ()
(Let ((Root (Make-Node-Struct :Node-Token Head)))
; no setf of node-index
(Values Nil (Make-Chain-Shelf Root Root) 1 Nil)))
#’(Lambda (Arcs Queue Index Current-Node Current-Token)
(Multiple-Value-Bind (Arcs Queue Index Current-Token
Current-Node)

(Collect-Fn
'(Values TTT T T)
#’(Lambda () (Values Arcs Queue Index Current-Token Nil))
#’(Lambda (Arcs Queue Index Current-Token
Current-Node Queue-Node)
(Let* ((Queue-Token (Node-Token Queue-Node))
(Tokens (Scan-Chain #’Token-Next
Queue-Token :Include-Start
Nil :Before Current-Token))
(Total-Stretch
(Collect-Sum (#Mtoken-Stretch Tokens)))
(Extras (Extras Tokens))
(Ratio (If (= Extras 0) 0
(If (= Total-Stretch 0) 10000
(/ Extras Total-Stretch)))))
(When (And (>= Ratio 0) (<= Ratio *Thresholdx*))
(When (Null Current-Node)
(Setq Current-Node
(Make-Node-Struct
:Node-Token Current-Token))
; no setf of node-index
(Setq Index (+ Index 1))
(Setq Queue (Node-Chain-Shelf-Endcons
Current-Node Queue)))
(Let ((Arc (Make-Arc-Struct
tArc-Source Queue-Node
:Arc-Destination Current-Node)))
(Setf (Arc-Ratio Arc) Ratio)
(Setq Arcs
(Arc-Chain-Shelf-Endcons Arc Arcs)))))
(Values Arcs Queue Index Current-Token Current-Node))
(Scan-Chain-Shelf #’Node-Next Queue))
(Values Arcs Queue Index Current-Node)))
Paragraph)
(Make-Graph-Struct :Graph-Sink Current-Node
:Graph-Root (Chain-Shelf-Head Queue)
:Graph-Node-Set Queue
;_was :Graph-Node-Set-Size Index

:Graph-Arc-Sequence Arcs)))

Figure 2-17: Scene 4: Modified Code (Part 2).



CHAPTER 2. SCENARIO 34

2.8 Scene 5: A Correction

Now that the programmer is satisfied with the description, the output program is run
on a test file. The programmer notices that the beginning of the line is not indented
correctly. Looking at the descriptions once more, the programmer realizes that both
uses of sequence-in-between by default do not include the end points they are given,
and hence the head token is not in the output. The description for Sequence-In-
Between can be changed to include both end points. However, this change will cause
the end gap tokens of internal lines to be output twice: once as the end token of the
previous line and the second time as the begin token of the current line. After some
thinking, the programmer comes up with an idea: four tokens will be added instead
of just head and tail. The programmer renames head and tail to para-head and
para-tail respectively. A new head is placed before para-head and a new tail is
placed after para-tail. Both head and tail will have 0 width and 0 stretch. The
resulting modified code is given in Figure 2-20. The programmer runs the same test
file with the modified program; and this time, the expected result is obtained. The
new result file is shown in Figure 2-21.

Our approach is influenced by our view on the nature of
programming. Hence, before delving into the depths of our
approach, we briefly characterize our view of programming.

Programming is Knowledge-Intensive: Different sources of
knovledge are required. Knowledge of data structures and
algorithms are key components of programming, so are program
structuring techniques, program specification, and knowledge
about the application domain. We believe that much of
the knowledge needed in programming can be codified so
that a computer program can make use of it mechanically.

Requirements Constantly Change: Many changes are constantly
being made to programs due to constantly changing needs.
This is not just evident in Program maintenance but
also during the development process. Program maintenance,
especially for large systems, is difficult, because much
of the design rationale is not written down; and where
it is written down, it is usually not kept up-to-date.

Figure 2-18: The Result File from Justify.



CHAPTER 2. SCENARIO

(MODIFY-WITHIN Build-Graph (paragraph)
(LET ((new-paragraph (Concatenate head para-head paragraph
para-tail tail)))
(IS (Domain Input-To-Node-Map) (Gap-Set new-paragraph))
(DECLARE (Directed (Output Build-Graph))
(Forward-Wrt-Input (Output Build-Graph)))
(IS Root-Item Head)
(IS Arc-Test
(Lambda ((xn token) (yn token))
(LET ((tsequence (Sequence-In-Between xn yn new-paragraph)))
(And (Node (Input-To-Node-Map xn))
(>= (Ratio tsequence) 0)
(<= (Ratio tsequence) *Threshold#*)))))))

(== para-head (INSTANCE ’gap-token :width *Para-Indent* :stretch 0))

(== para-tail (INSTANCE ’gap-token :width O :stretch 10000))
(== head (INSTANCE ’gap-token :width O :stretch 0))
(== tail (INSTANCE ’gap-token :width 0 :stretch 0))

Figure 2-19: Adding Additional New Gap Tokens.

(Defun Build-Graph (Paragraph)
(Let* ((Head (Make-Token-Struct :Token-Type ’:Gap :Token-Width 0
:Token-Stretch 0))
(Para-Head (Make-Token-Struct :Token-Type ’:Gap :Token-Width
*Para-Indent* :Token-Stretch 0))
(Para-Tail (Make-Token-Struct :Token-Type ’:Gap :Token-Width 0
:Token-Stretch 10000))
(Tail (Make-Token-Struct :Token-Type ’:Gap :Token-Width 0
:Token-Stretch 0)))
(Internal-Build-Graph
Head
(Choose-If
#’Gap-Token-P
(Scan-Chain-Shelf
#’Token-Next
(Token-Chain-Shelf-Endcons
Tail
(Token-Chain-Shelf-Endcons
Para-Tail
(Token-Chain-Shelf-Cons
Head (Token-Chain-Shelf-Cons Para-Head Paragraph))))))))

Figure 2-20: Scene 5: Modified Code.

35



CHAPTER 2. SCENARIO

Our approach is influenced by our view on the nature of
programming. Hence, before delving into the depths of our
approach, we briefly characterize our view of programming.

Programming is Knowledge-Intensive: Different sources
of knowledge are required. Knowledge of data structures and
algorithms are key components of programming, so are program
structuring techniques, program specification, and knowledge
about the application domain. We believe that much of the
knowledge needed in programming can be codified so that a
computer program can make use of it mechanically.

Requirements Constantly Change: Many changes are
constantly being made to programs due to constantly changing
needs. This is not just evident in program maintenance but
also during the development process. Program maintenance,
especially for large systems, is difficult, because much of
the design rationale is not written down; and where it is
written down, it is usually not kept up-to-date.

Figure 2-21: New Result File from Modified Justify.

36



CHAPTER 2. SCENARIO 37

2.9 Scene 6: The Complete Description

The DA performs its tasks based on its interpretation of the given program description.
The net cumulative description is maintained by the DA and is given in Figure 2-22
and Figure 2-23. If the programmer had given the DA the final program descriptions,
it would have output the same code shown in the last scene.

(DESIGN justify (infile outfile)
(Ascii-File infile) (Ascii-File outfile)
(FOR-EACH ((paragraph (Segment (Tokenize infile) ’para-break)))
(FOR-EACH ((line (Single-Source-Shortest-Path
(Build-Graph paragraph))))
(lineout outfile line))
(Output outfile #\return)))

(DESIGHN lineout (line output-file)
(LET* ((token-seq (token-sequence line))
(prorated (Prorate (extras token-seq) token-seq)))
(FOR-EACH ((amount prorated) (token token-seq))
(IF (Gap-Token-P token)
(Output output-file #\space :number
(+ (Width token) amount))
(Output output-file (Content token))))
(Output output-file #\return)))
(VITHIN Tokenize ()
(== para-break
(regular-expression
"BOF (#\space | #\return)* | (#\space | #\return)* EOF |
(#\space)* #\return (#\space)* #\return (#\space | #\return)*"))
(== word (regular-expression "(Non-Blank-Printable-Characters)+"))
== gap (regular-expression "(#\space | #\return)+"))
(Treat others #\space))
(WITHIN Build-Graph (paragraph)
(LET ((new-paragraph (Concatenate head para-head paragraph
para-tail tail)))
(IS (Domain Input-To-Node-Map) (Gap-Set new-paragraph))
(DECLARE (Directed (Output Build-Graph))
(Forward-Wrt-Input (Output Build-Graph)))
(IS Root-Item Head)
(IS Arc-Test
(Lambda ((xn token) (yn token))
(LET ((tsequence (Sequence-In-Between xn yn new-paragraph)))
(And (Node (Input-To-Node-Map xn))
(>= (Ratio tsequence) 0)
(<= (Ratio tsequence) *Threshold*)))))))

Figure 2-22: Program Description of Justify (Part 1).



CHAPTER 2. SCENARIO

(IMPLEMENTATION-GUIDELINES

(PREFER Time-Efficiency)

(IGNORE Error-Checking)

(PREFER Distributed-Mapping Single-Source-Shortest-Path))
(WRITE-CODE °justify)
(WITHIN Prorate ()

(IS Favor End)

(IS Proportional-To stretch))

(VITHIN Single-Source-Shortest-Path (graph)

(IS Start-Node (Root graph))

(IS End-Node (Sink graph))

(IS Distance-Function arc-ratio))
(DESIGN arc-ratio (arc) (ratio (token-sequence arc)))
(DESIGN extras (seq) (- *Line-Lengthx (total-length seq)))
(DESIGN ratio (seq)

(LET ((extras (extras seq)))

(IF (= extras 0) 0
(LET ((total-stretch (total-stretch seq)))
(IF (= total-stretch 0) 10000
(/ extras total-stretch))))))

(DESIGN total-length (seq) (Sum (Map width seq)))

(DESIGN total-stretch (seq) (Sum (Map stretch seq)))

(== para-head (INSTANCE ’gap-token :width *Para-Indent* :stretch 0))
== para-tail (INSTANCE ’gap-token :width O :stretch 10000))

== head (INSTANCE ’gap-token :width O :stretch 0))

== tail (INSTANCE ’gap-token :width O :stretch 0))

(DESIGN stretch (token) (IF (Gap-Token-P token) 1 0))

(DESIGN width (token)
(IF (Word-Token-P token) (Number-0f-Characters (Content token))
(LET ((previous-token (Preceding-Item token)))
(IF previous-token
(IF (Member (Last-Character (Content previous-token))
T\ #\7 #\.)) 2 1)
0))))

== (Domain stretch) (Output Tokenize))
== (Domain width) (Output Tokenize))

(DESIGN token-sequence (arc)
(Sequence-In-Between (Node-To-Input-Map (Source-Node arc))
(Node-To-Input-Map (Destination-Node arc))))

Figure 2-23: Program Description of Justify (Part 2).

38



Chapter 3

The Design Process

In this chapter we describe the design process the DA supports. In Section 3.1 we
describe the design process as seen by a user of the DA, explaining and motivating
the style of interaction between the user and the DA. In Section 3.2 we describe a
framework which can support the capabilities of the DA. In Section 3.3 we describe
our current idea of how the DA can automate detailed design. In Section 3.4 we discuss
the high-level issues we face in recording dependencies among design decisions.

3.1 What the Programmer Does

From the programmer’s perspective, the DA supports programming in two broad
aspects. First, it offers a process model for describing programs that is familiar,
natural, and useful. Second, this process underlies a number of capabilities the DA
offers: error detection, support for design changes, and detailed design automation.

The model for interacting with the user adopted by the DA is inspired by our
observation of the interaction between human programmers. This exchange typically
takes place using some shared vocabulary that makes the process efficient. In commu-
nicating a complex program to another programmer, an expert programmer typically
describes the program using some programming concepts that are mutually shared
and understood. The listener may ask the speaker questions to clarify doubts.

The DA mimics the communication process between programmers by acting as
an assistant to the programmer. Using some intermediate level vocabulary, the pro-
grammer will describe to the DA what is needed. The shared vocabulary is codified
in a body of clichés, kept in the DA’s cliché library. The program description given
by the programmer specifies some input-output behavior and may include the high-
level design of a program intended to meet a specification. The DA will complete the
detailed design of the given program. It may ask the programmer questions to clarify
doubts, manifested as inconsistencies and incompleteness in the program description.
They collaborate in the programming task in a co-operative manner.

The descriptions provided by the programmer need not be strict refinements of

39



CHAPTER 3. THE DESIGN PROCESS 40

program descriptions already said. Program descriptions may change during the
programming process. Later program descriptions can refine, modify, supersede, and
redefine earlier ones. Earlier descriptions may also be retracted or re-stated.

This interaction between with the programmer and the DA is characterized by
three features.

Use of Clichés as a Description Tool: Communication between programmers
seldom takes place at the level of first principles. Rather, effective communication
relies on a large body of shared experience or knowledge. We believe that much of the
shared knowledge between programmers can be codified and used by the DA acting
as an assistant to a programmer. In this work we use clichés to describe the intent
and the design of the program in a concise and comprehensible manner.

Clichés also serve as convenient contexts for bringing related concepts into the
description of programs. For example, if the specification involves the Graph cliché,
it conjures up a context in which many other ideas are meaningful because they are
closely related to the graph cliché: concepts like the node set of a graph, the arc set of
a graph, properties of a graph such as its cyclicity, its directedness, and its rootedness,
and operations on graphs such as finding a shortest path through a graph, finding a
minimum spanning tree of a graph, and searching a graph.

Using clichés as a tool for describing programs promotes the clarity of the speci-
fication. The succinctness of the description eases the task of validation: it helps to
make specifications self-evidently correct.

Programming by Successive Elaboration: A feature of using clichés to de-
scribe programs in the DA is the incremental breadth-first exposition of the program
description. A programmer starts with a few clichés that when combined gives the
needed program. With these main clichés, the programmer works outward, indicating
each use of the clichés in more detail. This layering of description helps the program-
mer focus on the sub-parts of a program after the main skeleton of the program has
been sketched out. The intentional controlling of details in this process, being impor-
tant for understanding a complex artifact, contributes to the ease of understanding
the program. We term this process programming by successive elaboration.

Focus on Design Decisions: As a programming tool, the DA supports a funda-
mental shift in the attitude of the programmer. It interacts with the programmer in
terms of design decisions. The decisions that lead to an implementation of a program
are seldom made independently. The DA helps focus the programming process on the
decision structure of the program being constructed by maintaining the dependencies
of the design decisions made. The focus of the programming process is on design
decisions: adding new ones, and retracting old ones that lead to contradictions.

3.2 What the DA Does

The key components in the architecture of the DA are shown in Figure 3-1. An



CHAPTER 3. THE DESIGN PROCESS 41

Input p
Program rogram
Description Feedback Text

l N N\

&

Translator Designer Coder

Cliché \T
Library
{ Reasoning 4+ Dependency System (Cake)

7|\

y

Design
Record

Figure 3-1: The Architecture of the DA.

important part of the DA is a library of clichés. This contains the major part of
the knowledge needed to automate the design process. The translator module in the
DA translates the input program description into the representation used during the
detailed design process. The main module of the DA, the designer, selects design steps
that transform the representations of designs. These changes in the designs are kept
in a design record. The design record may be used by other software tools to provide
other kinds of assistance. For example, a design printer may summarize the key
design steps in a design record to provide design documentation. The DA requires
an automated reasoning system with explicit dependencies to provide a deductive
framework for reasoning and maintaining design dependencies. The final design is
rendered as program text by the coder.

The representation of program designs and clichés in the library, and the specific
reasoning system used are discussed in the next chapter. The discussion in the rest of
this chapter focuses on the techniques that motivate the architecture of the DA and
is independent of the specific representations used.

Cliché Library for Reuse: To support the selection of algorithms in the DA,
we need to design related algorithmic clichés in tandem and organize them in a way
that can facilitate this selection. The features of each cliché in the family should be
made explicit so that the distinctions between members can be used as a basis for
selection.

To support implementations of data abstractions, a library of commonly-used data



CHAPTER 3. THE DESIGN PROCESS 42

operations based on some modeling types such as set and sequence, and the various
ways to implement them can be constructed. These can be organized according to
several dimensions. For example, they can be organized according to the applicability
conditions of an implementation, e.g.,: this implementation is for finite sets. They
can also be ranked by the efficiency they effect.

Given a data abstraction, which is a set of operations for a given abstract type,
we can find an implementation cover for the set from the library. An implementation
cover is a set of concrete implementations (based on one or more concrete types) for
the set of operations in the data abstraction. In this work, for simplicity, we consider
only those implementation covers that involve one concrete type. Hence, finding
a concrete implementation cover for a set of operations on an abstract type is the
same as finding a data structure for the abstract type. For example, consider a set
of operations consisting of set-add and set-member. An implementation cover for
these two operations is the set containing the executable operations Lisp:Cons and
Lisp:Member. A good implementation cover for a given use of a data abstraction is
one that optimizes its constituent operations according to some criteria (usually run-
time efficiency). This requires some frequency of use information to be available for
the selection to be effective. To help provide these, we can annotate the algorithmic
clichés with the frequency of each abstract operation used whenever appropriate. For
example, the Build-Graph algorithm used in the scenario can have annotations to the
effect that the number of times the EndCons operation on the intermediate node set
is called in the algorithm is at most linear in the size of the input sequence.

Deductive Framework: A deductive framework for manipulating constraints in
the design process is important in several respects: First, we need the expressiveness
of the underlying logical language to facilitate encoding different kinds of constraints
that different clichés motivate. A logical framework is extendable. Second, it provides
a medium for propagating the encoded constraints which allows for error checking.
Third, sophisticated reasoning procedures can be built on top of such a framework to
perform deductions.

General first-order deduction is semi-decidable and propositional deduction takes
exponential time. Nevertheless, we envision that simple deductions will serve as the
glue towards bridging the gaps between the logical conclusions that are needed for
achieving design and the knowledge that resides in the cliché library.

We expect clichés to have local information which can help constrain the selection
process. Constraints from different clichés can interact to mutually constrain the
selection of data structures and algorithms.



CHAPTER 3. THE DESIGN PROCESS 43

Propagate
Constraints

Determine
Unresolved
Design Issues

Resolve
Selected
Issue

Select Design
Issue To
Resolve

Done

Figure 3-2: The Design Cycle in the DA.

3.3 A Framework for Automating Detailed De-
sign

In detailed design, we envision specific design steps modifying the current design of
a program to yield a new design. The output code can be extracted from the final
design that results from the design process. Given the design of a program, there
may be many different well-motivated design steps we can take. We therefore need
some design heuristics to help us choose among the alternatives. Some design steps
make implementation selections. We also need selection heuristics to guide the chosen
design steps when making specific choices. Error checking and maintenance of design
dependencies are also performed during this detailed design process.

Program designs, starting with the initial input program description, are repre-
sented explicitly so that design steps can manipulate them directly. The DA carries
out a design cycle during which a design step out of its repertoire of design steps is
chosen and applied as shown in Figure 3-2.

The initial design provides the starting design constraints which are propagated
throughout the design by the DA. The next phase in the design cycle determines issues
which must be addressed before the design is done. If there are no issues pending,
then the design is complete. If there are pending issues, the DA selects one of them to
resolve by the use of some design step. This design step is then applied to the current
design to yield a new design. The new design may add or remove some constraints in



CHAPTER 3. THE DESIGN PROCESS 44

the design which must again be propagated throughout the design. The new design
may also add new issues to be considered.

A design is complete only when all abstract operations specified directly or indi-
rectly by the user have been implemented by concrete executable operations. In the
DA, the concrete operations are Lisp primitive functions and generic library functions.
Any un-implementable operation is a design issue. Most of the design steps discussed
in this section address design issues by choosing implementations for abstract opera-
tions.

When a dead end is reached in the current state of a design where no feasible im-
plementations are possible for some abstract operation, the DA resolves such conflicts
by retracting some previous design decision, and selecting an alternative choice. This
happens when some choice is found to be incompatible with other design choices in
the constraint propagation phase of the design cycle.

The design cycle terminates when there are no pending design issues to address.
This simplified notion of termination suffices for the purpose of the discussion in
this chapter. A more precise notion of termination is given in the next chapter.
The constraint propagation step indicated in the design cycle is difficult to discuss
without a specific reasoning system. This is postponed until the next chapter where
it is discussed in the context of the reasoning system used.

Based on the representations described in the next chapter, we have an imple-
mented procedure to determine unresolved design issues. Part of the constraint prop-
agation procedures have also been implemented. The different kinds of design steps
needed to resolve design issues have been explored in detail but they have not yet
been implemented. How best to select a design issue to address next in the design
cycle remains to be worked out.

The following are the major kinds of design steps that arise in the detailed design
of the program in the scenario presented in Chapter 2. They are described below in
the abstract as acting on some representation of a program design. We will return
to these design steps in the next chapter to show how they manipulate a specific
representation of a program design. For each of the design steps, we first describe
why they are needed, what they are and when they are applicable. For the relevant
design steps, we also discuss some selection heuristics that are associated with the
step.

Select View: There can be many different ways an algorithmic cliché (in the
abstract) can be invoked as an operator. The order of expected input arguments and
the number of arguments may differ from one use to another. What matters more
is the semantic associations the input and output arguments have with respect to
the cliché. We call this association a view of the cliché. We employ a notion of a
typical call of a cliché, denoting the typical way a cliché may be used as an operator
in the program description. We associate an ordered list of the most frequent ways a
cliché may be invoked with the cliché. For example, the most typical call of a prorate
cliché expects arguments in the following order: () amount to be prorated; (b) the



CHAPTER 3. THE DESIGN PROCESS 45

sequence of shareholders among which to prorate the given amount; and optionally,
(c) the total shares, if available.

With this information, the select view design step makes a guess of what the
correspondences might be. This step is useful for relating the input and output
arguments of the particular use of the cliché with constraints that may be associated
with the cliché. These constraints may be type constraints on the arguments or other
logical constraints. When there is a contradiction, the DA may choose to backtrack
and try another guess.

This step is applied to a cliché instance in the program description when it does
not have an associated view. This happens when the program description is first
given or when previous views are retracted due to contradictions in the design.

Select Algorithmic Cliché: The program description provided by the user
may indicate the use of specific algorithms and operations. Detailed design involves
choosing the most desirable algorithm with respect to the given criteria. For example,
the user may specify the use of the single-source shortest path algorithm, but there
are several algorithms that compute the shortest path in a graph. If the DA can
deduce from the program description that the input graph is a directed acyclic graph
(DAG), then a very efficient algorithm for DAGS can be used.

Select Data Structure: The DA knows about a number of abstract data types
such as sets and sequences. For those clichés which are standard operations on an
abstract type codified in the library, they can also be implemented by the previous
select algorithmic cliché step. However, it is better to consider a whole cluster of
operations in parallel: Frequently, we can cluster many of the operations whose inputs
and outputs are closely related by analyzing the data flow constraints given in the
program description. For example, the output of a set-union operation may go to
a set-member operation. There are four sets involved here: the two input sets and
output set of set-union and the input set of set-member. The implementations of
all these sets can frequently be made identical. If the operations acting on the same
abstract type can be clustered together to form a data abstraction, then we can decide
on the implementations of the whole cluster jointly by finding an implementation cover
for the operations. This is a rather important heuristic because we are unlikely to
be able to choose the right data structures unless we know all the operations needed,
and the frequencies of use of each of them. Frequency information must either come
from the programmer or be implicit in the higher-level algorithmic clichés used.

The clustering of operations can proceed with different granularity. We could
choose to implement all abstract sets in a design the same way. This, however, may
be too constraining and may force independent uses of sets to be co-implemented at
the expense of efficiency. Alternatively, if there is a basis for distinguishing between
the sets, we can partition them into smaller independent subsets. This is frequently
possible. For example, in a graph algorithm, we frequently do not require the node
set and the arc set of the graph to be implemented the same way.

The select data structure design step is given a set of operations that act on an



CHAPTER 3. THE DESIGN PROCESS 46

abstract data type, and chooses a data structure that implements the operations
efficiently from the cliché library.

To find an optimal solution in general is difficult. It is frequently not possible
because frequency information about the use of the operations is lacking. The DA
relies on heuristics characterizing when a data structure is better than another. For
example, a heuristic in the implementation of the abstract sequence type states that
(a) if the EndCons operation is needed, the following data structures are good: Vector,
Chain-Shelf, List-Shelf, Doubly-Linked-Chain, and Doubly-Linked-List. (A list-shelf
is just like a chain-shelf except that the underlying list is a linked list instead of a
chain. A doubly-linked-chain is a chain that is linked both forward and backward.)
We can order the suggestions using whatever distinguishing features they have. For
example, doubly-linked structures are put last because they consume more space.

Consider the set of operations on the token sequence in the scenario, they are:
Sequence-In-Between, EndCons and Insert. The following two selection heuristics are
applicable in addition to those above: (b) if the Insert operation is needed, the fol-
lowing data structures are good: Linked-List, Chain, Chain-Shelf, List-Shelf, Doubly-
Linked-Chain, and Doubly-Linked-List. (c) If the Sequence-In-Between operation is
needed, the following data structures are good: Chain, Chain-Shelf, and Doubly-
Linked-Chain. The intersection of the suggestions of the three heuristics gives us
two choices: chain-shelf or doubly-linked-chain. A further heuristic suggests that a
chain-shelf is in general more space-efficient than a doubly-linked-chain. In the data
abstraction involving the Arc type and the Node type where the only operation in-
voked on both types is EndCons, a vector is not chosen because there is a precondition
for using a vector to implement a sequence: the length of the sequence must be known
a priori. Both the sizes of the node set and the arc set are unknown when the vector
has to be created.

Implement Mapping: Many algorithmic clichés contain abstract mappings
without constraining their implementations. Some of these mappings can typically
be viewed as computing intermediate results. For example, in the single-source short-
est path algorithm, there are two such mappings: Min-Distance of a node holds the
current minimum distance from the start node to the given node, and the Best-
Previous-Arc of a node keeps the arc on the current optimal path that ends with the
current node. Some standard ways of implementing mappings in Lisp include: (a) as
a vector; (b) as an association list; (c) as a hash table; and (d) distributed among the
domain elements. For example, if the domain elements are structures, mappings can
be kept in fields of the structures. Which representation is better depends on the use
and the nature of the domain of these mappings.

Pre-Compute Mapping: Some mappings are most appropriately pre-computed
before any access, while others are best computed when needed. For example, a map-
ping whose domain elements are ordered and whose definition depends on this implicit
order may be better pre-computed since we can frequently compute all elements in
one iteration through the entire domain. In the scenario, the domain of width is the



CHAPTER 3. THE DESIGN PROCESS 47

G

M:A - B

F:B—-C

G:A-C
(Ga)=(F (Ma))

Figure 3-3: An Opportunity for Caching: Two Related Functions.

output sequence of tokenize, and width depends on both the given token and the
token prior to the given one. Single access of the mapping can take linear time to
search for the correct previous token (unless the previous element of every token is
stored).

The pre-compute mapping design step generates a plan to compute and explicitly
store the given mapping before every use of the mapping in the current design. It
prefers to place the pre-computation close to the creation of the domain elements
of the mapping. It also implements all uses of the mapping in the design by the
retrieval function corresponding to the chosen explicit storage method. For example,
if the domain elements are Lisp structures, a field may be used to store the value of
the function, and the accessor function of the field is used. A design constraint is
made to implement future accesses to this mapping by the retrieval.

Cache Mapping: If a mapping is not to be pre-computed and is used in several
places, it may be efficient to memoize the computed results for future uses rather
than recomputing each time it is needed. An important subsidiary issue is finding an
appropriate place to store the memoized result efficiently.

The cache mapping design step is intended to be invoked on two mappings, one
of which is defined in terms of the other. The design step is useful if it is desirable to
memoize the values of one mapping so that the other mapping can be more cheaply
computed. To make this more concrete, consider the design step acting on the ex-
ample from the scenario: we want to cache the mapping ratio for a second mapping
arc-ratio. The domain of ratio is a set of sequences of tokens. The general method
for storing a mapping whose domain elements are sequences is to use a hash table.
However, if the current design represented the sequences as a series, hashing will not



CHAPTER 3. THE DESIGN PROCESS 48

work. In our above example, we can store the mapping on the domain elements of
arc-ratio. An arc is implemented as a Lisp structure. This design step adds a
new field arc-ratio and stores the computed ratio values directly in the field when
ratio is being computed.

More generally, consider the two mappings illustrated in Figure 3-3, F: B — C,
and G: A — C, related as follows: (G a) = (F (M a)). Suppose we intend to cache
computed values of F so that G can look up the cached values. An immediate question
is: where can we store cached values of F? We could implement F as an explicitly
stored mapping so that after F has been computed, future accesses of F can be done
by simple retrievals. However, if F cannot be represented as an explicitly stored
mapping directly for some reason, then we can consider storing computed values of F
on some data structure that makes it easy for G to access them. To be more specific,
consider the case when A is a Lisp structure where we can store the cached values in
a field on A so future invocations of G can be performed by simple retrievals. What
are the conditions sufficient for carrying out this optimization step? It is easiest to
work backwards as follows:

The intention of the optimization is so that we get the value of (G a) for some
a in A by performing a look-up operation on a. That is, for all a in A, we must find
an s such that (1) s = (M a); (2) (F s) must be computed before (G a) is needed;
(3) when (F s) is being computed, the corresponding a is accessible so that we can
store (F s) on it.

This design step also operationalizes some checking that is required to ensure that
the optimization step can be carried out. This is discussed in more detail in the next
chapter in the context of a specific representation for program designs.

This design step is triggered by specific design heuristics that notice that such
optimization opportunities exist.

Coerce Type: This design step tries to resolve a mismatch in the expected types
of some data flow that passes between two operations in the design. The step is
triggered by the DA when the output end of the data flow has an incompatible type
from the input end of the arc. It looks for a way to coerce the output data into an
instance of the expected input type. This is typically done by finding a unary function
that can coerce the output type into a type acceptable to the receiving operator. If
no coercions can be found, the step complains to the programmer about the type
constraint violation.

This step can also be considered as a selection of an appropriate view for a given
data object. Data objects may be viewed in a number of ways. For example, we
can view a path as a sequence of arcs or a sequence of nodes, and an AsciI file as
a sequence of characters or a stream. In the scenario, the output AsciI file given is
viewed as an output stream by opening the file at the start of the computation, and
closing it at the end. Part of the Ascii-File cliché is some knowledge about how we
can view an ASCII file as an output stream or an input stream. This design step,
with the help of specific knowledge in the Ascii-File cliché, adds two new operations



CHAPTER 3. THE DESIGN PROCESS 49

to open and close the output file. The exact placement of these operations and the
attendant data flow can be determined from the first use and the last use of the AscII
file in the program description.

Examples of other uses of coerce type design steps in the scenario are: adding
the Content operation to coerce tokens into strings before they are fed to the Last-
Character operation and the Number-Of-Characters operation in the width design.

Omit Operation: This design step is triggered whenever an operation is being
implemented. It checks to make sure that the postconditions guaranteed by this
operation are not already satisfied by the current design. If they are already satisfied,
then the operation can be omitted. The scenario contains an example where the
topological sorting step in the single-source shortest algorithm chosen was omitted
because the input graph it was given was already topologically sorted by the chosen
build-graph algorithm preceding it.

Exchange Operation for Input: This design step removes an operation in a
design, adding an input to the design in place of the removed operation, thereby
changing the input-output specification that the design implements. For example, if
this step is applied to the design of the width function to remove the Preceding-Item
operation, then the new width function will now have two input arguments instead
of one. This design step is used primarily as a setup step for other design steps that
make use of the new designs created.

Make Assumption: Design is an under-constrained problem. A strategy many
programmers do in design is to forge ahead by making assumptions and complete the
design as far as possible. Whenever a dead end in the design process is reached, we
retract some of the assumptions that have led to the dead end. This strategy is espe-
cially effective in the presence of incomplete knowledge and incomplete specifications.

The DA posts new constraints in a design as assumptions in order to advance
the design. Such assumptions may stay on to become part of the design or may
later be retracted if they are found to be inappropriate. There are several kinds of
assumptions the DA makes automatically. One kind is to assume that an operator
has certain types based on some particular applications involving the operator. For
example, if the DA deduces that width is applied to a token and that it returns an
integer, then it may assume that the signature of width is token — integer. This
may be wrong because width may also be applied to non-tokens or it may return
non-integers. This closed-world assumption may be retracted later if contradictions
arise from it.

Another kind of default assumption the DA makes is in the user-specified functions.
The DA assumes that these functions are subroutine boundaries, we call these single
subroutine assumptions. However, it may be well-motivated to implement different
uses of the same user-defined function differently. Single subroutine assumptions help
to reduce the number of design decisions the DA has to consider. This assumption
can be violated if the programmer or other design heuristics indicate so.

User Says: During detailed design, the user may specify some specific action



CHAPTER 3. THE DESIGN PROCESS 50

to be taken. The user-says design step is used to explicitly represent this action
in the design record. This explicit recording also helps support retraction of user-
given descriptions. The input program descriptions given by the programmer are
considered to be user-says design steps. When the programmer retracts some earlier
program description, the user-says design step that added the program description to
the design is retracted.

3.3.1 An Example of Automatic Detailed Design

The design step types described in the last subsection are motivated by an analysis of
the program in the scenario. The following is a list of the major design steps required
to transform the input program description in the last scene of the scenario into the
final output program.

o Select-View: A select-view step views the input argument of the Tokenize spec-
ification as the input file on which the tokenization is run and its output as
the output sequence of tokens from tokenization. Another views the input ar-
gument of the single-source shortest path specification as the input graph and
the output as the output shortest path. Another select-view step views the first
input argument of the prorate specification as the amount to be prorated, its
second argument as the sequence of items over which the proration is done, and
its output as the sequence of prorated amounts.

e Select-Algorithm on Tokenize: This step chooses the NFA-tokenizer algorithm
to implement the Tokenize specification.

e Select-Algorithm on Build-Graph: This step chooses the build-rooted-forward-
dag-with-weak-left-arc-test algorithm to implement the Build-Graph specifica-
tion.

e Select-Algorithm on Single-Source-Shortest-Path: This step chooses the dag-
sssp algorithm to implement the Single-Source-Shortest-Path specification.

o Omit-Operation on Topological-Sort operation: The topological sorting opera-
tion of the dag-sssp algorithm is omitted because the graph it is given is already
topologically-sorted. This follows from the build graph algorithm chosen.

o Select-Algorithm on Output: There are four uses of the output specification in
the paragraph justification program. This design step is applied four times, once
on each use. For the output specification in the justify design, a select-algorithm
step chooses the write-char function. In the lineout design, the write-n-chars
function is chosen for the first use, the write-string function for the second use,
and the write-char function for the third use.



CHAPTER 3. THE DESIGN PROCESS 51

e Select-Algorithm on Prorate: This step chooses the prorate- favor-end algorithm
to implement the prorate specification.

o Select-Data-Structure on the sequence of tokens from the output of Tokenize:
This step represents the sequence as a series.

o Select-Data-Structure on the sequence of tokens from the output of Segment:
This step represents the sequence as a chain-shelf.

e Select-Data-Structure on the sequence of nodes in the build graph algorithm:
This step represents the node sequence as a chain-shelf.

e Select-Data-Structure on the sequence of arcs in the build graph algorithm:
This step represents the arc sequence as a chain-shelf.

o Select-Data-Structure on the path in the shortest path algorithm: This step
represents the path as a Lisp list.

o Select-Data-Structure on graph in the build graph algorithm: This step repre-
sents the graph as a sequence of arcs kept in a field in a Lisp structure.

o Select-Data-Structure: A select-data-structure step represents tokens as Lisp
structures, token-struct. Similar steps when applied to nodes and arcs also
chooses to represent them as Lisp structures, as node-struct and arc-struct
respectively.

o Coerce-Type: A coerce-type step adds new operations to the justify design to
open the input file at the start of the justify operation and close the output
stream at the end. Another coerce-type step adds a content operation to coerce
the input token of the Last-Character function into a string. A similar step is
applied to the input of the Number-Of-Characters function.

¢ Implement-Mapping: A number of mappings are implemented by the imple-
ment mapping design steps. The following mappings on tokens are implemented
as fields in the Lisp structure representing the token type: content, pattern,
successor-token, width and stretch. The fields are respectively named token-
content, token-type, token-next, token-width and token-stretch. Similarly, the
following mappings on nodes are implemented as fields in the Lisp structure rep-
resenting the node type: node-to-token-map, successor-node, min-distance, and
best-previous-arc. The fields are respectively named: node-token, node-next,
node-min-distance, and node-best-previous-arc. Similar implement mapping
design steps implement the mappings on arcs and graphs as fields on the Lisp
structures representing their respective types.



CHAPTER 3. THE DESIGN PROCESS 52

o Exchange-Operation-For-Input: One of these steps is applied to the Preceding-
Item specification in the width design. This creates a new function that is like
width but takes in two arguments instead of one. This step is to prepare for
the efficient pre-computation of the width mapping.

¢ Precompute-Mapping: A precompute-mapping step moves the computation of
the width function to the beginning of the justify design, right after the tokenize
specification. A similar step pre-computes the successor-token mapping and the
stretch mapping.

o Cache-Mapping: A cache-mapping design step caches the values of the ratio
computation in the build-graph algorithm to be used for the arc-ratio mapping
later in the shortest path algorithm.

¢ Make-Assumption: The single occurrence of the lineout operation in the
justify design suggests that its first input is an output stream and its sec-
ond input is an arc. (This information is obtained from constraints propagated
in the design after the select-view design step has run.) The output is not con-
strained by this use. A make-assumption design step assumes that the 1ineout
function takes in an output stream and an arc and returns some data. Single
subroutine assumptions are made for all user-supplied functions.

3.3.2 Further Challenges

There are a number of challenges that must be met before the DA program can
automate detailed design effectively:

Need for Program Metrics: The currently contemplated selection heuristics
for helping the DA choose implementations are rather weak because they are too local.
The clustering of operations is a step in the direction of considering the selections
globally. However, to make effective tradeoff decisions in choosing an implementation
cover for a data abstraction, we need a formal language for characterizing the efficiency
of programs and program skeletons. Each cliché in the cliché library can be annotated
with various program metrics, and methods are needed to estimate new metric values
when clichés are combined. Automatic means of classifying the various program
metrics, when available, can aid in the codification of programming clichés since they
can reduce the analysis effort of the knowledge engineer.

Search Control: Our framework can be viewed as establishing a search space in
which an executable program can be derived from some program description. This
work has not adequately explored the control issue in this search problem. We have
indicated in the earlier section one technique that can help control the search process:
data operation clustering. Much more, however, remains to be explored. The exis-
tence of a good program metric may serve as a good guide in exploring the various
alternatives effectively.



CHAPTER 3. THE DESIGN PROCESS 53

3.4 Recording Design Dependencies

There are several reasons a design decision may have to be modified. First, the user
may want to change it. We have already discussed the attendant benefits that accrue
from this service. Second, when a dead end is reached in the automatic detailed
design process, some design decision may have to be retracted. Third, the DA may
want to make some design decision only if some conditions remain true, and may
want to reconsider the decision when the conditions are no longer true. It is possible
to support all these operations by re-deriving the design from the beginning. Another
way is to chronologically backtrack to the decision that needs to be modified. A better
way, however, is to retract only those decisions that matter. There are three distinct
advantages to dependency-directed backtracking. It is more efficient, the explicit
dependencies can be used to provide some explanations, and a more sophisticated
reasoner may use the explicit reasoning record for introspection and reasoning. In
our context we are primarily concerned with supporting backtracking efficiently and
generating explanations from the dependencies.

When a program design is viewed as a set of logical constraints, each design step
is seen to be adding new constraints to a design and/or deleting old constraints from
a design. One kind of design step only adds new constraints to the design, we term
them monotonic design steps. The second kind, the non-monotonic design steps
delete some constraints from the old design, and they may add new constraints to
the design.

Out of the ten design steps described in the last section, five of them are monotonic
design steps. They include the steps for selecting views, algorithms, data structures,
and mapping implementations and the make-assumption step. The rest are all po-
tentially non-monotonic steps.

The maintenance of design dependencies in the DA requires the following functions:

o Explicit Recording: A design step may add and delete many different constraints
at one time. It is convenient to have a single decision node associated with the
design step so that if we want to retract this step, we can simply retract the
associated node.

o Automatic Retraction: If a design step depends on some conditions which sup-
port its application, then the design step should be automatically retracted
when any of the supporting conditions are no longer true. By retracting a
design decision, we mean retracting the new constraints added to the current
design and adding back those constraints that were removed by the design step.

This may trigger other design decisions to be retracted too if the latter depend
on the former.

It is useful to note here that whether we want to re-apply the design step auto-
matically when the supporting conditions later become true again is a separate issue.



CHAPTER 3. THE DESIGN PROCESS 54

Given that the DA already has a mechanism for automatic detailed design, i.e., the
design cycle, this issue is not considered here. Retraction of some design decisions
may make the design incomplete, thus triggering the design cycle to try to complete
the design.

Recording Requirements: To support automatic retraction, an explicit de-
cision record can be kept with each design step taken, and the following kinds of
information should be kept for each decision record: the new constraints added by
the step, the old constraints that were removed by it, and the conditions supporting
the step. The latter is to help support the automatic retraction of the design step
based on some changing conditions.

The main difficulty in maintaining design dependencies in the DA lies in recording
the conditions supporting the application of design steps in the decision record. For
each design step, we want to record only those conditions that should trigger the re-
traction of the step. It is, however, not always clear how this can be done efficiently.
In the worst case, we can always make a non-monotonic design step depend on every
design step that took place before it, thus degenerating into strict chronological de-
pendency. For non-monotonic design steps, should we make the prior existence of a
constraint that is to be removed by this design step one of its supporting conditions?
This can be done in two ways. First, we can copy the entire old design to a new
design with the exception of those constraints to be removed by the design step. The
immense cost involved seems unacceptable. Second, we can make the current design
step depend on some other design decision, called a sponsor, that led to the prior ex-
istence of the constraint (to be removed). There can be multiple sponsors for a given
design constraint. In this way, if the sponsoring design decision is retracted, the non-
monotonic design step can also be retracted automatically. The exact implication of
this scheme, however, has not yet been worked out.

The recording of design dependencies is carried out by individual design steps.
How this is carried out is best explained in terms of some specific representations
for program designs. This is covered in the next chapter when the design steps are

described.



Chapter 4

Representing and Manipulating
Design Artifacts

In this chapter we discuss how the various design artifacts needed by the DA can
be represented. Section 4.1 describes the Plan Calculus which is used to represent
algorithmic clichés and program designs. It shows how the various kinds of knowledge
present in the cliché library are represented. Section 4.2 describes CAKE, a knowledge
representation and reasoning system that contains an implementation of the Plan
Calculus. Section 4.3 describes the Common Lisp macro package SERIES used to
codify loop computation clichés. Section 4.4 outlines the cliché library as it exists now,
and the principles used to organize the clichés. Section 4.5 describes how program
designs and design dependencies are represented. Section 4.6 illustrates how the
various design steps described in the last chapter manipulate design representations
and how these design steps record design dependencies in the evolving design record.
It also describes how some design constraints are propagated in CAKE. In the context
of using plans to represent program designs, Section 4.6 also discusses the various
notions of when a design is considered complete.

4.1 The Plan Calculus

The Plan Calculus [25] is used to represent program designs and algorithmic clichés
in the cliché library. It models programs and designs as plans. A plan consists of a
structural part and a logical part. The structural part of a plan captures the data
flow and control flow between the computation steps that make up the plan, and is
illustrated via a plan diagram, see Figure 4-1. The logical part consists of constraints
on the parts of the plan and is typically left out of plan diagrams.

The plan calculus formalism has several desirable properties essential to a repre-
sentation for algorithmic clichés. First, by representing data flow and control flow
directly and explicitly, it abstracts away from the syntactic variations in specifying
clichés. This provides us with a unique representation for each cliché. Second, we

55



CHAPTER 4. REPRESENTING AND MANIPULATING DESIGN ARTIFACTS 56

can codify knowledge that is basic to programming, independent of the target pro-
gramming language. For example, the cliché to view an abstract list as a set is not
language-dependent, neither is the single-source shortest path algorithm language-
dependent. The plan calculus can also codify knowledge that is language-specific too.
For example, we can specify how the Lisp linked list type can be used to implement
an abstract list. In the cliché library, we expect to have both kinds of knowledge.
We view programming knowledge that is language-independent to be in the modeling
level. Moving from one programming language to another does not involve changing
knowledge in the modeling world, it only involves adding language-specific clichés
codifying the various ways the new language supports the basic abstract types and
operations in the modeling level. Third, the plan calculus is very expressive. It can
be used to codify implementation relationships, data abstractions and optimizations.

Figure 4-1 illustrates several features of the Plan Calculus. The left of the figure is
a plan; it is the plan for the ratio design given in the scenario. The input description
for ratio (in the last scene) is shown in Figure 4-2. Plain solid arcs denote data flow
and hatched arcs represent control flow. The topmost arc is the input to the plan,
and the bottommost arc is the output of the plan. Boxes, or roles, in a plan denote
computation steps. There are three kinds of boxes:

(1) Input-output specifications such as the extrasi box, the total-stretchi
box and the divi can be viewed as function calls. These boxes have input ports
and output ports which are typed. Logical constraints can be associated with the
inputs and outputs in the form of preconditions and postconditions. For example,
the precondition of div1 states that the divisor must not be zero. Each input-output
specification also has an entry point, called an in situation and an exit point called
an out situation. These are useful for modeling constraints on the order of execution
of the boxes. Input-output specifications may have annotations to indicate that they
have Lisp implementations. For example, the divi box has an annotation to the
effect that its Lisp implementation is /. We call such input-output specifications
implementable.

(2) Test specifications such as zerop1 and zerop2 correspond to predicate appli-
cations. They are distinguished by two exit points labeled S (succeed situation) and
F (fail situation) corresponding to the result of the predicate.

(3) J1 and J2 are Join boxes which do not correspond to any computation, but
they are needed for merging control flows after a test specification. Join specifications
have two input ports, succeed-input and fail-input, each has a corresponding en-
try point, a succeed situation (labeled S), and a fail situation (labeled F) respectively.
It has a single output port labeled output and a single exit point labeled out.

Figure 4-1 also illustrates an example of an overlay. The hooked lines linking the
two plans specify the correspondences between the two plans, indicating how the left
plan can be used to implement the ratio box on the right. Unlabeled correspondences
indicate equalities.

A key part of the cliché library is knowledge about data abstractions and their



CHAPTER 4. REPRESENTING AND MANIPULATING DESIGN ARTIFACTS

extrasl: extras

:

zeropl: zerop

¥

Y

total-stretchl: total-stretch

:

geropl: gerop

s | F
0
R, Y
s | F
join2: join

s | F
1000
vy ¥
s | F
joinl: join

Figure 4-1: An Example of a Plan: The Ratio plan.

57

ratio




CHAPTER 4. REPRESENTING AND MANIPULATING DESIGN ARTIFACTS 58

(DESIGN ratio (seq)
(LET ((extras (extras seq)))
(IF (= extras 0) 0
(LET ((total-stretch (total-stretch seq)))
(IF (= total-stretch 0) 10000
(/ extras total-stretch))))))

Figure 4-2: Input Program Description for the Ratio Function.

implementations. This knowledge is codified via data plans and data overlays. Fig-
ure 4-3 shows an example of a data plan which represents a standard aggregation of
data. The data plan arc is a pair of nodes labeled source and destination. The
constructor function, (!make arc) and the selector functions (!select arc source)
and (!select arc destination), automatically defined by the data plan, are also

shown in the figure.
destination: node

arc
n;de n;de a:: a.*rc
(‘make arc) (Yselect arc source) (Yselect arc destination)
J J /
arc node node

Figure 4-3: An Example of a Data Plan: Arc.

Figure 4-4 shows an overlay which is defined with the help of a data overlay.
The left box is a test specification which checks to see if a given data item is in
a given abstract list. The right box is a set membership test specification. The
implementation overlay shows how we can view the member-of-1ist? specification
as implementing a set membership test via the data overlay ('as 1list set). The
latter overlay specifies how we can view a list as a set. It is a function that takes a list
into a set. In the DA a list is modeled as the union type of the empty list and a data
plan that contains two parts: head is a data item, and tail is a list (recursively).



CHAPTER 4. REPRESENTING AND MANIPULATING DESIGN ARTIFACTS 59

data  list data ot
(‘as list set) | |

v I

member-of-list? I member
S | F I s | F
I O
—;}3 : ==
y | \4
i

Figure 4-4: Implementation Overlay using a Data Overlay.

The ('as list set) overlay is defined as: if the list is empty, the result is the empty
set, else the result is the union of the singleton set made up of the head of the list
and the result of recursively invoking the data overlay on the tail of the list. Given
that most of the definitions involving data plans and overlays are non-structural, they
cannot be well-illustrated in a plan diagram.

4.2 CAKE

CAKE [9, 26] is a knowledge representation and reasoning system which implements
the Plan Calculus and a number of other reasoning facilities, including a truth main-
tenance system (TMS). CAKE provides the infrastructure on which the needed pro-
gramming knowledge is represented and reasoned about.

CAKE has a layered architecture: a TMS with equality and pattern-directed pro-
cedure invocation mechanisms forms the foundation of the system. On top of this is
an implementation of a typed logic within which the following special-purpose deci-
sion procedures reside: algebraic properties of operators such as commutativity and
associativity, sets, partial functions, and frames. The top layer is an implementation
of the Plan Calculus discussed in the last section.

The TMS in CAKE can be used to propagate constraints and to maintain design de-
pendencies. It also supports automatic retraction of assertions and their consequents,
and contradiction detections. Constraints can be expressed in full first order predicate
calculus though most propagation of constraints is carried out only at the propo-
sitional level. As complete propositional reasoning is computationally intractable,



CHAPTER 4. REPRESENTING AND MANIPULATING DESIGN ARTIFACTS 60

CAKE sacrifices completeness for efficiency. It automatically performs simple one-
step deductions equivalent to unit propositional resolution. As unit propositional
resolution is fast but incomplete, CAKE supports quick but shallow deductions. It
also supports a pattern-directed procedure invocation mechanism which can be used
to implement some controlled reasoning of quantified terms.

CAKE implements the formal semantics of plans by providing a number of defini-
tional forms that are translated into the underlying logic. Plans become structured
types and overlays become functions from plan types to plan types. Individual plan
instances can be made, and their semantics are implemented as logical constraints in
the CAKE knowledge base.

For example, the definitions for the plans shown in Figure 4-1 in the last section
are shown in Figure 4-5. Defio in CAKE defines an input-output specification plan
type (box type). The :inputs keyword is used to provide a list of input ports of the
input-output specification. The elements of this list are pairs, the first member of a
pair is the name of the parameter, and the second is the type of the parameter. Thus,
in Figure 4-5, the input-output specification named ratio has an input parameter
named argl whose type is data. Similarly, the :output keyword is used to indicate
output ports of the box. Defplan defines a non-atomic plan type. The :roles
keyword specifies the list of boxes making up the plan. Boxes are also named and
typed. The ratio-plan has seven boxes. There are two instances of the zerop test
specification type, two instances of the join specification type, and three input-output
specifications: one named divi is an instance of the plan for division of numbers,
the one named extrasi is an instance of the extras plan type, and a third named
total-stretchl is an instance of the total-stretch plan type. The prefix ! sometimes
refers to a box which need not be defined at all times because control flow may not be
passed to the box. The :dflow keyword indicates the data flow constraints between
ports of the boxes in the plan. In ratio-plan, there are data flow constraints from
the output port named output of the extrasi box to the input port named argi
of the zerop1 box, and the same datum also goes to argl of divi. Other data flow
constraints are similarly specified. The keyword can also be used to indicate tied
inputs, e.g., argl of extrasl and argl of total-stretchl are tied in the figure. It
can also be used to indicate constant inputs to some input ports, e.g., succeed-input
of the j1 join box is always 0 in the figure. Similarly, control flow constraints are
specified using the :cflow keyword. The first control flow specification in the figure
indicates that control flows from the succeed situation of zerop1 to that of j1.

The last CAKE form shown in Figure 4-5 is defoverlay. The form shown defines
an overlay named (!as ratio-plan ratio) whose domain is ratio-plan and whose
range is the ratio input-output specification. The correspondences that define this
overlay is indicated with the use of the :corrs keyword. The overlay in Figure 4-5
specifies that we can view an instance of a ratio-plan as an instance of a ratio input-
output specification as follows: the argi of the ratio input-output specification is the
argl of the extrasi box in the ratio-plan, its output is the output of the j1 join,



CHAPTER 4. REPRESENTING AND MANIPULATING DESIGN ARTIFACTS 61

its in situation is the in situation of the extrasi box, and its out situation is either
the succeed situation or fail situation of the join box ji.

(Defio Ratio
(:Inputs (Argl Data))
(:0utputs (Output Data)))
(Defplan Ratio-Plan

(:Roles
(Extrasi Extras) (Total-Stretchl (!Sometimes Total-Stretch))
(Zerop1l Zerop) (Zerop2 (!Sometimes Zerop))
(Join1 Join) (Join2 Join) (Divi (!Sometimes /)))

(:Dflow
((Output ?Extrasi) (Argl ?Zeropi) (Argl ?Divi))
((Output ?Total-Stretchi) (Argi ?Zerop2) (Arg2 ?Divi))
((Argl ?Extrasi) (Argl ?Total-Stretchi))
(0 (Succeed-Input ?J1))
((Output ?7J2) (Fail-Input ?J1))
(10000 (Succeed-Input ?J2))
((Output ?Divi) (Fail-Input ?7J2)))

(:CFlow
((Succeed ?Zerop1) (Succeed 7J1))
((Fail ?Zerop1) (In ?Total-Stretchi))
((Succeed ?ZeroP2) (Succeed ?J2))
((Fail ?ZeroP2) (In ?Div1))))

(Defoverlay (!As Ratio-Plan Ratio)
(:Corrs :Argi (Argl ?Extrasi)
:0utput (Output ?j1)
:In (In ?Extrasi)
:0ut (If (Defined (Succeed ?J1)) (Succeed ?J1) (Fail ?7J1))))

Figure 4-5: The CAKE Definition for the Ratio Plan.

4.3 SERIES

SERIES [35] is a Common Lisp macro package that supports a new data type called
series which is similar to the Lisp sequence type. Computations on sequences of data
items are easier to understand and modify when written as compositions of functions
than as equivalent loops. SERIES allows programs to be written as series expressions,
or compositions of series functions, without incurring any run-time overhead.

In this work, algorithmic clichés involving computations of sequences of data are
expressed as series expressions as far as possible. As a result, much of the output
code needed in the scenario are rendered as series computations. This has three key
benefits. First, the DA does not have to manipulate and reason about loops. Second,
the higher-order series functions such as collect-fn and scan-fn provide powerful



CHAPTER 4. REPRESENTING AND MANIPULATING DESIGN ARTIFACTS 62

and useful abstractions for loop computations. This simplifies the need to reason
about loop computations. Third, combinations of series functions are automatically
optimized. This removes an important component of the detailed design: automatic
merging of simple loops for efficiency. For example, in the scenario presented in
Chapter 2, the pre-computations of the width, stretch, and next mappings in the
tokenize routine pass a series from one computation to another without regard to
the need for loop merging. Without SERIES, they would have to be merged into one
loop explicitly by some design step.

4.4 The Cliché Library

Significant effort in this project has gone into identifying the various clichés that
are used to describe the paragraph justification program in the scenario. Most of
the major clichés have already been informally described in Chapter 2. Many of
them have been codified in the Plan Calculus and compiled successfully in CAKE. In
this section, we discuss a key principle in the codification of knowledge: knowledge
factoring, and some techniques used in the codification of programming clichés in
particular. The last subsection contains a brief description of the cliché library in the
DA.

Knowledge Factoring: Knowledge factoring refers to the organization of knowl-
edge such that commonalities among different codified facts are identified and made
explicit. How well knowledge is factored is an important criterion in any knowledge
codification effort.

Factoring is particularly important in the domain of programming knowledge
where a good amount of programming knowledge is not only independent of the
programming language used, but it is also independent of the exact data structures
used to implement any abstract operations the knowledge may involve. For example,
the knowledge to view a path (modeled as a list of arcs) in a graph as a list of nodes
is independent of the implementations involved. If common knowledge is not appro-
priately factored out, we will see a combinatorial explosion in the number of closely
related clichés in the library. Besides providing a more compact representation of the
same knowledge, knowledge factoring is important as a technique for organizing the
library so that it will be comprehensible to the programmer. It helps to break up the
huge mass of knowledge into manageable and meaningful chunks to help focus the
attention of the programmer. An organized library can also help the DA search for
feasible implementations more efficiently.

In the following subsections we describe some specific techniques we have used in
constructing the cliché library.



CHAPTER 4. REPRESENTING AND MANIPULATING DESIGN ARTIFACTS 63

4.4.1 Abstract Data Types

We can always represent specific algorithms down to their concrete operations. How-
ever, it is far better to capture the algorithm abstractly so that the same algorithmic
Plan can be used in many different situations. In many algorithms, the concrete
implementation of a mapping or a data type are immaterial to the essence of the
algorithm. In such a case, the representation of the algorithm should reflect this fact.
The mapping or abstract type could be left un-implemented so that it can be imple-
mented in different ways when the need arises. This is in line with the way algorithms
are presented in textbooks [2, 3, 7).

In this work, we codify algorithmic clichés in terms of more basic operations on
a few commonly-used abstract data types, such as sets, lists, and mappings. The
different data structures that can be used to implement the various abstract types
are also specified. Each of them can be modeled as a type in the logic where their
salient properties can be conveniently clustered together. For the kind of routine
design being explored here, the important part of these data structures lies in the
input-output specifications of the operations the data structures support. We codify
the implementation relationships via overlays between the concrete operations and
the corresponding abstract ones. In more sophisticated designs we may need to reason
in detail about each of the operations being achieved by a concrete operation chosen.
In such a case, we need to model the concrete type constructively so that its inherent
properties are made explicit. In this way, we can open up the black boz to look at
how each concrete operation is being constructed out of more primitive ones. Clearly,
formalization and knowledge acquisition in this rich domain is a time-consuming task.
We have only looked at a few data structures that can support the two abstract data
types needed in the scenario: List and Mapping.

4.4.2 Taxonomy of Related Clichés

The Plan Calculus has two primary mechanisms for abstracting commonalities among
related clichés. First, structural similarities can be captured by plan specializations
and extensions. For example the type (!1ist arc)isa subtype of the 1ist type, and
the add-one plan in Figure 4-6 is a specialization of the generic plan for adding two
numbers. Extensions of plans are used implicitly when new computational steps are
added to an existing plan during the design process. Second, functional similarities
between plans are captured by implementation overlays that view them as the same
input-output specification.

Input-output specifications, however, have rigid structures: the number of inputs
and outputs must be fixed and they have static types. Many input-output specifica-
tions which have similar purposes (to a programmer) are not supported by the two
forms of abstraction. For them, we create a separate taxonomic hierarchy that is
used for aggregating different input-output specifications with similar purposes under
one roof. It serves as a general specification for the specific kind of computation that



CHAPTER 4. REPRESENTING AND MANIPULATING DESIGN ARTIFACTS 64

-~
———

Figure 4-6: The Add-One Plan.

Build-Graph

Build-Complete-Graph Build-Uniform-Tree Build-Random-Graph

Build-Binary-Tree

Build-Graph-From-Input-List

Build-Graph-With-Weak-Arc-Test Build-Graph-Given-Strong- Arc-Test

Build-Graph-With-Node-Test

Build-Graph-With-Weak-Left- Arc-Test

/\

Build-Forward-Dag- With-Weak-Left- Arc-Test tee

Build-Rooted-Forward-Dag-With- Weak-Left- Arc-Test

Figure 4-7: The Family of Build-Graph Clichés.



CHAPTER 4. REPRESENTING AND MANIPULATING DESIGN ARTIFACTS 65

might be associated with the name of a cliché. We termed them cliché frames associ-
ated with the cliché, partly because CAKE frames are used to represent them. It is an
aggregation of the relevant knowledge about the cliché just like a specific plan is an
attempt to capture part of the knowledge involved in a cliché. This hierarchy is orga-
nized by the similarities in the purposes they serve. In Figure 4-7, the build-graph
family of clichés is organized in one hierarchy because they are intended to serve a
common purpose: they compute graphs out of some intentional descriptions.

Placing related clichés in such a taxonomy helps make explicit the relationships
between them. At the top of the hierarchy may be some under-specified input-output
specifications that embody some computational idea but they may not have any exe-
cutable plans associated with them. Further down the hierarchy are more constrained
clichés that may have implementations associated with them. For example, in the
build-graph family of clichés, the top build-graph input-output specification sim-
ply expects some input data, and constrains its output to be a graph. At this level
of generality, there are no plans associated with the input-output specification. The
more specific algorithmic clichés in the hierarchy, such as the build-complete-graph
input-output specification, have an associated plan which gives the abstract algorithm
for constructing a complete graph.

There are many ways to build a graph. How do we go about organizing them
into a hierarchy? We observe that there are different ways of specifying the inputs
from which to build a graph. A graph is defined by a set of nodes, and a set of arcs.
Based on this, we can expect the inputs to a build graph algorithm to include a node
test indicating whether an item is a node, and an arc test indicating whether there
is an arc between two given nodes. If the tests are given, we also expect the input to
include some potential node set on which we can test for nodes, or more generally,
some input set from whose elements the nodes of the output graph can be computed.
There are other graphs which can be concisely specified by its abstract properties,
e.g., building a generic complete graph with a given number of nodes. The node test
and the arc test are implicit and known. Other examples include building a uniform
tree of a given depth and a given branching factor.

We also observe that different kinds of graphs can be constructed by different al-
gorithms efficiently. If the output graph is forward with respect to the input sequence
from which it is constructed, then we have an algorithm that capitalizes on this fact
to halve the running time. On constructing a node, the algorithm does not have to
look for arcs that point from this node backwards to other nodes that might have
already been made. The output graph is also acyclic.

From these observations, we organize the build graph algorithms according to
the abstract properties of the inputs they are given and the abstract properties of
the output graph they produce. Thus, the levels are organized by the nature of
the output graph the algorithm computes, e.g., build-uniform-tree and build-random-
graph, and by the kind of inputs the algorithms expect, e.g., build-graph- from-input-
list. Under build-graph- from-input-list, the algorithms are organized by the presence



CHAPTER 4. REPRESENTING AND MANIPULATING DESIGN ARTIFACTS 66

or the absence of an arc-test role and a node-test role. They are further distinguished
by the nature of the given tests. The given tests can further be classified: An arc
test is weak if it requires at least one of its given inputs to have a corresponding
node. An arc test is it strong otherwise, for there are fewer conditions required of
its two inputs. A weak-left arc test is a weak arc test whose first input item has a
corresponding node.

A hierarchy of related clichés serves as a convenient place for placing information
common to the various clichés. Design heuristics about choosing between member
clichés can be kept in the hierarchy. There can be classifier procedures associated with
the cliché family so that when some inputs or roles of an instance of the most general
cliché are given, the procedure can analyze them and provide abstract descriptors
that help classify the instance into a more specific cliché type in the hierarchy. A
procedure attached to the build graph hierarchy examines the arc test given and
labels it weak or strong, descriptors useful for classifying the given instance.

A previous attempt to organize build graph algorithms into a cluster focuses ex-
clusively on their structural similarities. It turns out that this group of algorithms
have rather disparate structures that cannot be easily structured for sharing. One
attempt was made to construct a huge plan with a great number of roles and many
constraints that limit the implementation of the roles automatically. It is, however,
too big and complicated to be easily understandable, and goes against the idea that
a cliché should be self-contained and concise.

As a concrete example of an algorithmic cliché in the library, consider the build-
rooted-forward-dag-with-weak-left-arc-test plan which is used in our scenario. It occurs
further down in the build graph cliché hierarchy. The plan for this cliché is rather big
and complicated; we use a code template to illustrate the plan in Figure 4-8.

In Figure 4-8 those operators in curly brackets are roles in the plan that need to
be implemented because they are abstract input-output specifications. Arguments
in curly brackets are input data to the plan, e.g., root-item. The key information
missing in the template are the types of the roles (rendered as operators here). Even
though the code looks like Lisp, the types of the data items in the template may
be abstract. For example, the type of arcs, node-q and input-items are abstract
lists. For clarity, they are all left out of the template to give the reader a bird’s eye
view of the plan. The computation specified in this plan has a nested iteration: the
outer loop scans through the input items in order, and the inner loop scans through
the intermediate node list that is being computed. In the inner loop, if two input
items pass the arc-test, then an arc is made out of their corresponding nodes. If
the corresponding node for the second input item is not made yet, it is made. All
nodes and arcs made are kept in respective lists, in the order they are made. An
index counts the number of nodes made.



CHAPTER 4. REPRESENTING AND MANIPULATING DESIGN ARTIFACTS 67

(Let ((Root (MAKE-NODE ROOT-ITEM 0)))
(Multiple-Value-Bind (Arcs Node-Q Index Current-Node)
(Collect-Fn
*(Values TT T T)
#’(Lambda () (Values Nil (MAKE-1-LIST Root) 1 Nil))
#’(Lambda (Arcs Node-Q Index Current-Node Current-Token)
(Multiple-Value-Bind (Arcs Node-{ Index Current-Node
Current-Token)
(Collect-Fn
'(Values TT T T T)
#’(Lambda () (Values Arcs Node-Q Index Nil Current-Token))
#?(Lambda (Arcs Node-§ Index Current-Node Current-Token
Queue-Node)
(Let* ((Queue-token (NODE-TO-INPUT-MAP Queue-Node)))
(When (ARC-TEST Queue-Token Current-Token)
(When (Null Current-Node)
(Setq Current-Node (MAKE-NODE Current-Token))
(Setq Index (+ Index 1))
(ENDPUSH Current-Node Node-Q))
(Let ((Arc (MAKE-ARC Queue-Node Current-Node)))
(ENDPUSH Arc Arcs))))
(Values Arcs Node-Q Index Current-Node Current-Token))
(SCAN-SEQUENCE Kode-Q))
(Values Arcs Node-Q Index Current-Node)))
(SCAN-SEQUENCE Input-Items))
(MAKE-GRAPH Root Arcs Node-Q Index Current-Node)))

Figure 4-8: The Build-Rooted-Forward-Dag-With-Weak-Left- Arc-Test Cliche.



CHAPTER 4. REPRESENTING AND MANIPULATING DESIGN ARTIFACTS 68

4.4.3 Going Beyond the Plan Calculus

Many algorithmic clichés can be conveniently represented in the Plan Calculus, but
there are some clichés needed in the scenario which cannot be represented as plans.
For example, the Concatenate cliché embodies the computation that takes in a vari-
able number of inputs, coerces non-sequences into sequences, and returns the con-
catenation of the sequences. Such a scheme cannot be represented in the current
plan formalism. In such a case, a program generator can be programmed to generate
appropriate plans given the actual number of arguments used for Concatenate, and
their respective types. Another example involving a program generator is the tok-
enize cliché. Given the specification of a grammar written using regular expressions,
a lexical analyzer generator can be used to generate a tokenizer to parse a text file.
It is unlikely that a single knowledge representation formalism can provide all the
facilities one needs in the course of a knowledge codification effort. It is important to
use different formalisms to capitalize the special leverage provided by each formalism.

4.4.4 Families in the Cliché Library

The library of clichés built up for the scenario in Chapter 2 is made up of several col-
lections of input-output specifications and plans. The main ones are briefly described
below:

The Lisp Family: In this collection, we have mainly input-output specifications
for the Lisp primitives used in the scenario, such as the null function and the zerop
predicate. It also contains input-output specifications for a number of simple Lisp
procedures, such as the Last-Character function, which takes a string and returns the
last character in the string.

The Iteration Family: The Common Lisp SERIES [35] macro package is used to
represent iterative computations. They provide rich and powerful iteration abstrac-
tions that simplify the design process. The key abstraction functions are codified as
input-output specifications in the iteration collection.

The List Family: The abstract data type, list, is defined in this collection.
Many commonly-used abstract operations that act on the list type are found here,
including the plans for segment and sequence-in-between. This collection also
models the various sequence types used in Lisp such as Vector, Lisp-List, and Chain.
(We call a Lisp structure a chain if it contains a field for storing a pointer to the next
structure; this can be used to encode an implicit sequence of such structures.)

The Graph Family: In this collection, various types of abstract graphs are
defined and standard operations on graphs are specified. Specifically, it has plans for
the single-source shortest path algorithms and the build-graph algorithms.

The Tokenize Family: This collection is intended to contain a number of tok-
enize clichés. They codify a number of different lexical analyzer generator algorithms.
It also defines the basic token types and generic functions typically associated with




CHAPTER 4. REPRESENTING AND MANIPULATING DESIGN ARTIFACTS 69

tokens and the tokenization process.

The Miscellaneous Family: This contains input-output specifications for the
Prorate clichés, the Ascii-File cliché, and the Qutput clichés.

4.5 Representing Design Artifacts

The DA uses several artifacts in the detailed design process. The input program de-
scription is translated into plans and they serve as the initial design for the automatic
detailed design process. During this process, each design step manipulates an evolv-
ing design represented as plans and records the design changes made in a decision
record associated with the design step. The entire design process is documented by a
global design record which makes explicit the dependencies between the design steps
taken during the process.

4.5.1 Translating Input Descriptions into Plans

The input program description given to the DA is translated into plans, and forms
the initial design of the program. This has been done manually. This process can be
automated but this was not done since the input language is expected to change in
the course of this work. The plans representing the initial program descriptions have
been compiled successfully in CAKE. A few points about the translation process are
noted below:

e A box is created for each operator application form in the input with the ap-
propriate number of inputs and outputs. All inputs and outputs are by default
given the most general type in the modeling level, data, because their more spe-
cific types are unknown as yet. Throughout the design, their types will become
more specific as more information is added. A box may be an input-output
specification or a test specification.

e The FOR-EACH form in the input description can be viewed as a macro that gets
expanded into the SERIES function, collect-fn, and parsed into plans.

e Each use of a cliché in the library is recognized and an instance of the cliché
frame is associated with the use.

e For simplicity, we assume the input descriptions are functional. Though output
to streams are global side-effects, we model such side-effects by explicit data
flow.

Asindicated earlier, the ratio plan shown in Figure 4-1 on Page 57 is a translation
of part of the program description given in the scenario.



CHAPTER 4. REPRESENTING AND MANIPULATING DESIGN ARTIFACTS 70

4.5.2 Finer Points about Representing Designs

The name of a cliché codified in the Plan Calculus is a type, i.e., it denotes the set of
all possible execution traces involving that plan. So far, we have used the term plan
for both the type and the token. It is important to clarify the distinction here: we
shall from now on call the name of a cliché, a plan type and an instance of the cliché,
a plan.

The plan calculus formalism given so far is clumsy when it comes to defining an
overlay between two plans. Overlays are functions from plan types to plan types.
Since CAKE is chiefly a propositional reasoner, the design process is carried out on
specific anonymous plans, not on the respective plan types. Intermediate designs
change frequently, and if we are to remain true to the semantics of the Plan Calculus,
we need to generalize an intermediate design whenever an overlay is needed. This is
a lot of work to do without much attendant benefits. In this work, we simulate an
implementation overlay between two plan types by a set of correspondences (equali-
ties) between the anonymous instances of the respective types. If the formal overlay
is needed, we can extract its definition from the set of correspondences.

Similarly, even though data plans are designed for modeling structured objects in
plan calculus, these are not used because many structured objects in a current design
are frequently changing. We choose to model Lisp structures in CAKE with separate
unary functions for each field and annotating outside CAKE logic the constituent fields
of the current structured type.

It is useful to note that the above two points are measures taken solely for efficiency
reasons. Frequently, it is more convenient and conceptually clearer to think with plan
types and overlay functions than with the optimized representations.

4.5.3 Representing Design Dependencies

Each design step has an associated decision record which records the changes the
step makes on the previous design. A design decision may depend directly on other
design decisions or indirectly via design constraints. A design record is a set of these
interdependent decision records that is the outcome of the detailed design process.

Decision Record: An explicit decision record is made for each design step taken.
Each design step can either be initiated by the user or by the automatic detailed design
mechanism of the DA. There are several fields in such a record:

e Step-Type: This records the type of the design step that is associated with this
record.

o Status-Node: This contains a boolean CAKE node whose truth indicates that
the associated design step has been taken. If the design step has been retracted,
this status node will revert to unknown.



CHAPTER 4. REPRESENTING AND MANIPULATING DESIGN ARTIFACTS 71

o Assert-Constraints: This contains a list of CAKE nodes that are asserted to be
true in the current design by this design step.

e Retract-Constraints: This contains a list of CAKE nodes that have been re-
tracted in the current design by this design step. For monotonic design steps,
this field is empty.

o Supporting-Nodes: This contains a list of CAKE nodes whose conjunctive truth
supports the design step represented by this record. If any of the supporting
nodes are unknown or false, then this design step must be retracted.

For each decision record, a constraint is added to CAKE which asserts that the
truth of the status-node of the decision record implies all the nodes in its assert-
constraints field. When the DA decides to take the design step, it first retracts the
nodes that are in the retract-constraints field of the record, and then asserts the truth
of the status-node of the record. To support automatic retraction of the design step,
a notice-change-truth procedure can be added to the status-node of the record. This
procedure asserts the nodes in the retract-constraints list when any of the supports
become unknown or false. Note that it does not need to retract the assertions made
in the assert-constraints list because those constraints automatically go out when the
status node is retracted due to the first constraint mentioned in this paragraph.

The design record of a design process can be kept as a chronologically ordered
list of all design steps taken during the entire design process. Those design decisions
which are no longer active at the end of the design process can be identified easily
since the status nodes of their respective decision records will not be true.

4.6 Manipulating Design Artifacts

This section describes how design artifacts are modified by the design steps and three
notions of when a design represented as a plan is considered complete.

4.6.1 Design Steps

In this subsection, we expand on the discussion in the previous chapter on the reper-
toire of design steps the DA is expected to have. We also describe how each of the
steps can install design dependencies among themselves. The design steps described
here have not been implemented. The nature of the discussion in Chapter 3 mandates
the use of more general terminology which is not done in this chapter. The design
steps described in this subsection are specific to the plan representation of programs.
Their relationships with those discussed in Chapter 3 will be pointed out in their
respective discussions.

Before delving into the details of the design steps, it is convenient to define some
terminology which will become useful in later description. A design (represented as a



CHAPTER 4. REPRESENTING AND MANIPULATING DESIGN ARTIFACTS 72

plan) has four kinds of constraints: box constraints (or type constraints on the roles of
the plan), data flow constraints, control flow constraints, and other arbitrary logical
constraints associated with the design. Every constraint has a sponsor. A sponsor of
a constraint is a boolean node that brings about the existence of the constraint in the
design. A sponsor is defined intentionally: if the sponsor decision of a constraint is
retracted, then the constraint is also retracted. For example, the sponsor of the boxes
and constraints of a plan instance may be the assertion that the plan instance is of a
particular plan type. In plan calculus, it is convenient to represent constraints on a
plan instance in a bundle by a single assertion about the type of the plan instance.
This need not be the case, we could have separate individual constraints on a plan
instance. A design step may also add new boxes and constraints to a design. The
decision corresponding to the design step becomes the sponsor of these new boxes
and constraints. By default, a constraint without any sponsor will have itself as its
sponsor. A constraint can have multiple sponsors: the constraint remains true until
all its sponsors are retracted.

Since a data flow or control flow constraint cannot exist without the existence of
their source and destination boxes, whenever we add such a constraint in a design
step, the sponsors of the source and destination boxes of the constraint must also be
part of the supporting nodes of the step. We call these implicit sponsors of data flow
and control constraints flow sponsors.

Select Algorithmic Cliché: This step is invoked on an input-output specifi-
cation that has no current implementation associated with it. For example, if this
design step is invoked on an instance of the collect input-output specification, it
looks up the cliché library to see if there are any overlays whose range is collect.
If there are more than one feasible overlay, the select algorithmic cliché design step
chooses one based on some design heuristics.

Once an overlay is chosen, an instance of the domain type of the overlay is
made, and the overlay is applied to the instance and asserted to be equal to the
collect input-output specification instance. In Figure 4-9, we have implemented
the instance of collect, c1, using an instance of series-collect, s1. This imple-
mentation decision adds the following constraints: (= (in s1) (in c1)), (= (out
s1) (out c1)), (= (argl s1) (argl c1)), (= (arg2 s1) (arg2 ci)), (= (('as
series list) (arg3 s1)) (arg3 c1)), and (= (output s1) (output c1)). The
above constraints, together with the type of the s1 box, are kept on the assert-
constraints field of a new decision record created for this design step. A new status
node, called it d1, representing this design decision is also created, and it becomes the
sponsor for all the abovementioned new constraints. A constraint is asserted in the
design that (implies di acl) where acl is the conjunction of all constraints in the
assert-constraints field of the decision record. In this way, the new constraints
acl are automatically added whenever the node di is true, and retracted when d1 is
no longer true.

This design step, being monotonic, does not remove any existing constraint from



CHAPTER 4. REPRESENTING AND MANIPULATING DESIGN ARTIFACTS 73

binfunction I binfunction
data series L data list
d (as series list) | |

I
P

argl a.r@%argli ~

argl Y arg2 ¥ arg3
Y

in in

|
s1: series-collect cl: collect
A out | out,
output | output
data I data
]

Figure 4-9: An Example of Implementing an Input-Output Specification.

the design, and therefore has an empty retract-constraints field on its decision
record. Note that if the c1 box did not exist at all, then this design decision should
not be in the design because it would be useless. Thus one of the supporting nodes for
the decision record is the sponsor of c1. In general, a design decision that involves the
implementation of a box is dependent on the sponsor of the box. This is because if
the box is removed by the retraction of the sponsor, then the implementation decision
may no longer be valid.

Depending on how this design step is triggered into action, there can be other
nodes in the supporting-nodes field of its decision record. For example, if the
decision has been to implement a single-source shortest path specification using an
algorithm for DAGS, then the conditions asserting the fact that the input graph is a
DAG should be in the supporting-nodes field. In this way, if the assertion that the
input graph is a DAG is retracted later, the choice can be retracted automatically.

For an input-output specification that stands for some cliché instance, this design
step consults its cliché frame as to how the current input-output specification should
be implemented. Local design heuristics about choosing are kept in the cliché frame
for the ease of this design step.

For those input-output specifications which are operations on an abstract type
codified in the library, they can also be implemented by this step. However, as

discussed earlier in Chapter 3, they are better viewed as selecting a data structure
for the abstract type.

Select Data Structure: This design step has been discussed in some depth in
the previous chapter. It suffices to show how the decision record for such a step



CHAPTER 4. REPRESENTING AND MANIPULATING DESIGN ARTIFACTS 74

is constructed. Take the same example shown in the last chapter, where the set of
operations on the token sequence in the scenario are: Sequence-In-Between, EndCons
and Insert.

This design step is really a union of several select algorithmic cliché design steps.
Each of the constituent design step will have a decision record like before. In addi-
tion, there is a master record for this design step itself whose assert-constraints
consists of the status nodes of all its constituent design steps. Its supporting-nodes
field, likewise, consists of the union of all the respective supporting-nodes of its
constituent steps.

Select View: When an algorithmic cliché is mentioned in the program descrip-
tion, a box is created in its place. The box is marked to be associated with the cliché
but the types of its inputs and outputs are the most general type available. For exam-
ple, the use of the prorate cliché in the lineout design has two input arguments and
one output argument, all of them are given the initial type, data. For convenience of
later reference, let the new box associated with this use of the prorate cliché be called
(!box prorate.il 2). Prorate.1is an instance of the prorate spec cliché. The !box
operator is used to provide a convenient syntax for relating the box and its associ-
ated cliché instance. The second argument indicates how many input arguments the
box takes. We say that (!box prorate.i 2) stands for prorate.1, alluding to the
intended use of (!box prorate.i 2) as a proxy for the specific prorate specification
that may be chosen later.

In addition to the motivation for this design step explained in the previous chapter,
this step is also important because our input language do not require type declara-
tions. The DA can make use of type declarations the programmer specifies but they
are not mandatory. The underlying knowledge representation and reasoning system
is, however, based on a typed logic, i.e., every term in CAKE has a type. Much of the
reasoning needed in this work is thus cast in a type framework.

The select view design step makes a guess of what the correspondences might be
using the typical-call property kept on the cliché frame. It does so by installing the
correspondences between the parts of the cliché frame and the inputs and outputs
of the box that stands for the cliché in the design. These correspondences are the
assert-constraints of the decision record created for such a design step. A sup-
porting condition for this step is the sponsor of the box. No constraints are removed
by this design step and hence, the retract-constraints field of its decision record
is empty.

Coerce Type: To make the description of this design step in the last chapter more
concrete, we reconsider the example given in the previous explanation of this step.
The top half of Figure 4-10 shows the plan representation of part of the input justify
design taken from the scenario. The specific part of the input design represented is
shown in Figure 4-11. auxiliary-justify is an auxiliary function used to encode
the computation in the inner loop of justify. The lower half of the figure shows
the structure of the plan after the coerce type step has been applied to the outfile



CHAPTER 4. REPRESENTING AND MANIPULATING DESIGN ARTIFACTS 75

argument. Part of the Ascii-File cliché is some knowledge about how we can view an
AscII file as an output stream or an input stream.

This is an example of a design step that involves non-monotonic changes in the
design, i.e., some constraints about the design are retracted. In this case, the modi-
fied data flow affects the correspondences in the overlay application. With the help
of the labels in Figure 4-10, we can see that the new constraints added by this step
are as follows. Those involving the overlay correspondences: (= (out ji) (out
k1)), (= (argl e1) (arg2 j1)), and (= (output c1) (output ji)), those in-
volving new data flow constraints, (= (output e1) (argi c1)), (= (out e1) (in
c1)), (= (output op1) (argi k1)), and (= (out opi) (in k1)), and those in-
volving the new boxes added, (close k1), and (open e1). These should all go
into the assert-constraints field of the decision record for this design step. The
retract-constraints field of the record will contain the following constraints which
are retracted by this step: (= (out op1) (out j1)), (= (output opil) (output
j1)), and (= (argl c1) (arg2 ji1)).

The supporting nodes for this design step are the sponsors for all the constraints
that are removed by it and the flow sponsors for all the the data flow constraints
added. The first group of sponsors, in the scenario, turns out to be a single design
decision: the do-this design step implicitly given by the program description provided
by the user. This design decision brings in to the current design all the constraints
that were removed by the later coerce type step.

Omit Operation: This is another example of a non-monotonic design step.
Similar to the coerce type step, the decision record for this step can be constructed
from the constraints added and deleted from the current design. The supporting
nodes of this step should include the conditions that satisfy the postconditions of the
omitted operation.

Exchange Operation for Input: This design step removes a role in a plan,
adding an input to the plan in place of the removed role, thereby changing the input-
output specification that the plan implements. Figure 4-12 shows the width plan
with its preceding-item box. Figure 4-13 shows how the preceding-item box is
moved out of the width plan to become an input to a new width-2 plan. A new
input-output specification and a new overlay are also created in the process. As this
step is used more as a subroutine for other design steps that make use of the new
plans created, one supporting node of this step is the design decision that invoked
it. Other parts of the decision record is constructed in a similar fashion as previous
non-monotonic design steps.

Pre-Compute Mapping: An example of this design step which is used in the
scenario is shown in Figure 4-14. The first half of Figure 4-14 shows the (!store
width-2) plan. This step uses the ezchange-operation-for-input design step described
earlier to produce the width-2 plan. (!put width) is an input-output specification
that stores its second argument in the field chosen to represent the width mapping
in its first argument. The first argument must be a Lisp structure. The input-output



CHAPTER 4. REPRESENTING AND MANIPULATING DESIGN ARTIFACTS 76

Targl ~in
A" "o

t1: tokensize para-break

vy ¥

. O
sl: segment \C\ +arg 1 arg?2
4
auxiliary- in ey s s
justify y + ¥ argl j1: justify
out 4
cl: collect output

Y

opl: output

~
t1: tokenize
l para-break argl
% \C‘ +a.rg1 arg2
4
sl: segment in
il el: open j1: justify
auxiliary- out
justify I argl N
g output output
cl: collect
‘argl
opl: output
‘ argl
kl1: close out
d

output

Figure 4-10: Viewing an Ascii File as an Output Stream.



CHAPTER 4. REPRESENTING AND MANIPULATING DESIGN ARTIFACTS 77

(DESIGHN justify (infile outfile)
(FOR-EACH ((paragraph (Segment (Tokenize infile) ’para-break)))
(FOR-EACH ((line ( ... paragraph)))
(... outfile line))
(Output outfile #\return)))

Figure 4-11: Input Program Description for Justify.

specification (!put width) can be generated dynamically by the DA once we have
decided to store the width mapping explicitly in a field on the domain structure.
The second half of Figure 4-14 shows the plan to compute the entire mapping. The
previous function came as an implementation of the preceding-item cliché. A
design heuristic in the preceding-item cliché motivated the transformation to move
the computation out of the loop that computes the mapping.

Figure 4-15 shows where the actual invocation of the pre-computation is placed.
The dotted line shows where there is implicit data flow from (!put width) to a use
of (!get width). The DA must ensure that all uses of (!get width) come after the
pre-computation of width. A note is also made to implement future accesses to this
mapping by (!get width); all such implementations will depend on this design step.
The installation of design dependencies of this non-monotonic step is similar to those
described earlier.

Other examples in the scenario that require the use of this design step are: the
stretch mapping and the successor mapping of tokens which arises from implement-
ing the token sequence as a chain-shelf.

Cache Mapping: One condition for which this design step is applicable has been
given in the previous discussion of the step. Here, we reconsider the applicability
condition with the same example: we want to cache the mapping ratio for a second
mapping arc-ratio. As explained in the last chapter, we can store the mapping on
the domain elements of arc-ratio which are Lisp structures. As shown in Figure 4-
16, the design step adds a new field and stores the computed ratio values directly in
the field when ratio is being computed. The (!put ratio) box and the new data
flow constraints (rendered as thick lines in the figure) are added by this step.

The only place where arcs are created in the justify design is in the make-arc
box in the build graph plan. The DA searches backwards, from the make-arc box,
for a ratio box. It does so, when necessary, by looking into the implementations
of the intervening boxes. In this case, the first ratio box it comes across is in the
implementation of arc-test.

For ease of reference, various ports in Figure 4-16 are annotated, and the proof
is shown in the same figure. Before adding the new box and the new data flow
constraints, it must verify that (M a) = s. The key observation to make here is that
all the constraints used in the proof are local to the plan. The only constraint that



CHAPTER 4. REPRESENTING AND MANIPULATING DESIGN ARTIFACTS 78

 — - '

word-token-p

I
s | F
o |
content preceding-item
|
! + ,
nuhmber-of- null |
characters S l T
Ty
I
content |
‘ I width
T |
pom last-character

7 |
l
member |

s | F
S & 2 2 2
s | F |

j3: join

l
|
I
|

Figure 4-12: Exchange Operation For Input Design Step: The Initial Width Plan.




CHAPTER 4. REPRESENTING AND MANIPULATING DESIGN ARTIFACTS 79

o——

word-token-p

s | F

| A

content

y

number-of-
characters

y

content

v

I
I
I
I
|
I
I
I
last-character : ?
Y |
I
I
|
|
I
I
|

width-2

14

member
s | F
K 2 2

Figure 4-13: Exchange Operation For Input: The Result Width Plan.



CHAPTER 4. REPRESENTING AND MANIPULATING DESIGN ARTIFACTS 80

i

width-2

struct '

('put width)

¥

P

('store width)

njl
%
(‘store width) previous
Y (‘precompute width)
binmap

Figure 4-14: Pre-Computing the Width Mapping.



CHAPTER 4. REPRESENTING AND MANIPULATING DESIGN ARTIFACTS 81

e ‘L |

tokenize

o, I

('precompute

N

width

segment

(*put width)

v !

................
.......

* implicit data flow
" implemented by
_ convention

%

(\get width) —> width — lineout

1 :

...........................

Figure 4-15: Positioning the Pre-Computation of Width.



CHAPTER 4. REPRESENTING AND MANIPULATING DESIGN ARTIFACTS 82

|
Y

node-to-input-map

sequence-in-between

arc-test é’_ ratio

................................. > =
s | F
Leeee H < =
lan has constraint C: :E. s | F
fnode-to-input-ma.p n2) " .
= y’ nl n2 ..............
make-arc

‘a.

('put ratio)

.......
...........

(token-sequence a)
= (sequence-in-between (node-to-input-map (source-node a))
(node-to-input-map (destination-node a)))

; by definition of token-sequence

= (sequence-in-between (node-to-input-map n1) (node-to-input-map n2))
; by constraint of make-arc box in the above build graph plan

= (sequence-in-between x/ yr)
; by constraint of node-to-input-map box in the above build graph plan
; and by constraint C in the above build graph plan

= (sequence-in-between x y) ; by the overlay correspondences in V

= s ; by the constraint of sequence-in-between box in ratio plan



CHAPTER 4. REPRESENTING AND MANIPULATING DESIGN ARTIFACTS 83

is not obvious is (input-to-node-map n2) = yi. In the context of the build graph
cliché, it says that the corresponding input item of the destination node of an arc
is derived from the second argument to the arc-test box. This, we assume, is a
constraint in the build graph cliché.

It is also necessary to make sure that the ratio box from which the result is fanned
out is always there whenever an arc is made. If the ratio box is hidden within some
conditionals in the implementation of arc-test, then there could be times when the
result is not available when the arcs needed it. In our scenario, this is not the case;
ratio is always computed before any arc is made.

The design dependencies that need to be installed in this design step are similar
to the other non-monotonic design steps. The only difference of note here is that all
the constraints used in the verification proof should also be made supporting nodes
for the decision to take this design step.

Design Tree

We have drawn plan diagrams to illustrate the action of the above design steps. It
must be apparent by now that the illustration can get to be very large and complicated
when the design is large. As a shorthand, we introduce a different illustration of a
program design which is more compact but does not contain as much information.
A design tree shows the hierarchical decomposition of a program design without its
data flow and control flow arcs. As an example, Figure 4-17 shows the design tree
for a program design of the ratio function from the scenario. An arrow shows
the application of an implementation overlay from some plan to an input-output
specification. The roles of the plan used are drawn as the children nodes of a tree
whose root is the plan. In Figure 4-17, ratio-plan has five roles whose types are
shown as its immediate descendants. A small dot below a role indicates that the
role is implementable. In the figure, zerop, /, series-map, series-sum, and (!get
token-stretch) are implementable. They form the fringe of the design tree.

The select algorithmic cliché design step and the select data structure design step
can both be seen as adding implementations to non-fringe nodes in a design tree.
In an idealized design process, no non-monotonic design steps are taken. In such a
case, every design step taken augments the design tree of the program design from the
previous design step. In such a case, the design tree can be viewed as a rather compact
representation for the design record of the idealized design process. In general, non-
monotonic design steps may add new roles to and remove old roles from an existing
plan in the design tree. The design tree is still useful to show the change in the design
more compactly than using plan diagrams.

4.6.2 Propagating Constraints

A key step in the design cycle described in the previous chapter is the constraint
propagation step. Various design steps bring specific design information from a cliché



CHAPTER 4. REPRESENTING AND MANIPULATING DESIGN ARTIFACTS 84

ratio
ratio-plan
extras total-stretch Zerop Zerop

total-stretch-plan

e

map sum stretch
series-map series-sum (!get token-stretch)
[ ] [ ] [ ]

Figure 4-17: A Design Tree.

to bear on the current design. This, however, has to be propagated to other parts of
the design where they may act. For example, the typical call mechanism described
above constrains the output of the single-source shortest path computation to be a
path, i.e., a sequence of arcs. This information is propagated through data flow arcs
to the lineout computation.

We illustrate the kind of reasoning needed to propagate such constraints in CAKE
using the following example with the help of Figure 4-18. This will also serve to
show how some make-assumption design steps are triggered into place by this con-
straint propagation step. In the figure we show the collect box (named c1) from
the justify design with the known type constraints on two of its input arguments.
Suppose the current CAKE database contains the following true assertions:

((!1ist arc) (arg3 c1)) A (output-stream (argl ci))
A (= lineout (arg2 ci))

where (!1ist arc) is a specialization of the abstract list type whose elements are con-
strained to be arcs. How can we deduce that 1ineout has the signature: output-stream
x arc — output-stream?

We have programmed CAKE to instantiate the parameterized projection axiom
shown in the same figure. The axioms can be used to deduce new type constraints on
the second input argument and on the output of the collect box based on type con-
straints on the other arguments. (!fromoutput-stream (!1list arc) output-stream)
denotes a functional type. If £ is a member of the functional type (!from t1 t2 t3) ,
then (£ a b) is constrained to have type t3 if (t1 a) and (t2 b) are both true. The



CHAPTER 4. REPRESENTING AND MANIPULATING DESIGN ARTIFACTS

largl l arg2 la.rg3

cl: collect

loutput

Current Status: ((!list arc) (arg3 c1)) A (output-stream (argl cl))
A (= lineout (arg2 cl))
Axiom: Vif],t1,t2 s.t. t1 is (!list btl)
(defined (collect i f1)) =
(t11) A (t21) =
(t2 (collect i £1)) A ((from t2 btl t2) f)
Assumption 1: (defined (collect (arg c1) (arg2 cl) (arg3 cl)))
New Deductions: (output-stream (output cl))
A ((Mfrom output-stream arc output-stream) lineout)
Assumption 2: triggered by the last deduction
(('on output-stream arc output-stream) lineout)
or lineout: output-stream x arc — output-stream

Figure 4-18: Parameterized Type Propagation.

85



CHAPTER 4. REPRESENTING AND MANIPULATING DESIGN ARTIFACTS 86

type does not constrain £, however, to be undefined on applications whose arguments
are disjoint from the types of the formal parameters of £. Thus to draw the first step
of the desirable conclusion, we need to assume that the application is defined. Fur-
thermore we need to assume that we can generalize from this single use of 1lineout
that it is the only correct use, and restrict it to be undefined outside the projection
types given.

In short, with the help of the parameterized projection axioms, we need to make
two explicit assumptions in order to arrive at the desired conclusion. These assump-
tions are in fact explicit design decisions the DA has to make in an effort to advance
the design. A list of such assumptions can be maintained and categorized so that
they can be retracted if contradictions involving them arise later. For example, if
there is a new use of lineout in the design which indicates that 1ineout is a mem-
ber of another functional type (!from output-stream t output-stream) (where
t is any type), then we need to retract the strong assumption made earlier about
lineout being undefined outside output-stream x arc. Instead, we can assume
that we can generalize from the two uses of lineout that lineout has the signature:
output-stream x (*or t arc) — output-stream.

The example given indicates a potential problem with this design step: if CAKE
is not properly guided in the instantiations of the given axioms, it will be very slow
because it will make a lot of useless deductions. In CAKE, instantiations of these
axioms are done via noticers or pattern-directed procedures. We can selectively in-
stantiate the axiom on instances by their fixed syntactic properties. For example, we
can consider only type instances that are strictly subtypes of the data type. If there
are two types one of which is a subtype of the other, then we need only instantiate
the more specific type because type subsumption in CAKE can complete most of the
reasoning needed in the more general type.

A related note to make here is how the decision record for the make-assumption
design step can be constructed. This design step is obviously a monotonic step, and
the constraints added is the assumption made. The supporting node in the first
assumption about the defined-ness of an application does not need any supporting
nodes since there are no good candidates for removing the assumption automatically.
For the second assumption, the supporting node is the node that triggers it: ((!from
output-stream arc output-stream) lineout).

4.6.3 When is a Design Complete?

A key need of any automatic design process is to know when a design is done so
the process can stop. In the representation framework of the plan calculus, there are
three useful notions of completeness:

1. Complete with respect to Roles: A design is complete with respect to roles if
all the fringe boxes in the current design tree are implementable.



CHAPTER 4. REPRESENTING AND MANIPULATING DESIGN ARTIFACTS 87

2. Complete with respect to Structures: This notion subsumes the previous notion
of completeness and furthermore, requires that the data flow and control flow
constraints at every level in the design tree be implied by constraints involving
the level below it.

3. Complete with respect to Plan: This notion subsumes the above two notions,
and furthermore, requires that all constraints, both structural constraints, as
well as general logical constraints (in the preconditions and postconditions of
boxes) in every level are implied by the same in the level below it.

Complete with respect to plan is the strongest kind of completeness. It is however
difficult to prove that arbitrary logical constraints follow from other constraints given
CAKE’s incomplete reasoning. In this work, we assume that complete with respect
to structures suffices. Given that almost all constraints in our plans come from data
flow and control flow constraints, this captures a large part of the design process.

This weaker notion of completeness can be tested by the following checks: A
current design is complete with respect to structures if (1) all fringe boxes in the
design tree are implementable; and (2) every input of every fringe box in the design
tree gets its input from either an output of an implementable box in the design tree,
or it is a constant that is implementable, or it is mapped to an input of the top-
level input-output specification. (1) is simply a check for completeness with respect
to roles, and (2) ensures that all data flow constraints are accounted for. We do
not need checks for control flow constraints because they follow logically from the
formalization of control flow arcs and overlays.




Chapter 5
Related Work

Our work on the DA spans several different dimensions of automatic programming
research. The key dimensions are:

e Program Synthesis: Program synthesis systems accept some kind of user spec-
ifications, and output some ezecutable code.

o Support for Detailed Design: These systems support detailed program design
by automatically making some implementation choices and maintaining the
design rationale behind those choices. These include systems that select data
structures and algorithms; they may or may not produce executable code.

e Support for Specification: Systems that support specification can criticize the
given specification by detecting inconsistencies and incompleteness, and they
may provide corrections to the detected problems.

As some of the reviewed work spans more than one of the above dimensions, the
following account will discuss each work individually in broad categories and indicate
how they are related to the DA along the above dimensions.

5.1 KBEmacs

In the Programmer’s Apprentice project, KBEmacs [34] demonstrated the use of
clichés in program construction. Also part of the PA project, the DA is intended to
go beyond KBEmacs by automatically selecting the more specific plans to construct
a program, based on abstract clichés and design criteria given.

As a successor to KBEmacs, the DA extends KBEmacs in the following respects:

Design Editor: KBEmacs goes beyond syntax-directed program editors by sup-
porting editing in terms of the algorithmic structures of programs. The DA supports
programming in a fundamentally different level: it interacts with the programmer in
terms of design decisions. It allows the programmer to specify more abstract clichés

88



CHAPTER 5. RELATED WORK 89

that may not have a direct implementable algorithmic cliché associated with it. The
DA chooses appropriate more specific clichés to implement the given specification,
according to the implementation guidelines the programmer sets. By propagating
design decisions, the DA can relieve the programmer from specifying details which are
already constrained by other design choices made.

General-Purpose Automated Deduction: In the DA, the relationships be-
tween clichés and design concepts are explicitly represented as constraints in a general
way. The DA propagates such constraints throughout the specification and reasons
via such constraints. In contrast, KBEmacs represents constraints procedurally.

Detection of Contradictions: The DA is able to detect contradictions in the
program description and design criteria given. KBEmacs does not support such error
detections.

Different Kinds of Inputs: KBEmacs accepts inputs from the user in the form
of imperative editor commands that act on the contents of the editor buffer. The
sequence of commands are highly order-dependent. The input descriptions accepted
by the DA are more declarative, and order-independent.

5.2 Deductive Synthesis

Work on deductive synthesis is based on the idea that a program can be extracted from
a constructive proof of the theorem about the desired input-output behavior. This
approach is very general but it reduces the problem of program synthesis to that of
automatic theorem proving, another very difficult problem. Manna and Waldinger’s
work [19] and Smith’s CYPRESS [30] are examples in this category. The key advantage
of this approach is that a verification proof comes with any program synthesized.
However, this approach is not likely to scale up for larger programs and it is not clear
how to generate efficient code based on such an approach.

The deductive synthesis approach is related to the DA only in its goal of pro-
gram synthesis. The approach taken by the DA explicitly shuns deep deductions and
emphasizes the use of detailed knowledge.

5.3 Program Transformation

This approach emphasizes the use of correctness-preserving transformations to ei-
ther implement programs from given specifications or to improve the efficiency of
given programs. The former is commonly known as transformational implementation
or vertical transformation, and the latter, lateral transformation. Transformational
implementation approach typically takes a high level description of a program and
through successive transformations, turn it into an executable program. As it is
closely related to the very high level language approach, some systems which belong
to both approaches will be discussed later under very high level languages.



CHAPTER 5. RELATED WORK 90

An example of lateral transformations is Burstall and Darlington’s transformation
system [6]. It uses a small set of transformation rules to improve programs which are
more understandable to humans but are inefficient. Research in lateral transformation
is complementary to the DA research here. Some of the results can potentially be used
to optimize the output of the DA.

One of the earliest system to have incorporated vertical program transformation
ideas is the PSI system [10]. It consists of two modules, the PECOS module [4] which
generates the program based on a library of synthesis refinement rules and the LIBRA
[11] system which controls the search in the generation of the program. Researchers
at the Kestrel Institute and the Information Sciences Institute, University of Southern
California are pursuing this approach to implement high level specification languages.

The vertical transformation approach is similar to our approach; the difference lies
mainly in emphasis. Most program transformation systems start with more declara-
tive and more abstract specifications than those accepted by the DA, and through a
long series of transformations, arrive at an implementation. Some design steps in the
DA can also be viewed as vertical transformations. However, in addition to allowing
vertical transformations, the DA also maintains explicit design dependencies for the
implementations chosen.

5.4 Very High Level Languages

This approach aims to provide a high level language in which abstract specifications
and concrete implementations can be written in the same language. Typically, a
transformation system is built to transform the abstract specifications into executable
constructs.

The SETL language [29] is a set-based, tuple-based language specifically designed
to allow the programmer to ignore the detailed design of data structures. Kestrel
Institute’s REFINE language is another example of a very high level language [1].
REFINE is a general-purpose, set-based, logic-based, wide-spectrum language with
facilities for manipulating a knowledge base of transformation rules. The REFINE
compiler is a set of transformation rules that turns a REFINE program into executable
Common Lisp code. The GIST specification language [8] is designed to retain the
expressiveness of natural language. An interpreter has been built to study some
transformation rules in this context.

The DA can be viewed as supporting a specialized, very high level specification
language. Like all systems which follow this approach, the DA aims to provide the
programmer with a language which is higher level than that provided by conventional
programming languages, and strives to free the programmer from detailed design of
data structures. However, most of these systems expect the user to provide com-
plete specifications. In contrast, the DA is expected to help the user with completing
some partial description. In addition, the input language of the DA is an interac-
tive design language intended to capture some of the intermediate vocabulary used




CHAPTER 5. RELATED WORK 91

by programmers in order to make the program description more understandable to
human programmers.

5.5 Program Generators

A program generator uses a high level specification language typically designed for
a specific domain, and turns a description in such a language into a program in
some programming language. Program generators are similar to the very high level
languages except that they typically use more traditional compilation techniques, and
their focus is typically very narrow.

The Draco approach to automatic programming [22] can be viewed as advocat-
ing program generators for specific domains. Suitable domains are domains in which
many systems need to be built. A domain analyst studies such a domain and creates
the objects and operations of interest to the domain, possibly in terms of other do-
main objects and operations known to the Draco system. A domain designer creates
alternative implementations for each object and operation. The resultant Draco sys-
tem is then used by system analysts and system designers. A system analyst specifies
a new system in the domain using the objects and operations provided by the Draco
system; a system designer takes this specification and creates an executable system
by selecting the appropriate implementations for each object and operation in the
specification using the Draco system.

Our approach, when appropriately viewed, is similar to that of Draco’s. The
clichés we are trying to codify are similar to the software components the Draco ap-
proach calls for. The domain analysis and design is similar to our analysis of some
programming domains in order to come up with appropriate clichés. One way of
viewing our work is an attempt to automate the process of detailed design in Draco:
Draco expects a system designer to select implementations for objects and operations
in the specifications, the DA is expected to choose implementations automatically.
Besides automatic selection of implementations, the DA also maintains the design
rationale for the chosen implementations and critiques the given specification. The
framework established by the DA is also broad enough to capitalize on program gener-
ators. In the scenario, Tokenize and Concatenate are clichés represented as program
generators.

Another domain-specific program generator is the ®nix system [5]. It applies
an extensive body of oil well logging knowledge to synthesize analysis programs.
The ®nix approach and our approach shares a common emphasis on domain-specific
knowledge if we view programs manipulating graphs as a domain. Taking such an
emphasis allows the users of our systems to specify their needs concisely and in terms
natural to them.



CHAPTER 5. RELATED WORK 92

5.6 Algorithm Design

Another dimension to automatic programming is algorithm design. Kant [12] defined
algorithm design as the process of coming up with a sketch, in a very high level lan-
guage, of a computationally feasible technique for accomplishing a specified behavior.
Kant and Steier at cMU [31] studied human algorithm designers at work. Steier and
Newell’s work on DESIGNER-SOAR [32] investigated using production system architec-
ture to design and discover algorithms. DESIGNER-SOAR explores algorithm design
by successive refinement using symbolic execution and test-case execution as primary
control mechanisms. It integrated nine sources of knowledge: weak methods, design
strategies, program transformation, efficiency, symbolic execution, target language,
domain definition, domain equations and learning.

The scope of these works included original algorithm design and discovery. In
contrast, our work aims at re-using commonly known data structures and algorithms.

5.7 Selection of Data Structures and Algorithms

Low’s system [18] automatically selects data structures based on how the data are
used, the domains and sizes of data, and the operations performed on them. Tech-
niques used include static flow analysis, monitoring execution of sample runs, and
user interaction. The system concentrated on selection of data structures for sets and
lists. Our work draws on the experience of Low’s system, and extends the scope to
include the selection of algorithms.

Rowe and Tonge [28] described a class of abstract data structures, called modeling
structures, in terms of properties involving their component elements, relations be-
tween elements, and operations on them. Each modeling structure may have several
implementation structures which implement it. They described a system that accepts
specifications which contain modeling structures and turns the modeling structures
into implementation structures with the help of a library of mappings of modeling
structures to implementation structures. They also described an algorithm which
can implement the remaining modeling structures that failed to match any of the
mappings available in the library. They acknowledged that their system is difficult
to use partly because the descriptions of modeling structures were complicated. The
question of how to combine several modeling structures into one representation is left
open. Our work also makes use of descriptions of familiar modeling structures to help
select implementations of data structures. The descriptions in the DA, however, are
designed to be easily understandable to programmers.

Katz and Zimmerman [13] built an interactive advisory system for choosing data
structures. It was able to provide new combinations of known structures which satisfy
complex requirements not anticipated in advance. The key idea embodied in the
system is that it provides a linguistic base of known vocabulary about data structures
in which the selection of implementation structures was carried out. This is also



CHAPTER 5. RELATED WORK 93

the same idea being exploited in our approach by providing a familiar vocabulary
for describing more abstract data structures and algorithms, and for describing the
selection criteria.

McCartney’s MEDUSA system [20] synthesizes a number of functional geometric al-
gorithms based on the given input-output specifications and performance constraints.
MEDUSA achieves this using a library of templates and a small number of design meth-
ods. Its emphasis lies in making the algorithm synthesis process efficient and fully
automatic. It also assumes complete and consistent specifications. In contrast, the
DA can detect some incomplete and inconsistent specifications. It is meant to be an
interactive tool, and it supports incremental design changes made by the user.



Chapter 6

Future Work and Conclusions

This report describes specific progress made in constructing the DA which embodies
our approach to supporting reuse and evolution in program design. This work can
also be viewed as charting out, in significant detail, the key issues involved in the
construction of the DA. In the following we describe what needs to be done next.

Implementation: Completing the partial implementation that currently exists is
useful to help debug the ideas presented in this thesis. This will serve to demonstrate
the feasibility of the DA. A key missing component in the current work is a more
refined control structure that uses the various design heuristics given to automatically
select the design steps.

Program Metrics: To make effective tradeoff decisions, a formal language is
needed to characterize the efficiency of programs and incomplete programs based on
the distribution of their input data. Algorithmic clichés should have annotations
about their performance properties so that when they are combined or modified, the
performance properties of the resultant design can be estimated from its constituent
parts. Some work in the framework of deriving and proving the computational prop-
erties of while-programs has been done [21, 23]. It will be interesting to adapt and
extend them for use in our current framework.

Adding New Capabilities: The DA may be able to add auxiliary code into a
design that performs standard tasks that programmers frequently do. For instance,
to help in debugging and simulation, code can be inserted into a program to trace
the execution of the program. Instrumentation code can be added to collect statistics
about program runs. In a system that does explicit storage management, code can be
added to do garbage collection. It will also be useful if the DA can specify domain-level
constraints that are automatically translated into specific checks in the program. The
input description accepted by the DA is currently rather operational and formal. It
would be useful to relax that requirement by adding a module that can help acquire
the program description from less formal input descriptions. Some work, such as [24],
has been done in the context of requirements acquisition. Similar techniques might
be applicable here to relax the rigor of the input description.

94



CHAPTER 6. FUTURE WORK AND CONCLUSIONS 95

Another important capability the DA should eventually have is an explanation
generation system. Currently only the dependencies of various design decisions are
recorded. CAKE makes a distinction between assertions that are retractable, premises,
and those that are non-retractable, azioms. CAKE compiles axioms into constraints in
the system to optimize run-time speed. In the process, the domain model represented
by these axioms is not easily accessible. Even if the domain model is represented as
retractable premises in CAKE, generating good explanations is a non-trivial task on
its own. Some work [16] has been done to remove clutter in a dependency tree but the

underlying deeper problem about generating appropriate explanations has not been
addressed.

Extensions: The Programmer’s Apprentice is intended to support the entire
process of software development. The DA starts at one end of the spectrum, looking
for ways to formalize higher level program descriptions into executable code. Another
project, the Requirements Apprentice (RA) [24], is concerned with the other end of
the spectrum - automating the acquisition of informal requirement descriptions. The
gap between the Requirements Apprentice and the DA remains to be bridged. This
may be done by extending the capability of the DA to include high-level design of
programs, or by a separate module that starts with the requirement descriptions
produced by the RA, and produces a high-level design that is acceptable to the DA.

Another direction to pursue is to study the designs of programs with complex side-
effects in the DA framework. The Plan Calculus formalism has facilities for reasoning
about side-effects. We have, however, focused our attention on programs which are
essentially side-effect free.

Codification of Programming Knowledge: Given that complete reasoners
are computationally intractable, incomplete reasoners are here to stay. Our approach
in the use of incomplete reasoners has been to add domain lemmas (assertions that
can be derived from the domain axioms) so that CAKE, an incomplete reasoner, can
succeed in deriving the desired conclusions. This has meant a strong reliance on the
contents of the cliché library. There are few general operational guidelines about
how to make the tradeoffs between “reasoning harder” and “encoding more domain
lemmas”.

A related problem in using the Plan Calculus is the lack of a well-informed dis-
cipline towards this task of codifying programming knowledge. This problem has to
be informed strongly by the nature of the uses the knowledge will be put to, and the
capabilities of the reasoner that might act on them.

Another dimension to pursue in knowledge codification is in increasing the depth
of the cliché library. Besides codifying more kinds of general algorithmic clichés, a
richer vocabulary of design steps is needed to describe the detailed design of programs.



CHAPTER 6. FUTURE WORK AND CONCLUSIONS 96

6.1 Conclusions

We have described the progress made in establishing a framework in which reuse
and evolution in software design can be achieved. This framework is supported by a
proposed and partially implemented tool, the DA, which supports software reuse by
a library of clichés and a suite of design steps suitable for automating the detailed
design of programs. The DA supports software evolution by maintaining dependencies
among design decisions. The DA is also able detect some kinds of inconsistencies and
incompleteness in the input descriptions.

We have also described a novel process model, programming by successive elab-
oration, that underlies the capabilities of the DA. This process is characterized by
the use of breadth-first exposition of layered program descriptions and the successive
modifications of descriptions. It allows a programmer to describe a desired program
in a concise and comprehensible manner using clichés. We argue that this process is
useful, familiar, and natural.



Bibliography

[1] L. M. Abraido-Fandifio. An overview of refineT™ 2.0. A revised edition of the
paper published in Proc. 2nd Int. Symposium on Knowledge Engineering —
Soft. Eng., Madrid, Spain, April, 1987.

(2] A. V. Aho, J. D. Ullman, and J. E. Hopcroft. The Design and Analysis of
Computer Algorithms. Addison-Wesley, 1974.

(3] A. V. Aho, J. D. Ullman, and J. E. Hopcroft. Data Structures and Algorithms.
Addison-Wesley, 1983.

[4] D. R. Barstow. An experiment in knowledge-based automatic programming.
Artificial Intelligence, 12(1 & 2):73-119, 1979. Reprinted in C. Rich and R. C.
Waters, editors, Readings in Artificial Intelligence and Software Engineering,
Morgan Kaufmann, 1986.

[5] D. R. Barstow. A perspective on automatic programming. Al Magazine,
5(1):5-27, spring 1984. Reprinted in C. Rich and R. C. Waters, editors,
Readings in Artificial Intelligence and Software Engineering, Morgan
Kaufmann, 1986.

(6] R. M. Burstall and J. L. Dazlington. A transformation system for developing
recursive programs. J. ACM, 24(1), January 1977.

[7] C.E. Cormen, T.H. Leiserson and R.L. Rivest. Introduction to Algorithms.
MIT Press, 1990.

[8] M. S. Feather and P. E. London. Implementing specification freedoms. Science
of Computer Programming, 2:91-131, 1982.

[9] Y. A. Feldman and C. Rich. Bread, Frappe, and Cake: The gourmet’s guide to
automated deduction. In Proc. 5th Israeli Symp. on Artificial Intelligence, Tel
Aviv, Israel, December 1988.

[10] C. Green. A summary of the PSI program synthesis system. In Proc. 5th Int.

Joint Conf. Artificial Intelligence, pages 380-381, Cambridge, MA, August
1977.

97



BIBLIOGRAPHY 98

[11] E. Kant. A knowledge-based approach to using efficiency estimation in
program synthesis. In Proc. 6th Int. Joint Conf. Artificial Intelligence, pages
457-462, Tokyo, Japan, August 1979. Vol. 1.

[12] E. Kant. Understanding and automating algorithm design. In Proc. 9th Int.
Joint Conf. Artificial Intelligence, pages 1243-1253, 1985.

(13] S. Katz and R. Zimmerman. An advisory system for developing data
representations. In Proc. 7th Int. Joint Conf. Artificial Intelligence, pages
1030-1036, Vancouver, British Columbia, Canada, August 1981. Vol. 2.

(14] D. E. Knuth. The Art of Computer Programming. Addison-Wesley, Reading,
MA, 1968, 1969, 1973. Volumes 1, 2, and 3.

(15] D. E. Knuth and M. P. Plass. Breaking paragraphs into lines. Software —
Practice and Ezperience, 11:1119-1184, 1981.

[16] P. M. Lefelhocz. An experiment in knowledge acquisition for software
requirements. Working Paper 330, MIT Artificial Intelligence Lab., May 1990.

[17] M.E. Lesk and E. Schmidt. Lex: A lexical analyzer generator. In Uniz
Programmer’s Manual, B.W. Kernighan and M.D. Mcllroy, Bell Labs, 7th
Edition, 1978.

[18] J. R. Low. Automatic data structure selection: An example and overview.

Comm. ACM, 21(5):376-384, May 1978.

[19] Z. Manna and R. Waldinger. A deductive approach to program synthesis.
ACM Trans. Programming Languages and Systems, 2(1):90-121, January 1980.
Reprinted in C. Rich and R. C. Waters, editors, Readings in Artificial
Intelligence and Software Engineering, Morgan Kaufmann, 1986.

[20] R. McCartney. Synthesizing algorithms with performance techniques. In Proc.
6th National Conf. on Artificial Intelligence, pages 149-154, Seattle, WN, July
1987.

[21] Daniel Le Métayer. Ace: An automatic complexity evaluator. ACM Trans.
Programming Languages and Systems, 10(2):248-266, April 1988.

[22] J. M. Neighbors. The Draco approach to constructing software from reusable
components. IEEE Trans. Software Engineering, 10(5):564-574, September
1984. Reprinted in C. Rich and R. C. Waters, editors, Readings in Artificial
Intelligence and Software Engineering, Morgan Kaufmann, 1986.

[23] Hanne Riis Nielson. A hoare-like proof system for analysing the computation
time of programs. Science of Computer Programming, 9(2):107-136, October
1987.




BIBLIOGRAPHY 99

[24] H. B. Reubenstein. Automated acquisition of evolving informal descriptions.
Technical Report 1205, MIT Artificial Intelligence Lab., June 1990.

[25] C. Rich. A formal representation for plans in the Programmer’s Apprentice. In
Proc. 7th Int. Joint Conf. Artificial Intelligence, pages 1044-1052, Vancouver,
British Columbia, Canada, August 1981. Reprinted in M. Brodie, J.
Mylopoulos, and J. Schmidt, editors, On Conceptual Modelling, Springer
Verlag, 1984 and in C. Rich and R. C. Waters, editors, Readings in Artificial
Intelligence and Software Engineering, Morgan Kaufmann, 1986.

[26] C. Rich. The layered architecture of a system for reasoning about programs. In
Proc. 9th Int. Joint Conf. Artificial Intelligence, pages 540-546, Los Angeles,
CA, 1985.

[27] C. Rich and R. C. Waters. The Programmer’s Apprentice. Addison-Wesley,
Reading, MA and ACM Press, Baltimore, MD, 1990.

[28] L. A. Rowe and F. M. Tonge. Automating the selection of implementation
structures. IEEE Trans. Software Engineering, 4(6):494-506, November 1978.
Reprinted in C. Rich and R. C. Waters, editors, Readings in Artificial
Intelligence and Software Engineering, Morgan Kaufmann, 1986.

[29] E. Schonberg, J. T. Schwartz, and M. Sharir. An automatic technique for
selection of data representation in SETL programs. ACM Trans. Programming
Languages and Systems, 3(2):126-143, April 1981. Reprinted in C. Rich and R.
C. Waters, editors, Readings in Artificial Intelligence and Software Engineering,
Morgan Kaufmann, 1986.

[30] D. R. Smith. Top-down synthesis of divide-and-conquer algorithms. Artificial
Intelligence, 27(1):43-96, 1985. Reprinted in C. Rich and R. C. Waters, editors,
Readings in Artificial Intelligence and Software Engineering, Morgan
Kaufmann, 1986.

[31] D. M. Steier and E. Kant. Symbolic execution in algorithm design. In Proc. 9th
Int. Joint Conf. Artificial Intelligence, pages 225-231, 1985.

[32] D. M. Steier and A. Newell. Integrating multiple sources of knowledge into
designer-soar, an automatic algorithm designer. In Proc. 7th National Conf. on
Artificial Intelligence, pages 8-13, 1988.

[33] Y. M. Tan. ACE: A cliché-based program structure editor. Working Paper 294,
MIT Artificial Intelligence Lab., May 1987.

[34] R. C. Waters. The Programmer’s Apprentice: A session with KBEmacs. IEEE
Trans. Software Engineering, 11(11):1296-1320, November 1985. Reprinted in
C. Rich and R. C. Waters, editors, Readings in Artificial Intelligence and



BIBLIOGRAPHY 100

Software Engineering, Morgan Kaufmann, 1986 and in T. Ichekawa, editor,
Language Architectures and Programming Environments, MIT Press, in
preparation.

[35] R. C. Waters. Series. In G.L. Steele Jr., editor, Common Lisp the Language,
Second Edition. Digital Press, Burlington, MA, 1990.




