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Abstract

This paper addresses contact sensing, i.e. the problem of resolving the
location of a contact, the force at the interface and the moment about
the contact normals. Called “intrinsic” contact sensing for the use of in-
ternal force and torque measurements, this method allows for practical
devices which provide simple, relevant contact information in practical
robotic applications. Such sensors have been used in conjunction with
robot hands to identify objects, determine surface friction, detect slip,
augment grasp stability, measure object mass, probe surfaces, control
collision and a variety of other useful tasks. This paper describes the
theoretical basis for their operation and provides a framework for future
device design.
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Figure 1: Simple contact sensing.

1 Introduction

Manipulation requires contact between a robot and an object. Although contact is the
fundamental interaction which occurs in manipulation, most robotic systems rely on a priori
positional information in order to perform tasks. Current robot systems do not adequately
sense or use contact information. Instead, they rely on precise pre-positioned objects and arm
joint information to guide the robot into contact with these objects. When contact occurs, as
in grasping and assembly operations, more precise and intrinsically mechanical information is
required than can be obtained from vision or non-contact sensing. The traditional approach
to monitoring and controlling such interactions falls into two camps: force sensing and
tactile sensing. The “classic” approach to force sensing employs strain sensitive elements
in the wrist, drive train and other arm structures to permit measurement and control of
contact and assembly forces (see Whitney [1987] for an overview). This method focuses on
the net contact force and does not address contact location and geometry. On the other
extreme, tactile sensors have been used to sense the details of particular contacts. Such
devices employ surface mounted arrays of force sensitive elements which can be used to
reveal contact locations, shapes and contact pressure distributions. See Nicholls and Lee
[1989] for an extensive survey of the technology.

An alternative approach to traditional force and tactile sensing, developed in detail here,
relies on the use of force and torque measurements to reveal a contact’s location and force
components. One of the simplest embodiments of this concept is shown in figure 1.

By measuring the moment m and the force f at the fixed end of the cantilever beam,
both the position of a single contact and the magnitude of its normal component of force can
be found as: p = f and ¢ = m/f. A two-dimensional version of this idea permits contact



location and normal force measurement on a plane by simply measuring the force normal
to the plane and two moments in the plane. One embodiment of this idea was patented
by Peronneau [1972]. It turns out that it is also possible to sense the location and force
components of contacts occurring on a non-planar body, under appropriate assumptions.
Minsky [1972] mentions this idea in conjunction with a force sensing wrist on a robot.

Salisbury [1984] and Brock and Chiu [1985] described a structural and mathematical
solution appropriate for robot fingertips that sense the location of point contacts which
transmit pure forces, along with the components of the contact forces themselves. Their
approach has been reconsidered by Tsujimura and Yabuta [1988]. Okada [1990] presented
a suspension-cell based tactile sensor, very close in spirit to this sensing concept. Bicchi
(1989, 1990a] derived a complete solution which takes into account soft-finger contact effects.
Eberman and Salisbury [1989] describe how joint torque measurements in a robot arm may
be used to determine the location of a contact on its links. The broad applicability of this
concept warrants closer examination of the underlying mathematics and has thus motivated
this paper.

This type of force-based contact sensing is inherently different from more traditional tac-
tile sensing. The goal of most tactile sensing systems is to measure the pressure distribution
over the area of contact in order to infer details about contact location and shape. However,
the goal of force-based contact sensing is to measure the net force acting on a body and to
use this data to determine the properties of the contact through which the force is exerted.
Since these sensors rely on measurements taken by sensing elements which are placed inside,
rather than spread over, the contacting surface, they are also referred to as intrinsic tactile
Sensors.

Although the theory behind such sensors is relatively complex, in practice they are quite
simple to build and utilize, and therefore offer enormous potential for improving robot ma-
nipulation dexterity. In this paper we present the theoretical aspects of intrinsic contact
sensing as a basis for device design and application. In section 2, we survey three basic
contact models: the point contact without friction, point contact with friction and soft finger
contact. The soft finger contact type is particularly important, since it describes the most
common situation encountered in manipulation. In section 3, we address the basic math-
ematics and mechanics of contact sensing, and discuss when it is possible for a sensor to
determine the location and the resultant force and moment of a contact given internal force
and moment measurements. Sections 4, 5, and 6 describe algorithms to solve the contact
sensing problem: section 4 presents a general, yet approximate, closed-form algorithm, sec-
tion 5 describes a closed-form, exact solution for a number of simple sensor surfaces, and
section 6 introduces a general iterative method. Section 7 describes some possible generaliza-
tions of the idea; finally, in section 8 numerical experiments are used to discuss the properties
of the proposed algorithms. The appendix contains proofs of the propositions introduced in
the text.



2 Contact Types

The concept of contact type is basic to understanding force-based contact sensing. The
contact type establishes constraints on the forces which may be applied through the contact
between two bodies [Mason and Salisbury, 1985).

If the forces which act upon a body sum to zero, it is said to be in a state of static
equilibrium. These forces may arise from actuators, body forces and contacts with the
environment. Although the net force and moment on a system in static equilibrium will
sum to zero, there will be non-zero internal forces (i.e. structural stresses, contact forces
etc.). If measurements of some of the internal forces can be made, they can be checked for
consistency with the expected effects of a particular load type, and hence can be used to
deduce information about the contact(s).

In the case of a body in contact with another when arbitrary forces and moments can be
transmitted through the contact (i.e. a glued contact type), not much may be said about the
contact geometry, starting from force measurements. However, other common contact types
impose constraints on the transmitted forces: their components usually have to be either
unidirectional or limited by friction cones. It is these constraints which make the whole
concept practical.

A point contact without friction constrains the force applied to the body to be normal to
the surface at the point of contact, and the moment to be zero. There are only 3 unknowns,
the 2 contact coordinates on the surface and the force magnitude, so ideally only 3 indepen-
dent force measurements would be required to reveal the contact location and force. If we
precisely measure all 3 force components acting on the body, the associated wrench axis is a
line which passes through the point of contact and is normal to the surface at that contact
point 1.

A point contact with friction also constrains the force applied to the body to be a pure
force, but it is no longer constrained to have a line of action normal to the surface at the
point of contact (it must however lie within the friction cone at the point of contact). Since
there are now 5 unknowns, the 2 contact coordinates and the 3 contact force components,
ideally only 5 independent force measurements are required to measure the contact location
and force components. Again, if precise measurements are available, the associated wrench
axis is a line which passes through the point of contact.

Finally, if due to the compliance of the bodies, finite portions of the surface come into
contact, and if friction is present, torques may also be exerted on the body. In this situation,
often referred to as soft finger contact, the wrench axis no longer necessarily passes through
the contact location. As will be shown below it is possible to define and solve for the contact
location, and force and moment components even in this rather general case.

!The wrench azis is a generalization of the concept of line of action of forces acting on a body. When an
arbitrary set of forces and torques acts on a body, they may be canonically described by a unique line in
space along which a unique force acts, and parallel to which a unique moment acts (see [Hunt, 1978]).
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2.1 Soft Finger Contact and the Contact Centroid

The soft finger type of contact is the most general case, among those considered above, to
which intrinsic contact sensing can be applied. Point contacts with or without friction are
particular cases of soft finger contacts. Indeed, this type of contact is also the most common
in practical manipulation: for instance, contacts through which humans and rubber covered
robot hands manipulate objects are frequently of this type.

A soft finger contact occurs between two real (non-rigid, possibly inelastic) bodies mu-
tually transmitting a distribution of contact tractions® over a finite area of contact. The
tractions are assumed to be compressive, that is, to point at the interior part of the body
(adhesive forces between bodies are therefore disregarded by this model). Because of their
distributed nature, a complete characterization of contact related phenomena would involve
complex continuum mechanics relationships, whose computation (if at all possible) is far be-
yond the capabilities and needs of a real-time robot sensory and control system. A compact
characterization of contact is necessary to render the sensing problem tractable. The tra-
ditional approach to tactile sensing consists of spatially sampling the traction distribution,
and is usually limited to sensing only normal force components. A more drastic compression
of data is obtained by force-based contact sensing, which provides a reduced set of contact
features, useful for manipulation control. This is achieved by the use of an equivalent set of
forces. Roughly speaking, two sets of forces are equivalent if their large-scale effects are the
same. The unknown distribution of contact tractions can be substituted with an equivalent
set of forces, comprised only of a resultant force (henceforth designated by the vector p), and
a resultant moment, q. Finally, to completely describe the set of forces, also a point must be
provided, through which the resultant force effectively is applied. The choice of this point
is not trivial in the soft finger case, because contact occurs over a whole area. We show in
what follows that a very convenient point to use for representing soft finger contacts is the
contact centroid, which we define as follows:

Definition of Contact Centroid

Given a surface S with an outward normal direction defined everywhere on it,
and a distribution A of compressive tractions applied on it, a contact centroid for
S and A is a point on S such that a set of forces equivalent to A exists, having
the following characteristics:

1) it is comprised of only a force and a torque;

i1) the force p is applied at that point, and is directed into S;

iii) the moment q is parallel to the surface normal at that point (i.e. a pure
torque about the contact normal).

2The term traction [Johnson,1985] indicates a force per surface unit, comprised in general of a normal
component (pressure) and tangential (friction) components.
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Figure 2: The contact centroid has the property of being close to the actual contact area.

A contact centroid per se has some very useful properties that render it a desirable point
to sense. Firstly, if contact occurs at a single point, a contact centroid coincides with that
point. Thus, from force/torque measurements we can obtain geometric information about
where the contact occurs, a typical tactile sensing goal. Useful geometric information is
still contained in the contact centroid even when multiple points and/or finite areas are in
contact. In fact, a contact centroid has an important property, which can be articulated as
follows:

Proposition 1: Property of Contact Centroids

Consider a deformable body, whose undeformed surface S is convex, and assume
that a distribution A of compressive contact tractions is exerted on it. Consider
a plane P that divides the surface of the body in two portions, confining every
contact point to one half-space (see figure 2). Consider the projection of each
contact point onto P along the direction of the traction applied at the contact
point itself: if all such projected points lie within the volume surrounded by the
undeformed surface S, then the contact centroid 2 lies on the same side of P
where A is applied.

The proof of this property takes a few steps, and is presented in Appendix 1. The
significance of this property is related to the fact (to be proved shortly) that it is possible

3We will show in section 3 that for convex surfaces the contact centroid is actually unique



Figure 3: A spherical sensor surface with friction coefficient p = tan ¢.

to give an expression of the contact centroid in terms of force/torque measurements only.
Accordingly, although an intrinsic contact sensor is not able to provide an image of the actual
contact points, if some hypothesis on curvature, deformability and friction of the surface are
satisfied, we have at least an idea about the location of contact points over the sensor surface,
since they are constrained to lie “near” the contact centroid* (see figure 2).

As a corollary to the property above, let us consider a generic compressive distribution A,
whose tractions comply with Coulomb’s friction law. According to the above assumptions,
it is required that the intersections with P of every friction cone lie inside the volume
surrounded by S. Consider for instance a spherical sensor surface, with coefficient of friction
¢ = tan ¢ and small deformability (see figure 3). It can be easily shown that the hypotheses
of the above property apply in this case if every contact point can be seen from the center
of the sphere within an angle § = 7 — 2. In other words, if the contact area warped around
the surface is “small” enough (and this bound can be quantified), then the contact centroid
is a valid datum about contact. For a cylindrical or spherical sensor wedged in a corner with
angle «, and friction angle ¢, the condition is a > 2 ¢.

4The concept of contact centroid was not explicit in the initial definition of soft finger contact given
by Salisbury [1982], that was based on an assumption of very small contact area. The contact centroid
introduced by Bicchi[1989] allows for a broader applicability of the soft finger contact type. It should be
further noted that, for flat surfaces, the contact centroid coincides with the center of friction introduced by
Mason [Mason and Salisbury, 1985].



Figure 4: Vector quantities and notation involved in the problem statement.

3 Problem Formulation

One possible implementation of an intrinsic contact sensor consists of a surface, which we
will call a fingertip, supported by a six-axis force/torque sensor. The force/torque sensor
measures all three components of both the resultant force f and the resultant moment m
with respect to the reference frame B, as shown in figure 4. Note that the choice of the
reference frame B is arbitrary, since we can easily express f and m in terms of any other
coordinate frame fixed to B.

The fingertip surface can be described by the implicit relation

S(r) =0, (1)

where r is a point in space defined with respect to B. The surface S should have continuous
first derivatives, so that a normal unit vector can be defined at every point on S as

VS(r)

P IVSOI

where V indicates the gradient operator. Let ¢ be the contact centroid, and p, q the force
and moment applied at c, which are equivalent to a “soft finger” contact. The measurable
quantities f and m are related to the unknowns ¢, p and q, by force and moment balance
equations,

f = p, (2)
m = q+c¢Xp. (3)



For soft finger contacts the torque q is parallel to the unit vector n normal to the surface at
the contact centroid ¢, hence

nocq= £ VS(e), (4)

for some constant K.
We call the above set of relations the contact sensing problem:

Given the measurements f and m, along with a surface equation S(-) = 0, de-
termine the location of the contact centroid(s) ¢, and the related contact force p
and moment(s) q.

Note that, because of the definition of contact centroid, we implicitly require that p is
compressive, i.e. directed into the surface, and that qis normal to S. Expanding equations 1
through 4 yields a non-linear system of ten equations in ten scalar unknowns, i.e. the nine
components of p, q, ¢, and K. However, by simply substituting equations 2 and 4 in
equation 3, the problem is reduced to four equations in four unknowns. Since the problem
is non-linear, we need to determine if a solution exists, and in that case if it is unique.

In general, not much can be said about the existence of solutions: given arbitrary f, m,
and $, there is no guarantee we can find an equivalent soft finger contact. A solution exists,
however, if the resultant force f and and moment m are measurements consistent with the
effects of a soft-finger type traction distribution on S.

If a solution exists, the following proposition holds about its uniqueness:

Proposition 2: Uniqueness of Solutions

A solution to the contact sensing problem is unique (if it exists), if and only if
the sensor surface is convex (see proof in Appendix 2).

Proposition 1 gives conditions on A and S that guarantee the existence of a contact
centroid. According to proposition 2, the contact centroid of a compressive distribution A
on a convex surface is also unique.

As a final remark, the solution to equations 1 through 4 may not be trivial and a closed-
form solution may not be found except for the simplest surfaces. In the following sections,
we will present three methods for solving these equations: first the simple point contact
solution , next the ellipsoidal solution and finally a general iterative solution.

4 Point-contact solution

The first closed-form method we present for solving the contact sensing problem utilizes
more restrictive assumptions than those specified in the following sections. In particular, we
assume the local torque q about the contact normal is zero. In other words we assume the
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contact model is a point contact with friction, as described in section 2. This assumption
can lead to good results and a simple solution for a large number of practical cases. The
wrench azxis of the force system is given by

r=rg+ \f, (5)
where
fxm
ro = ———. (6)
T

The wrench axis is a line through ro and parallel to f, parameterized by A. This line
intersects the convex surface S in at most two locations: one corresponding to a force pulling
out of the surface and one corresponding to a force pushing into the surface. Since we do
not allow adhesive forces, we can determine the contact centroid as the intersection point,
for which the contact force is directed into the surface, that is

fTn(c) < 0. (7)

When the local torque q is not zero, the point found by this method differs from the
contact centroid. Therefore we will denote with ¢’ the vector found using this (so-called
“wrench-axis” or “point-contact”) method.

Note that the assumption q = 0 can be checked out directly from force/torque measure-
ments by means of the equivalent relationship fZm = 0. We should point out that the point
¢’ does not have any of the properties of contact centroids, so that it could in principle lie far
away from the actual location of the contact area. Yet, point ¢’ retains a valuable meaning
in real conditions as an easy-to-compute approximation of the contact centroid. In order
to give an estimate of the distance between ¢’ and the contact centroid c, let e represent
the difference vector e = ¢/ — ¢. The two sets of forces and torques, p, q applied at c, and
p, t applied at ¢/, are both equivalent with the actual set of contact forces, hence they are
equivalent with each other. The balance equation of moments about ¢ can be written as

qgq=t+exp.
Such a vector equation is solved by any e of the form

(q—t)xp
e=-——"——+4vp. (8)
IplI?
Recalling that, from the definition of wrench axis, t is parallel to p, and that, by the

definition of contact centroid, q is normal to the surface, we can rewrite equation 8 as




where p; = p — (pTn)n is the tangential (friction) component of the contact resultant force.
Since the error vector e is the sum of two mutually orthogonal vectors, its length is at least
as large as:

llall I|p:]|
llpll?

In view of this result, it can be observed that, when the local torque ¢ is not zero, the
distance between the point found by the wrench-axis method and the contact centroid grows
quickly as friction increases. Thus, the approximation of the contact centroid with point ¢’
should be avoided if high-friction and/or compliant materials are employed in building the
fingertips. Numerical examples are provided in the discussion section.

llell >

5 Solution for Ellipsoidal Surfaces

The main advantage of the wrench-axis method is that the contact location problem is
reduced to that of finding the intersections of a line with a surface, that is, to elemen-
tary geometry. However, this method has two major drawbacks: first, it does not provide
information about the moment exerted through a soft-finger contact, and second, it only
approximates the contact centroid when q is not zero. In this section we solve the contact
sensing problem and avoid such shortcomings. However, in order to guarantee a closed-form
algorithm and to simplify calculations, the fingertip surface will be restricted to belong to a
specific class of surfaces, namely, quadratic forms of the type

S(ry=rTATAr - R? =0, (9)

where A is a constant coefficient matrix, and R is a scale factor used for convenience. Since
the reference frame B can be moved arbitrarily, we can assume without loss of generality
that A can be written in diagonal form

l/a O 0
A= 0 1/8 o
0 0 1/v

In order to guarantee the uniqueness of solutions, the surface specification must be further
restricted to convex portions of the quadratic form (for instance, one of the sheets of a
double hyperboloid would be an appropriate sensor surface). In the interest of simplicity,
however, we will consider in the following only general ellipsoids (i.e., positive definite A
matrices). In this case, the principal axes of the ellipsoid are given by 2aR, 26R and 27R,
with0<1/a<1,0<1/8<1,0<1/y< 1.

It should be noted that ellipsoids are important for several reasons. First, ellipsoids ap-
proximate, up to the second order, any continuous convex surface. Second, very common
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surfaces, such as spheres, cylinders, and planes, can be regarded as limiting cases of an ellip-
soid. Finally, the ellipsoid assumption is standard in contact mechanics (e.g. the Hertzian
theory of elastic contact).

Substituting equation 9 into equation 4 yields

_ A?c
| AZc]|

and substituting this and equation 2 in equation 3, we obtain

n x q=KA®c, (10)

m= KA’ +rxf. (11)

Equations 9 and 11 form a system of four non-linear equations and four unknowns which
can be rewritten in the form

I'c = m (12)
cTA’c = R?, (13)

where I' = I'(K) is a 3 X 3 matrix whose elements are functions of K and of the measured
force components f;, f; and fs,

Klo?  fs  —f;
I'K) = ( —fz K/B* f ) .
fa -h K/’Yz

The determinant of I'(K) is given by
det (K) = K(K2D? + || Af]|?),

where D = det A. The matrix I'(X) is singular for K = 0, i.e. when the local torque q
is zero. In this case (which can be detected by the simple equivalent condition fTm = 0,
as already mentioned), the contact centroid can be determined exactly by the wrench-axis
method. The value of the parameter ) in equation 5 corresponding to the intersection of the
wrench-axis with the ellipsoid surface is given by

—£7rh — o (07x6)? — |2 (lvoll” — R?)

A= ,
€112

where f' = Af and rj = Ar, (recall the definition of rq in equation 6).
Whenever fTm # 0, I'(K) has an inverse I'*(K) such that, by solving equation 12 for
c, we obtain

12



¢c=T"'m= ﬁu{?pm-?m + K(A%) x m + (£Tm)f]. (14)

By substituting equation 14 into equation 13, a scalar equation in the only unknown, K, is
obtained as

cTA%c =R =
KADA| A= ml? + K?||A(A% x m)|? + (E'm)2(|Af]|? + 2K2D?)

. 15
K2(K2D? + || Af]]?)? (15)

For such a 6-th order equation a closed-form solution should not be expected in general,
due to Galois’ theorem. For the particular surface assumed, though, we observe that

|AA’ x m)|* = D [ A~ m]|| AL — (FTm)?],
so that equation 15 can be simplified in a biquadratic equation as
K*D?R? + K? [R?||Af||* — D*|A~"m|]?] — (f"m)* = 0.

Only one of the four possible K solving this equation is real and consistent with the
hypothesis of non-adhesive contact, and is given by

—sign(fTrn)\/ 5
= —==—t +4D?2R?(fTm)?, 16
Zrp Vot Ve (f7m) (16)
where

o = D*|A"'m|* - R*||Af]]%,
and

0, for z=0
1, for >0

~1, for z<0
sign(z) =

By substituting K back into equation 14 and equation 10, we obtain the complete solution
for ¢ and q, respectively.

5.1 Particular Cases

We will now develop solutions for some particular cases of practical importance, namely the
sphere, cylinder and plane.

13



5.1.1 Sphere

For a spherical sensor surface of radius R centered at the origin of the force/torque reference
frame B, the matrix A equals the identity I, and D = 1. Hence,

—sign(fTm)

W—-\/a' + \/0’2 + 4R?(fTm)2.

K =
where ¢’ = ||m]|? = R?||f}|%.

The contact centroid location (for nonzero K) is given by

1 2 T
— f
©= RwE e K K xom+ m)f)

whereas, for K = 0, the contact centroid is found using equation 5 with

1 IIf x m)|2
A= —— R - =20
IIfIIJ el

5.1.2 Cylinder

Consider a cylinder having the axis parallel to the z axis of the sensor frame B, and circular
cross section of radius R. Such surface can be described as the limit case of an ellipsoid with

characteristic matrix given by
10 0
A=]101 0
0 0 1/~

for ¥ — oco. Applying the same limit to equation 16, we have:
—fTm

¢ = :
VRE[IF2 — ]2

where f* = (fi, f2,0)7 is the component of f normal to the cylinder axis, and m” =
(0,0, m3)T is the component of m parallel to the same axis. If K = 0, the wrench method
(equation 5) should be applied. Otherwise, the contact centroid on the cylindrical surface of
the fingertip is given by:

_; 2.1 1 T
c= K [K*m"” + Kf* x m + (" m)f].

14



5.1.3 Plane

An ellipsoid with matrix A of the form

1/y 0 0
0 0 1

degenerates, for ¥ — oo, in a couple of parallel planes perpendicular to the = axis of B, at a
distance +R from the origin. If £ = (0,0, f5)7 is the contact force component parallel the
z axis, equations 16 and 14 become

—fTm
K=——
R[]
and
1 1 "
c= TEE (f" xm+ R ||f"]] f).

It should be noted that the last formula holds even with K = 0.

6 Iterative solution

The final method for solving the contact sensing problem is valid for any surface specifi-
cation, but requires an iterative algorithm to be used at each sensor sampling time. The
computational efficiency of the algorithm is therefore of utmost importance for real-time
applications.

As customary when dealing with the numerical solution of vector multivariate functions,
we rewrite the problem equations in the relaxation-method form

g(X) =0, (17)
where:

xT (x1, T, T3, 24)T = (cT, K/2);
g'(x) = (91(%),92(x), 95(x), 9a(x))T,
91(x) = x4VS — fazs + faxg — my;
g2(x) = z4VS; — fax1 + frzs — my;
g3(x) = 24VS3— fizg + fox1 — ms;
94(x) S(zy, 2, 3).
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Standard algorithms (see e.g. [Dahlquist and Bjork, 1974]) for the iterative solution of
such equations can be applied, perhaps the most notable being the Newton-Raphson method
or its variations. The Jacobian matrix G associated with the problem can be evaluated as

0 H-fy| VS
G(x)z_gz(x4vsT®i 0 )

where H is the Hessian of the surface S (that is, the matrix H;; = 52,27“1]_ 7,7 =1,2,3;), and
fg is the cross-product matrix of f, such that fgc =1 x c.

Computing G can be more or less time consuming, depending upon the complexity of the
surface S. Computing G}, as required by the Newton-Raphson method, can be inconvenient
for real time applications. Furthermore, in this specific case, we have that G is singular for
z4 = K/2 = 0, that means that this algorithm would present serious problems whenever the
contact load has very little local torque q.

It must be noted that, in general, the numerical solution of vector multivariate nonlinear
equations is not a “nice” problem (see the related comments in [Press et al., 1988]); better
algorithms are available for finding the extrema of multivariate scalar functions. A possible
approach to the design of an algorithm for solving equation 17 is therefore to embed the
root-finding problem in a minimization one.

Since the Jacobian matrix G is not symmetric (its upper left minor is the sum of a
symmetric and a skew-symmetric matrix), g cannot be simply regarded as the gradient of
some energy-like function to minimize. However, if we consider the equation

GTg(x) =0,

we have that all the zeroes of g are also zeroes of GTg, and GTg is the gradient (“poten-
tial field”) associated with the positive definite scalar function V = %ng, whose absolute
minimum is our solution.

Applying the well-known gradient descent updating law to the k-th estimate of x, we
have

X(k+1) = X(k) —_ )\VV(X) = X(k) — )\G%;c)g(k).

We observe that the application of this gradient descent technique to minimize an energy-
like (Liapunov) function V = ¢T(q)#(q) is equivalent to the closed-loop inverse kinematic
scheme proposed by Balestrino, DeMaria and Sciavicco [1984] and several others, to invert
the nonlinear kinematic relationship of a robot, ¢(q). It can be shown with a Liapunov
argument that this method is locally asymptotically convergent to the desired solution, for
appropriate choices of A; and, in fact, it is intuitive that for A (i.e. step lengths) short
enough in the steepest descent direction the V function will be always kept decreasing until
a minimum is reached. A discussion on the optimal choice of A has been provided by Das,

Slotine and Sheridan [1989].
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Figure 5: The fingertip sensors of the Salisbury Robot Hand are composed of a hemisphere
joined to a cylinder.

The local asymptotic convergence of the algorithm means, in our current application, that
the correct contact point will be found provided that the initial guess is “close enough”. In
order to avoid that for arbitrary initial guesses and for some force/torque readings f, m, the
algorithm gets “stuck” at some point that does not solve the problem, it would be desirable
to assess a more general global asymptotic convergence. Unfortunately, the technique of
embedding the root-finding problem in a minimization one is prone to generate such local
minima, and some do exist in our specific problem even for surfaces as simple as spheres.
From a practical point of view those “false” roots are easily recognized (their residues glg
are not zero). Moreover, if the algorithm is used to continuously track a contact which
changes its position and force components with continuity (i.e. it is rolling or sliding across
the sensor), starting the search from the previously obtained solution is very likely to lead
to the actual solution.

7 Compound surfaces

Many applications of intrinsic contact sensing use surfaces more complex than the simple
geometries described above. However, the methods presented above can be extended easily
to compound surfaces made of simpler surfaces if the compound surface is convex and the
component surfaces share the same normal at their boundaries. For example, the fingertip
sensors of the Salisbury Robot Hand are composed of a hemisphere joined to a cylinder
of equal radius, as depicted in figure 5. A solution for a compound surface is typically
found by trial and error: the contact centroids corresponding to the given load and to the
complete ellipsoids to which the basic patches of the compound surface belong, are calculated
in succession; by virtue of the uniqueness property of contact centroids, the search can be
stopped as soon as a contact centroid lying on the actual sensor surface is found.

If the sensor surface has sharp points, as the example depicted in figure 6, a normal
direction cannot be defined at those points and the above discussed solution methods are
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F/T Sensor

Figure 6: A compound sensor surface with corners and edges.

not applicable directly. If the sensor or the object surfaces are compliant, this problem is
not a major concern, since surface edges are “smoothed” out, and the properties of the
contact centroid guarantee that a meaningful result will be achieved anyway. However, if
a rigid contact occurs on a sharp point of the sensor surface, no local torque is exerted;
therefore, any point found by intersecting the wrench axis with the different surface patches
should coincide with the actual contact point. Since, in general, only noisy measurements are
available, it may happen that no contact centroid actually lying on the sensor surface is found.
In this case, a good approximation can be assumed to be the point on the sensor surface
closest to the calculated centroids. The worst case is when a whole edge of the sensor surface
is in contact with the object. Since local torques can be exerted, and no normal direction is
defined, both methods discussed above would fail. However, the practical relevance of such
cases is negligible.

More complex surfaces that do not comply with the above assumptions of convexity and
regularity can be dealt with in some cases. For example, a typical manipulator arm is com-
posed of individually convex surfaces, but is not convex as a whole (see figure 7). Eberman
and Salisbury [1989] discussed the use of joint torque measurements to infer information
about contacts occurring on the last link of the robot. On the other hand, a force/torque
sensor at the base of the manipulator would sense contacts on any link, but would not be
able to distinguish among them. By the use of both base force/torque sensing and joint
torque sensing it is conceivable to realize a fully sensorized robot surface. A “whole hand”
manipulation system, employing intrinsic contact sensors in each phalanx of its three fingers
and in the palm, has been designed, and a prototype finger built, as reported by Vassura
and Bicchi [1989].
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Figure 7: Fully-sensorized robot arm can be constructed in principle using only force/torque
measurements.

8 Discussion and Numerical Results

In this paper we presented material on the mathematics and mechanics of intrinsic contact
sensing. The paper’s main contributions are perhaps the introduction of the concept of
contact centroid along with the proof of its geometric properties, and the presentation of
mathematical methods for computing its location on a sensor surface. In this section we will
briefly elaborate on these themes, to underscore some interesting aspects.

The interest of the contact centroid for characterizing soft fingers contacts follows from its
property of being located inside the convex hull enclosing every contact point. To illustrate
this, a simple numerical example will be worked out. Assume that the real pattern of contact
on the surface of a spherical sensor is comprised of only four points ¢y, ..., c4, located on top
of the sphere as shown in figure 8, and let 6 and £86 be the coordinates along the x-axis
of points ¢y, c3, ¢z, and ¢4 respectively.

Let the local contact forces exerted at these points be hy = (—hy, by, —1),
hy = (=hg, hy,—1), hy = (hy,hy,—1), and hy = (hy, by, —1), respectively. Table 1 gives
the x-coordinates of the contact centroid ¢ (calculated through the algorithm proposed in
section 5) and of the point-contact method point ¢’ (section 4) corresponding to different
values of 6 and hy.

As can be seen, the two results diverge as the distance § and the friction force hy increase.
Note also that for large values of § the contact centroid retains the characteristic of remaining
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Side View Top View

Figure 8: A simple contact pattern used as an example.

) 0.125 0.25 0.5

¢z : 0.000 | ¢ : 0.000 | ¢, :0.000
0.1 | ¢, :0.005(c,:0.010 |, : 0.020

T

¢z 2 0.000 | ¢;:0.005 | ¢;:0.039
0.7 | c,:0164 |c,:0329} ¢, :0.658

T

¢z 2 0.001 | e;:0.010 | ¢, :0.077
1 ¢, 0.250 [ ¢, : 0.500 [ < :1.000

Z

Table 1: Position of the contact centroid ¢ and of the approximated (wrench-axis method)
point ¢’ along the x-axis for different values of § and h;.
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Wrench-Axis Ellipsoid Iterative
Method Method Method

[ Execution time [| 232+6 psec | 486113 psec | 473+13 pusec/step |

Table 2: Computation times for the three algorithms to solve the contact problem on a
sphere. The iterative method takes an average of 20 steps to converge under to an error of
less than one part in 10® error when input data are slowly varying.

inside the contact points, while the point obtained by the point-contact method does not.

Another important advantage of the intrinsic contact sensing method is its ability to
calculate the local torque originated from friction forces. The importance of these local
torques in fine manipulation operations by robot hands has been often underestimated. To
appreciate their role, consider how humans can hold a stick horizontally by pinching it at
one end between two fingertips (with a gripping force of 10N, the fingers can typically resist
a torque of 40Nmm and a vertical weight of 5N).

The computational efficiency of the solution algorithms is of paramount importance in
real-time applications of intrinsic contact sensing. In table 2 we report computation times
for the same surface, a sphere centered in the origin. The algorithms described in section4,
5 and 6 have been implemented and timed in a real-time environment running on a Mo-
torola 68030 processor with a Motorola 68881 numeric coprocessor. Note that the iterative
algorithm is inferior to the other solutions, which are both fast enough to be claimed real-
time. Another weakness of the iterative method is that the multiple solutions of equation 17
cannot be discriminated in advance of their actual computation. The iterative algorithm
is then recommended only for finding a complete solution for non-ellipsoidal surfaces (e.g.
paraboloids) for which closed-form exact methods are not available.

To conclude the comparative analysis of the proposed algorithms, it must be noted that
the exact method of section 5 is also preferable to the wrench-axis algorithm from a numerical
stability point of view. In fact, as the formulation of the problem in terms of minimization
of a quadratic error function given in section 6 shows, the contact problem is intrinsically
stable. This is not true of the approximation that disregards local torques. Table 3 shows
how small perturbations on the inputs (the force/torque sensor readings f and m) reflect in
small perturbation in the calculated contact point for the method of section 5, while they
can lead to inconsistent (complex) results for the wrench-axis method.

Devices based on the force-based contact sensing approach have been actually imple-
mented, and effectively employed in robotic hands. For a discussion on the realization
of force/torque sensors on small robot fingertips, see [Brock and Chiu, 1985], and [Bicchi
1987]. The latter paper discusses the application of optimal design techniques to minia-
turized force/torque sensors; this approach is expanded in a more thorough treatment in
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Method Wrench-Axis Ellipsoid Iterative
F/T Measurements
f = [-0.3-.04 0.01]
m = [0.01 0.01 0.48] || ¢’ = [-0.60 0.80 0.00] | ¢ = [-0.60 0.80 0.00] | ¢ = [-0.60 0.80 0.00]
f =[-0.3 -.04 0.01]
m = [0.01 0.01 0.49] || ¢’ = [-0.66 0.75 0.00] | ¢ = [-0.66 0.75 0.04] | ¢ = [-0.66 0.75 0.04]
f =[-0.3 -.04 0.01]

m = [0.01 0.01 0.50] d =077 c = [-0.74 0.67 0.09] | ¢ = [-0.73 0.68 0.07]
f = [-0.3 -.04 0.01]
m = [0.01 0.01 0.51] ¢ =077 ¢ = [-0.76 0.62 0.20] | ¢ = [-0.76 0.62 0.20]

Table 3: Algorithm sensitivity example. Noise on the measurement of the second component
of the measured moment m is simulated. The centroid is computed for a unit radius sphere.
Question marks indicate inconsistent (complex) results.

[Bicchi,1990b).

The applications of intrinsic contact sensors to robotic manipulation are numerous, and
several have been experimentally verified. Although it is not possible to detail these appli-
cations here, they will be cited for reference:

e The exploration of unknown objects by probing with an intrinsic tactile sensor, and
the reconstruction of their surface profile has been described by Brock and Chiu [1985],
and later by Tsujimura and Yabuta [1988]. Both authors employed the point-contact
method algorithm. Bicchi [1989] reported explorations performed using the more pre-
cise algorithm of section 5, and an hybrid control scheme, which allowed continuous
control of the normal component of contact force.

e The capability of intrinsic contact sensors to evaluate the friction components of the
contact force and the local torque (which is unique among other available sensing
devices), has been used to measure the coeflicients of friction of various objects [Bicchi,
1989]. This information in turn has been used to discriminate between objects on the
basis of their apparent friction, and to plan subsequent slippage-safe operations of the
hand.

e A real-time control method for augmenting the stability of the grasp of unmodeled ob-
jects against slippage has been discussed and demonstrated (in a rather simple setting)

by Bicchi, Salisbury and Dario [1989].

The exploitation of contact sensory information is expected to allow improvements in
many areas of fine manipulation control. Contact sensors such as those described in this
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Appendix 1.

The contact centroid general property (Proposition 1) given in section 2.1 will be proved
in three steps, where properties of increasing generality are illustrated:

Property 1: If a distribution A of compressive contact tractions v(r), acts on a
set of contact points C = {r.} of a planar surface P(r) = 0, the contact centroid
of A on P lies inside the convex hull enclosing every point r. (see figure 9).

Figure 9: Contact on a planar surface.

Proof: Consider a line p in the contact plane P passing through at least one
contact point r, and leaving all others on the same half plane, as depicted in
figure 9. By definition 1, a set of forces equivalent to the given contact set is
comprised of a resultant force p = [p v(r) applied at the contact centroid, and a
torque q normal to the contact plane. In order to satisfy the balance of moments
about the line p, the contact centroid must lie on the same half plane where the
contact points do. Considering the family of all such lines p, the convex hull
results as the envelope of the family, and the proposition follows.
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In other words, for a planar sensor with compressive forces, no matter how far away
the contact points are from each other, the contact can be considered ’soft finger’, and the
contact centroid lies inside the smallest convex polygonal line enclosing every contact point.

Property 2: Consider a convex surface S(r) = 0 (see figure 10), and a plane
P(r) = 0 intersecting S. Let n’ be the normal unit vector to P, pointing at the
half space where P(r) > 0). Assume that a distribution A of contact tractions
v(r) is exerted on a set C of points r, lying on P and internal to S, and assume
that the tractions are compressive with respect to n’ (i.e., nFv(r;) < 0, for all
r.). In these hypotheses, the contact centroid of A on S lies in the half space
P(r) > 0.

Proof: Because of the first property of contact centroids, the distribution A of
contact forces applied on C is equivalent to its resultant force p applied to a
contact centroid ¢’ on P, and torque ¢, such that ¢’ is inside S and ¢’ is parallel
to n’. We denote with ¢, n and q the contact centroid of A on S, the associated
normal, and the local torque, respectively. Let moreover e = ¢ — ¢’. The balance
of moments about ¢’ can then be written as

q =q+exp, (18)

which can be rewritten as:

&n' =¢n+exp, (19)

where £ and £’ are scalar constants. By multiplying both members of equation 19
by pT, and by e”, we obtain two equations:

¢p'n’ = ¢p'n, (20)
'eTn’ = ¢en, (21)

For the hypotheses above and for the definition of contact centroid, pin’ < 0
and p’n < 0 (compressive contact). Hence, from equation 20, £ and ¢’ must
have the same sign or be both zero.

If £ and £* are not null and have the same sign, from equation 21 follows that also
eTn’ and eTn have the same sign. Since S is convex and ¢’ is inside S, e'n > 0
for every e. Therefore, eTn’ > 0, that is e points to the half space P(r) > 0 as
required.
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Figure 10: Contact on a deformable surface.

Otherwise, if both ¢ and ¢’ are zero, than from equation 19 follows that e and p
must be parallel. Let then e = (p; using again the fact that pTn < 0 (definition
of contact centroid) and that eTn = {pTn > 0 (convexity of ), we have that
¢ < 0. Since also ¢’ is a contact centroid, p’n’ < 0. Finally we have then
efn’ = (p™n’ > 0, ged..

Rephrased, this second property has intuitive meaning. Consider a sensor with convex,
compliant surface which is deformed by contact with a flat object: no adhesive forces are
exerted, and the deformed surface stays inside the undeformed one. Since the deformed
surface is not known, the contact centroid can only be calculated relative to the sensor
undeformed surface. However, the contact centroid is well behaved, in the sense that it will
stay on the same side of the areas being touched (see figure 10).

Property 3: Consider a deformable body, whose undeformed surface S(r) = 0
is convex, and assume that a distribution A of compressive contact tractions is
exerted on a set of contact points C = {r.} of S. Consider a plane P(r) = 0 that
divides the surface of the deformed body in two portions, so that every contact
point is confined in one half-space (see figure 2). Consider the projection of each
contact point r, on P along the direction of the traction applied at r.: if all such

28



projections lie inside the undeformed surface S, then the contact centroid on S
of A lies on the same side of P where A is applied.

Proof: Since pure forces or tractions can be moved along their line of application
without affecting the resultant force and torque of the set, this proposition is
easily derived from property 2.

In order to give the best estimate of the location of contact points, the plane P can be
chosen as the one that separates the smallest portion of S enclosing every contact point/area,;
if some contact points belong to P, it is required that the contact traction at those points
be strictly compressive with respect to the plane.

Appendix 2.

Proposition 2: Uniqueness of Solutions

A solution to the contact sensing problem, described by equations 1 through 4
and by the definition of contact centroid, is unique (if it exists), if and only if the
surface is convex.

Proof: The “if” part of the proposition can be demonstrated by contradiction:
assume that there are two points, ¢ and ¢’ (expressed in an arbitrary reference
frame B) lying on a convex surface S, that are solutions of the contact sensing
problem, and consider the vector e = ¢’ —c (see figure 11). Because of the surface
convexity we have that:

efn < 0. (22)
The balance of moments at point ¢ can be written as
q=q t+exp,
Since q and q’ are parallel to n and n’ respectively, we can rewrite
én=¢n' 4+ e x p, (23)
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Figure 11: The contact centroid on a convex surface is unique.

and, by multiplying both terms by p?, we have

é.an = flan,)

which, since forces are assumed compressive, implies that either (£ > 0 or ¢ =
¢ =
If £ = ¢ = 0, no local torques are exerted at ¢ nor at ¢’, and those points lie on a

line parallel to p. Because of the convexity of S, only one of the two intersections
of such line can satisfy the definition of contact centroid (pTn < 0).

If £¢' > 0, by multiplying both terms of equation 23 by e?, we obtain
teTn=¢eTn’,

that, together with the convexity condition 22, implies either {£’ < 0 (a contra-
diction), or e = 0, the proposition. In addition, it can be easily shown that the
uniqueness of the contact centroid holds also if the surface is planar, provided
that the contact tractions are strictly compressive.
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Figure 12: Concave surfaces may ha;ae- non-unique contact centroids .

To demonstrate the “only if” pm,mppmethem&ceumtmvex, thatu,
thmemttm&umpmumw

e'n' < 0,
en < 0 (24)
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statement is proved.
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