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Abstract

This paper discusses the relationship between the shape of the shad-
ing, the surface whose depth at each point equals the brightness in the
image, and the shape of the original surface. I suggest the shading as
an initial local approximation to shape, and discuss the scope of this
approximation and what it may be good for. In particular, qualitative
surface features, such as the sign of the Gaussian curvature, can be
computed in some cases directly from the shading. Finally, a method to
compute the direction of the illuminant (assuming a single point light
source) from shading on occluding contours is shown.
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1 Introduction

The main goal of this work is to explore approximate shape from shading
representations that are easy to compute. Such representations are useful
when shape from shading is viewed as complementary to other processes, e.g.
shape from occluding contours, and shading is used to interpolate the surface
between the contours. For some purposes, such as satellite image analysis, it
may be necessary to obtain the exact depth map of a surface from shading.
But for a real-time intelligent agent it may be sufficient to get from each image
only crude information quickly, using an algorithm that is sufficiently correct
often enough. This crude information may be sufficient for the computation of
many relevant surface features. Errors in surface classification can be corrected
using other cues (such as occluding contours), images taken from different
viewpoints, active exploration, etc.

The problem of inferring shape from shading seems to be one of the most
difficult in low-level vision. Even with the simplest (Lambertian) shading
model, assuming constant albedo and a single point light source, significant
ambiguity remains. For example, there exist concave, convex and saddle-like
surfaces that appear the same from certain viewpoints'.

All shape from shading algorithms impose some constraints on the re-
flectance function, such as Lambertian reflectance. Given some a priori knowl-
edge about the objects in the image (e.g., the depth along occluding contours or
boundaries), the exact shape from shading problem becomes solvable, though
still computationally difficult ([Woo80], [IH81], [Hor86]). These exact shape
from shading algorithms are computationally expensive. In addition, since
they solve sets of nonlinear differential equations by propagating boundary or
initial conditions, errors introduced by the simplifying assumptions, in addition
to noise in the input, are accumulated in the integration.

These difficulties stimulated the exploration of possible local shape from
shading techniques. There have been a few attempts to obtain shape from local
shading analysis. This analysis is restricted to cases where the depth function
is spherical ([Pen86], [LR89]) or for surfaces where the angle between the light
source and the normal is sufficiently large [Pen88]. Others have studied the
behaviors of isophotes (lines of equal brightness) and their relationship to
geometrical invariants of surfaces ([KvD80], [Yui89], [Bra83]).

In this paper I follow this line of research by exploring approximations
to shape from local shading analysis, and the computation of additional ge-

le.g., under orthographic projection and when the light source is behind the viewer, the
surfaces z = 2% + 32, z = 2% — 3%, and z = —a® — y? all appear the same.



ometrical invariants of surfaces from isophotes. I assume similar restrictive
assumptions on the reflectance function as had been used before, trying to
minimize the computation and avoid the propagation of errors by the use of
local analysis. This paper is organized as follows:

Section 2 explores the shading itself as one candidate for local shape es-
timation. The question becomes: when is the shape of the shading a good
approximation for the surface? If a linear transformation between the shad-
ing and the surface shape is allowed, there exist families of surfaces for which
equality holds. One such family is the locally-spherical surfaces, the only sur-
faces for which local shape from shading can be computed precisely [Pen86].
My results show that in the case of such surfaces, and others, the shading
is the shape, very little computation is required. For additional families of
surfaces, the individual isophotes, or lines of equal brightness, are identical to
the contour lines on the surface. The shading approximation to shape can be
regarded as the approximation of surfaces by members of these families.

The shading approximation to shape may be useful for various limited
purposes. Some examples are the following:

o If the task requires a a simple transformation, e.g. the prediction of the
image of the surface illuminated from a different direction, the approx-
imation may be sufficient for many surfaces and small changes in light
source direction. In that case, the transformation is very simple: the
rotation of the shading surface by the amount of rotation of the light
source.

o Ifa full-blown iterative shape from shading algorithm is to be performed,
the shading approximation may give a better initial guess of the surface.

e The shading approximation gives relative depth of points on the surface
in an unknown coordinate system, which may be sufficient for the com-
putation of bumps and other surface features. This is further discussed
in the next paragraph.

In section 3 I discuss the information that can be obtained on the surface
directly from the shading, making use of the shading approximation discussed
in section 2 and other cues. In particular, the computation of the Gaussian
curvature of the surface is discussed. The computation of such qualitative
surface features is the ultimate goal of the depth reconstruction for object
recognition and representation. Their estimation from the shading is easier,
and in some cases (as I will discuss) may be more accurate than their estimation
from the output of a full-blown shape from shading algorithm.



Section 4 deals with the computation of the direction of the light source
(see also [BH89], [Pen86], [SK83]). If the surface is illuminated by a single
point light source, the shading approximation is obtained in the coordinate
system of the light source. If the exact depth map of the surface is needed
rather than surface features, it may be necessary to compute the light source
direction. This is done directly from the shading on occluding contours in
smoothly receding objects in the image.

2 The shape of shading

2.1 The contour and isophote maps:

A contour map, a map of the lines of equal depth on the surface, is an alterna-
tive surface representation to a depth map. The contour and depth maps are
equivalent when each contour is assigned a depth value. However, the contour
map can loose the precise depth assignment and still hold some meaningful
information on the surface. Thus this representation degrades more gracefully
than a depth map. If the depth of the contours is given up to an unknown
scaling factor, the contour map is equivalent to a depth map given with an
unknown scaling factor. The contour map is more ambiguous when only a
monotonic function of the depth on the contour lines is given. In the most
ambiguous representation, the depth of the contour lines is not given at all.

In this section I study the use of the shading itself to approximate shape. I
define good approximation to be when the contour map of the surface and the
contour map of the 3D shading surface (to be defined shortly) can be derived
from each other with a monotonic function. More specifically, the question
addressed here is when the isophotes (lines of equal brightness on the surface)
are also the contour lines (lines of equal depth on the surface), and what is
the function that relates the intensity on the isophotes to the depth on the
contours. The cases of interest are when this function is linear, when this
function is monotonic, and when no such function exists. In the last case the
isophote map is the least useful, for some surfaces it is misleading. I will show
how local stability analysis can detect these “bad” cases. I will characterize
the family of surfaces that belong to the first two categories, and discuss how
the isophote approximation deteriorates in the last case.

2.2 The 3D shading function:

Assume a Lambertian surface z(z,y) and fixed albedo. (Ambient illumina-
tion can also exist.) The reflectance function of a Lambertian surface depends
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Figure 1: The reflectance function of a surface at a point is composed of three
basic components: diffusive, specular, and ambient.

only on the angle between the light source direction and the surface normal, ¢
in figure 1. Assume that the brightness of this surface at a point with normal

N is:

I=aR-N+8, (1)

for some constants a, 3 and a fixed direction R.

Examples of light source distributions for which (1) is accurate are the
following: a single distant point light source, in which case R points at the
light source; or a hemispherical sky of uniform intensity, in which case R is
the vertical direction relative to the earth. In all the examples in this section,
a uniform sky will be assumed.

Since the surface is assumed to be Lambertian, the position of the viewer
does not affect the shading at each point on the surface. Therefore it is possible
to define shading on the surface in 3D, and only later compute the projection
onto the image plane. In the following discussion I will consider this 3D shading
function, which assigns a shading value to every point on the surface in 3D.
Henceforth in this section, isophote map will refer to this 3D shading map.
The discussion of the projection to 2D is postponed to the next section.

In order to analyze the isophote map, which does not depend on the viewer,
it is more convenient to choose the coordinate system where the depth Z is
parallel to R and the X — Y plane is perpendicular to R. This coordinate



system will be denoted ®. This selection is different from the usual viewer-
centered coordinate system.

With this selection of coordinate system, R in (1) is (0,0,1). The shading
at point (z,y, z(z, y), with normal (z, z,, —1), is:

1
,/1+z§+z§ .

Take a region where the intensity changes monotonically. The isophotes
are contour lines, and their values change in the same (or inverse) direction, if
there exists a monotonic function ®(z) such that:

I::

d(z) = 1

L VirETE

®(z) exists whenever 22 + zz 1s some monotonic function of z. Thus the
problem can be rephrased as follows: the shading depends monotonically on
the depth when there exist a monotonic function h(z) such that

z2 4z = h(z) . (2)

There are (at least) two solutions to this differential equation: Radially
symmetric surfaces and unidirectional surfaces. The isophotes of the first are
concentric circles (figure 2), the isophotes of the second are straight lines (fig-
ure 5). For a given surface patch, if there exists a function from these families
that describes the studied surface to a sufficient accuracy, the isophote approx-
imation gives a good estimate.

I: Radially symmetric surfaces

Let z(z,y) be radially symmetric in the coordinate system R, namely:

2(z,y) = z(r) for r=/z2+y?.

Note that this surface, which is radially symmetric in R, is not necessarily
radially symmetric in other coordinate systems.

To see why shading depends only on depth for these surfaces, note first (as
can be readily verified) that:

2 2 _ 2
Zatz, =2, .



Since I(z,y) = I(r) is monotonic, z, must be of the same sign and nonzero
in the region. Thus there exists an inverse function r(z). z, is therefore a
function of z only.

Figure 2 shows the contour map and isophote map of a volcano-like radially
symmetric surface facing upwards. Note that the shape of the isophotes is
identical to the shape of the contour lines, both concentric circles. This is
the isophote shape for all radially symmetric surfaces. The spacing between
the isophotes and the contour lines, which reflects the scaling of the maps, is
different between the two maps.

Figure 2: a) An oblique view of a certain surface. b) The contour map of the
surface in (a) illuminated by a uniform hemispherical sky, c) the isophote map.

Toruses and spheres: brightness is a linear function of depth

I will now characterize the sub-family of radially symmetric surfaces whose
brightness gives the depth up to a constant scaling factor. These are surfaces
z(r) for which the following equation has a solution:

I=az+5b (3)

for two constants a and b. The solution is (as can be readily verified):

2(r) = 2 = (r =) 4 v
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for constants A, u,v (a torus when g > 0, a sphere when p = 0). Note that a
sphere is radially symmetric in any coordinate system, not only ®.

Thus in a region that can be approximated by a patch on a sphere or a
patch on a torus facing fi, the brightness itself gives almost all the information
we can hope to get about z from a single image. Figure 3 shows the contour
and isophote maps for a torus.

Figure 3: a) The contour map of a torus illuminated by a uniform hemispherical
sky, b) the isophote map of the torus.

II: Unidirectional surfaces

A unidirectional surface is a surface that changes as a function of only one
direction in the image, z(z,y) = z(az + by + ¢). The shading depends only on
depth for these surfaces, with the following particular solution of (2):

:c-l—cyzh/‘«l%{f)zdz—-d (4)

for two constants ¢,d. In this solution, which can be readily verified, z varies
with a single direction in the image plane (z + cy + d). Figure 4 gives an
example of a unidirectional surface.



Figure 4: An oblique view of a unidirectional surface.

Cylinders: brightness is a linear function of depth

The sub-family of unidirectional surfaces whose brightness gives a linear trans-
formation of the depth is:

2(2,9) = X —a((z + ey +d) — p)? +v

for constants A, o, y,v. This surface is a cylinder, as illustrated in figure 5.

II1: General unidirectional surfaces

General Unidirectional surfaces are surfaces that can be described as z(Z,J) =
#(% + aj + b) in some Cartesian coordinate system X,Y, 7 different from R.
The isophote map of such surfaces is still composed of the same straight lines
on the surface as characterized above. Thus the isophote map is a monotonic
function of the depth Z.

IV: Other surfaces

For many surfaces 22 + z} is not a function of z only. In many cases, the

approximation of the surface by isophotes degrades gracefully as the following
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a) b)

Figure 5: a) The contour map of a cylinder illuminated by a uniform hemi-
spherical sky, b) the isophote map of the cylinder.

examples show. This issue is elaborated on in section 3, where the information
in contour lines is discussed.

Ellipses:

Take an ellipse z = c\/R2 —(%£)? — (£)? such that a # b and the ellipse
is not radially symmetric. The brightness is:

z

3d | A
C\/z2 =+ B

at
z

eVt + GAR = )+ F(F— &)

I =

The only dependence on z,y is in the last term 9—:,-21(;1; - ;17) Thus the
isophote approximation deteriorates continuously as a gets further away
from b.

Figure 6 shows an example of an ellipse. As can be seen, the isophotes
approximation only amplifies the effect of ¢, the measure of anisotropy
between the = and y directions. Ellipses behave “well” since they are an
intermediate case between a sphere and a cylinder (in a certain paramet-
ric representation).



a) b)

Figure 6: a) The contour map of an ellipse, with a = 1.5, b = 2, ¢ = 1.25,
R =1, illuminated by a uniform hemispherical sky, b) the isophote map of the
ellipse.

General radially symmetric surfaces:

Figure 7 shows a rotated torus that does not face upwards (therefore
it is not radially symmetric in ®), its isophote and contour maps. In
many regions the isophote map captures important aspects of the contour
map (this is discussed in more detail in section 3), with distortions at
increasing levels of severeness.

“bad” surfaces:

Finally, for some surfaces the isophote approximation is quite wrong, as
shown in figure 8. This is an example of a hyperbolic saddle-like surface.
In the next section I will discuss how such “bad” cases can be detected.
It is not the case, though, that the isophote approximation fails for all
hyperbolic regions, as the torus example shows.

2.3 Projection to the image plane and stability analy-
sis of the shading approximation

When the viewing direction is identical to B (the vertical direction or the light
source direction), the projection of the isophote map onto the image plane is
identical to the isophote maps shown in the figures in the previous section.

10
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a) b)

Figure 7: a) The contour map of a rotated torus illuminated by a uniform
hemispherical sky, b) the isophote map.

a) b) c)

Figure 8: a) An oblique view of a hyperbola. b) The contour map of the
hyperbola illuminated by a uniform hemispherical sky, c) the isophote map.
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Typically, however, the isophotes are foreshortened. In the following I assume
orthographic projection.

Consider first the case where isophotes are contour lines. Here the isoh-
potes on the surface are planar curves lying on parallel planes Z = const in
some unknown Cartesian coordinate system. These parallel planar curves, are
projected obliquely to the image plane, and all of them are uniformly fore-
shortened. This foreshortening is responsible for contraction along one axis
of the planar curve, as is illustrated in appendix A. Foreshortening preserves
many curve features: straight lines are projected to straight lines, elliptical
close contours to elliptical close contours, and inflection points to inflection
points. Moreover, this projection is stable in the sense that as the camera (or
the light source) moves, the curves uniformly get more or less contracted along
some axis.

The case is different for isophotes that are not contour lines. Here the
isophotes are not planar curves, and therefore their projection to the image
plane is not foreshortening. The further away the isophotes are from parallel
planar curves, the less like foreshortening their projection to the image plane
looks. This gives a heuristic to detect the “bad” cases where the isophotes are
not a good approximation to shape. By moving the camera, if the isophotes
do not change by a uniform contraction and expansion along a single axis,
if features such as inflection points appear and disappear, than the shading
cannot be used to approximate shape. As an example, figure 9 shows the pro-
jection of a particular isophote on the hyperbola of figure 8. For comparison,
the projection of the corresponding isophote on an elliptic surface, where the
isophotes undergo expansion/contraction along one axis only, is also given.

2.4 An approximate local shape from shading algo-
rithm:

The isophote map approximates the contour map in the coordinate system R,
which is often different from the viewer-centered coordinate system. Thus typ-
ically the map of contour lines is foreshortened when projected into the image,
as discussed above. This foreshortened map can be used to infer properties of
the surface directly, as can be imagined from figure 10 (and will be discussed
in the next section).

The contour map is approximated in regions where the brightness changes
monotonically. Based on the above analysis, an algorithm to construct a shape
representation is the following:

12
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Figure 9: The projection onto the image of an isophote on the surface z =
—(2? + y?) (elliptic, above) and z = 2% — y? (hyperbolic, below, see also
figure 8), illuminated by a uniform hemispherical sky; a) viewing angle is
vertical, similar to R, b) viewing angle with vertical is 30°, c) viewing angle
with vertical is 45°.
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Figure 10: A Lambertian surface illuminated by a single point light source.
In this case, the coordinate system in which the shading is the depth is the
coordinate system of the light source.

1. Find curves or points of brightness extrema;

2. compute a contour map in each region between these curves using the
isophote map;

3. assign direction of depth change (whether the depth increases with in-
creasing brightness or decreases);

4. Compute the relevant surface features.

For complex surfaces, step 3 becomes nontrivial algorithmically.

In a minimalistic implementation of this algorithm, the depth on curves or
points of brightness extrema that have been found in step 1 is either computed
using other cues, such as motion or occluding contours, or set at an arbitrary
constant, and the shading is then used to interpolate the depth between these
features.

3 Geometrical properties of surfaces

In the previous section it has been shown that the contour map in some un-
known (for the moment) coordinate system can be computed (or approxi-

14



mated) directly from the shading for many surfaces. In this section I discuss
some geometrical information on the surface that can be obtained from this
map without depth recovery and transformation of coordinate system. I will
not discuss here relative depth information, though the existence of ordering
of image points (in any coordinate system) can be used to locate bumps and
other important surface features. The ability of humans to judge shape infor-
mation without knowledge of the light source direction is demonstrated and
discussed by Mingolla and Todd in [MT86].

Surfaces of objects can sometimes be concisely described as a collection of
simpler parts, each of which described by a few parameters (e.g. generalized
cylinders [Bin87]; see also [KvD79] and [Ett88]). Classifying regions according
to the sign of their Gaussian curvature, namely as elliptic (convex/concave),
planar, cylindrical, or hyperbolic, provides one important intrinsic surface fea-
ture (see also [BJ86], [VMA86], [Wei88], [Nal88], [BZK89] and [Wei89]). With
this classification of parts as areas of the same sign of Gaussian curvature, part
boundaries within an object are located on parabolic lines. The parts produced
by this segmentation are often qualitatively similar to the parts produced by
the generalized cylinders based scheme. I will now discuss cues in the contour
map to the Gaussian curvature of the surface.

3.1 Geometrical properties of surfaces near global shad-
ing maxima:

Consider a Lambertian surface with reflectance (1). If the distribution of
surface normals span a significant portion of the Gaussian sphere, most likely
the global maxima of the shading, assuming it is not on the boundary of the
surface, will be obtained in points where the surface normal is parallel to R.

Choose such a point P. In this case the coordinate system R, where Z parallels
R and P defines the origin, is a very natural one to use. It is possible to choose
directions X and Y corresponding to the directions of principal curvature on
the surface at P. With this selection, for |k;| < |k;| the principal curvatures
in P, the surface is:

k12? + byy?
Aeyy) = 2212 4 g, (5)

where

. R
lim —m—=
(=%)—(0,0) 22 + y?
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If P is parabolic, namely k; = 0, the isophotes near P are contour lines.
Since locally the contour lines are straight lines, they are always projected to
locally straight lines on the image.

If |ky| = |ka|, the isophotes are circles on the X — Y plane (figure 9a).
If P is elliptic (k; = k;), the isophotes near P are again contour lines and
define circles on the X — Y plane. As argued above, they are projected to
foreshortened circles in the image, as shown in the upper row of figure 9b,c. If
P is hyperbolic (k; = —k;), the projection of the isophotes looks very different,
as shown in the lower row of figure 9b,c.

As |k,| gets further away from |k;|, the distinction between the hyperbolic
and elliptic cases becomes less sharp. The projected isophotes still differ in
the same way, as is shown in figure 11. Figure 11b, depicting a hyperbolic
surface where |k;| = |k,|, maintains some of the triangular shape of figure 11a.
Figure 1lc, depicting an elliptic surface where |k;| = 2|k;|, looks more like
foreshortened ellipses.

/ /

a) b) c)

Figure 11: The isophote map, projected onto the image, near a shading maxi-
mum. The viewing coordinate system is obtained by a rotation of 45° around
the Z axis, followed by a rotation of 10° around the X. a) A generic hyper-

2_2
bolic surface z = 3’_;;&; b) a generic hyperbolic surface z = -z—fﬁ; ¢) a generic
2,22
elliptic surface z = —%ﬂ-.
This analysis suggests a method for the characterization of the Gaussian

curvature of a surface near global shading maxima (that result from the diffuse,
rather than the specular, component of the illumination):
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e if theisophote projections are straight lines locally, the surface is parabolic
(figure 12a);

e if the isophote projections are foreshortened circles, the surface is elliptic

(figure 12b);

o if the isophote projections are concentric triangles, the surface is hyper-
bolic (figure 12c);

a) b) c)

Figure 12: Classification of surfaces near global shading maxima: a) parabolic,
b) elliptic, ¢ hyperbolic.

For this method to work, the viewing direction cannot parallel fi, it should
be oblique. Also, k; = 0 or k; = k; is assumed. The classification becomes
harder as k; gets further away from k;. I should note that shading extrema
often cling to parabolic points [KvD80]. The above method applies only to
global maxima. Finally, this method applies in a region around P where R in
(5) is small enough.
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3.2 Geometrical properties of surfaces near inflection
points:

3.2.1 Contour lines:

Let P be a point on the contour line z = const. Assume that the X —Y plane
is not tangent to the surface at P?. There exists a direction (which I will call
Y without loss of generality) such that z, # 0. In the neighborhood of P the
contour line is some function y(z), such that:

' - %=
y(z) = =
1

y'(z) = —z—s(z:zu — 22,224y + 222,,) .
y

y(x)

inflection point

ur face

Figure 13: Inflection points in the contour lines can be seen from almost any
viewpoint. They will correspond to inflections in the isophotes for surfaces
whose isophotes are their contour lines.

In an inflection point y"”(z) = 0, namely
zZzn — 2Z22yZey + z:zw =0.

This equation has a solution if 22, — z,,2,, > 0, namely, the Gaussian curvature
of the surface is not positive. In other words, the surface around an inflection
point on a contour line is not elliptic, it is parabolic or hyperbolic.

Let me choose the X— and Y — directions such that z, # 0 and 2, = 0
(figure 13). Then

1 z:nz zxa:z
¥'(z) =0, y"(-'c)=——;-, y"(z) = - - (6)

Yy Y

?Inside a region where the intensity changes monotonically, it cannot be that z, = 2z, = 0.
Thus the X — Y plane is not the tangent plane to the surface at an internal point P.

18



P is an inflection point if and only if y"(z) = 0 and y"'(z) # 0, namely,
Zze = 0 and Z,,. # 0. Thus z,, changes sign at P whereas z,, almost always
does not. We can therefore conclude that any inflection point is one of the
following:

e A hyperbolic point (less common);

e A parabolic point dividing an elliptic region from a hyperbolic region,
and X is a principal direction (an example is given in figure 14).

Once again, the second case, where the inflection point is parabolic, can be
identified by stability analysis. An inflection point in a hyperbolic region will
move in all directions when the camera, or the light source, is moved a little
around its location. An inflection point on a parabolic line will move on the
parabolic line or disappear (possibly into the hyperbolic region).

3.2.2 Isophotes are contour lines:

Let (z(z,y) be the actual surface and I(z,y) = f(z) the shading surface for
some monotonic function f (i.e. f’(z) > 0). The Gaussian curvatures K of
both surfaces are related as follows:

1+ 12+ If,)2

K= [fl(z)z K, + f”(z)f,(z)(z:z‘”‘” — 22,2y 24y + Z:Zw)]m .
x v

(7)

We can now conclude the following;:

e From (7) it follows that near an inflection point, the sign of the Gaussian
curvature of the shading surface I(z,y) is identical to the sign of the
Gaussian curvature of the surface z(z,y). The shading can be used to
determine whether the surface is locally parabolic or hyperbolic.

e From (7) it also follows that the sign of the Gaussian curvature of the
shading surface I(z,y) is identical to the sign of the Gaussian curvature
of the surface z(z,y) whenever f"(z) = 0, namely, when the shading is
a linear function of the depth (cylinders and spheres).

¢ An inflection on an isophote is either hyperbolic or a parabolic point
dividing an elliptic region from a hyperbolic one.

In the reverse direction: on a parabolic point on an isophote, the X
direction as define in (6) is a principal direction [Yui89)], namely, Z,, = 0
or Zoe =0. f Z,, =0, P is an inflection point.
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Finally, if R is not parallel to the image plane, the inflection point on the
contour line (which is a planar curve) is projected to an inflection point on
the projection of the contour line on the image. It can therefore be detected
regardless of whether E is known.

3.2.3 An example:

Assume a close contour line. Since z, # 0, any sign change of the curvature of
the contour line (as determines by y”(z)) can only happen with sign changes of
Zzz (the direction X changes continuously with P). A convex segment curves
towards the direction of increase in depth on the surface, a concave segment
curves away from it, and both curve towards the inside of the close contour line
when the Gaussian curvature does not change sign on the curve. (Thus close
elliptic contour lines often resemble ellipses, see figure 6). Since an inflection
point is either hyperbolic or it is separating a hyperbolic region from an elliptic
one, contour line segments that have negative curvature relative to the inside
of the contour line tend to be hyperbolic, and segments with positive curvature
tend to be elliptic.

Figure 14 illustrates the implication of these results. Figure 14d in partic-
ular shows that the parabolic lines intersect the contour lines at an inflection
point, the regions of the contour line with positive curvature relative to its
inside are elliptic, and the regions with negative curvature relative to its inside
are hyperbolic. Figure 14e shows that these qualitative relationship hold ap-
proximately for an isophote, as well as a contour line, though for this surface
the isophotes and contour lines are not identical.

3.3 Geometrical properties of surfaces from isophotes:

For some surfaces the analysis of inflection points is not very useful, since the
isophotes do not approximate the contour lines well, or there are no inflection
points in regions of monotonic change of intensity. In such cases it is still pos-
sible to learn some shape properties from the isophotes. This section extends
the work of Koenderink & van Doorn [KvD80] and Yuille [Yui89].

Yuille [Yui89] has shown that at a parabolic point the isophote points
along the line of curvature (or a principal direction) at the point. He con-
cluded that “typically the parabolic lines give rise to ridges, or valleys, in the
image intensity”. I will argue that in many interesting cases the isophotes are
perpendicular, or almost perpendicular to the parabolic line. In particular, in
these cases, the parabolic line is perpendicular to any ridge or valley in the
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Figure 14: For the surface shown in figure 18a: a) the contour map of the
surface, b) the isophote map, c) the filled-in regions mark elliptic regions, d)
the intersection of the parabolic lines and a contour line, €) the intersection of
the parabolic lines and an isophote. The contour line in d) and the isophote
in e) were chosen randomly and are unrelated.
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image intensity. These cases may prove more typical, and suggest a possible
heuristic for the computation of parabolic lines directly from isophotes.

&

Figure 15: A torus illuminated from direction (1,1,1), its isophote map, and
its parabolic line.

Consider the family of surfaces of revolution (generalized cylinders where
the main planar axis is a straight line). For this family it is known [DoC76]
that the parallels (lines parallel to the generator curve) and meridians (lines
defined by a given point on the generator curve as it sweeps around) are lines
of curvature, and that parabolic lines are meridians. Thus, for surfaces of rev-
olution, the isophotes are either parallel to the parabolic line or perpendicular
to it. The first case leads to parabolic lines being ridges or valleys in the image
intensity as discussed by Yuille, but it is the rarer case of the two. An example
of a torus is given in figure 15 (here the parabolic line is a ridge when the light
source is behind the viewer). More often the tangents to the isophotes are
perpendicular to the parabolic line and the isophotes have a local extremum
or an inflection point. More specifically, the isophotes bend at the parabolic
line (figure 16a and 16b) if the parabolic line separates a hyperbolic region
from an elliptic one. If the parabolic line lies between two elliptic regions, the
isophote has only an inflection point (figure 16¢). Proof is given in appendix
B.

This result gives a heuristic for the detection of parabolic lines separat-
ing hyperbolic and elliptic regions: when all the isophotes bend and the line
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Figure 16: Each row, from left to right, shows a surface of revolution illumi-
nated from direction (1,1,1), its isophote map, and its parabolic lines. For
illustration purposes, the object showfiSon the left of each row is actually illu-
minated from (1,1,0.2).



through the extrema of the bend is roughly perpendicular to the isophote, this
line is a good candidate for a parabolic line. It works well for surfaces of rev-
olution, as figure 16 shows, though distortions occur when the orthographic
projection of a straight angle is not straight.

4 Direction of illumination from occluding con-
tours

Assume a single light source at a large distance from the surface. The source’s
position is defined by two angles (figure 17): tilt — the angle between the
projection of the light direction on the image plane (denoted the X —Y plane)
and the X-axis, and slant — the angle between the light direction and the Z-
axis (the viewing direction). In the following I discuss the computation of these
two angles from shading on occluding contours and self-shadow edges. This
computation is mostly based on a general shading model with Lambertian,
ambient and specular components.

E]

Z

¥

O - slant

g - tilt

image plane

Figure 17: The tile and slant of a point light source.
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4.1 Tilt computation

The following computation assumes a single point light source and constant
albedo. If more than one light source exists, it should then be used with the
self-shadow edges of each light source separately, assuming that the edges are
separable.

Tilt from shading on occluding contours:

Assume an occluding contour where the normal to the surface is perpendicular
to the viewing direction (or in the X — Y plane).

Proposition 1 The direction of the tilt of the illuminant is parallel or perpen-
dicular to the occluding contour at points of shading extrema on the contour.
This holds for points of extremum where the occluding contour does not have
a singularity (such as a cusp).

1. At any point on the occluding contour where the minimum of shading
occurs (must be the value of the ambient illumination, at the beginning
of a self-shadow line), the angle of the tangent to the occluding contour
(and the self-shadow line) is the angle of tilt of the illuminant.

2. At any point on the occluding contour where the mazimum of shading
occurs, the angle of the tangent to the occluding contour is perpendicular
(in the image plane) to the angle of tilt of the illuminant.

A proofis given in part 1 of appendix C. This proposition identifies a group
of points on the occluding contour (at least 3, if all the occluding contour is
visible) where the tangent to the occluding contour gives the angle of tilt of the
illuminant. The tilt computation is therefore quite robust, since only one of
these points should be visible (not occluded). Figure 18 shows an example of
the occluding contour for a complex surface and the tangent to the occluding
contour at the extrema of shading on the contour.

Tilt from self-shadow edges:

If both edges of self-shadow and cast-shadow are given, matching them can
give the direction of illumination as well. As pointed out in [SK83], the angle of
a line between a feature on a self-shadow line and its match on the cast-shadow
line is the angle of tilt.
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Figure 18: a) A bird’s eye view of a surface illuminated from direction
(—1,-0.1,1). b) The shading on the occluding contour plotted as a function
of polar angle (in radians) around the center of the object. ¢) The occluding
contour of the surface with its tangeyy plotted at 3 points of shading min-
ima (solid line) and 2 points of shading maxima (dashed line). Each point is
identified by its polar angle (as plotted in b).



4.2 Slant computation
Slant from shading on occluding contours:

The occluding contour in the neighborhood of a point of global maximum of
shading gives the direction of tilt of the illuminant. If the albedo of the surface
and the intensity of the illuminant are known, the shading at such a point,
which does not have to be unique, gives the angle of slant of the illuminant. If
the albedo and light intensity are not known, the ratio between the global max-
imum of shading on the occluding contour to the global maximum of shading
on the surface gives the angle of slant according to the following formula:

max ]

cos o = (8)

max ]
0

for brightness I, slant o, surface of an object (2, and the occluding contour 4.

This formula assumes a Lambertian surface (proof is given in part 2 of ap-
pendix C). It may be used by humans to judge the slant of the light source, as
discussed by Reichel & Todd [TR89]. In general, ngé)n[ should be subtracted

from both numerator and denominator to eliminate the component due to am-
bient illumination. If the surface is also specular, the denominator becomes
n})axI where (U is the surface area not including the regions of specular reflec-

’
tion (the use of Q7 may lead to an underestimation).

4.3 An example

Figure 19 shows an example, an image of a gourd, for which the direction
of illumination has been computed from the shading on the occluding contour.
First, regions of maximal and minimal intensity on the occluding contour have
been identified (figure 19¢,d). The self-shadow edge in figure 19b does not
actually intersect the occluding contour: the intersection was computed by
locating the points on the occluding contour whose intensity was the closest to
the mean intensity on the self-shadow edge (which was almost constant). The
tangent to each of the edge segments in figure 19¢,d was computed, giving an
estimate of —104° to the tilt direction of the illuminant. The angle of slant
was computed from (8) to be 75°.
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shading on edge

) )

Figure 19: a) A gourd image; b) the edges of the image computed using
Canny’s algorithm (1986) [Can86]; c) a piece of the occluding contour where
the intensity is maximal; d) two pieces of the occluding contour where the
intensity is minimal (the beginning of a self-shadow edge); €) the (smoothed)
shading profiles of the occluding contour and the self-shadow edge. The scale
and absolute values of the units on the abscissa are unrelated for the two edges.
The points of interest on the occluding contour are the maximum (giving the
edge element in c) and the intersection of the contour line with the self-shadow
edge (giving the edge elements in d). g



5 Discussion

The approximation to shape by shading, discussed in section 2, is in some sense
a generalization of Pentland’s analysis of local shape from shading [Pen86].
Pentland showed that only spherical points can be precisely recovered with
local shading analysis. The analysis in section 2 shows that local shading can
be used to give the shape of a richer family of surfaces.

If the surface is assumed to be locally spherical, as in [Pen86], the depth
is uniquely defined by the shading. The direction of the single light source
that illuminates the surface can be computed from the foreshortening of the
isohpotes. Once the light source direction is determined, the linear transfor-
mation relating the depth and the shading is uniquely defined by the second
derivative of the intensity perpendicular to the isophotes. (The constant ad-
ditive term in the linear transformation is not computable with orthographic
projection.) This leaves no free parameters that need to be computed. Thus
in the spherical case, Pentland’s method gives the same results as the shading
approximation.

The shading seems to be a better local approximation to shape than precise
calculations since it gives the correct surface for a richer family of surfaces,
not only spherical. It also gives an integrable consistent solution all over the
surface when the approximation is very local, e.g., when each surface patch is
approximated by a different spherical function. Finally, and most importantly,
the shading approximation is computationally free, only the two parameters
of the light source direction should be computed to obtain a vierer-centered
depth map.

The shading approximation, which is the least sensitive to errors in the
simplifying assumptions on the reflectance function and noise in the brightness
data, may be the best initial local estimate to the surface. The estimate could
then be improved by global shape from shading methods. This approximation
is useful for application domains where some immediate shape approximation
is needed instantly and where there do not exist the computation resources
for exact shape from shading recovery. In general, this approximation cannot
be used in isolation, it should be complemented by information from other
images or cues (such as occluding contours, stereo, etc) to detect surfaces for
which the isophotes do not approximate the contour lines well. Local stability
analysis can also detect such surfaces, as discussed in section 2.3.
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6 Summary

Assuming a particular Lambertian reflectance function (1) with a possible
ambient component, orthographic projection, constant albedo and no mutual
illumination, and using a particular coordinate system R, I have shown that the
brightness at each point is a linear transformation of the depth of the surface
at that point for spheres, toruses, and cylinders (the last two should be aligned
with the Z—axis). For larger families of surfaces, such as radially symmetric
surfaces and unidirectional surfaces, the depth is some monotonic function of
the intensity in regions where the intensity changes monotonically. Thus using
the map of isophotes to approximate the contour map of the surface gives the
correct result for surfaces in these families and some approximate result for
other surfaces. Using the shape of the shading to approximate the shape of
the surface is useful, therefore, in many interesting cases.

The isophotes have been used to approximate the contour map of a surface
in the coordinate system R. Features of this map, such as inflection points
on the contours and the sign of the contour’s curvature relative to its inside
(assuming it is close), can be computed without any knowledge on R. These
features have been shown to give strong clues to the sign of the Gaussian
curvature, or the actual Gaussian curvature, of the surface. Heuristics for the
computation of parabolic lines from isophotes were also described. Parabolic
lines are useful since they enclose hyperbolic regions, and hyperbolic regions
are often the most “natural” places to segment a surface into parts.

In the last part of this work I showed a method to compute the light source
direction. The tangent to the occluding contour in points of shading extrema
on the occluding contour gave the tilt of the light source. The value of maximal
shading on the occluding contour gave the slant of the light source.
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Appendix A

When the isophotes are contour lines, they are planar 3D curves that are
projected onto the image plane. This projection is described in figure 20.

% Y’:‘( A/

Figure 20: Illustration of foreshortening.

Let Sr be the plane on which the isophote lie, and Im the image plane.
Select directions X,Y in plane S7 so that X is parallel to the image plane Im,
and Y perpendicular to X. These directions are projected to perpendicular
directions X',Y' in Im. Let 6 be the angle between axes Y and Y'. (X is
parallel to X' by definition.) A curve on S7 of the form y = f(z) is projected
to a curve y' = cos §f(z'). Thus the projected curve is foreshortened, namely,
it undergoes uniform scaling direction Y.

Appendix B

Let me use the following coordinate system to describe a surface in the neigh-
borhood of a point P. Let the tangent plane at P be the X — Y plane, with
the X— and Y — directions corresponding to the two principal directions at P.
Let Z be the direction of the normal to the surface at P. Let the origin be at
P. Let the surface be a function 2(z,y).

With this selection, the depth function z and the first two derivatives z,
and z, at the origin P are 0. 2z, and z,, are the two principal curvatures ),
and A3, and z,, = 0.

For = = ! an isophote curve on the sur is de
o Aiteites’ n 150p ur n the surface is defined by

(—2.2,—2,Z,E) - (81, 82, 83) = const
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for a distant light source at (s;, 33, 33). The tangent to the isophote lies in the
X — Y plane by definition, and is defined by:

(2,9) = (81(2z4= + z,%) + 33(2p E + zu%) - 33%’
_(sl(zzzE + zz%%) + 32(zy=!=E + zy%) - 83%))
= (82A2, —81A1)

(3) = () () 0

From (9) it follows that at a parabolic point, where A\; = 0, the isophote
points along the direction Y. Let the parabolic line point along the X direction
- (for a surface of revolution it must point along either X or Y). It follows that
in the neighborhood of P the Y component of the isophote changes sign when
the principal curvature A, changes its sign at P (i.e. when the parabolic point
is a transition between elliptic and hyperbolic regions) and the isophote bends.
If A\; does not change sign (in the transition between two elliptic regions, the
isophote has only an inflection point. Note that when A; = );, the isophotes
are perpendicular to the projection of the light source on the X — Y plane
(which is not the image plane). On a self-shadow edge s3 = 0, in which case
the light source direction itself is perpendicular to the edge.

namely,

& &

Appendix C

PART 1:

Proposition 1 The direction of the tilt of the illuminant is parallel or perpen-
dicular to the occluding contour at points of shading extrema on the contour.
This holds for points of eztremum where the occluding contour does not have
a singularity (such as cusp).

1. At any point on the occluding contour where the minimum of shading
occurs (must be the value of the ambient illumination, at the beginning
of a self-shadow line), the angle of the tangent to the occluding contour
(and the self-shadow line) is the angle of tilt of the illuminant.

2. At any point on the occluding contour where the mazimum of shading
occurs, the angle of the tangent to the occluding contour is perpendicular
(in the image plane) to the angle of tilt of the illuminant.
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Proof:

1. Take a point P where a self-shadow edge begins on the occluding contour.
The normal to the surface at P, N, lies in the image plane (by the
definition of an occluding contour). Therefore the tangent plane to the
surface at P projects to a straight line L on the image plane. Both the
tangent to the occluding contour and the light source direction lie in this
plane (since P is on a self-shadow line), thus both project to L in the
image. The tangent to the projection of the occluding contour on the
image plane is the projection of its tangent on the image plane, namely
L, the projection of the light source on the image plane.

Note: using the same reasoning, L is also the tangent to the projection
of the self-shadow line at P.

2. Among all the directions of normals in the image N, the maximum of
N .S is obtained when N is the projection of S on the image plane. Thus
for Lambertian reflectance, at a point on the occluding contour where
the highest brightness is obtained the normal to the surface is parallel to
the projection of the light source, therefore the tangent to the occluding
contour there is perpendicular to the projection of the light source.

PART 2:

Given a Lambertian surface:

max ]

coso =
max /]
0

for brightness I, slant o, surface ) of an object, and the occluding contour 8.
Proof:

The shading of a Lambertian surface with normal N is pAN - S for albedo
p and light intensity A. mg,xl on a convex surface is therefore pA. In the

absence of occlusion, it is visible unless né?ixl = max I. From the proposition
above max I is obtained when N is parallel to the projection of S on the image
plane, namely, N - S = cos o, which finishes the proof.
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