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Abstract

Image smoothing and segmentation algorithms are frequently formu-
lated as optimization problems. Linear and nonlinear (reciprocal) re-
sistive networks have solutions characterized by an extremum princi-
ple. Thus, appropriately designed networks can automatically solve
certain smoothing and segmentation problems in robot vision. This
paper considers switched linear resistive networks and nonlinear resis-
tive networks for such tasks. The latter network type is derived from
the former via an intermediate stochastic formulation, and a new result
relating the solution sets of the two is given for the “zero termperature”
limit. We then present simulation studies of several continuation meth-
ods that can be gracefully implemented in analog VLSI and that seem
to give “good” results for these non-convex optimization problems.
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1 Introduction

One of the most important, yet most difficult, early vision tasks is that of image
smoothing and segmentation. Smoothing is necessary to remove noise from an input
image so that reliable processing in subsequent stages is facilitated. However, indis-
criminate smoothing will blur the entire image, including edges (e.g., corresponding
to object boundaries) which are necessary for later stages of processing. Many re-
searchers are currently seeking to develop algorithms that smooth in a piccewise
manner, respecting edges. There are two main approaches taken — stochastic, [1] -
[6], and deterministic [7] - [9]. The former relies on such methods as simulated an-
nealing to accomplish the minimization. The deterministic approach, on the other
hand, often relies on the application of continuation methods (2], [10] to certain
nonlinear systems, or in the case of [11], on using a neural network similar to that
of Tank and Hopfield [12].

Although efficient computation techniques exist for numerically computing the
solutions to vision problems [13], even the fastest algorithms running on a parallel
supercomputer (such as the Connection Machine ® system! [14]) do not approach
real-time performance. The motivation of this work is to produce solutions to the
smoothing and segmentation problem that are amenable to analog VLSI network
implementation, an area that has been explored in (15] - [18]. See also [11], [19],
[20].

Section 2 presents the smoothing and segmentation task as a minimization prob-
lem. Section 3 presents methods for solving the minimization problem and discusses
network implementations of these methods. Simulation results are provided in Sec-
tion 4. Finally, conclusions and suggestions for further research are given in Section

5.

! Connection Machine is a registered trademark of Thinking Machines Corporation
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2 Image Restoration as a Minimization Problem

The difficulty with using a linear network for image smoothing is that noise and
signal are equally smoothed so that edges become blurred. We therefore seek a
method for segmenting the signal into regions which can be smoothed separately.
One technique for doing this is to introduce a line process (i.e., a set of binary
variables) which selectively breaks the smoothness constraint at given locations.
This method appears widely in the literature, e.g., [1] - (4], [6], [11].

For simplicity of notation, all equations in this paper are formulated for the
one-dimensional case. The results generalize trivially to two dimensions, and the
simulation results are for the two-dimensional case.

The smoothing and segmentation problem with the line process can be treated
as a minimization problem. Let u € RV be the input image, y € RV be the output
image, and 1 € V-1 be the line process, where the binary line process variable /;
assumes the values {0,1} depending on whether the smoothness penalty between
nodes 7 and i + 1 is enforced or not. Consider the following cost function:

o

Ty, & S Fa(y) + S(y,1) + (1) (1)

where F, S, and H are the “fidelity,” “smoothness,” and “line” penalty terms,
respectively, i.e.,
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This formulation assumes that the optimal reconstructed image and edges (yopt, Lope)
satisfies as well as possible the generally conflicting requirements of agreeing with
the data u, being smooth between edges, and containing as few edges as possible.
The parameters s, \s, and A, determine the weights given to each of these criteria.

The expression (1) can be minimized with respect to y for fixed 1 by differenti-
ating with respect to each y; and setting the derivatives to zero. This produces the
following system of equations:

Ap(i = i) + As(yi = yima )L = L) + A9 = gig1)(1 = 1) = 0, (

<
~—
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Figure 1: A simple smoothing network with switches. The vertical and horizontal
resistors have conductances A; and )\, respectively.

with appropriate modifications at the boundaries i = 1 and i = N,

The new results in Section 2.1 all follow [rom the observation that (5), as well
as the related equation (9) below, describe the solution to certain resistive electrical
networks. Notice that (5) can be viewed as the Kirchoff’s current law (KCL) relation
at every node of a resistive ladder in which the horizontal resistive elements have
switches (corresponding to a line process element) associated with them. A network
for computing y given 1 is shown in Figure 1. Note that (£745) is the electrical
power dissipated in the resistors. Similar networks have appeared in [6] and [11].
This type of network will be referred to as a resistor-with-switch (or RWS) network.
For any setting of the switches, the network solution automatically minimizes the
cost function with respect to y. The difficulty is in minimizing with respect to 1.

Much has been said in the literature in regard to finding a global minimum to
(1) by stochastic and deterministic methods. These techniques are necessary to
find the minimizing 1 — minimizing with respect to y given 1 only requires the
solution of a linear system. The deterministic approaches rely on the fact that the
minimization problem can be recast into one in which the line process variables
have been eliminated. The latter will be studied here since they appear to lead to
practical VLSI implementations.

2.1 Discontinuous Resistive Fuse Elements

The line process varjables can be removed from (1) by straightforward algebraic
manipulations. In fact, Blake and Zisserman [7] demonstrated that the original
cost function Jy(y,1) containing real and boolean variables is intimately related to
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the following cost function containing only real variables:

N N-1
. Al .

Ku(y) =5 |y D= w) + > Glyi — yiv)] (6)

i=1 1=1

where
T : ' A 2 lv| < A

G(v) = min /\an2 1 -0+ My = s s -
) ’G{Oyl}{ ( ) / } Al otherwise (7)

The line process is found a posteriori according to:

A
l; = 0, |?/z - yi-Hl < V 7\% . (())

1, otherwise

Note that Ky is a non-convez cost function with respect to y.

Apart from instances in which solutions occur at points where G' is not difleren-
tiable, the minimum of Ky is to be found among those points where VK (y) = 0,
ie.,

Ar(Yi = wi) + 9(yi = yic1) + 9(yi — yir1) = 0, (9)
where g(v) = %%G(v).

Equation (9) can also be viewed as the KCL relation at each node of a nonlinear
resistive network with the topology illustrated in Figure 2. The nonlinear resistor
characteristic, g(v), is that of a linear resistor that reversibly becomes an open
circuit when the voltage across it exceeds a certain threshold, as shown in Figure
3. Then, in electrical terms, (i is twice the co-content function for this nonlinear
resistor [16],[21], i.e., G(v) = 2 [ g(u) du. We refer to an element of this type as
a discontinuous resistive fuse and to a network incorporating resistive fuses as an
RWF network, i.e., a resistor-with-fuse network.

For a given cost function, one can construct corresponding RWS and RWI net-
works. For every solution of an RWE network, there exists a similar solution to
the corresponding RWS network, but there are switch configurations of an RWS
network for which there is no corresponding solution in a corresponding RWF net-
work. The question then arises whether restricting attention to the RWT network
might cause one to overlook a solution to the RWS network that is in fact a local
minimum and therefore of potential use in an optimization procedure. The answer
is no, by the following proposition:

Proposition 1 Consider the cost function July, 1) as specified in (1) for a one- or
two-dimensional network and the corresponding RWS and RWI networks specified
by (5) and (9). If the switches are set so that the solutjon y* for the RWS network
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Figure 2: Resistor-With-Fuse (RWI) network topology.
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Figure 3: Characteristic of the discontinuous nonlinear resistor known as a “resistive
fuse.” The dotted vertical lines are not part of the constitutive relation.
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2.1 Discontinuous Resistive Fuse Elements

Is not also a solution to the RWF network, then y™ is not a local minimum to Jy,
meaning that changing the setting of a single (appropriately selected) switch in the
RWS network will produce a new solution (with a new value of y) for which the
value of Jy is strictly lower.

Remark Proposition 1 differs from the result in (7} (pp. 112-113) in that it
concerns local minima and applies after the network has settled to a new y following
the closing of the switch.

In order to complete the proof, we need the following lemma:

Lemma 1 (Local Measurement Principle) Consider a one-dimensional or two-
dimensional network of the type shown in Figure 1, in which an arbitrary number
of switches (> 1) are open. The power dissipated in the network is given by

N N-1
Po= A i —w) 0> (v — win)P(1 = 1)

=1 =1

(F+ 5). (10)

For a given switch, let = be the value of P with the switcl open, T be the
value of P with the switch closed, and define the change in the dissipated power as
AP =Pt — P~ Let v,. be the voltage across the switch when it is open and let 7.
be the current through the switch when it is closed (after the network has settled).
Then the increase in dissipation which results from closing the switch is

AP = vyeiye > 0. (11)

Remark Lemma 1 is a startling result. The local measurement principle states
that one can measure the global change in the network cost function due to a switch
change (after the network scttles to a new solution) merely by taking two mea-
surements at the switch. Both proofs below use circuit theory techniques, but can
also be carried out, albeit laboriously, by mathematical arguments divorced from a
network realization, e.g., the proof of Lemma 1 via a rank one perturbation method
in [22]. Related work appears in [23] and [24].

Proof of Lemma 1 Define ve and i to be the network branch voltages and
currents when the switch is open. Define vr and 44 to be the network branch
voltages and branch currents when the switch is closed. Define Avgp = v, — v and
Atg =1 — ip . By Tellegen’s theorem [25],[26],

D [y — i A = 0. (12)

all
branches



8 2 IMAGE RESTORATION AS A MINIMIZATION PROBLEM

Group the terms in (12) according to branch element, and note that

D7 (ki — irAve] + > [okAig — i Avg] (13)
voltage resistors
+ Z [0kQik — i AvE] + V5 Adgy — G5, Ay = 0,
fixed
switches

where the subscript “sw” refers to the switch that is being closed and “fixed
switches” to all others. To simplify (13), note that Avg = 0 for the voltage sources,
vx and Avg vanish for closed switches, i and Aiy vanish for open switches, and for
the resistors:

Ve Aty — 1. Avg = RiipAdy — R At = 0. (14)
Equation (13) then becomes
0 = Z [vaik] + Vs Atsy — LswAVsy
voltage
= Z [”kAik] + vsw(isw - 2.s_w) - isw(vsw - vs_w)
voltage
= Z [’UkAik] + vs—wisw (15)
voltage

sources

The summation term in (15) is just the change in power delivered to the network,
ie., —AP, and v, 15, = Vocis,. Therefore,

AP = vociso (16)
on

Proof of Proposition 1 Consider any RWS network with any input u, switch
configuration 1, and corresponding network solution y*, such that y* is not a solution
of the corresponding RWF network. Then there must exist some resistor-switch
composite element (element g, say), such that y* is no longer a network solution
if a resistive fuse is substituted in its place. Make such a substitution and then
consider the load-line describing the remainder of the linear RWS network as seen
from this location. The two possible cases marked in Figure 4 are Case X, in which
switch ¢ was open in the original RWS network, and Case W, in which switch q was
closed. Note that the area in the first quadrant under the triangle is %/\h- In Case
X, closing the switch in the original RWS network would have caused the solution
to move to the circled point on line A. By Lemma 1 the change would be

1 .
Ju,closed - Ju,open = §[U0czsc - /\h] < Oa (17)
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Figure 4: Load-Line diagram for RWS network and for RWS network with resistive
fuse substituted for one resistor-switch composite element. The dashed lines A, B,
and C are possible load-lines representing the behavior of an RWS network as seen
by one resistor-switch pair. The six marked points indicate possible solutions, de-
pending on switch position. If a resistive fuse element (with characteristic ¢ = g(v),
shown with a solid line) is substituted for the resistor-switch pair, the four circled
solutions remain, while the solutions marked X and W disappear.

where the inequality follows from the fact that %vocisc (the area under the line
connecting the origin to (v,,1s)) is less than %/\h (the area under the triangle).
For Case W, similar reasoning shows Juopen — Juclosed < 0 if opening the switch
causes the network solution to move from point W to the circled point on line C.
Thus points X and W in Figure 4 are not local minima of Ju. [ |

Remark The converse of the proposition is not true. If the network solution lies
on load-line B, one intersection point or the other will generally have lower cost for
the RWS network, yet both are valid solutions to the RWF network.

2.2 Continuous Resistive Fuse Elements

We will show that for the purposes of numerical optimization and physical (VLSI)
implementation it is advantageous to replace the discontinuous resistive fuse ele-
ment in Figure 3 by a controllable element with a single-parameter family of i-v
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curves, such as those drawn in dotted lines in Figure 7. Elements of this general
type have also been used in analog VLSI circuits for image enhancement. To the
best of our knowledge, the first related circuit appeared in [15] and had a mono-
tone, saturating characteristic of the general form i = atanh(bv). John Harris at
Caltech has invented the first nonmonotone circuit element of this type, named it
a resistive fuse, and built image processing networks using it in analog VLSI [16]
- [18]. More recently, Steve Decker, Hae-Seung Lee, and John Wyatt at MIT have
developed more compact nonmonotone continuous resistive fuse circuits using fewer
transistors.

The behavior of the nonmonotone fuses in the network in Figure 2 is intuitively
easy to understand. In a smooth region of the image where the input u is nearly
constant, only the linear portion of the fuse curve near the origin is excited, i.e.,
the fuse acts essentially as a linear smoothing element. But at any point where a
discontinuity in the input occurs, i.e., where |u; — u;_q] is sufficiently large, the fuse
current becomes quite small and little smoothing results. An extremum formulation
of this behavior is given in [16].

A fundamental question is whether any rigorous relationship can be found that
connects the continuous nonmonotone fuse curves in Figure 7 with the discontinuous
fuses in Figure 3 or the switches in Figure 2. The surprising answer is yes, due
to a remarkable result of Geiger and Girosi, based on a stochastic formulation of
the problem [1]. Section 2.3 gives the necessary background and Section 2.4 gives a
variant on their approach, based on a formulation in terms of a marginal probability
distribution function.

2.3 Stochastic Formulation of the Image Smoothing and Segmen-
tation Problem

This section shows that the deterministic minimization problem in (1) - (4) is in
fact the optimum image reconstruction procedure in a particular probabilistic for-
mulation of the problem (see Figure 5). In this formulation, the original image
brightness and discontinuities are modeled as a pair of random vectors (B, D). We
cannot directly measure (B, D) but have to work instead with a noisy observation
U of the brightness values alone.
Remark The notation in this section follows the one classically used in probability
theory, where the random variables or vectors are denoted by uppercase letters
(B,D, U) while the values taken by them are denoted by lowercase letters (b,d,u).
In (18), p(X = x) is denoted by p(x) and P(X = x|Z = z) is denoted by p(x|z) to
simplify notation.

For this analysis, it is assumed that the probability distribution for (B,D) is
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noise vector N

estimate of

original image noisy original image
and edge observation and edge
discontinuities of image discontinuities
Degradation Reconstruction —
(B,D) U(B,N) (B, D) = f(U)

Figure 5: The original image one wishes to reconstruct is modeled as a random
brightness vector B and a random binary edge discontinuity vector D, where D; = 1
if there is an edge between pixels i and (¢ + 1). The observation U is a version of
B degraded by observation noise N, and the reconstruction algorithm produces
an estimate (B,D) of (B,D). In our particular example, the function f is the
optimization procedure specified in (23) - (25).

given by

p(b,d) = p(bld)p(d)
= {e(BA)ePSEDY Lo (53 )e=0H@) (18)

where the functions § and H are given in (3) and (4), respectively, and where c,
and ¢, insure that p(b,d) and p(d) have unit area. The vector D represents a
finite Bernoulli sequence. More specifically, the components of the binary random
vector D are independent, identically distributed binary random variables with a
probability mass function

e—BAnd;
p(Di=di) = = (19)
so that the joint probability mass function of d is given by
N-1
p(D=d) = | PR (20)

1=1
(=8 N4y
e i=1 .
) (1+ e-ﬁ/\h)N—l = cp(BAy )e~ P,
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which decreases with the total number of discontinuities in the scene. The brightness
vector B is a Gaussian random vector dependent on D: specifically, the elements
of the vector taken as a sequence represent, in the one-dimensional case, discrete
Brownian motion with a uniformly distributed initial value at i = 1 and at the right
of each discontinuity location. In the absence of a discontinuity between pixels i
and (i + 1), the standard deviation of Biy1 - Biis 0 = 1//2057X,.

We also assume the observations U are distributed as

p(ulb) = cs(BAs)e=PFu®), (21)

where the function Fy is given in (2) and where cf normalizes p(u|b) to unit area.
Equation (21) is equivalent to assuming that the observations are corrupted by
additive, independent Gaussian noise, ie., Ui = B; + N;, where N; is a Gaussian
random variable with zero mean and standard deviation o = 1/\/2BX;, and N is
independent of (B, D). The variable 3 is actually redundant because scaling (3 is
equivalent to scaling As, Ay, and Aj,. Since increasing 8 will reduce all the variances,
21; is analogous to temperature in statistical mechanics.
Remark More precisely, B is Brownian motion and N is Gaussian if the allowed
values for each B; and each N; are continuous and unconstrained. But in that case
the description of B is flawed because a uniformly distributed initial value over the
whole real line is not a normalizable probability distribution. This problem vanishes
if the allowed brightness values are discrete and finite in number or continuous and
bounded, e.g., 0 < B; < Bu.

How should we best attempt to reconstruct (B,D) given U? Given both the
a priori (i.e., prior to a particular observation) probability distribution p(b,d)
of the image with discontinuities, and the noise-produced conditional distribution
p(ulb,d) of the observation, Bayes rule [27] gives the a posteriori distribution (i.e.,
the conditional distribution after noisy observation) of the image and discontinuities

by the formula
p(ulb,d)p(b,d
p(b,dJu) = 2ulb: Dp(b,d) (22)
p(u)
_ Mazimum a posteriori estimation is a reconstruction technique that chooses
(b,d) as the value of (b,d) that maximizes p(b,d|u), i.e.,

(b,d) = f(u) = arg max p(b, dJu)

p(ulb,d)p(b,d)
p(u)
arg max [p(u|b)p(b,d)], (23)

= argmax [
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where the last equality holds because the denominator is independent of (b,d)
and the observation u depends directly on the brightness levels alone — d is not
measured but only statistically inferred. Using (18) and (21) in the last line of (23),
we have

(b,d) = arg max {Cfcsche"mFu(bHs(b’dHH(d)]} . (24)

Remark There is a useful distinction between the (¥,1) notation and the (b,d)
notation. In the deterministic picture, (y,1) represents algorithm or circuit variables
over which we are attempting to optimize. A particular network solution (y,1) does
describe the circuit behavior but may or may not bear any simple relation to (b,d).
The stochastic picture adds a new quantity not present in the earlier determinis-
tic story: the original uncorrupted random image-discontinuity pair (B,D). The
variables (b, d) always refer to possible values of (B,D) and may or may not relate
directly to circuit behavior. Without this dual notation the variables would mis-
leadingly be used to describe both original image-discontinuity pairs and also node
voltages and switch positions inside an electrical network.
Substituting our previous deterministic notation (y,1) for (b,d), we recover

(67{1) = (yoptalopt) = afgIgilll {Fll(y) + S(y, l) + ]I(l)} (25)

as in (1) - (4).
In conclusion, the optimization problem in (1) - (4) yields as its solution the
mazimum a posteriori estimator of the original image brightness and discontinuity

vectors (B, D), assuming the a prior: distribution (18) and the observation noise
model (21).

2.4 Derivation of the Continuous Fuse from the Resistor-with-

Switch Network in a Probabilistic Formulation

In the Bayesian formulation, one first calculated the a posteriori distribution

]J(b, dIu) = Cfcsche‘G[Fll(b)+5(b,d)+}1(d)]’ (26)

and then attempted to maximize it over (b,d). If one wishes to reconstruct only
the intensities but not the discontinuity locations, it is appropriate to maximize the
simpler marginal a posteriori distribution p(b[u) over b, where

p(blu) £ 3 p(b,dlu), (27)
dec
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and C is the hypercube of all 2V~ possible binary d-vectors. The form of this
density will specify the nonlinear continuous fuse characteristics. The sum above
was first calculated by Geiger and Girosi in [1], and a somewhat more detailed
derivation is given below.

Lemma 2 The marginal a posteriori distribution p(blu) over b is given by:
p(blu) = ¢re~PlFu(b)+J2(b)] (28)

where ¢; is a normalizing constant, Fyy(b) is given in (2), and

1 N-1 1+ PP :
Ja(b) = B ; " (1 + eBa=Ae(bi=biy1)?] | (29)

The proof of the lemma requires the following fact, which can easily be verified.
Fact Let a=(ay,...,a,) be a vector of n binary variables, a; € {0,1}, and let A
be the set of all such vectors. Then for any r € ",

Yot =Tt +em), (30)
i=1

acA

where a - r is the standard inner product.
Proof of Lemma 2
Substituting (26) into (27) yields

p(bla) = 3" p(b,dJu)
dec
fd cfcsch Z e—ﬁ[Fu(b)-FS(b,d)-*—H(d)]. (31)
dec

The terms being summed in (31) can be decomposed as follows:

N N-1 N-1
exp (—ﬂ [’\f Db —u) X Y (b - bi+1)2D exp (—ﬂ > d; [’\h = As(b; — bi+1)2]> (32)
1=1 i=1 i=1

Using (30), the second exponential term in (32) sums over d € C to

1 N=t 2
exp (—ﬂ [—E Z In(1 + e PAR=As(bi=bit1) ])J> ‘ (33)

=1

and further algebraic manipulation shows that

p(blu) = cse,epePFu®)+(®)] (34)
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where

_ 1 N-1 1
B(b)= 5 X n (1 - emA,,-As(b.--b,»“)n) L (N = DA, (35)

Absorbing an additive term into the normalizing constant cycsep, the lemma was
stated in (29) in terms of

N -1

Ja(b) £ Ja(b) + [In (1+ ePtn) — B, (36)

which is constructed so that J2(0) = 0. This is a necessary step if we are to later
interpret J2(b) as the co-content function of a set of nonlinear resistors. |

The marginal distribution in (28) suggests a new cost function

KE(y) = 5 [Faly) + Ja(y)], (37)

in which the line process variables have been eliminated. The local minima. of I\"g (y)
are obtained from the set of points satisfying

VES(y) =o. (38)
Taking the i-th component of (38) gives:
AU = wi) + 9p(4i ~ yi-1) + 95(%i — yis1) = 0, (39)
where

As¥
TF e PO

gs(v) = (40)

Equation (39) can be considered the KCL relation at each node of a nonlinear
network having vertical linear resistive elements with conductance \ 7 and horizontal
nonlinear elements with constitutive relation i = g3(v). In this case, l\"g(y) is the
total co-content of the network. Notice that as B — oo, we recover the RWF network,
ie., Kg(y) — Ku(y). Moreover, we have defined a family of 3-dependent resistive
elements, illustrated in Figure 7, that can be used in continuation methods.



16

2 IMAGE RESTORATION AS A MINIMIZATION PROBLEM



17

3 Solution Methods

The resistive fuse and marginal distribution approaches produced switch-free nonlin-
ear networks with identical topologies (see Figure 2) but with different constitutive
relations for the nonlinear elements. For either network, multiple solutions generally
exist. On the theoretical side this is a difficulty because we are trying to find the
global minimum of a specific cost function. On the practical side this is a difficulty
because the solution that is obtained by a physical network realization will depend
strongly on such things as parasitic capacitances and other characteristics of the
network over which we have little control. We therefore seek some modification of
the network that will allow us to exercise some control over the solution it finds.
In this section, we apply continuation methods to the nonlinear smoothing and
segmentation networks.

3.1 Example — A Special Case

The simplest special case that nonetheless provides insight into the phenomenon
of multiple solutions is the response of a one-dimensional network to a step edge

input, i.e.,
o Uh; ) S k
Uz—{ulo 1>k (41)

for some k < N. This corresponds to a step of up; — u, > 0 between nodes k& and
k + 1 and serves as a model for the simplest two-dimensional edge, i.e., a step that
extends across the entire network and is parallel to one of the network “axes.”

For the step input described above, the one-dimensional network has a simple
circuit equivalent, shown in Figure 6. The simplification proceeds as follows. First,
we assume that the signal is “well-smoothed” on either side of the step so that each
nonlinear element can be replaced by an equivalent linear resistance whose value is
the incremental resistance of the nonlinear element about zero volts. The network
elements on either side of the step are then replaced by their Thevenin equivalents,
which are combined into a single linear element and voltage source. The simplified
network will be referred to as the zero-dimensional case. Analysis of the behavior
of the network to a step input is reduced to solving the KCL equation at one node:
some insight into the circuit behavior can be gained by using load-line techniques
(see Figures 6 - 8).

This “linear load-line assumption” holds ezactly only for the RWS network with
fixed switch positions and for the marginal distribution network with 8 = 0. For
the RWF network and for the marginal distribution network with B — oo, it is
exact over the limited voltage range in which no new discontinuities are introduced
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Figure 6: Thevenin equivalent circuit for one-dimensional nonlinear smoothing and
segmentation network with step input.

Req

into y. Otherwise, it is only an approximation and its applicability to other cases
of interest must be individually determined.

3.2 Continuation Methods

We seek a modification to the networks so that the solution will be repeatable and
also be visually and quantitatively “good.” One technique that works well within
the context of smoothing and segmentation is to apply a continuation method to
the network [2], [10].

A continuation (sometimes called “deterministic annealing”) can be realized in
network form by the simultaneous application of a given homotopy (continuous
deformation) to some or all of the circuit elements. Two types of continuations
are particularly appropriate for our class of nonlinear networks. Assume we have a
network with horizontal nonlinear resistors whose constitutive relation is described
by ¢ = g(v), and vertical linear resistors with conductance As. Consider the following
two homotopies for the horizontal and vertical elements, respectively:

CH: Replace g with ¢(P p¢ [a, D], such that g(*) constrains the network to have a
unique solution and that ¢(®) = g;

CV: Replace A; with /\.(fp), p € [a,b], such that Al?) constrains the network to have

a unique solution and that /\S,b) = A5

Note that CH and CV define where the homotopies are applied in the network to
produce a continuation; we are still free to decide the specific form of the homotopy.
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3.3 p-Continuation

Blake and Zisserman suggest a CH continuation method — the so-called “graduated
non-convexity” algorithm, or GNC [7]. There are some apparent weaknesses to
using the GNC algorithm in network form, however. First, there is no reason
to expect that, for an arbitrary image, the specific continuation used by GNC
will produce the global minimum or that it will even produce a “good” minimum.
Second, the nonlinear resistive element in a network realization of GNC will have
a discontinuous first order derivative which can cause convergence difficulties in
numerical simulation.

On the other hand, the marginal distribution derivation of our nonlinear network
provides a natural homotopy for realization of the CH continuation. For B =0, the
network with elements described by (40) is linear, whereas for 3 — 00, the elements
become identical to those in Figure 3 and will (locally) solve our minimization
problem. This suggests using 8 directly as the continuation parameter for a CH
continuation for solving (39) and hence (9). Furthermore, because of the way this
continuation was derived, one might expect that it would do a good job of seeking
the global cost minimum.

Some insight into the behavior of this type of network can be gained by examin-
ing the zero-dimensional case. Figure 7a shows the marginal distribution nonlinear
resistor characteristic for various values of 3, along with two load-lines representing
two different values of the input. As £ is taken from 0 to oo, the solution will follow
the continuous path represented by the intersection of the resistor curve and the
load-line. In this example, the smaller step will be smoothed, and the larger step
will be segmented.

Interestingly, discontinuous behavior can occur with this type of continuation,
as is shown in Figure 7b. In this example, the initial solution point will be the
intersection of the load-line and the marginal distribution resistor characteristic for
B = 0. As (8 is increased, the “hump” of the nonlinear resistor curve will at one
point pass completely beneath the load-line, at which point the solution will jump
from being a smoothing solution to being a segmenting solution.

3.4 A;-Continuation

The CV continuation can be realized in a straightforward manner by varying the
vertical resistors in the network. In particular, we begin with the resistors having
infinite (or sufficiently large) conductance so that the network has only one solution,
namely y = u (or, for large conductance, y u). Then, we continuously decrease
the value of the conductance to A i
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Figure 7: Approximate load-line plot for marginal distribution network with
B-continuation. In part (a), the solid lines with negative slope represent the
load-lines for two different input values (0.5V and 2.5V). The nonlinear resis-
tor is shown for various values of 3. For B = 0, the nonlinear resistor acts as a
linear resistor. As 8 — oo, the nonlinear resistor characteristic becomes that of the
discontinuous resistive fuse. In part (b), the solution exhibits a discontinuous jump,
from a smoothing solution to a segmenting solution.
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Examination of the zero-dimensional case provides some insight into the behav-
jor of this type of network. Figure 8a shows the marginal distribution nonlinear
resistor characteristic for large 3, along with two sequences of load-lines represent-
ing two different values of the input. In this example, the solution for the larger
input will remain at the initial intersection point of the load-line and the resistor
curve as AP is taken from /\S.a) = Ao to /\Srb) = As. On the other hand, the solution
for the smaller input will follow the continuous path represented by the intersection
of the resistor curve and the load-line. Hence, the larger step will be segmented and
the smaller step will be smoothed.

Discontinuous behavior can also occur with this type of continuation, when the
continuation is used with non-linear resistors of finite B, as is shown in Figure 8b.
In this example, the initial solution point will be a segmenting solution in the lower
right-hand corner of the figure. As Ay is decreased, the load-line will at some point
pass completely beneath the nonlinear resistor characteristic, at which point the
solution will jump from being a segmenting solution to being a smoothing solution.
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Figure 8: Approximate load-line plot for As-continuation. In part (a), the nonlinear
resistor characteristic gg(v) is shown for large (3 along with two sets of load-lines,
each set for a different value of the input (the load-lines intersect the gs(v) = 0
line at the value of the input voltage: 0.5V and 2.5 V). As Af is decreased, the
load-lines rotate counter-clockwise. In part (b), the non-linear resistor characteristic
is shown for finite 8. In this case, the solution exhibits a discontinuous jump, from
a segmenting solution to a smoothing solution, as A 1 is decreased.
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Figure 9: Two-Dimensional network topology.

4 Numerical Experiments

In order to quantitatively and qualitatively demonstrate the behavior of the B-
continuation and As-continuation networks, the results of several numerical experi-
ments are presented. The experiments were all conducted with two-dimensional net-
works, the topology of which is shown in Figure 9. The experiments were conducted
using serial and parallel versions of a special purpose circuit simulator developed
specifically for vision circuits [28] - [30].

The continuations were simulated by performing dynamic simulations of the
networks. In order to add dynamics to the networks, a small parasitic capacitance
to ground was added at each node such that the time constants of the network were
much faster than the rate at which the circuit elements were varied to perform the
continuation. Dynamic simulation of the networks in this way has several advan-
tages. First, the presence of parasitic capacitances is somewhat more physical and
will allow the system to perform a gradient descent which will thereby guarantee
that the network does not settle on a solution which statically satisfies KCL but is
actually a local mazimum of the network cost function [16]. Second, the dynamics
will insure that the network behavior is well-defined at points where solutions in the
static case would disappear, as in Figures 7b and 8b. (Our experience has been that
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Figure 10: (a) Original image. (b) Original image corrupted with noise. The noisy
image was used as input for all experiments in Section 4.1.

discontinuous circuit behavior is much more common in the As-continuation network
than in the f-continuation network, which causes simulation of a, As-continuation
network to take much more time.)

4.1 Experiments with a Synthetic Image

A series of seven experiments conducted on a 16 X 16 circuit grid with a synthetic
input image was conducted. Figure 10a shows the 16 X 16 synthetic image used for
the experiments. The small step is 1V in height and the large step is 3V. The
original image was then corrupted by the addition of 0.5V of uniformly distributed
noise and is shown in Figure 10b. The noisy signal was used as input for this series
of experiments.

For each experiment, a cost function was determined and the corresponding -
continuation and Ay-continuation networks constructed. Then, the networks were
each simulated using the input image shown in Figure 10b. For each experiment,
the value of \; was fixed at 1.0x 10~3 and the value of \;, was changed. Tor the
B-continuation, the value of Ay was fixed at 1x10™4 and the value of B was increased
from 0 to 20/Mj,. For the Ag-continuation, the value of 8 was set to 20/Ap, and the
value of Ay was varied from 1 to 1x10~4. Thus, for each experiment, the final states
of the f-continuation and Ag-continuation networks were the same.
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Experiments with a Synthetic Image

Cost
Expt Ap [B-cont. Ag-cont.
1 1.0x107° [ 1.775x10=2 1.770x 102
2 5.0x107% [ 9.699x 1073 1.254x10~
3 1.0x107% | 3.299%10=3 2.940x 10-3
4 5.0x107° [ 1.740x 10~ 1.740x 10~
5 1.0x107> | 7.800x10~% 2.641x10-3
6 5.0x107° | 6.600x10~% 1.650%x 103
7 1.0x107° | 5.518x10~% 4.246x 102
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Table 1: Experimental results showing the values of the cost function of the solutions
produced by the 8- and Ag-continuation networks for different values of An.

Solutions obtained by the two nonlinear networks were compared as follows:

1. Given a cost function, construct the corresponding nonlinear networks, and
in addition, construct a corresponding RWS network;

2. Provide each network with the same input and allow each network to attain
its solution;

3. For each nonlinear network, transfer the line process solution obtained to the
RWS network by setting the switches according to equation (8);

4. Allow the RWS to attain its voltage solution and compute the resulting cost
— it is this cost that is used for comparison.

The results of the seven experiments are shown in Table 1. For the particular
values of parameters used, each network computed a lower cost in roughly half the
experiments. This set of experiments was actually taken from a larger set of 49. Of
those, the #-continuation found the lower cost 35 times, the As-continuation found
the lower cost eight times, and there were six ties. Thus, in these experiments, the
B-continuation performs its task of minimizing the cost function (1) extremely well.

If the cost function were the last word on Image smoothing and segmentation,
we could immediately recommend the B-continuation. However, remember that the
ultimate goal for a smoothing and segmentation network is essentially to recover
an original image minus any noise, and the cost function was introduced to give
us a quantitative means for doing this. Now consider Figure 11, which corresponds
qualitatively to the solutions produced by the two nonlinear networks in experiments
2 and 3. Note that whereas 11a is the qualitatively correct solution, it corresponds to
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Figure 11: (a) Network solution produced by Ag-continuation in experiments 2 and
3. (b) Network solution produced by S-continuation in experiments 2 and 3.

the higher cost in experiment two, but corresponds to the lower cost in experiment
three.

Naturally, this calls into question the entire cost function methodology used
for smoothing and segmentation. The difficulty arises because our efforts were
concentrated only on finding an optimal solution rather than the larger issue of
determining the best cost function and parameter values. See however [31).

4.2 [Experiments with a Real Image

The networks were then tested with a real image. Figure 12 shows the 256 x 256
input image — a portion of the San Francisco sky line. The output images shown in
Figures 13 ~ 16 were produced using a recently developed circuit simulation program
on the Connection Machine.

Figure 13 shows the output produced by the 8-continuation with fixed parameter
values A; = 1x1073, A, = 2x1075, and A = 1x10~4. Figure 13a shows the output of
the network at the beginning of the continuation when B = 0; Figure 13b shows the
output of the network at an intermediate point of the continuation when B = 5x10%;
Figure 13c shows the output of the network at the end of the continuation when
B = 5x10°. Figure 14 shows the output produced by the B-continuation with
fixed parameter values \, = 1x10-3, A = 1x107%, and Ay = 3x1075. Figure
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14a shows the output of the network at the beginning of the continuation when
B = 0; Figure 14b shows the output of the network at an intermediate point of the
continuation when 8 = 2x 10%; Figure 14c shows the output of the network at the
end of the continuation when 8 = 1x108. Figure 15 shows the output produced
by the As-continuation with fixed parameter values A, = 1x1073, A\, = 1x 1073,
and B = 1x108. Figure 15a shows the output of the network at the beginning of
the continuation when Ay = 1; Figure 15b shows the output of the network at an
intermediate point of the continuation when A\; = 1x10~3; Figure 15¢ shows the
output of the network at the end of the continuation when A; = 3x107°. Note that
the final parameter values of this network are identical to those for the network
of Figure 14. Figure 16 shows the output produced by the Ag-continuation with
parameter values A; = 1x 1073, A\, = 2x107%, 8 = 5x 104. Figure 16a shows the
output of the network at the beginning of the continuation when As = 1; Figure
16b shows the output of the network at an intermediate point of the continuation
when Ay = 5% 107%; Figure 16¢ shows the output of the network at the end of the
continuation when Ay = 1x107S.

Discussion

As can be seen from the experiments with the real image, not only does the se-
lection of parameter values affect the behavior of the networks, but the continuation
used also has a profound effect on the network behavior. The differences between
cost functions for a particular continuation can be seen by comparing Figures 13c¢
and 14c, and by comparing Figures 15¢ and 16¢c. The differences between continu-
ations methods for a given cost function can be seen by comparing Figures 14c and
15c¢.

One can understand the differences in the continuation methods quite readily.
At the beginning of the S-continuation, the output of the S-continuation network is
rather smooth, since initially the network is equivalent to a linear resistive network
(see Figures 13a and 14a). The edges are then added during the course of the
continuation (see Figures 13b and 14b). This is a difficulty because without any
initial edge information, some of the edges might be misplaced or even completely
lost. Notice that in Figures 13c and 14c, edges tend to line up along the network
axes.

On the other hand, the initial output image of the As-continuation network
is very close (or identical) to the input one (see Figures 15a and 16a). All the
edges are initially present and only the spurious edges are smoothed during the
course of the continuation. Since all the edge information is present at the start of
the continuation, one would expect that the A s-continuation would more properly
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Figure 12: 256 x 256 image of the San Francisco sky line.
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Figure 13: (c) Output produced by f-continuation network. Here, the parameter
values are A; = 1x1073, A, = 2x107%, Ay = 1x10~4, and 8 = 0, 5x10°, and 5x 105
for Figures 13a, 13b, and 13c, respectively.
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Figure 14: (a) Output produced by S-continuation network with smaller fidelity
and line penalty weights and larger final 3 value than for the network in Figure 13.
Here, the parameter values are A\, = 1x10-3, ), = 1x 10=%, Ay = 3x10-5, and
B =0,2x10%, and 1x10° for Figures 14a, 14b, and 14c, respectively.
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Figure 14: (b) Output produced by -continuation network with smaller fidelity
and line penalty weights and larger final 8 value than for the network in Figure 13.
Here, the parameter values are A, = 1x10-3, A, = 1x10-5, Ay =3x107%, and
B =0,2x10% and 1x10° for Figures 14a, 14b, and 14c, respectively.
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Figure 14: (c) Output produced by f-continuation network with smaller fidelity
and line penalty weights and larger final 8 value than for the network in Figure 13.
Here, the parameter values are A, = 1x10-3, ), = 1x10-5, A = 3x107%, and
B =10,2x10%, and 1x10° for Figures 14a, 14b, and 14c, respectively.
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Figure 15: (a) Output produced by A s-continuation network. Here, the parameter
values are A, = 1x1073, ), = 1x1075, 8 = 1x 108, and Ar =1, Ay = 1x1073,
and Ay = 3x10~° for Figures 15a, 15b, and 15c, respectively. Note that the final
parameter values of this network are identical to those for the network of Figure 14,
but that the output image is much closer to the input image shown in Figure 12.



36 4 NUMERICAL EXPERIMENTS

X

2
N

Figure 15: (b) Output produced by As-continuation network. Here, the parameter
values are A, = 1x1073, A, = 1x10~5%, 8 = 1x 10%, and Ar =1, A = 1x1073,
and Ay = 3x10~3 for Figures 15a, 15b, and 15c, respectively. Note that the final
parameter values of this network are identical to those for the network of F igure 14,
but that the output image is much closer to the input image shown in Figure 12.
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Figure 15: (c) Output produced by ) s-continuation network. Here, the parameter
values are A; = 1x1073, )} = 1x107%, 8 = 1x 108, and Ar =1, Af = 1x1073,
and Ay = 3x10~3 for Figures 15a, 15b, and 15c, respectively. Note that the final
parameter values of this network are identical to those for the network of Figure 14,
but that the output image is much closer to the input image shown in Figure 12.
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Figure 16: (a) Output produced by As-continuation network. Here, the parameter
values are A\, = 1x1073, \;, = 2x107%, B = 5x10%, and Ay =1, =5x107%, and
A; =1x1078 for Figures 16a, 16b, and 16c, respectively.
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Figure 16: (b) Output produced by A s-continuation network. Here, the parameter
values are A, = 1x1073, A\, = 2x10~%, 8 = 5x 10%, and Ar =1, A =5x107%, and
As = 1x107° for Figures 16a, 16b, and 16c, respectively.
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Figure 16: (c) Output produced by A s-continuation network. Here, the parameter
values are A, = 1x1073, \; = 2x1075, 8 = 5x 104, and Ar =1, ; =5%x10"%, and
As = 1x107° for Figures 16a, 16b, and 16c, respectively.
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locate and preserve edges. This observation is borne out in Figures 15¢ and 16¢;
the edges are much more well preserved than those in Figures 13¢ and 14c.
Finally, since the As-continuation only requires that a linear resistance be var-
ied, its VLSI implementation should be much more compact than that of the g-
continuation, which would require varying the characteristics of a nonlinear resistor.

4.3 Behavior of the )\;-Continuation

There were some interesting properties exhibited by networks constructed with the
elements described in (40) having a fixed 8 < co. For such a network, it can be
shown that there exist a A;;n > 0 and a Apap < 0o such that for Af > Apazr and for
Af < Amin, the network has a unique solution. In fact, for Ay > Aoz, the output
will essentially match the input (i.e., y = u), whereas for Af < Amin, the output will
contain no edges. Consider the network behavior as a function of Ay as Ay is varied
continuously from A4y to A, The initial solution of the network will closely
match the input. Then, as Ay is decreased, edges will begin to disappear, first the
smaller, then the larger, until all the edges are gone. In other words, A; acts as
a scale-space parameter. This has important practical applications. The dynamic
network of Perona and Malik [9] has the property that time acts as a scale-space
parameter. In contrast, we can exercise direct control over the scale-space parameter
in the As-continuation network. See also [2]. Moreover, this behavior is somewhat
reminiscent of the more successful methods used for hierarchical multiscale image
representation [32].

Under some mild assumptions, it can be shown that the particular solution path
with the endpoints described above is continuous, connected, and can be numerically
traced out in RN+ (A, x RN space) using an arc-length continuation [33]. In
such a case, any particular value of Ay would correspond to an N-dimensional
hyperplane parallel to RV given by TN+1 = Ay and network solutions for this As
would be intersections of the solution path and that hyperplane. An interesting
question now arises: why can’t we just trace out the path in RV*1 determine
the solutions, and sort them by cost to find the global minimum? The answer,
unfortunately, is that there can exist solution loops that are disjoint from the main
solution path, meaning that the path traced out from the starting point of large
As will not necessarily contain all the solutions at any given value of A;. The
solution loops can occur in as small an example as a three pixel circuit (see Figure
17) and we offer as proof the experimental evidence in Figure 18. To produce
the paths, A; was parameterized as a function of parameter ¢ according to A; =
(1 = ) Miarge + Auman, and the plots were made in { x $2 space. Notice that, as
predicted, there is one solution path with endpoints {t = 0,V; = V;,, = 2.5V, = 0}
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Figure 17: Three pixel example circuit. For the result shown in Figure 18, V;, =
25V, A =019, Ay = 1.0x 1074, 8 = 40, Ay = (1 = )Marge + Avrmans Marge = 0.1,
Aiman = 1.0x 10712, and ¢t was varied from 0 to 1.

and {t = 1,V; = 0,V, = 0}, corresponding to an edge across the first nonlinear
resistor. In addition, there is a closed solution loop centered (approximately) at
{t = 0.9,V1 = 0.2,V = 1.2}, corresponding to a “misplaced” edge, i.e., an edge
across the second nonlinear resistor. In general, it can be shown that for a one-
dimensional RWS or RWF network with a single step input, solutions corresponding

to misplaced edges always have higher cost than solutions corresponding to correctly
placed edges.
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Figure 18: Solution path in ¢ X 2 space for the three pixel example circuit demon-
strating the existence of a disconnected solution loop.
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5 Conclusion

In this paper, we developed and compared a series of nonlinear networks for image
smoothing and segmentation. The results of several experiments indicate that the
typical cost (or “energy”) function minimization formulation of the smoothing and
segmentation problem does not necessarily capture the essence of the task. For
the specific parameter values we used, the As-continuation network performed ex-
tremely well even though it did not always find the solution with minimum cost.
The As-continuation network has several implementation advantages over the §-
continuation network. First, in certain cases, it seems to perform the smoothing
and segmentation task in a more visually correct fashion. Second, A; can be used
as a scale-space parameter. Finally, since the \ f-continuation only requires that a
linear resistance be varied, its VLSI implementation should be much more compact
than that of the 3-continuation.

Several open questions remain. Primary among these is the need for a com-
prehensive characterization of the natural behavior of these networks. By “natural
behavior” we mean a set of quantitative empirical statements that relate the behav-
ior of the network, given certain canonical edge configurations, to the cost function
parameters. Furthermore, it is important to know how the networks behave in the
presence of varying amounts and types of noise. Finally, Tom Richardson has devel-
oped an alternate formulation of the smoothing and segmentation problem based on
a rigorous analysis of the continuous case [31]. This leads to a more complex circuit
interpretation that might offer better performance than the methods investigated
here. Since efficient simulation tools on the Connection Machine are now available,
it is hoped that some of these questions can be addressed in the near future.
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