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Abstract

Given n noisy observations gi of the same quantity f , it is common

use to give an estimate of f by minimizing the function
Pn

i=1
(gi�f)2.

From a statistical point of view this corresponds to computing the

Maximum Likelihood estimate, under the assumption of Gaussian

noise. However, it is well known that this choice leads to results

that are very sensitive to the presence of outliers in the data. For

this reason it has been proposed to minimize functions of the formPn
i=1

V (gi� f), where V is a function that increases less rapidly than

the square. Several choices for V have been proposed and success-

fully used to obtain \robust" estimates. In this paper we show that,

for a class of functions V , using these robust estimators corresponds

to assuming that data are corrupted by Gaussian noise whose vari-

ance 
uctuates according to some given probability distribution, that

uniquely determines the shape of V .
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1 Introduction

A common problem in statistics is the following: given n noisy observa-

tions gi of the same quantity f , give an estimate of f . A typical solution

to this problem consists in choosing the value of f that maximes the like-

lihood function P (gjf), that is the probability of having observed the data

g = (g1; : : : ; gn) if the true value was f . Estimates of this type are named

Maximum Likelihood (ML) estimates, and rely on the assumption that we

know the likelihood function P (g1; : : : ; gnjf), that is essentially a model of

how noise a�ected the measure process.

A common assumption is that of additive Gaussian noise, in which we

assume that the measurement gi are related to the true value by the relation

gi = f + �i ; i = 1; : : : ; n ;

where �i are independent random variables with given gaussian probability

distributions Pi(�i) of variance �i and zero mean. In this case the likelihood

function is

P (g1; : : : ; gnjf) =
nY
i=1

Pi(�i) =
nY
i=1

s
�i

�
e
��i(gi�f)2 (1)

where �i =
1

2�2i
. Maximizing the likelihood function (1) corresponds therefore

to solve the following minimization problem:

min
f

NX
i=1

�i(gi � f)2 : (2)

An elementary computation shows that the solution is the weighted av-

erage of the data:

f =

Pn
i=1

�igiPn
i=1

�i

:

The ML estimate has therefore a simple meaning and it is easy to com-

pute. However, it is well known that estimates of this type are not \robust",

that is are they very sensitive to the presence of outliers in the data. In order

to overcome this di�culty it has been proposed to use a modi�ed version of

the minimization problem (2):

min
f

NX
i=1

V (gi � f) ; (3)
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Figure 1: Di�erent choices for the function V . (1) V (x) is quadratic for

x < 0:5 and then constant. (2) V (x) = jxj. (3) V (x) is quadratic for x < 0:5

and then linear, with continuous �rst derivative.

where the quadratic function (gi � f)2 has been substituted by some other

less rapidly increasing even function V . Estimator of this type are known

in statistics, for particular choices of V , as robust estimators (Huber, 1981).

The idea underlying (3) is that if the error (gi�f)2 is large, it is likely that gi
is an outlier, so that we do not want to enforce f to be close to it. Therefore

the function V should not increase much after a certain value. Di�erent

shapes for V have been proposed, and some of them have been depicted in

�gure (1).

In this paper we want to give a more rigorous justi�cation for the use of es-

timates like the one of eq. (3), and also to give an interpretation of the model

of noise to which they correspond. We will see that if the function e
�V (x)

is completely monotone, then using eq. (3) corresponds to assuming that

our measures are a�ected by a Gaussian noise whose variance is a random

variable with given probability distribution. Depending on the probability

distribution of the variance of the noise, di�erent shapes for V are obtained.

For a particular choice of V a justi�cation of such a technique was given in

(Girosi, Poggio and Caprile, 1991), but no characterization was given. In the

next section we formalize these statements, while in the following sections

we present a large class of functions V that can be used, together with some
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examples.

2 Robust Maximum Likelihood Estimates

In order to simplify the notation we consider the problem presented in the

previous section in which only one measurement g is done, since this does

not change the main conclusions. We therefore assume that

g = f + � (4)

where � is a random variable whose distribution is Gaussian with zero mean

and variance �. The likelihood function is therefore

P (gjf) =
s
�

�
e
��(g�f)2 (5)

where � = 1

�2
.

When we compute the standard maximum likelihood estimate we are as-

suming that the variance of the noise has a �xed value, but this assumption

is not always realistic. In fact, in many cases the accuracy of the measure-

ment apparatus can 
uctuate, due to some external causes, and in these

cases our data can contain outliers. A more realistic assumption consists in

considering the variance of the Gaussian noise, and therefore �, as a random

variable, with given distribution P (�). We are therefore led to introduce the

probability P (gjf; �) of having observed the data g if the true value was f

and the variance of the noise was � = 1p
�
:

P (gjf; �) =
s
�

�
e
��(g�f)2

: (6)

Notice that the right hand side of eq. (6) is the same of eq. (5), but their

meaning is di�erent. We can now compute the joint probability P (g; �jf)
of having observed the data g in presence of gaussian noise with variance

� = 1p
�
, if the true value was f :

P (g; �jf) = P (gjf; �) P (�) : (7)

Since we are not interested in estimating �, but we are interested only

in the probability of g given f , that is our likelihood function, we integrate

equation (7) over � to obtain the e�ective noise distribution
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P
�(gjf) =

Z 1

0

P (gjf; �) P (�)d� =
1p
�

Z 1

0

e
��(g�f)2

q
� P (�)d� (8)

The MAP estimate is now obtained by maximizing the probability of eq.

(8), or, taking the negative of its logarithm, solving the following minimiza-

tion problem:

min
f

V (g � f) (9)

where we have de�ned the so called e�ective potential1

V (x) = � ln
Z 1

0

e
��x2

q
� P (�)d� : (10)

In the case in which n observations g1; : : : ; gn have been taken the same

considerations apply, and assuming that the variances �i of the measurements

gi have all the same probability distribution, we obtain, instead of eq. (9):

min
f

NX
i=1

V (gi � f) : (11)

This equation coincides with eq. (3), that has been proposed has a tech-

nique to \robustize" the least-square estimate (2). In our case, however,

the e�ective potential V derives from speci�c assumptions on how data are

corrupted by noise. If the distribution of the random variable � is a delta

function centered on some value ��, that is if P (�) = �(�� ��), the noise model

is Gaussian with �xed variance, and the e�ective potential is a quadratic func-

tion, yielding the same result of eq. (2). For other probability distributions

P (�), formula (10) allows to compute the corresponding e�ective potential

by simply performing a one dimensional integration. Conversely, in some

cases, given an e�ective potential V (x), it is also possible to understand if

there is any probability distribution P (�) that corresponds to it. In the next

section we introduce a class of e�ective noise distributions for which such a

characterization can be given.

3 A class of e�ective noise distributions

In this section we study and characterize a class of e�ective noise distri-

butions. Since we want to maximize the e�ective noise distribution (8) we

1This name was previously introduced by Geiger and Girosi (1991), that used a similar

technique applied at the problem of surface reconstruction with discontinuities.
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are not interested in e�ective distributions that are unbounded. It will turn

out that if an e�ective noise distribution is bounded at the origin it is also

bounded on all the real axis. Therefore, according to eq. (8) we de�ne the

bounded e�ective noise distributions as the probability distributions of the

form:

f(x) =
Z 1

0

e
��x2

q
�P (�)d� (12)

where P (�) is a probability distribution, and such that the following condi-

tion is satis�ed:

f(0) =
Z 1

0

q
�P (�)d� < +1 :

We can now prove the following proposition:

Proposition 3.1 A probability distribution f(x) is a bounded e�ective noise

distributions if and only if f(
p
x) is completely monotone.

Proof: (only if) Suppose f(x) is a bounded e�ective noise distribution.

Then f(
p
x) it can be represented as

f(
p
x) =

Z 1

0

e
��x

d�(�)

where

�(�) =

Z �

0

p
�P (� )d� :

Since �(�) is clearly non decreasing and bounded, then by the Bern-

stein's theorem on the representation of completely monotone functions (see

Appendix A), f(
p
x) is completely monotone.

(if) Suppose that the probability distribution f(x) is such that f(
p
x) is

completely monotone. Then it can be represented as

f(x) =

Z 1

0

e
��x2

d�(�) ; (13)

with �(�) non decreasing and bounded. Since f is a probability distribution

its integral over the real axis has unit value, and therefore

1 =

Z
+1

�1
f(x) = 2

Z 1

0

�Z 1

0

e
��x2

d�(�)

�
dx
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Exchanging the order of integration and evaluating the gaussian integral,

we obtain that

Z 1

0

d�(�)p
�

= c ; 0 < c < +1 :

Therefore it is always possible to write

d�(�) = P (�)
q
� d� ;

where P (�) is a probability distribution, being positive and having �nite

integral. Substituting this expression in formula (13) we obtain the rep-

resentation of eq. (12). Noticing that completely monotone functions are

bounded at the origin, since

f(0) =
Z 1

0

d�(�) < +1 ;

we conclude that f(x) is a bounded e�ective noise distribution.2

We can now answer to the question if e�ective potentials of the type V (x) =

jxjp can be derived in this framework. In fact, using the previous proposition

it is su�cient to check if the probability distribution P (x) = e
�jxjp is such

that P (
p
x) is completely monotone. Using the fact that the function e

�jxjp

is completely monotone if and only if 0 < p � 1 (Schoenberg, 1937)(see

appendix A), we can immediately derive the following proposition:

Proposition 3.2 The function V (x) = jxjp is the e�ective potential asso-

ciated to a bounded e�ective noise distribution if and only if 0 < p � 2.

We notice that if we set p = 1 in the proposition above we obtain as

e�ective potential the usual L1 error measure, that is V (x) = jxj, is obtained.
However, since the function absolute value is not di�erentiable at the origin

it has been proposed to use functions that behave quadratically in a neighbor

of the origin, and linearly for large values of the argument (Eubank, 1988).

E�ective potentials of the form V (x) = jxjp are interesting, since they are

convex and the problem of maximizing the likelihood function has therefore

only one solution. However, before showing what are the e�ective noise

distributions that are associated to this e�ective potentials, we present a

more simple example, that gives a non convex e�ective potential that has

also been used in practice.
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4 A class of non convex e�ective potentials

We have already seen that if the distribution P (�) is a delta function the

standard quadratic potential is obtained. The simplest non trivial case con-

sists in assuming that P (�) is a sum of two delta functions, that is

P (�) = (1 � �)�(� � �1) + ��(� � �2) (14)

where � is a parameter between 0 and 1 and �1; �2 are �xed positive numbers,

�1 > �2. If �2 is a very small number such a distribution can represent the a

priori knowledge that a fraction � of the data is very unreliable. In the limit

of �2 going to zero this fraction of data is constituted by genuine outliers,

and we therefore analyze the model keeping in mind that we are interested

in this limit.

With the noise distribution given by eq. (14) the e�ective potential be-

comes

V (x) = � ln

Z 1

0

q
�e

��x2[(1� �)�(� � �1) + ��(� � �2)]d� (15)

and, after some algebra:

V (x) = �1x
2 � ln

 
1 +

�

1� �

s
�2

�1

e
x2(�1��2)

!
; (16)

where we have neglected unimportant constant terms.

We start studying the behavior of the potential in a neighbor of the origin.

Taking a Taylor's expansion up to the second order, after some algebra we

�nd that

V (x) = V (0) + �2x
2 + o(x3)

so that the potential is initially quadratic, and very 
at if �2 is small, that

is if we assume that outliers are present in the data.

When x goes to in�nity the exponential term in the logarithm of eq. (16)

grows very fast, (remember that �1 > �2), and the unit term can be omitted,

leading to major simpli�cations. This is true only if �2 is \not to small", in

the sense that the following inequality has to veri�ed:

x
2
>> k(�; �1)� 1

2
ln�2 (17)

where k(�; �1) is a constant that depends only � and �1, whose exact form is

irrelevant to us. In the region where this condition is satis�ed we therefore

obtain:

7



Figure 2: The non convex e�ective potential of the model above for di�erent

values of �2.

V (x) � �1x
2 � ln k(�; �1)� 1

2
ln�2 � x

2(�1 � �2)

and therefore:

V (x) � �2x
2 � ln k(�; �1)� 1

2
ln�2 :

For large values of x and small values of �2, where \large" and \small"

have to be intended in the sense of condition (17), the e�ective potential is

again quadratic and very 
at.

In summary: for small values of x the potential is a very 
at parabola, for

large values of x is the same parabola, but translated of a positive amount

that grows logarithmically with �2, and in between, since its �rst derivative

is strictly positive, it smoothly connects these two behaviors. In �g. (2) we

show the shape of the e�ective potential for �xed � and �1, for three di�er-

ent values of �2. We set � = 0:1, �1 = 4, and �2 2 f0:1; 0:05; 0:01g. This

amounts to say that we know a priori that 90% of the data points are a�ected

by Gaussian noise of variance equal to 0.5 (that is
q

1

4
). The other 10% is af-

fected by Gaussian noise with very large variance, that is � = 3:16; 4:47; 10.

We notice that for a value of �2 = 0:01, that corresponds to a variance
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� = 10, the e�ective potential is extremely 
at, almost constant. A similar

behavior is expected: in fact it means that when the interpolation error is

larger than a threshold its in
uence on the solution is not taken in account

anymore, and this is exactly the kind of motivation that led statisticians to

consider robust models.

5 A class of convex e�ective potentials

We now consider an e�ective potential of the form

V (x) =
p
�2 + x2 : (18)

where � is some given parameter, possibly zero. Functions of this type are

well known in approximation theory by the name of \multiquadrics", or

\Hardy's multiquadrics", and their behavior is shown in �g. (3). Potentials

of this shape are interesting because they are convex, so that the minimiza-

tion problem associated with them has a unique solution. Moreover, poten-

tials with a shape very similar to this one can be implemented in analog

VLSI circuits (Harris, 1990), allowing very fast ways to solve the estimation

problems.

We are interested in �nding the probability distribution that leads to this

form of e�ective potential. A solution to this problem certainly exists, since

it is easy to show that e�V (
p
x) is completely monotonic. Therefore we have

to �nd a function P (�) such that

e
�
p
�2+x2 =

Z 1

0

e
�x2�

q
(�)P (�) d�;

This is in essence the problem of computing an inverse Laplace transform.

We start from the following identity (Gradshteyn and Ryzhik, 1981):

2
p
�e

�
p
x =

Z 1

0

�
� 3

2 e
� 1

4� e
�x�

d� (19)

and perform the substitution x! x
2 + �

2, obtaining

2
p
�e

�
p
x2+�2 =

Z 1

0

�
� 3

2 e
� 1

4� e
��x2���2

d� : (20)

Making the proper identi�cations in equation above, and paying attention

to normalization factors, we obtain as a result:

P (�) =
1

�2
e
� 1

4�
���2+�

: (21)
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a = 0

a = 0.1

a = 1

Figure 3: The multiquadric e�ective potential V (x) = (a2 + x
2)

1

2 for three

di�erent values of the parameter a.
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Figure 4: The distribution of variance ~P (�) associated to the multiquadric

e�ective potential.

We can now derive the distribution ~P (�) of the variance � = 1p
�
, impos-

ing

P (�)d� = ~P (�)d� ; � =
1

�2
: (22)

After some algebra we obtain the function

~P (�) = 2�e�
�2

4
��2

�2
+�

:

whose shape is depicted in �g, (4) for three di�erent values of �. We no-

tice that when � increases the distribution becomes more peaked, and also


atter around the origin. Therefore the probability of having low-noise data

decreases when � increases. Equivalently, we can also say that the proba-

bility of having data with noise larger than a given threshold increases with

�.

6 Conclusions

We have shown that it is possible to give a simple interpretation to estimators

based on the solution of the minimization problem

min
f

NX
i=1

V (gi � f) ; (23)
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where V is an appropriate function, that we call e�ective potential. If the

function e
�V (

p
x) is completely monotone, using these robust estimators cor-

responds to compute Maximum Likelihood estimators under the assumption

that data are corrupted by Gaussian noise whose variance 
uctuates accord-

ing to a given probability distribution, that uniquely determines V . Typical

\e�ective potentials" V , that have been used in the past, belongs to the class

we consider.

We notice that the result we derived holds also in the more general settings

context of parametric and non parametric regression. In order to see why,

let g = f(xi; yi) 2 R
n � RgNi=1

be a set of data that has been obtained

by randomly sampling a multivariate function f in presence of noise. In

parametric regression we assume that f is a parametric function h(x;p),

where p 2 R
m, and the optimal set of parameters p is usually recovered by

minimizing the least square error

min
p2Rm

nX
i=1

(yi � h(xi;p))
2
: (24)

As in the case considered in this paper, this can be thought as a maximum

likelihood estimator, under the assumption of Gaussian noise with �xed vari-

ance. Therefore the same argument we applied in section (2) applies here,

and more robust estimates could be obtained if we replace the quadratic

function in eq. (24) with an e�ective potential V .

In non parametric regression no assumption is made on the speci�c form

of f , and a common technique consists in solving the following minimization

problem:

min
f

NX
i=1

(f(xi)� yi)
2 + �S[f ] :

where S[f ] is an appropriate convex functional of f and � a positive number.

This correspond to compute the Maximum A Posteriori estimator, under

the assumption of Gaussian noise and a priori probability for f given by

P (f) / e
��S[f ]. If we assume that the variance of the Gaussian noise is a

random variable, using the same argument we used in section (2) we can prove

that the Maximum A Posteriori estimator solves the following minimization

problem:

min
f

NX
i=1

V (f(xi)� yi) + �S[f ] : (25)
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where V is an e�ective potential. Estimators of this type are known in the

statistical literature as M-type smoothing splines (Eubank, 1988), and their

implementation in analog VLSI circuits has been considered by J. Harris

(1991) for some choices of the functional S[f ].

A Completely Monotone Functions

We need to give the following:

De�nition A.1 A function f is said to be completely monotonic on (0;1)

provided that it is C
1(0;1) and (�1)l @lf

@xl
(x) � 0, 8x 2 (0;1), 8l 2 N ,

where N is the set of natural numbers.

A typical example of completely monotone function is the exponential

function f(x) = e
��x, with � > 0. It turns out that all the completely mono-

tone functions are linear superpositions with positive coe�cients of scaled

exponentials, as the following theorem of Bernstein shows:

Theorem A.1 (Bernstein, 1929) The class of completely monotone func-

tions is identical with the class of functions of the form

g(x) =
Z 1

0

e
��x

d�(�);

where �(�) is non-decreasing and bounded for � � 0.
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