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4 MISCELLANEY OF CONVERT PROGRAMMING

CONVERT shares with other programming languages the clroumstance
that it is easier to evaluate the language and to learn its use if it i=
possible to scrutinize a representative sample of programs which effect
typlcal bubt simple and easily understood calculatiensz. Consequently we
have EEthEIEﬂ together several examples of varving degrees of difficulty
in erder to show CORVERT in action. In each case the COMVERT preogram,
written as a LISP funcninﬁ ready for execution in CTS5, is showm, together
with the results of its spplication to a small variety of arguments, and
4 general explanation of the program, its intent, form of its arguments and
method of its operation. When the notatien CLOCK ((}} ... CLOCK (T)
Appears, tﬁ& time of execution has been determined, and iz showm, in tenths
of seconds immediately after the result has been printed.

Since there is no particular organization to the selection of

~examples, we here give a brief catalogue of thenm.

(REVERS L) reverses the order of elements on a list

(FLIP L) reverses a list as well as all its sublists

[(CONCAT A B) & CORVERT wversion of AFFEND

(TIE L) a mulciple APPEND

(MEEGE A B) eallates the elements of two lists

[(UNMERGE L.) produces two lists, each containing altermate
elements of the list L.

(HOWIM E) erases all numbers from the top level of a list

(NONUM#* E) erages the numbers from all levels of a list

(VOWELS W) forms a list of all wvowels in 2 list of letters
or other expressions

(STAGGER L) places the elements of L alternately at the beginning
and end of a new list

(GATHER L) inverts the aperation of STAGGER, ccllecting togethey
elements from the beginning and end of a list

{SUESETS 5) produces gll the subsets of the set 3

(PERMUTATIONS Shgives & list of all possible permutations of the
elemancs of the list §

{*MARK X L) shows the location of 211 X's in the list L by placing
a star instead of any expressicon which nowhere contains
an X

-



{FOBRMUL L)
(WORD W)

{(PERGEN 5)

(PR X Y)

(PATHS 4 B M)

{POLY)

transforms n-avy Infix algebraic &wpr&ssiun£ to the
binary prefix form

makes strinmg transformations derived from the word
problem

lists all the permutations of the set 5, by first
generating a skeleton which will then generate the
permutations

caleulates the Polsson Bracket of twe algebrafcally
defined (polymomials) X and ¥

lists all paths between the points A and B in the
network whose primicive links are given by M

an interactive polynomial handling program which
will read an arbitrarily complicated polynomial,
reduce it te an internzl form which is a list of
eoefficients of its powers, output it in twa forms,
evaluate it, estc



The functien (REVERS L) reverses the top level elements of its argument
L; 1. e., if L 48 (A B C D), then {REVERS L) is (D C B A).

In this example, the first argumeént of CONVERT is (), that is, the
dictionary M 13 empty. In the dictiomary I, second argument of the function
COMVERT, we declare to X and (XXX} as warisbles in the UAR mode.

The third argurent iz L, the expression we want to reverse. Finally, the fourth
argument contains one rule-set mamed Cl, which contains a gingle rule:

{ (X XKXX)® ((*BEGN* (XXX}} X) )

The left half of this rule is the pattern (X XXX), which dissects che

list we want to reverse inte CAR and CDR. If this dissection is possible,

that iz, If (X XX} matches, we proceed to veplace the skeleton ((¥BEGHN® (XXH)) X),
which is compossed of two pieces 1in this case, namely (®BEGH* (X¥X)) and X.

The value of (%BECN= (XNX)) is computed recursively, applying the entire
original CONVERT program te (X00) ———we are reversing the list (XXX} —— and
then taking the contents of this result as icts wvalue.

The value of X iz the eéxpression which matched with it during the pattern
competrisson, that is, the CAR of the list to be reversed.

Having computed the walues of the skeletons (*BEGE* (XXX)) and X, we
gimply put them together, as the skeleton ((#BEGH* (XXX)) X) implies, and this
is the result of our transformation.

JEFIAZ(L
(REVERS (LAM33A (L) (2OvERT
0
(QUATEC & (xXxx) )
L
COUATEE 21 ¢
[ (Y Ax4) ({*3EGH> (X£4)) X) )
IR
| B
13
r convrt
Wo0s1.0
Toal {{revars))

AL

ravers ¢ 0 )
HIL

ravars ({1 203

(2 1]

revars ([(3 b a 1l e £ g h)}
(4G FE22C03 %)

ravars ({ ab o (1 2) da ((=+./3)F 23)
GoF (0= = 00 T 200 2) 23 4)

stap



rin lig liso

print F
_ﬂ as7 .3

CFLIP LISP az/97 J057.3

94a013
Q90329
30039
03040
Ja050
40063
20072
2430432
40037
0139
R .700+,250

e
L]

(
LAA432A (L) (2a0vVERT

A e AT AT
R e
-
—4 o
o]

F i Y

O£ {x£x) )

aTE ( C1 ¢
X KAAY  ({#*3EZH* {XXX)) (=3C35il= X)) )

#2

-
e N ] e
[ e

T T

r convrt

W Q57.3

load ({(Flipd)
HiL
T SN
Flipl €3 1}
HIL

Flip ({1 2))
(2 1)

flip{{lavclarfF~h)l

x fiks By AT T

(M3 FE3CEA)
CElip (L a b =2 (1 2) 4 e ({= /3) f 2))
(G5 F ((/ *=)) ED{21)C3A)

Flip ((Ca) (B {a 1) a) F g (4 1 ({J k) 1) m) nk}
o Q0 (L Sk 22 10 ) 3 F CE €73 20 3) (A1)

stop
R 1,753+5,22)

The function (FLIP L} reverses the list L, as well as all its sublists,
ate,, at gll levels.
Compare the definition with that of (REVERS L); the rule-set C1 contains

pow the rula ( (X X¥R)  ((*BEGHS (XXX)) (=BEGH= X)) )

that is, the skeleton (=BEGH= M) now replaces X, and is responsable for
applying the entire function to the element X, allowing in this way
reversion in all levels, while the sheleton (*BEGK* (X¥X)) flips the CDR.

The terminal conditions are hidden in this exanple; 1if L is an atom or
an empty list, (FLIP L) is L itself, without change. This could be acconplished
with an additicnal rule (em  wSAHE=)

wvhich is unneccesesary because, as we know, when we exhsust 8 rule-set without
finding any match for our expressaion, we return this last withoul change &=
a walue of the transformation.



(CONMCAT A B} is similar to the lisp function (APPEND A B): makes a
gingle list of the elements of two 1lists.

We start by defining CONCAT as a lisp funetion of two wvariables,
A and B, whose value 1s computed with the help of the CONVERT function.
The arguments of convert are:

() == the dictionary M is empty; te mode declarations are MECCESEATY.

( () (¥YYY) ) =-- We define in the dictionary T to (XXX) and (¥YY)
&s frggment varlables in the UAR or undefined mode.
(LIST A B) -—- E, the third argument of CONVERT, is a 1ist contai-

ning the two lists we want to tile tegether.

- == - -== R, the fourth argument of CONVERT, containg one
set of rules, with the name Cl, with a simple rule:,
C C(XEXX) (YYv)) (X YYY) )

print concat lisp

W 701.6

CONCAT LIsp 03/24% 0701.7 r
DEFINECC

(CONCAT (LAMBDA (A B) (CONVERT

(3

(QUOTEL CXXX)Y (YYY) 1)

(LIST A B)

(QUOTE(CY

§}§{11x} (YYyd) (XXX ¥YY¥YY) )

1))

1] o
B LLE3+, 265

r convrt

W o T02.2

laad {({concatl)
MIL

cancat { () ()} )
HiL

concat ((a b ec ) (1 2 3 L))
(o 2 €1 2 3 4)

concat { (a b c {d) e £) (g (h) T J k 1 md))
(A B C (DY EF G CHY | g K L )

stop
R .A50+3,285

concat is similar to the lisp function AFPEND,



(TIE L) forms a multiple APPEND of the elements of L; L is supposed
to be of the form ( (Al A2 ... an) (BL B2 ...) . . . (Gl G2 ... Bk))
and the answer or walue is (A1 A2 ... An Bl BZ ... GIL G2 ... GK)

The fourth argument of CONVERT contains a single rule, namely
[(m= (=ITER= {JJJ} =SA4ME= JI1I} }

1 Ly -

We know that (=ITER= J K L) will produce & list of the form (L, L L LY,
m
where each element Li is formed by replacing the skeleton L, which will

probably use J inside it; the diffewent values of L, are due to the fact
that J ranges over the elements of E.

In this case, (JIJ) ranges over the elements of =SAME=, that Ig..
over the elements of the list we want to tie, and, for each value of (JIJ},
we replace the skeleton JIJ. Im this way the desired effect is achieved.

print tie lisp
W 154.2

TIE LISP 02,27 0154.,12

DEFIHEC(L

(TIE (LAMZOA (L)Y (CONVERT
()

CQUATEC (XXX} (YPd) D)

L
(quotTed C1 (

( == {—ITEJ= CdJJdy =3AM4E= JJJ) )
B

IR

iy
R .533+,235

Foconvrtl

u 154,66

load ((ti=))
HIL

tle {{ {a By (= da F) )J
(A3 CDEF)

=h [ 7 kY (1) Gmd () (n o p) )}

bmn 4 a2 F} (
a3 O T O s T

{a )
> 0 B F

e I
2

ia
(A
tiall € O3 Oy Oy O O3 O O 1)

0 3 T O O T B yroo00yy e}y 1)
! I

(-
S I B B I R I L?}
R n

R L350+7,35]



(MERGE A B) produces, from 4 = (Al A2 ... 4m)
and B = (B1 B2 ... Bm) a 1list {Al Bl AZ B2 ... Am Eam).

The rule set ¢l comprises two rules: the first says: ¢ () ) O )
that is, the merging of () with () produces ().

The second rule simply identifies X and ¥ --the twe Car's--, puts them
X to the left of ¥ in the result, and begins with {{3OX) (YYY)), the two cdr's.

print marge lisp

W 203.9

HERGE L1sP 02f37  0203.0
DEFINE(]

(MERGE (LAM3DA (A B) {COWVERT

(@)

CQUOTED X v (RXK) (Yvrd) )

(LIST A 3)

(QUoTE( C1 |

C Oy 3y () 3

C 0 Auxy Oy ) (X (=3En0+ ((ARR)Y (vvvddld )
13}

133

1)
R B1G+.433

F convrt

Wo203.3

Taad ({mergal)
il

merzel f(a b ) {1 2 3) )
(A 1 3 2 0 3}

marget (1 23 k58) (abedef))
(1l A2 3 3Ch4 D5 E&F)

marza O () () )

il L

marza (0 (1 2 {3} &) (a {(b) {2 1) 1"
(1 A 2 (3) (3) (C) & 23

stop

RO1,215+5,433



UBMERGE tekes a list of even length and separates its odd and even elements
into two separate lists. Defined in LISP takes the form:

(UNMERGE (LAMEDA (L) (IF (NULL L)
(LIST L L)
((LAYEDA (X)) (LIST (COoMS {CARE L) {CAR X1}
(CoNs (CADR L) (CADE X))))
(UMMERGE (CODDR L)1) )3

Again the four arguments of CONVERT are mostly triwial. However, one may see
how the skeleton (=BEGH= (XXX)) corresponds to the

((LAMBDA (X} ...} (UMMERGE (CDDR L})) portion of the Lisp functiom, since

we are dealing with a common subexpression which we wish to compute in
advance. Since thete 1z reasonable certainty of obtaining a list with

two sublists, the solitary rule of the skeleton =CONT= simply serves to
give these sublists names and to identify them as fragments. The variables
A and Y were defined in the outer pattern, which is why =CONT= rather

than =REPT= was used in proceedinz to the inner rule set,

DEFIHE(]

(UNMERGE (LAM32A (%) (COMVERT

[}

(QUATES X Y (XXX Cuduy (vvydy 1)
X

(QUOTE( C1 (

COy COalrd )

C 00 XNX)  (=COuT= (=3RGN= (X4X)) C2 (
;}EEUUUJ vy (0K LUy (v weviy )

i e s
e et
8 At et

r convrg

) 2131-2

load ({uninargl)
ML

unmarge ((a 1 b 2 ¢ 3))
({A 3 C) (1 2 3))
I

un 2 ({1 a 25 3ch4 d5esd f))
{ )

mars

(L 234568 (A3CDEFTF
unmarza (L)

CHIL WIL)

daymarza

v fe i rny all
(v 17y | J

F 1l A g

amarsze ({1 a 2 (B (3) (=) 4 4273
CCL 2 030 %) €A (3) (2) 21)

SEop

LA NP L - B
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The function (ROWUM E) erases all numbers from the tep level of the list
E-

Bagically, the rule is: ( (XXX V YYY) (33X (*REPT* (YYY))) )
That is, if we identify a nusber in the expression, we copy the fragment to
the left of this nusber —-—that iz X¥¥=== and repeat (that is, repeat
the erasure) with YYY, the fragment to the right of this number.

The definition ov V¥ as PAT =HliM= in the dictionary ¥ was
redundant; we ¢ould use instead the rule

{ (00 =NUM= YYY) (XXX (*EEPT#® (YY¥))) ) which does
not use V, ’

Hote that we use *BEPT* instead of *CONT* becsuse, when applying
the same process to (YYY), we want to go back to our original dictiomary,
that is, we want to unbind (XXX) and te restore it to its original definition
a5 UAR wariable. #BEGH#* could be used Instead of *REPT*, with identifsl
effects. We use *REPT* instead of =REPT= since we want a fragment as
value; that is to say, (=REPT= (YY¥Y)) would produce a list without numbers
in its top lewvel, but we want the contents of such a 1list, so we use *REPT*,

BEFIHE((
CHOMUI (LAMEDA () (COIVERT

{QuaTEtd

W PAT  =ilil=

1}

(QUITECD (XAx) ) )
E

(quadTeE { C1 (
QXXX VoY) (XXX (#RZPT+ (WY¥Y))) )

3
1))
_ 1)
roconvri
o243 ,0
1aad {({nonum)}
L
nonua ((a b a fg23 a1

e 1 4

(A 0 CDEF 3G .

nonunal{l 2 3 4 5 6 7 3))
HiL

o~
L=
L
H]
=
et

ponun (0 a b 3 e
(A 3 Z L (B) 1 A M)

nanwn (0 €1 (2 (03 %) 5) (&Y 78 (3 2}
CCLy (2 {03 4) 5) (3) €30

qonwa (4 €13 €22 {035 4) 5) (82 7 & {(Cayry 0 )
(01y (2 €035 &) 5 €3y CC03022))



o
ASnuEy arasss EI! nuthars from a given 1ist, in 211 levels,
Campara Wi th nonum

print nonun* liso

W 317.5
HOMLULE> LISP azj07  0317.5
BEEINELL

CHOWNUE (LAMEDA (EY (SONVERT
(QUOTE(

¥oOPAT  =HNUN=

)) -

(QUOTEC CXXdY X 0rred D)
E

(QUOTE ( C1 (

C COXXXY ¥YY) ((=3EGH= (XXX)) (*3EGH+ (YYYI)) )
{ (=HUuM= ¥¥Y¥) (=3EGH= (¥Y¥Y¥)) )

(X XHA) (4 (+3EGH= (XXX))) )

]
¥

i Tl it

!
)
}
)
R «6G66+,303

Fooconvret

W 314.0

load {(nonun+))
WL

nandme ({2 b el de F =223 23}
(A3BCDEFGG)

nonun* ({1 2 3 4 5 6 7 8})
HIL

pnonumn* £{a b 3 2 1 {3 I an ))
(A 3 E L WiL <1 A& M)

nonuar €4 (1) €1) €23 (43 &) 51 {5) 7 3 (3) ))
CHIL MIL 410 (L) HiL ML)

4

nanuar ({a (5% (1 =
Coe

2.3 33 4) (CCF = 23 =3) ) )}
(A (3 (C) (D) ¥

[
F G G310
stap

Ro2.01G6+7.31G

ahservae that the Jdaclaration ¥ oopat =nums
was not dsed and could be onitted.



VOWELS LIG? 02737 0123.3

Q0010 DEFIHEL(
Q0020 (VOWELS (LAMBDA () (o GJJERT
00030 (QUATE(

20050 ) BUY (=0R= A E | O U]

20050 (Vv PAT  (=0R= () ((=03= v ==) Yy/))
020463 )

023710 ()

03230 W

00034 (U0TE ( €1 ¢
ga109 O fwwvl W

30113 11}
09129 11}
00133 1)

R .516+,200G

F convrt

i

load {({vowals))
HiL

vowels [(p ra f 1 x))
{E 1)

vowals ({s v neh r )
HIL

v awe l s ({va ?

varmls (v ow a 1 5))
(0 E)

v o waels T

vowals {(a d ¢ (i) a n al)
€A A A

? 21s E{ ros (elnb 1l ue () h))

stop
R 1,3G5+3,616

(VOWELS W) forms a list of the vowels present in the list H, in che
top level. ’

The dictionary M defines V in the BUV mode, ard {(VVV) in the PAT mode,
VWV being a fragment. The pattern associated with (VW) is
(=0R= {} ({=OR= V ==} VWV¥}}, and will match with a list which is either empty
or starts with (a} a vowel, or (b) anything else, and 1z followed by =
fragment which matches VWV. That 1z, (VWV) tests all the elements to ses if
they are either V (wvewels) or == (anything else); elements which mateh with ¥
are stored in a list, which later beecomes the valve of V.

The argument R, fourth of CONVERT, contains & single set of rules,
with name Cl, which contains the rule { (VeV} ¥); that is, if the expressien
mabches (VIW), we return V as value.
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Among CONVERT programs which rearrange the elements of a 1list, (STAGGER L)
will alternately place the elaments of L at the frant and end of a new list,
while (GATHER L) will execute the inverse process, Thus, if L = (1 2 3 4 5 6],
(STAGGER L) = (1 3 5 6 4 2), and (GATHER L} = (1 6 2 5 3 4). The key to
STAGGER iz the rule

(0 7 30 (X (*REPT* (X)) 1)

in which succesgive elements X and ¥ are moved to the extreme ends of the
bew list, and the process continued by moving the renaining elements of L,
similarly transformed, into the middle of the new list. Beversal of the
process depends en the rule s

(X XXX ¥) (X ¥ (*REPT* (XXX))))

in which the extreme elements are recognized, placed on the new list, followed
by those elements resulting from a repetitien of the process on the mlddle of the
lizt.

gather ((0 1 2 3 4 56 7 8 9))
(09 1827 364 5)

gpather ({0 2 4 6 B 9 7 53 1))
(01 234 56 7 85 9)

{STAGGER {LANMBDA (LY (CUNVERT
COUOTE
1)
(QUGTE ¢
7 (KKK
1)
L
CQUOTE (=0
(O Y XEX) (X (=REPT+ {xXxXX)) 1)
1l
il

(GATHER CLANGDA (L) [COHVERT
(QUOTE ¢
Vi
{QUUTE
XY (Xxd)
¥l
L
TOUUTE (=0 €

(O XKL Y)Y (2 ¥ (=REPTe (54X13)1)
h

R
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{EEESETS 3} produces all the subsets of the set 3.

Cl 45 a set of two rules, the filrst of which says that the nniy subset
of an empty set Iz an empty sat.

The second rule identiffes X with the CAR of 5, and XXX with its CDE;
we then compute (=BEGN= (XXX}, the subsets of (XXX), and we bind such result
to the wvarisble (AAA); we them replace the skeleton

(ass (®*ITER® (J) (asA) (X J)))

This skeleton containts two parts or hzalves; the fir;t.is simply AAA; that
iz, the subsets of the Cdr are s2lso subsets of the whole list; the other
part (*ITER® (J) (Asa) (X J)) adds X to each element of the subsets of
the Cdr.

DEFIHE(( -
(SUBSETS (LAMBDA (S5) (COHVERT

()
(QUOTE {

X (XXX)
))
5
(QUOTE ¢ CL ¢
¢ () ()
{ (X XXK) (=SKEL= (AAA) EXPR (=BEGN= (XXX))
(AAA (*ITER+ (J) CAAA) (X J1)) 3D

13

Yl

)}

r convrt
W BLE.Y

laad ((subhset))
ML

subsets ({)]
(HIL)

subsots ((1))
(HIL (1))

subsets ({1 2))
(NIL €2) (1) (1 2))

subsets ({1 2 3 LJ) '
CHIL Ca) (3 (3 6) (23 {2 &) (2 3) (2 3 4) 1) (1 8) €1 3)
(1 3 L) €1 2) (1 2 &) {1 2 3) (1 2 3 u4))
subsets ({a b ¢ d e))
(MIL (E) (D) (0 E} (C) (C E) (C D) (C'DE)Y (0) (8 EY (B O
(BDE) (BC)(BCE) (BCD)Y CBCDE) (AY CAEY (ADY LA
ODE) (AC) (ACEY (ACDY (ACDEY (AB)Y (ASE) (A B D)
(A3 DE (ABCY(AECEYCABCDY ABCDODEN

stop
B 2.483+3.183
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(PERMUTATIONS S5) gives a list of all possible permutations of the elements
of S.

The fourth argument of CONVERT contains now two sets of rules,
namely C1l and CZ.

The first rule of C1 1a: { (X} ((X)) ); 4if the list 5 has only one
element X, the answer is ((X)).

(X ¥XX) is the pattern of the second rule, which identifies CAR and CDR:
after this, (=3KEL= A EXPR X ...) defines A as the value of £ ==(the CAR)}-- in
the EXPE mode, and proceeds to replace the skeleton :

(=ITER= J (=BEGN= (XXX)) (*REPT* (J {(}) C2))

In this skeleton, (=BEGE= (ZXX)) computes recursively the permutations af
[(¥XX) -—the CDB--, and, with J ranging over esach one of the elements of
this list of permutations, =ITEE= proceedas to make a list of the results of
replacing the skeleton (SREPT#* (J (}} C2}.
This last skeleton applies to {J {}} the set €2 of rules: in ather

words, for each element Jof the permutatiens of (XXX}, we form the subexpression
(I (})) and apply to it the transformation dictated by €2. Since we reall

to €2 with a ®REPT#*, and not with a *CONT*, we, when im €2, forget all the
bindings and start with our original dictiemary, except that the binding

or value of A Is not forgotten inside C2, since it was done with an =SKEL=.

C2 transforms an expression ( (JL J2 J3 ... Jk} (3} dinte
C (A JL J2 ... Jk) (JL AJ2 ...) (J1 J2 4 ... Jk) ... (J1 J2 ... Tk A) )

and #BEEPT#* takes its contents; as we saw before, =ITER= makes a lisc af
elements of that form for each wvalue of J.

——- see¢ definition and examples in next page ——
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PERMUT LISP 03/26 0B51.3
DEFIMNECC :
(PERMUTATIONS (LAMBDA (5) {(COMVERT
(]
(QUOTEC X (XXX} (YYY) D)
5
(QUOTEL €1 ¢
¢ (X) (X)) )
{ (X XXX%X) (=wSKEL= A EXPr X (=1TER= J [(=BZGN= (XXX))} {(«REPTw* (J (}) C2}
1)
y Ccz (
€ (C) CYYYd) C{wyy Ad) )
O C0X BXxX) CyYyay  COryY & X XEX) («REPT+ (CXXEY OYYY X)) 3) 2
1))
1)
1)

r convrt

H 652,k

load ((permut))
HIL

permutations ({11]
(1)

permiutations ({1 2))
(1 2) (2 1))

permutations ({1 2 3))
(€1 23y (213 (231){4132)(312) 321N

permutations ({a b c d)}

(iABCD)(BACD)(BCAD)(BCDAY (ACBD) (CABD)
(CeAD)(CEDAYACDERB)(CADBY(CDABRBY (CDBE AL
(ABDC)(eADCIBDAC)(BDCAY(ADBCY (DAGBC)
(DBEAC(DBC A ADCB)(DACEBY(DCABRB)Y (DC B AN

permutations ({J)
ML

stop
R 3,200+%,114
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(*MARK X L) is intended to identify all the occurrences of the atom
{or expression) X in the list L.  This is done by leaving X as it is, but
writing the atom * in place of any other subexpression. Thus, a sublist
which containz no X's is replaced by a %, as are different atoms. Howevar,
the structure of a subexpression which i{s not ¥-free i{s detailled to the extent
that all other subexpressions of the same level are indicated.

The decision &s to whether an expression is X-free 13 made by the
pattern XX, defined by (=0Re (=== X ===) (=== XX ===)) which matches any
list which either directly contains an X, or contains a sublist with a

gimilar property.

DEFINE (¢

(*HARK (LAMBOA (X L) (COMVERT .

(CUNS (QUOTE X) (CONS CQUOTE VAR) (CUNS X

(QUOTE
XK PAT (=0R= (m== ¥ ===) (mm= XX ===))
11)))

(QUOTE
))

L

(QUOTE (=0 (
(X X
(XX (=ITER= J =S5ANME= (=KEPT= J) )3
(== «)
131} I
IR .

)}

r convrt
W 027.0
load {({mark))
HIL
wmark {x (1 2 3 (1 2 3 (1 2 % €3 4) v %) x C0(x) ) #) =} ¥ ovl)
(% % = (% = w (% % ¥ % = iy X {[{E} ] %) *} LN

smark (x ((00m (m (o0 ®) =) m) (x ) omd midyd
COCCw (= (= M) %) &) (X X) =) =)

=mark (0 {1 (2 3 4L x) 56 7 x) 39 0000 0)

=x% EHROH AL1L5AZ
(CX . 03 (L 1 €2 356 X)) 567 X))

sark (e (L 2 3 B 0L 2 3 (1 2% x5%507)ceoclex %)
{ti*'l:tt*fi'ii:i;r*t:lii#}l*:{}:}

ST

li 2. 233+8,716
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(FORMUL L) is a LISP function defined through CONVERT which will
transform an algebraic formula written in infix notation to the binary
prefix form. The argument L, which is the formula to be transformed, may
use any varisbles, connected by the symbols PL (plus), MI (minus), TI
(times), DI (divide), or PO (power), whose binding strength increases in
the order mentioned. Thus the vusual conventiona for avolding parentheses
in sssociative aor distributive configurations apply.

The CONVERT functien implementing FORMUL iz

(FORMUL (LAMBOA (L) (COMVERT

(QUOTE
LL anEL {=REPT= (=WHEW= (LLL) (L} LJ)
RR ShEL (=REPT= {(=UHEN= (R&R} (&) R))
y)

(QUOTE (

L R (LLL)Y (RRR)
. ))

(QUOTE (=0 (
({LLL PL RRR)} (PLU LL RR)}
CCLLL itl RRR) (MIN LL RR))

(CLLL TI RRRY (TIH LL RR))
((LLL 1 RRA} (DIV LL RH)D
((LLL PU RRR} (PuW LL ER})
Iy
13

The binding strength hierarchy is determined by the order in which
the rules are written; thus no attempt will be made to locate a product
will be made in any expression which contains a sum, and so on. Since
CONVERT always makes leftmost matching fragments as small as possible,
association is always made to théright; (A PL B PL C)} would be transformed
to (PLU A (PLU B C)). Any expression not connected by one of the five
admissable algebraic conmectors is left unchanged. The choice of the
names of the connectors L3 eccasioned by LISP 1.5's aversion for the pure
algebraic signs.

The skeletons LL and RR serve to analyze the arguments of the
algebraic connectives further as formulas, so that formulas may be formed
recursively with formulas as subexpressions. Moreover, when the fragments
LLL or ERR contain only one expressfon, it is necessary to avoid endowing
them with a spurious palr of parentheses, wherofore the configuraticn
{(=WHEN= (LLL} (L) L).
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F CORVIT

W o2337.0
load ({formul))
ML

formul {({x pl ¥ pl 2 p1 7 ti x po 23)
(PLU X (PLU Y (PLU Z (TINN 7 €POU X 23000

forrwl ({(x ti (v pl z pl 28) po 2))
CTHM & CPOW (PLU ¥ C(PLYU Z 28331) 213

formul (({x p1 2) ti (z pl v po 3) Mépl 3 ti t))
C(PLU €TI0 CPLU X 23 CPLU Z (POU Y 33)) (TIMN 3 TY)

formul (({x pl 2} ti (x pl 2z po 3) pl 3 ti t))
(PLU (TIH (PLU X 2) (PLU X (POU Z 33)) (TIN 3 T¥)
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CONVERT is well adapted teo making transformations arising from the
word problem. Given strings of characters from some alphabet, one may
specify the equivalence of certain stripgs. Once done, it is reasonable
ko ask vhether there is thereby implied the equivalence of a given pair of
strings. In order to determine the existence of such an implied equivalence
one might systematically seek cut the wvarious strings which are known to have
equivalents, replacing them by their equivalent in order to transform one
meézmber of the pair inte the other. In particular, one might attempt to
reduce an arbitrarily given string to a canenical ferm. Whereas the
determination of such equivalences is a generally insoluble problem, many
classes of equivalences do in fact lead te determinate problems, and
one may still be interested in seeing the effect of & given transformation
strategy in the general case. '

The two progra=ms included here as examples will attempt the reduction
of 2 word to canonical form; the strategy is to arrange the letters in
lexicographic order by rules which describe zn alternstive form to two
letters written in the wrong erder; they also attempt to control the
number of consecutive repetitions of the same letter, since one of the tules
states that some such sequences are equivalent to the null string. Of course,
these rules beleng to an especially simple word problem.

(W0 W1 makes such a reduction for the group defined by Aa =1, B2 =1I,

BA = A"B, where powers are indicated by repeated atoms, the identity by the
null string. ie, & A A i3 deleted from any string, 2= is B B, and B A is
replaced by & A B,

~ (WOBD* W} transforms strings accordimg te the rules that A B AR =C,
"CCC, AAAA, and B D are deleted, C A= AEBECC, CB=ACC, and
BAA=A4LBL.

In each case, the examples shown are derived by the inclusion of the
rule {(=PRI= =54ME=} &3 the first rule of the respective rule set. We thereby
are ahble to see the step by step transformation of the input string to its
fimal form.

(WORD (LAMBDA (W) (CONVERT
(QUOTE (
1]
(QUOTE (
{LLLY (RRR)
1]
W

(QUOTE (=0
(=PRl= =5AE=)
CCLLL A A A RRRY (=AEPT= (LLL RRR}})
{{LLL B B RRR) (=REPT= (LLL RRE))}
((LLL B A RRR) (=REPT= {LLL A A B RRR)))
¥y
33



(WORD« {LAMBDA (W) (CUNVERT
{QUOTE ¢«
)
[QUOTE ¢
{%LL} (RRR)
)

h!

W
(QUOTE (*0 (
(=PRI= =3AlE=)

({LLL A B A B RRR) {=REPT= (LLL'C ERE}}}
{{(LLL C C C RRR) (=KHEPT= (LLL RRRI))

((LLL A A A A RRR) (=REPT= {(LLL RRR}})
((LLL B B RRR) (=REPT= (LLL RRR)))

({LLL © A RRR) (=HEPT= (LLL A B C C RRR)))
{((LLL C B RRR) (=KEPT= (LLL A C C RARR)))
;;%LL 8 A A RRR) (=REPT= {LLL A B RRR)))
1))

-

cénCEII}} words* {{c cccbbbbaaaa)l clock (t)
(C CC
f(C B B
(C B B
(C BB
(c)
{c)

CBBBBAARAMDR)
BB AAAR)
B B)

!

clack ({)) word* ({c e baaaccbaaaccbaaal)) clock ()

3
)
Al

)

I I 0o = =
=

A
A

O m
PPErrOFErLE

b
= p=p OmEOm

L

e = RS i 5 = I ]
Sl

P R R o e e B S o T
B O3 0m s W
el T B T T B o B e -
p e el s e o = = e S
b N e s el < R 2
mFEOPRR0BR0RF0
> =
-

ORI EFO0O00000m
mPOOEFOOUEREEFEOPPEEO0>
RO DO 00000
e
Er b=l o T A il =l e T ot e o B S o T S N
PoOoE @O0 O0>NO03 0
T :p.u
L
hes
S
1=
o™

.q
=
FEOREDQEPOERDE B0 D0

B



. 20

:léck i{{]_wurd* (b ca b h_¢ caabccakb a_b cabcecaaal)d

clock {t}

=
=
=T
=L
~u
L
o~
L3 <f L
—
o <L . L)
) o~ — = )
<L L3 <L = Ly o L o
a— = ~u
(S =L =L L Ly L [ s 3
et m w— =~
[ N A A =T L 200 O L
- - — = =
<L =L 3 =L 3 =L =L LS mm DD Ly L]
— o~
[ o - S N G L2 <L (LM L8 o L (95 I es' L
) . — = -
< L3 o3 L M <L 0 =g = o o0 0y 0 O O Oy @ =< O 0o L L0 R
.1_.- -~
L3 L =X €3 =T €3 0 = =L O3 <L 3 =L 02 03 ra L =L 08 Ly =T L 02 L2 LIS
o ] ]

Ly 3 €3 0 = L3 e =T C L ELE . NI RS LY. N R AN N R LR LY LN N R

] . )

o 3 O - O off OO L9 < % =L [ e e e e B i e e - A ]
L -

of <f «f 0 =L = 00 00 =1 L =T L= o I A O O B T L i [ O 6 e T L

-

w Wil e O W L <f =L O 80 = <L 60 L0 0 0D O 0D 00 =T LMD L2 00 0D M0 LD OO 00 L) DS L2 L0 M O 0 L B LS
L3 Ly 0 =L O ol £3.80 30 O O =T A LI OO URLDORLWO-IR LD - a0 0O00
<f of of <f @0 00 B0 L3 00 0% L L3 e B0 L3 L L3 L L3 OO o £ wy B0 00 €0 0w L3 03 O3 00 £ €3 of oL =X =] L3 L =g og e e
L3 e L L0 e o o 0 =l < L 00 L0 <L 0 00 00 R0 0N 0D 00 G 0D of 00 00 08 M0 0 00 LY O o eT o o o] o o o o ] e ol
W a0 0 e oo O 0 of 60 € L o o o ol o < o €0 €0 00 oL of o <= 00 00 =L < of =f =L oL oL o e e o e o

B = L T
1

(c
{c

L



21
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Sometimes it is more comvenient ta use CONVERT to construct a
special purpose program te handle & given problem than to try toc program
the problem itself in its full gemerality. An exemple of such a situation
is the program (PERGEN 5) designed to list all the permutations of the set
5. The tnderlying idea is gquite simple --- to permute the elements of § we
map its first element into any other, including itself. We then map the
second element into one of those remaining, then the third element into
some unused Image, and so on. There are continually fewer alternatives
available until finally the imzge of the last element is determined fully.

Assuming that the elements of 5 are atamic, we may use them as
skeletons, to be replaced by their {mages under the permutation. In order
to agsign their imapges, as well as to vary them in a systematic DANTET ,
wa use the control skeleton =ITER=; but constructed in advence so as to use
the elements of 5 as its indices, and to cause them to wvary through
sultably restricted subsets, as the choice of the value of one index rescrices
the range available to its successors.

In the examples &hown, the generated skeleton is printed before it is
executed, which allows one to see how the procedure described above has been
fmplemented. Since a generative stzge is involved, various skeleton names
such as *ITER* must be quoted, so that they will not be replaced at the time
the skeleton containing them is comstructed: this is done by introducing
synonymas for them in the EXPR mede, :IT:, for example.

If we examine the example PERGEM ({4 B Cll, we see that the intermediate
skeleton which is generated is

((*ITER= A (=COMP= (mQUOT= (A B CY) MILY (*ITER+ & (=00Mp=
(=QUOT= (A B C)) (A)) (%[TER* C (=COME= (=QUOT= (A B C)) (A
B (A B Cakrnn . :

The outer iterstion allows the variable A te tange through the values 4, B, or
C. The second iteratlon allows the varfible § to range through the set
(=COMP= (=QUOT= (A B C)) (A)). We must recall that A is now a variable, so
that on the three different occasions that we will execute the second #ITER®,
A will have three different values, and hence the complement, calculated
during the executien time, will be successively (B C)}, (A C}, and {4 E).

In examining the result, "

(CABC)(ACE) (BACI(BCA) (CAB) (C3 A

we gee that A varies most slowly, taking walues A, B, C: then B varies through
B, C; then A, C; finslly A, B, while C wvaries most rapidly, which §5 unnoticed
gince its walue 1z forced.
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W T4g.3

load ({pergen))
HIL

pergen ((a b c))

((*ITER= A (=COMP= (=QUOT= (A B C)}) WNIL) (+ITER+ B (=COMP=
(=QUOT= (A B C)) (A)) (*ITER+* C (=COMP= (=QUOT= (A B C)) (A

B)) (A B C)))))

(A BC) (ACB) (BAC)I(BCA)(CAGB) (CB A)D

pergen ({a b ¢ d))

({*ITER* A (=CUlP= (=

QUOT= (A B C D)) NIL) (*ITER= B (=COMP=

(=QUOT= (A B C D)) (A)) (#=ITER* C (=COUMP= (=QUOT= (A EC D))
(A B)) (#ITER* D (=COMP= (=QUOT= (A B C D)) (% B Cly (A B C

O¥xyrrn
((ABCDY({(ABDCYCACEBD) (AC D B (ADBC) (ADC B)
(BACD)(BADC) (BCAD (B C DAY (BDACY (BDC A)
(CABD) {(CAD BJ_EEaE ADY(CBDAYI(CDABYI(CD B A
(D ABC)Y {DACGBY(DEB AC) (DB CAY(DCABYI(DC B A
stop
R L,366+5%,733
print pergen lisp
W 743,56
PERGEHM LISP 0326 0OT4E.T7
DEFIMEC(
(PERGEN (LAMBDA (5) (CUNVERT
(QUOTE |
TT PAY (T TTT)
1T EXPR * | TER=
1CU: EAI'R =C0kP=
HINTHE EXFPR wUOT=
¥l
(QUOTE
T {TTT)
1)
3

(QUOTE (=1 (

(== (=5KEL= § EXFR =SAME= («SKEL= Q SKEL (=PilT= ({=REPFT= § +7 {

CTT (:17: T (300:
CTT (:1T: T {:CO:
() 5}

JI¥Y 0y

13

Yl

1}
R BLE+,333

(:QU: 5) (=COMP= 5 TT)) (=REPT= (TTT))))
(iUU: 5} (:QU: (=COMP= 5 TT))) {=REPT= (117 )
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The Poisson Bracket, [f, g] of two functioms, f(p;, qij and
g(p;, ;) is defined by the formula

. L %99 {2
“,1-]‘ 2. EFE‘F‘-*E.FF;?':

Eel

However, it iz possible to give an axiomatic treatment to the Foilsson Bracket
by nmoticing that it is an altermating bilinear functional which is alsc a
derivative., That is te say, it obeys the rules

1. (£, gl = - [z, f]
2. [af + bg, h] = a[f, h] + b[g, h]
3. [fg, h] = £[g, h] + [£, hlg
as well as the normalizatien conditions
lpgs pj] =0
[a; pj] = 1 4if 4 = j; 0 otherwise
[qi, qj] = 0.

It is therefore possible toe program the calculation of the Polsson Bracket of
polynomials in the coordinates g, and momenta p, as a sy=hol manipulation
program effecting the transfnrmaiinns implied b¥ the axioms. Unfertumately

the axioms in their simplest form introduce a great number of spuricus factors
and summands which are either 0 or 1, or equiwvalent to them after some
adjustment. It is therefore desirable to incorporate an algebraic simplification
program with the Poisson Bracket calculation at least ‘powerful encugh to
counteract the trivial factors and summends introduced by the differentiation
PTOCEES.

This simplification occupupies the greater part of the volume of the
program. For example, sums are simplified by removing Zere summands, surming
numerical summandz, bringing numerical summands to the leftmost position,
bringing negative sizns to the outermost level, applying the associabiva law
to write multiple sums without parentheses, and trying to improve sumerical
factors whereever possible. differences and negatives are principally
gimplified by eliminating zero srguments and computing numerical negatives
whereever peossible. Product simplification s wvery similar to sum simplification;
a product contaiming a numerical =zero factor is at ooce sat equal to zero,
factors of one are excluded, numerical factors are multiplied, preference is
given to the power rvepresentation, and so on., The trivial cases of exponents
are reduced.

Input te the program (PFE X ¥) is in the ferm of polynomials written
in infix notation with the algebraie connectors PL {plus), MI (minus), TI
(times), and PO {power). Conjugate wayrlsble-momenta palrs consist of an atom, as
X to represent the coordinste, and the same atom inclossd in parentheses, as
(X}, to represent the conjuzate momentum. Intermediate ecalculstions are done
in prefix functional form, but the cutput is agein presented in iniix notatlon.
Little simplification not occesioned by the derivation process is made, thus
a negative peir of terms which are separated, or which differ in the internal
arrangemnent of their subexpressions will not be reslaced by zero, for cusmple.
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A rat, upon being introduced to a new maze, is immediztely interested
in learning all the paths leading between varicws pairs of points. The
interest of a mathematician is more modest and yet more systematic, since once
a program is given for finding all the paths between one pair of points, that
pair being arbitrary, there exist known methods for solving the general
cagel To find all paths between a palr of polnts, we may suppose that the
points are In fact identical; and that morecver, we are not Interested in
loops which lead from a point to itself. Such not being the case, it would
be possible that we have a pair of peoints which are directly linked, through
a primitive path. Neicher being the case, we might consider the image set of
our initial point, by which we mean the set of all points linked to the initial
point by a non-null, prdmifive path, and the counterimage set of the final point,
meaning the et of points linked te the fimal point by a single primitive path.
If we form the cartesian product of the imagze set and the counterimage set,
and suppose known all paths linking these pairs of points =--=- A point in the
image set one step away from the initial pedint te a peint i{n the counterimage
set, likewise one step away from the final point --— we thea have a recursive
salution te the original problem.

For mathemztical --- or computer === considerstion we must have a
representation of the maze which is teo be studied, zrd this iz convenlently
given by a list of the primitive links, the pair of points (X ¥) belonging to
the link list L if = path joins X to Y. We may suppose this iz a directed
path, and insist that (Y X) also appear in the list if the path is bidirectional.

A palir of points is then connected 1f there exist limks (A XLY (X1 %2}
(X1 ¥i+1) ... (¥n B) ell belonging to the list L, A and B being the initial
and final peoint respectively. Such & link may exist im one direction but not
the other.

An effective way to avoid loops in enumeratimg the paths iz to remove
the initial and final points from consideration in the inductive step, since
any path arriving eventuslly at the initial podict muest form a loop, as well as
a path to the final point initiating from the final point.

In the program (PATHS A B M), A 1s the initial peint, B is the final point,
and M is the link list. A =nd E are wvariables within the program enjoving a
gimilar significance. (LLL} and (RRE) are fragments retainming the left and
right halweszs of a list which we analyze., The bucket variables are respectively
A% which collects the elements of the image set, B* which collects the
elements of the counterimage set, and X which collects links not originating or
terminating from A or E. The fragment pattern (U0}

((ROR® ({A A%) UU) ({== A) UU) ((B* B) UL) ((B ==) UUY} {X U OO0

is waed to sea the link list decomposed by the bucket variazbles; X will beccme
the mew link list in the recursive subprablem.

The key rule iz
(A B {UU)) (=ITER= T A% ] B* {E) (=REPT= (I J %1) (& E EI}}

which sees the initial and fimzl point Cogether with the liak list decomposed
into the image set, counterimage set, end link Idist from which the inicisl

and final points have been eliminated. For each palr of elements from A% and BR,
the process is repeated, acd to the path list === g list of points forming the

joining path --- is appended the outer noints A and B.



This rule defines the the repetitive condition of the COMVERT program;
the terminal conditions arise when we encounter a palr of points which turs out
to be in fact the same, or a pair which are directly linked. TIn the latter
cage we search for any additicnal indirect linmks.

Should we eventually exhaust the link list without the ends joining,
we produce a null fragment which, by produeing a vacuous index set for =ITER=,
causes the tentatively formed chain to be discarded.

Fig. 'T R I AL".
One of the problems solved by the function (PATHE A B M),
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(PATHS (LAMBDA (A 8 [} (CONVERT

(QUATE ¢

{EUJ Eﬁa C{=0Rw» ((A ﬂ*}UUJ {{—ﬂ h}UU} i(E* EJUU} ({6 "}UU] EI UU} (1))
* [ ¥

B*  BUY ==
X UV ==
)]

(QUOTE ( A B (LLL) (RRR) 13

CLIST A B M)

CQUOTE [ =0 S R - I
( (A A ==) ((A)))

( (A B (LLL (A B) RRR)) ((A B) (=REPT+ (A B (LLL RRR)))) )

C (A B (UU)) (=ITER= | A% J B+ (K) (=REPT= (1 J X)) (A & 83} )

(.: {1 }
I ]
1) e
CSET {TRIAL ({0 1) ¢0 2} (0o Y o ni (1 0) (2 o)
o3 0 (% o0 (1 2y (1 LY €2 3) (4 33
Fig. "T R I AL",
Mot all the links are
bidirectional.
Fr convrt
W 7533
load {({paths)}

ilL

cénmk ] e (paths 1 3 trial) clock (t) .
(€1 0 33 {10 2 3) (106 3) €1 203) {123 ¢€1z2o043)
1 4 0 3y (1 &0 2 3) {1 &4 3%)
53

clock ({}) e (paths 3 1 trial) clock té)
1]

({3 0 1))

12

clock (3] e (paths 2 4 trial) clock ()
]
(02 0 n) (201 8) (2304 (2301 54L))
18



CSET (MESH EEA C} (C BY (B C) (D E)Y (D HY (D F)
{E F} (E GY (E H) (F H) (F G) (F D)
(G D) EG H) (G E) (H D) (HE) (HG) (HF)

(R B

Fizg. "M E S H'.

clock (()) e (paths (quote a) (guote b) mesh) clock (t)
0

({A C B))
1%

clock {()) e (paths (guote b) (quate a) mesh) clock (t)
1]
ML

17

clock {({}}) e (paths (quote ¢) (guate h) mesh) clock (t)
o

1L

38

clock (()) e {(paths (quote i) fquote £) mesh) cleck (t)
Q

ML

16

clock ((J) e (paths (quote d} (quote f) mesh) cleck (Lt}
0

((D F) (D E F) fDEHF:I{!:IEGJIF}II'_‘.r:EFJ (D& E F)
(0D H F))
33

eck ((}) e (paths (guote F) (quote d) mesh) elock (t)

1

0

((F D) (FHGD} (FRHRE®GD) (FHD) (F G Oy (FGHDY (FnG
EH D)) .
i3 ‘

e



y (K E)
(D C) (D F)

1) R LY (1Y)

EF) (HGDEF))
D) (B L) (B Y)))

clock (t)

(HD F“F} (H D E.F G) (HEG) (HEF @) (H

i
L

mesh)
> {E K) {E C) (EF

(K P} (K F) (CE) CCH) (CD)
(F O} (P L) (L P} (L B) (L

MG (Y M) (Y BY (F A) (F E) (F X) (F

A [skart}

e (paths (quote h) (quote g)
39

CSET (NET ((A E) (A F) (E A
(D F) (P K)

#
LY

e (paths (quote h) (quate f) mesh)

((H G) (HDE G)
FDEG) (HF G))

-0

(HF) (HDF) (HDEF) (WEGDF) (HEF) (MG D F) (Ha
clock (())

clock (())

i

3 (end )

=L NS0 L Lol DT of 63 A8 0l M 2
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it
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e

e
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s et
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[y R e e -l T L <=f
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LS

e (paths {guocte a)

'WET".

TSGR o e i B S = N | oo
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excize (t)
clock ({1)

Fig.
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print naths 1isn
W 216, 8

PATHS LIs? o4/02 0216.38

NEFINE (¢
(PATHS (LAMBA (A 3 M) (RONVERT
{QUATE

ful) PAT {((=720+ ((A r*iUU} (C== A)uu) ({8« ayurdy ({3 ==})u)

fAx RV ==

B+ RV ==

X BV ==

})

(ouUnNTE € A 8 (LLL)Y (RRR)Y })
(LIST & B M)

(AUNTE € =0

{ (A-A =3} ((A})-)

(A B LLLL (A 3} RARL) ((A 3} C+REPT= (A B (LLL RZRII)
( (A R CUUYY (=ITER® | A% J 3% () (=REPT= (1 J X)) {A & 3))

{ == () )
¥
)y
¥

]

CSET (TRIAL (7 1
0 10

Yoooon
(3 0) (4

|

(0 3y (0nY (1 0) (2
(3 20 01 4% (72 %) (4
CSRT (MAT (0A E} (A F) (E A) (£ K) (5 °) (E F) (K E)

(¥ PY (% Fy (no=y [ L (C Dy (oY {(nom

%
(0 F) (P KY (P 2Y (P LY (L P) (L 33 (L MY (M LY (4 Y)
(H Y Y Y Y 3) (F AY (F EY (F ) (F D) (3 LY (3 ¥3))

LS i

CEET (ME8H ({Aa ) (2 %) (3 0) (D EY (D ) (10 F)
(E FY (F nY {(E HY (F 4% {F 1) (£ )
€5 DY (o HY (R EY (F %) {H EY (H 6) (W F)
Lfy 1)
R 1.150+,%455

X oum (1))
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Polynomial manipulation is complicated by the fact that a given
polynomial can be written in a wide variety of equivalent forms: and 1t
iz therefore convenlent to reduce a polynomial to some convenlent standard
form before using it In further calculations. (POLY) is a functiom, defined
in CONVERT, for making such a reduction, and scme further simple manipulations.
It is a function of no variables because it resds in instruetions, and data,
from the teletype console.

We first define a polynomial; this is done in terms of =P= which
recognizes polynemials, and *P*, which recognizes polynomial fragments,
A polynomial is defined recursively as one of the following

a number
the variable, x
two fragments connected by & plus sign
twe fragments connected by a minus sign, such that
the right fragment itself contains no minus signs
minus a polynomial
two fragments connected by a product sign
a polynomial to a positive power

In 1ts turn’a polynomlal fragment is either

a polynomial '

a sum of two fragments

a difference of twe fragments, the second contasining no
minus

a product of two fragments

Allowing poelvnoemial fragments permits one to make wse of the
assoclative properties of addition and multiplication by writing multiple
sums of products without explicit parentheses to specify the association.
The rules above cause a right association in testing a polynomial, except
for minus. Although not ordinarily an asseciative operation, convention
holds that (a - b - ¢ - d) should be ({({a - &) = c) = d), or & = (b + ¢ + d).
In splitting a polynomial into twe frapments separated by a minws sign, it
1s thus necessary to see that the right fragment does not contain 2 minus,

In such a comtext a monary minus will always cause confusion 1f 2t iz nat
parenthesized when it conflicts with a product; ie we do not allow x ® = vy,

Although the =0B= defining a polyvnomial resembles the so-called
"Backus Mormal Form" it must be remembered that the slternmatives of the
=pR= are gought In order, &0 that a polynomial is decomposed &3 & product
only if it cannot be decomposed as & sum or as a differeace. The order
in which the algebraic connectors are written therefore determines thelr
binding stremgth, and on this account parentheses may be omitted when theay
would enclese terms joined by the stronger connectiwve.

Similar in operation 1z the function ¥OR which reduces a polynomial
to its internal representation, which is a list of its coefficients when
written in the form

3 m

) 2
pix) an + g% + aux" + M E P a_x

Its rEprﬂsénfatinn vould then be

{aﬂ S an}.



The operations which one makes for polynomials may be made for the
internal representation. we have L

PLY  sum$ two polynomials by summing corresponding coefficients;
if they are of different degrees the high order
coefficlents are appended to the sum of the common
coefficients,

MIN as a monary operation, multiplies each coefficient by -1, and
as a binary operation, works anmalogously te PLU.

TIM eunltiplies twe polvoomials by the rule (&, + &% p ) iqlx) =
a_q(x) + a.x p'(x)q(x), where p'{x?q{u} is computed
rgcursively, Multiplication by a constant is effected
by multiplying each coefficient of q by that constant,
and multiplication by = 1s effected by shifting ---
adjoining a zero to the front of the coefficfent list.

POW  is realized by repeated multiplication, and ne effert at
optimization is made by making a binary decomposition of the
power . :

The terminal cases are the variable, which is replaced by (0 1), and -
a constant, which iz replaced by (a). Reduction to the form of the internal
representation fs then effected by recognizing the possible combinations which
fulfil the definition of a pelynomial, and performing the indicated arithmetic
with respect to the representation-list,

The functions PED and PUR serve to convert the internal representation
into a regular polynmomial form. PWR writes the standard sum-of-powers
according to which p@lyﬂ&méa1$ are generally written, and contains provision
tp write a in placeg of a*x’, and b*x in place of bx", as well as writing
x in place of 1¥*x, which is standard practice. The function PRD transforms
the list {aD By e an] to the product form

pix) = ﬂau + K“{al + x*{az + ... x*{an_l + x*&n} cead

which 1s preferable for evaluation of a pelynomial becavse it minimizes che
amount of multiplication. A similar decompozition is used by the function
VAL, which evaluates the palynomial at a designated polnt.

Finally, the execution of the function (POLY) is controlled by a
program containing a read loop. The admissable instructions are very simple,
and could be considerably extended to perform a wvariety of polynemfal
operations.

E & evalwates the polynomial in the workspace at the point a

I p places the polyngmizl p, input from the conscle, in the
workspace., p may actually be any quantity.

N form the internal representation of the polynomial in the
workspace, which replaces the workspace. -

i] print the workspace.
5 terminate the program.
E & execute the expressiom e, Input from the console, which may be
any convert skelston admizsable ta (POLY).
¥ output the workspace in the polynomfal sum-af-powers form;
actually, the workspace azsumed te ke in internal
representation, is transfotmed ta this form and placed

in’ the workspace, and must b output with 0.
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z transform the workspace to the economized form, assuming that
the workspace contains the :lnl‘_'ernal 115: form.

T5 place the workspace im temporary storage.
(TS) place temporary storage in the workspace.

Any command given, if it iz met atomic and in the form of a list
will be treated as a series of commands to be executed, and the same
interpretation will be applied to the list elements in turn. Thus,

{1 n o) p will resd p, change it to internal form, and write this form.

This program performs only the rudiments of polynomial manipulacion:
one could think of extending it to the generatiom of interpolation
polynomials, numerical integration and differentiation formuelas, and
diverse octher applicacions.

r convrt _
W 135,0
load {((poly)) fead the [l F"%r_
HIL
paly () stark fely )
i ((xmi 1) po 7) input  (Ee1]
‘:' == Eurf::f_
(X M1 1) PO 7)
rih:. e omveek iE L8 narmel  form
== wrile it oul i& ) J;
° of iy cﬁ' K=o
=1 7 =21 35 =35 21 -7 1) e EF S
(ts) store fhis fpesuit ja Temferasy Stoatge -
¥ comvert if T gum of powers  {orma
a o privk ib

(=1 PL 7 TI X PL =21 TI X PO 2 PL 35 TI X P2 3 PL =35 TI X
PO L PL 21 TI X PO 5 PL =7 T1 X PO B PL X PO T7)

- s
s bring the uinkly o Gonforngy chonge 5 the Woresfc
l":_ ."'_.C“L'Iﬂfr’l,_ to E.mﬂg.',-.a;'-g.:f_{' 1.'5,1,..}__1
lf'.'l== Fr"i:ﬂlf flaa. L,.;'_":-Fh'if’-:'i.cf.

(=1 PL X TI (7 PL X T1 (=21 PL ¥ T1 (35 PL X T1 (=35 PFL X TI
(21 PL X 71 (=7 PL X TI 13232321
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. L £ 5
I (Cx pl 1) po 5 pl (x mi 1) po 5) (x+1) + (2-1)

o
({X PL 1) PO 5 PL (X M1 1) PD 5}

n

- *

=i . JI:I . ﬂﬂ.x_"-"-
° =+ 00X =0k +<0E +

(=0 10 =0 20 =0 2)
¥ §

((ts) v o ts z a) this is & chain of Comudnds

10 TI X PL 20 TI X PO 3 PL 2 TI X PO 5)
é;?]?% £ T0 (10 PL X TI (-0 PL X TI (20 PL X TI (=0 PL X TI

- A new é’#ﬁw‘ﬁf’rﬁf

F Convrt )

W 145,2

load ({poly)}

HIL

paly ()

I {1 pl x pl % po 2) pa 3)
n

o
(136763 1)

{ts)

{y o ts z o ts & o)

(1 PL3TI XPLGTI X P 2PL7TI XP) 3 PLGETI X PO L PL
3T X PO S PL X PO G

(1 PL XTI (3 PL X T! (6 PL XTI (7 PL ¥ T1 (B PL ¥ TI L3 PL
X T 13y ' '

7
185193 e yafue af x=7

==

P (mi (xpl 5 ti x il 8 ET 2 po 2 ;0 9))

=HH

(fono (ts) v o ts z o)

(M1 (X PL S TI XTI BETI X PO 2 1 933

(9 =1 0 =50)

(3 PL =1 T1 X PL =40 TI X PO 3)

(93 PL X TI (=1 PL X T1 {0 PL XTI =6L03¥))
(ts e 0) 93 store in tp storse, eoaluafi o (af X2
=3RE12050

43-.1;1] 4-1-.-{ {?H'tr“t il

(ts & n) 2,667912
-0, 75324358E3

HA
o

(THE GRASS IS GREENER)

El
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Dy REPT { : :
}ttu =H=) (=ITER= | U (=0IVD= | =l=)}))
POW REPT ( :
! (U 13 Uy - : B _
’ }E{U VI CTIM U {=REPT= (U (=DECR= V}))))
VAL REPT (((wH= U) (m5KEL= A EXPR wl= (=REPT= U +3 (
((uy w
(U Uy (=PLUS= U (=TIMNS= A (=REPT= (UUU}})}})
1103
PRD REPT (({U) (=REPT= U =4 {
((uy Ul - '
jggg uouy (U PL X TI (=REPT= (UUUI}))
PR REPT (C{U) (=REPT= (0 U) =5 ¢
(=M= (0 UUU)) (=REPT= ((=[HNCR= mi=) (UULU})I))
(OO0 (U UuuY) (U (euHEMs (UUUY () O 7
. ' (PL («REPT+ (1 CUUUIII}]IDD
01 (0 YT CEPIEN= U1 () (U TI)) X (#dHEHw
_ (ouu) €Y () (PL (#REPT+ (2 (UUUIIIIN
CCCmt= (U)) ((#wHEN* U1 () (U TI)) X PO o=N=))
(C=t= (U Uuu)) (C*9HENs U 1 () (1 TI}) % PO eile
o PL (#REPT* {(=IMCR= =N=) (UUU}}I))
111}
Yl
(QUATE ¢
U v ouuuy (v
»)
(LIST)
(QUOTE (=0 ¢
(== (=PROG= (M5 TS)
1
{=PRNT= ==)
(=REPT= =READ= #1 (
(E {=SETN= WS (VAL =READ= S5)))
1 (=5ET0= 5 =REAN=))
(M (=5ET0= W5 (H03 WE)))
(0 (=PRHT= %5))
(S (=RETH= (THE GRASS |5 GREENER)}))
(X (=SKEL= + SXEL =REAN= (=PaNT= *)))
y (=5ETO= WS (P47 WS)))
(Z (=5ETA= "5 (PRO US)))
(15 (=SETO= S T5))
((T5) {=5ETA= TS W35))
((U Uuu) (=PROG= () (=REPT= U} (=REPT= (UUUIII)
1
(=G0T0= 1)
)]
1))
11
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