
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

A.I. Memo No. 1316 August 1991

Resolving An-lbiguity 'in No ninonotonic0-Inheritance Hierarchies

Lynn Andrea Stein

Abstract

This paper describes a theory of inheritance theories. We present
an original theory of inheritance 'in nonmonotonic hierarchies. The
structures on which this theory 'is based delineate a framework that
subsumes most inheritance theories in the literature, providing a new
foundation for inheritance.

9 Our path-based theory is sound and complete w.r.t. a drect
model-theoretic semantics.

9 Both the credulous and the skeptical conclusions of this theory
are polynomial-time computable.

* We prove that true skeptical 'Inheritance is not contained 'in the
language of path-based inheritance.

Because our techniques are modular w.r.t. the definition of specificity
they generalize to provide a unified framework for a broad class of in-
heritance theories. By describing multiple inheritance theories in the
same "language" of credulous extensions we make principled compar-
isons rather than the ad-hoc examination of specific examples makes
up most of the comparativeinheritance work.
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Figure 1: A simple inheritance hierarchy.

I Introduction

Inheritance reasoning is ubiquitous. Hierarchies provide a concise encoding of much of our com-
monsense knowledge. They appear in various guises in the literature of axtificial intelligence, but
also throughout the various axts and sciences. Open neaxly any textbook, and some hierarchy is
likely to appear.

Reasoning with inheritance hierarchies is of particular interest to the artificial intelligence com-
munity because hierarchies are not only useful and native to human reasoning, but also simple and
often tractable. The simplicity of the "inheritance problem" makes 'it attractive as a topic that can
be considered in 'its entirety; its tractability makes it practical for the implementation of knowledge
representation systems.

In this paper, we present several euivalent formulations of nheritance reasoning. Each ap-
proach may be useful 'in a particular context; by demonstrating their equivalence, we show that
the most appropriate definition may be chosen. The techniques that we develop here generalize to
a broad class of existing systems, providing a unified foundation for iheritance theory and a basis
for comparative analysis, as well as extending previous results.

We begin, in section 2 by providing an intuitive description of what we intend by 'Inheritance
reasoning. We view inheritance hierarchies as representing rimitive assertions in the knowledge
base of some reasoning agent, and the 'Inheritance problem as that of determining the agent's
derived beliefs. The work 'in the remainder of this paper builds on this foundation.

In section 3 we give a formal path-based definition of 'Inheritance. A path-based inheritance
theory gives rules describing the admissible conclusions of a hierarchy. The theory presented here
combines rules concerning the transitivity of primitive assertions with an ambiguity-resolution

it 'on to be invoked when two paths conflict. We describe the transitivity component by the'
notion of reachability; the resolution criterion is captured by specificity.

In section 4 we describe a model-theoretic semantics for iheritance hierarchies. A hierarchy
defines a space of possible world-states-credulous extensions-or unambiguous interpretations.
Specificity induces a preference relation over these world-states. In the resulting preferential se-
mantics, each world-state has a classical model-theoretic interpretation, and the interpretation of
an inheritance hierarchy 'is the set of models of preferred world-states. We demonstrate that the
path-based theory of section 3 'is sound and complete with respect to this model theory.

The model-thebretic semantics that we describe section 4 dffers from previous semantics for
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inheritance hierarchies by separating the model preference criterion-specificity-from the semantic
space. The language of credulous extensions is a common basis for the semantics of inheritance
systems. By varying the definition of specificity-selecting different sets of preferred extensions-
we obtain model-theoretic semantics for diverse inheritance theories. We present an alternate
specificitycriterion in section 8. 1

Section describes a tractable algorithm for computing the inferences supported by an in-
heritance hierarchy. This 'is the first tractable theory for credulous inheritance-reasoning about
what might be.. Previous tractable inheritance theories have been limited to skeptical reasoning-
computing what must be-or to an otherwise limited subset of the credulous conclusions.

In section 6 we present a reason maintenance labeling scheme for inheritance reasoners We
label each node of the hierarchy with a propositional formula corresponding to the conditions
under which the associated inferences s- or 's-not-a x-holds. These labels keep track of all of
the possible (or preferred) interpretations of an 'Inheritance hierarchy smultaneously aowing us
to draw contingent conclusions and reason about the nterrelatedness of 'Inferences.

In section 7 we use the reason maintenance labeling to define and investigate the problem of
ideally skepticalinheritance-computing the 'intersection of credulous extensions. Where credulous
inheritance 'is analogous to propositional satisfiability, the ideally skeptical conclusions of a hierarchy

are its theorems, or valid conclusions. We demonstrate that previous skeptical" theories are not
ideally skeptical, and prove that no purely path-basedinheritance definition can compute the ieally
skeptical conclusions of an inheritance hierarchy.

Section and 9 examine several previous theories of inheritance. Section replicates the work
in the body of this paper for off-path inheritance. In section 9 we make more general comparisons
with existing inheritance research and position our work that larger context.

2 Hierarchies as Belief Spaces

In this section, we present an Mtuitive Mterpretation of inheritance hierarchies. In later sections,
we give formal definitions of these ideas; here, we hope to motivate that more formal work by
answering the question of "what we mean" when we draw an iheritance hierarchy. Regrettably,
most previous theories of inheritance omit such a statement of 'intent, and the lack of such an
intuitive semantics has been one of the criticisms levelled against the entire inheritance endeavor
(c.f. Woods 42], Brachman 7], Bacchus 4 etc.).

Our interpretation of inheritance hierarchies 'is relatively simple. Each arc in an inheritance
hierarchy-such as figure 1-represents an atomic assertion in the knowledge base of some rea-
soning agent-what this agent "believes," if you will.' Since this paper deals exclusively with
defeasible inheritance, it is possible that an arc in the hierarchy-an atomic belief-is istaken

ri a ajTM men); however, in this agent's world-model, each
(e.g., lumbe cks might not, in fact, be Re,
of these atomic assertions holds.2

Reachability, or transitivity-by-default, poses a second constraint on world-models. This con-
straint arises when we try to apply an atomic assertion-RealTM men are hearty eaters-to some
other class or d'v'dual-lumberjacks, or Joe the ReaITM

in I I man. The fact that Joe may be a picky

'We put the word "believes" in quotation marks to emphasize that we are not proposing that edges of an inheritance
hierarchy follow any realistic epistemic ontology; rather, we find the term belief, when removed from that formal

context, to be suggestive of the kind of tentative assertion about the world that we wish to describe.
'The exception to this is the case in which the knowledge base contains both the atomic assertion that a (defeasibly)

is an x, and the atomic assertion that a defeasibly) is not an x. Here, there are (at least) two possibilities: the
reasoner's beliefs may be ambiguous; or they may be (locally) inconsistent. We opt for the ambiguity interpretation
(see below).
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Figure 3 A blue whale i's an aquatic creature.

eater does not defeat either the assertion that Joe 'is a RealTM man, or the assertion that ReajTM
TMmen are generally hearty eaters; it merely makes Joe an atypical Real man. In the absence

of conflict'Mg iformation, the world-model of our reasoner is constrained so that subclasses and
individuals are typical of their superclasses.

Finally, we have the third knd of defeasibility in inheritance hierarchies: the defeasibility
of ambiguous conclusions. Unlike the defeasibiLity of atomic assertions or that of derived (but
uncontested) conclusions, ambiguity's defeasibility ases when there are two explicit and conflicting

arguments. In figure 2 the derived conclusion that platypuses are mammals is drectly opposed
by the (equally legitimate) conclusion that platypus�es are not mammals, In this case, even the
reasoning agent is assumed to be aware of the defeasibility. Indeed, we interpret such a hierarchy
as asserting that- tho*btld must be in -such a state that either platypuses are mammals, or they are
not; but this reasoner does not know which. That 'is, the atomic assertions hold- and the assertions
in' some aximal consistent subset of their transitive closures hold; but there may be several such
subsets, corresponding to several possible states of the world.

The situation here is not as hopeless as 'it may sound. First, the reasoner may prefer one of these
poss'ble world-states. For example, in figure 3 there are derived paths asserting that blue whales
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are aquatic creatures (by, virtue of their being whales, which are explicitly aquatic) and that blue
whales are not aquatic (by virtue of their being mammals). If we were reasoning about whales, this
conflict would be easily resolved: the assertion that whales are aquatic is explicit, and therefore
blocks the derived assertion (through mammals) that whales are not aquatic. In the case of blue
whales, we can resolve this ambiguity by resorting to arguments about specificity. Because blue
whales ae mammals only by virtue of being whales, information about whales is more specifi to
blue whales than information about mammals, and the reasoner prefers to believe that the actual
world-state 'is one in which blue whales are aquatic. We discuss the notion of specificity, and the
selection of preferred world-states, in greater detail below.

Second, even in truly ambiguous cases-such as r2-the inheritance hierarchy may contain
contingent information. In this case, the reasoner cannot determine whether the actual world
corresponds to the possible world-state which platypuses ae mammals, or that in which they
are not. However, the reasoner can assert that if the actual world-state is such that platypuses
are mammals, then it follows that platypuses produce milk. In this fashion, the hierarchy supports
conclusions relative to a particular possible world-state.

3 A Path-Based Definition

A path-based theory of 'inheritance 'is one wich efmes t1-Le adlDissible conclusions of an iheritance
hierarchy to be precisely the set of conclusions spported by admissible paths in the herarchy. For
example, the reason that lumberjacks are believed to be hear 'ty eaters (according to figure 1 is
that there is a path from lumberjack through ReaITM man to hearty eater in ri. Like proof
theories, path-based nheritance theories give almost algorithmic characterizations of the process
by which conclusions are derived. In some cases, they lead to tractable 'Inference procedures. In
general, however, path-based nheritance theories lack model-theoretic semantics. Previous path-
based theories of inheritance include the work of Touretzky, Horty, and Thomason [18, 17, 19, 38,
39, 40, 41], SandewaR 32], and Geffner and Verma 14].

In this section, we present a path-based theory of inheritance. In section 4 we describe a model-
theoretic semantics for which this path-based theory 'is sound and complete. In section we present
an 0(n 4) algorithm for computing the conclusions of an inheritance hierarchy supported by this
path-based definition.

Our path-basedm'herl'tance theory is s1M1lar to that of Touretzky 39, 40], save that it is upwards
reasoning. Upwards inheritance reasons about the properties of some particular object, rather than
about the set of objects possessing some particular property. Some ramifications of upwards vs.
downwards nheritance are discussed by Touretzky et al. 41]; the computational advantages of
upwards inheritance are described by Levesque and Selman 33] (see also section 5', below).

The approach that we describe in this section 'is also credulous: it allows a conclusion whenever
that conclusion is consistent with some (preferred) interpretation of the hierarchy; or, whenever it
is a plausible conclusion of the reasoner's explicit beliefs. Thus, 'in a ierarchy like r2, we expect
to draw both the conclusion that a platypus i's-a mammal, and that a platypus is-not-a mammal.
In section 6 We discuss the problem of contingent reasoning-determilling the assumptions that
underlie credulous conclusions. For example, we conclude that a platypus is-a Mi'lk-producer when-
ever we assume that it is-a mammal. In section 7 we discuss skeptical reasoning, in which only
the certain-uncontested-conclusions of the hierarchy are considered.
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Figure 4 A hierarchy is ambiguous w.r.t a focus node.

3.1 The Framework

An inheritance hierarchyr = Vr, Er) is a directed acyclic graph with positive and negative
edges, intended to denote "is-a" and "is-not-a" respectively. We wte a positive edge from a to x
as a x and a negative edge a - -ix. We al a sequence of positive edges a - i - - s .'x (n > ),3 a
positive path, and a sequence of positive edges followed by a sngle negative edge a Si ... Sn - __IX

(n > a negative path.
A path, or argument, a Si Sn (-i)x supports the inference "a 'is (not) an x." We use

the notation a---+x (resp., a-74x) to stand for this 'inference, or conclusion, independently of the path
through which it 'is derived. One inference-e.g., a-4x-may have many supporting arguments
a - S - - Sn x a t - t, - x, etc.

Given an inheritance hierarchy r = vr, r) wth nodes a, x E Vr, we say that x is reachable
from a (alternately, a-reachable) if there is some path a Si- Sn - (-I)x 'in Er. If the final edge is
positive-Sn x-we say that x is positively reachable from a; similarly, n --ix and negatively
a-reachable. By extension, we say that an edge s (--i)x 'is reachable from a 'if S is ositively

a-reachable, and a path Si -- - Sn (x 'is reachable from a if every edge on that path i's a-reachable.
We say that a hieraxchyr 'is a-connected if every node in Vr and every edge in Er is reachable
from a. When reasoning about an inheritance, hierarchy w.r.t a particular node, we call that node
the focus node.

Ambiguity arises when two paths conflict. Formally, an iheritance hierarchyris ambiguous
w.r.t a node a if there 'is some no de x E Vr such that both a - i ... sn x and a t t,.,, ---Ix are
Er. In tis case, we say that the ambiguity is at x. Ambiguity 'is always relative to a focus node:
for example, r4 iSunambiguous w.r.t. a, but ambiguous w.r.t. b (at e).

Our definition' of ambiguity differs from the conventional one. First, we introduce the notion of

ambiguity w.r.t a focus node. To previous theories, the hierarchy in figure 4 is simply ambiguous:
w.r.t a or b or or d or e. Second, our definition of ambiguity is stronger than that in the literature.
For example, by our definition, r3 is ambiguous w.r.t. whale. This reflects the fact that there are

in We shall see 'in
paths whale - aquatic creature and whale - mammal --iaquatic creature Er3 
the next section that specificity resolves this ambiguity and the conclusions derivable from r3are
unambiguous. Previous inheritance theories do not distinguish between resolvable ambiguities

3The notation a 2 abbreviates the set of edges la si, s -82 ; s, ... sn abbreviates Is, - 2, S2 S3, 'Sn-I SnI.
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such as that in figure 3-and unambiguous herarchies such as figure 1. Hierarchies with ambiguous
conclusion sets-like figure 2-we term truly ambiguous w.r.t. focus nodes.

An inheritance hierarchyr supports a path a - s - - s ()x, writtenr 1> a s ... s, (x,
if the corresponding sequence of edges a sl ... n (x is in Er and it is admissible according to
specificity. We discuss admissibility in the next section. r supports an inference a4x (resp.,
a74x) 'if it supports some corresponding path. For simplicity, we also allow the degenerate path a,
with the corresponding inference a--+a.

3.2 Specificity

A specificity criterion, or preemption strategy, makes admissibility choices among certain com-
peting paths. The idea of specificity dates from Touretzky's inferential distance 39, 40]. Since
then, many definitions of specificity have appeared the literature, but all operate on the same
underlying principle: more specific information 'is more directly relevant. For example, 'in figure 3,
information about whales is more specific to blue whales than nformation about mammals, so we
can infer that blue whales ae aquatic.

The framework that we have presented so far is compatible with many of the existing definitions
of specificity. In this section, we present an original definition. Our specificity criterion closely
resembles Touretzky's original notion of specificity 39, 40], but which is computable in polynomial
time (see section 5). In section 8, we describe an alternate defirdtion of specificity-one reselling
that of Sandewall 32] and Horty et al. [18, 19]-and show how to Mtegrate that definition 'Into this
framework.

An edge v (--i)x is admissible 'nrw.r.t. a if there 'is some path a - s Sn V, (n > ), 'in
Er, and

1. None of the edges of a s, ... s,, v 'is redundant 'nrw.r.t a,

2. Each of the edges of a s, ... Sn V 'is admissible inrw.r.t. a, and

3. No intermediate node a, s � ---sn emptor of v (---i)x w.r.t a.

Intuitively, an edge is admissible 'if there is a non-redundant admissible path leading to 'it that
contains no preempting ntermediaries.

A path is admissible inrw.r.t. a if every edge in that path is amissible.
A node s is a preemptor 4 of v x (resp., v - -x) w.r.t. a if s --ix E Er (resp., s x E Er).

For example, the positive edge from whale to aquatic preempts the negative edge from mammal to
aquatic, w.r.t. both whale and blue whale.

The dfficulties caused by redundant links were noted by Touretzky 39, 40]: Considerr2 aug-
mented by an additional edge from blue whale to mammal. This edge would be redundant: blue
whales axe typically mammals even without the explicit assertion. However, if the edge from blue
whale to mammal were not excluded, there would be an admissible path blue whale mammal
--laquatic creature-no Mtermediate node is a preemptor of mammal --iaquatic creature. Clearly,
this 'is not the intended meaning here (or, 'Indeed, in any network of this form, snce the "whale"
node is always more specific than the mammal 57 node (w.r.t. "blue whales")).' 

An edge b -w is redundant inrw.r.t. focus node a 'if there is some positive path b-tj ... t, -w 
Er, m > , for which

4Perhaps "potential preemptor" would be a better term: if s is not on any admissible, non-redundant, positive)
path from a to v, then effectively has no bearing on the admissibility of v This is because preemptors are
checked only in condition 3 of the definition of admissibility. In 35, 37, 361, we gave a stronger-and incorrect-
condition here.
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1. Each of the edges of b tj - t 'is admissible rw.r. t a,

2. There axe no and i such that c --iti 'is admissible inrw.r.t. a; there is no such that c --iw
is admissible in r w.r.t. a. 5

Redundant edges may themselves be admissible. For example, an edge from blue whale to mammal
in figure 3 would be admissible w.r.t. blue whale. However, redundant edges may not contribute to
the admissibility of other edges: mammal - --iaquatic creature is not admissible w.r.t. blue whale,
in spite of the admissible path blue whale mammal. Conditions 2 and 3 in the definition of
admissibility hold for the path blue whale mammal aquatic creature, but condition I 'is violated.

The path-based definition of supports yelds the following conclusions on the hieraxchyr in
figure 2:

r2 1> platypus--+platypus IC 2 J> furry animal-4urry animal
r2 1> platypus-+furry animal r. 1> furry animal--+mammal
r2 1> platypus--+egg-layer r2 1> furry animal--+milk-producer
r2 1> platypus---+mammal(* 

r2 1> platypus74mammal(* * r2 1> mammal---+mammal
F2 1> platypus--+milk-producer r2 1> mammal--+milk-producer

r2 1> egg-layer-+egg-layer r. 1> milk-producer--+milk-producer
F2 1> egg-laye-r-/+mammal

In this case, specificity cannot resolve the ambiguity w.r.t. platypus at mammal, and F2 supports
both of the assertions marked (***): that platypuses are mammals ad that they are not manunals.
In such a case-when a hierarchy supports conflicting paths-we say that the hierarchy is truly
ambiguous w.r.t. platypuses.

The conclusion-set of r3 ' s

r. 1> blue whale--+blue whale r. 1> whale--+whale
r, 1> blue wh-de--+whale r,, 1> wh-de--+mammal
r. 1> blue whale--+mammal r. 1> whale --- *aquatic creature
r, 1> blue whale-+aquatic creature

r,3 1> mammal--+mammal
r. 1> aquatic creature--+aquatic creature r,3 1> mammal--+aquatic creature

In this case, specificity resolves the ambiguities w.r.t. blue whale and whale at aquatic creature.
As a result,

r. blue whale74aquatic creature and r. whale-/4aquatic creature

The same set of conclusions would result if we added a redundant edge, from blue whale to mammal.

4 Model-theoretic Semantics

The path-based 'inheritance theory of the previous section is a sort of "proof theory" for nheritance:
given a hierarchy, it describes the rules by which conclusions may be dawn. In this section we
present a model-theoretic approach to understanding the meaning of an inheritance hierarchy.
Rather than the admissible conclusions, this section speaks of the possible world-states-credulous
extensions-that are "models" satisfy-Ing the constraints iposed by the hierarchy. In essence,

6AIthough the definitions of admissibility and redundancy are mutually dependent, they are not circular. Because
the hierarchy is acyclic, it can be ordered topologically, and the definition of an admissible edge v - -)x depends only
on the redundancy of edges with endpoints strictly topologically earlier than x.



this section makes rigorous the informal characterization of the meaning of 'inheritance hierarchies
described in section 2.

Previous theories of nheritance semantics have been translational: a hierarchy is expressed as
a set of statements in some particular (nonmonotonic) logic, and the semantics of the logic provide
semantics for the hierarchy. For example, McCarthy 27], Haugh 16], and Krishnaprasad, Kifer,
and Warren 22, 231 translate nheritance hierarchies into particular circumscriptive theories 26];
Etherington and Reiter [11, 12, 13] treat herarchies as theories of Reiter's default logic 31]; Przy-
musinska, and Gelfond [15, 30] use Moore's autoepistemic logic 29] as a target language; Bacchus 4]
bases his translation on a probabilistic logic; and Boutilier 6 uses a conditional logic.

While the semantics provided by most of these theories are as satisfying as the semantics
of the underlying logics, they are less semantics of 'inheritance than theories of how nheritance
relates to (or can be expressed in) those logics. In contrast, the theory that we present here 'is
a theory of direct semantics for inheritance hierarchies. Hierarchies define a space of possible
interpretations, or models. Specificity-drawn from the topological properties of the hierarchy-is
used as a preference criterion over these models. The meaning of the hierarchy 'is the set of its
maximally preferred models. The result 'is a preferential semantics like those of Bossu and Segel [5],
Etherington [10, 12], and Shoham 34] for more general norumonotonic logics.

Further, virtually every previous-translational or path-based-approach to nheritance se-
mantics contains a fixed ambiguity-resolving preemption strategy.' Although the selection of an
appropriate preemption strategy 'is still a subject for debate in the 'inheritance literature (see, .9.1
Touretzky et al.'s discussion of the "Clash of Intuitions" 41]), existing systems of inheritance as-
sume some single, fixed strategy. Preemption strategies are variously embedded 'in the mechanics
of path construction, the translation procedure, or the underlying norumonotonic logic. This makes
it extraordinarily difficult to compare underlying preemption strategies. As a result, most so-called
"comparisons of inheritance theories" are in reality ad hoe comparisons of system performances on
selected examples.

In contrast, our semantics is modular. We reduce a hierarchy to its possible interpretations,
or credulous extensions. Our semantics for individual extensions is independent of the specificity
cr'terion used to select among extensions. The credulous extension semantics generalize to arbitrary
upwards inheritance theories, providing a common base for their semantics. By combining with
different selection strategies, these extensions-possible world-states-glve sound and complete
model-theoretic semantics for alternate inheritance theories. This means we can compare the
ambiguity-resolving heuristics of various inheritance theories directly and theoretically, rather than
by resorting to ad hoe analysis of specific examples. We make use of this generality to explore
off-path inheritance in section 8, below.

4.1 Semantics for Credulous Extensions

We focus first on the problem of providing a model-theoretic semantics for a sngle, unambiguous
44 credulous extension." In general, we believe that a translational approach to 'inheritance semantics
is undesirable. Such an approach trades the topological information 'inherent 'in a hierarchy for the
semantics for an existin'logic. In particular, translational approaches provide less-than-satisfactory
means for dealing with ambiguities. Often, they merely adopt the ambiguity-resolving strategy of
the target logic, which may not be appropriate for 'inheritance hierarchies. Where they do provide
additional, explicit ambiguity resolution, it is fixed as a part of the translation procedure.

The approach to semantics for credulous extensions that we present here is translational. How-
ever, it 'is not subject to these criticisms of translational approaches precisely because it provides

6The exception to this is Haugh 16]; see the discussion of his work in section 9 below.

L. A. Stein Resolving Ambiguity in Nonmonotonic Inheritance 8



translations only for credulous extensions-unambiguous subhierarchies-and not for a hierarchy as
a whole. Thus, it does not rely on the translation procedure or the underlying logic for ambiguity-
resolution strategies. All ambiguity-resolution is done 'in the (non-translational) process of selecting
some preferred subset of the credulous extensions; once the set of credulous extensions-or possible
interpretations-for a hierarchy has been established, the semantics for any single extension are
straightforward. In the next section, we dcuss the problem of deriving the appropriate preferences
over credulous extensions.

A credulous extension corresponds to a possible world-state-one in the space of world-states
defined by inheritance ambiguity. Formally, a credulous extension of an inheritance hierarchy

X.
rwith respect to a node a 'is a ma imal unambiguous a-connected subhierarchy of r with respect
to a if Xr is a credulous extension of r w.r.t. a, then for every edge v (I)x C Er - E-xr, adding

a I -

v . -I)x to Xr would make Xr ambiguous or not a-connected. An example of several credulousa a

extensions-and some non-extensions-for the herarchy of figure 2 is given in figure .
Several previous inheritance theories include a related but distinct concept. Touretzky 40]

based his inheritance theory on a construct that he called a grounded expansion. Sandewall 32]
used the term extension to refer to structures much like Touretzky's grounded expansions. However,
our credulous extensions differ from Touretzky's grounded expansions and Sandewall's extensions-
we will call them both expansions-in two significant ways. Frst, their expansions are supersets
of the hierarchv-the original hierarchy plus some additional, "disambiguating" information. For
example, i n r one expansion adds the additional edge platypus ammal, while another aids
platypus --imammal. In our terms, their expansions are themselves ambiguous hierarchies. Second,
their expansions are of the hierarchy as a whole, while ours are w.r.t a particular focus node.
To Touretzky and Sandewall, r2 simply has two expansions, period. In our theory, r2 has two
credulous extensions w.r.t. platypus, but only one w.r.t. egg-layer or mammal. In both of these
ways, our credulous extensions correspond more closely to the extension of a predicate or of a
default logic theory than to past definitions of the expansion of an inheritance hierarchy.

Because a credulous extension is unambiguous, every edge is admissible. Thus, 'instead of
Xr J> a--4x-there is an admissible positive path from a to x-we need merely check that there 'is
some positive path from a to x (resp., al*x and negative path). We make use of this to provide a
straightforwaxd model-theoretic semantics for a sngle extension:

For every vertex x C Vxr, we create a unique propositional variable X'. Xr is the theory (in
a a

the propositional calculus) gven by

a X Y FEA (-: - A(X D Y
X-YEExr X---nYEExr

a a

Xr 's consistent and has a model.
Since Xr is unambiguous, 1 1a a

In other words, we translate the edges of Xr into material implications, allowing inference chains
exactly when there are paths in the credulous extension. It would be nice if all of nheritance seman-
tics were this easy. However, Thomason et al. demonstrate that the translation into propositional
logic does not work even the simpler case of strict (non-defeasible) 'inheritance 38], where local
inconsistency in a hierarchy would lead to a globally nconsistent theory. In the general defeasible
case, the propositional theory corresponding to an ambiguous 'inheritance hierarchy would be in-
consistent. The only reason that the translation into a propositional theory works here 'is that it is
the translation of a credulous extension: an unambiguous subhierarchy. Ambiguity resolution must
therefore be applied in selecting the credulous extensions that are the preferred interpretations of
the original hierarchy.

7 A, D, and - should be read as propositional conjunction, material implication, and negation, respectively).

Resolving Ambiguity in Nonmonotonic InheritanceL. A. S t ein 9
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Once we have chosen the preferred extensions-as we discuss in the next section-this trans-
lational semantics provides the desired result. The following theorem states that support-the.
existence of an admissible path-is equivalent to entailment in the propositional theory. Thus the
path-based definition of support for credulous extensions is sound and complete w.r.t. the model-
theoretic semantics defined here.

Theorem I (Soundness and Completeness for Credulous Extensions)
Let r be an inheritance hierarchy, with a, x E Vr. Let Xr be a credulous extension ofa
rw.r.t. a, and let Xr be the propositional theory nding to Xr

a orrespo a. The following
are equivalent.-

1. Xr > a--+x (resp., a4x).a

2. x is positively a-reachable in Xr (resp., negatively a-reachable).a

Xr (resp., X').

4 X r (re sp.a X X

This follows directly from the fact that every path in a credulous extension 'is admissible. Full

proofs of all theorems may be found 'in appendix A.

4.2 Selecting Preferred Extensions

Given a single credulous extension, we have seen how to derive a model-theoretic interpretation of

that extension. In fact, the semantics of the previous section would work any time we began wth an

unambiguous inheritance hierarchy (which would have only a single credulous extension w.r.t. any

focus node). But 'inheritance hierarchies are generally ambiguous. As a result, r may have several

extensions w.r.t a gven focus node, a. Some of these extensions may be more intuitive than others.

In this section, we describe a means of selecting the preferred (more intuitive) extensions of r w.r.t.
a. The semantics of r are then simply the sets of 'Interpretations for the preferred extensions of r
w.r.t. the nodes of Vr.

In 'inheritance hierarchies, specificity gives us a means of ruling out unintUitive interpretations.

Thus, we use the definition of admissibility according to specificity, from section 32, above, to

define the preference rlation over credulous extensions. We say that one extension is preferred to

another if it is "more consistent" wth the constraints of specificity:

Let Xr and yr be two credulous extensions of an inheritance hierarchy r w.r.t. focus node a.

Then specificity prefers Xr to yr Xr yr) if there are some nodes v and x such thata a a a

1. Xr and yr agree on all edges whose endpoints topologically precede x,8a a

2. The edge v (-7)x i's inadmissible 'i r w.r.t. a, and
3. yr contains that admissible edge: sj, ---Sn� yr > a s, Sn v (--i)x, and

a a

4. Xr does not iclude it: Xr [2 a s Sn - (x (Note that Xr > a S1 Sni by 1.)
a a a

If a credulous extension is minimal under this preorder-i.e. no other extension is preferred to

'it-we call 'it a preferred extension of the hierarchy:

,pref r� a) = Xr I Vyr, yr Xrj
a a a a
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Figure 6 Specificity prefers Xr3 to yr3blue whi e blue wfiale'

where a a are credulous extensions of r w.r.t a.
Figure 6 shows the two credulous extensions of the hierarchy figure 3 Specificity prefers

Xr3 .to yr3
blue whale blue whale'

1. Xr3 and yr3 vffi,,je agree up to aquatic creatureblue wfiale blue

2. mammal --iaquatic creature is inadmissible in r3w.r.t. blue whale
3. yr3 J> blue whale whale - mammal - -iaquatic creature, and
4. Xr3 [�- blue whale whale - mammal --iaquatic creature.
Theorem 2 is a soundness and completeness theorem for the path-based definition of section 3

w.r.t. the complete model-theoretic semantics defined here: selecting preferred extensions and pro-
viding translational semantics for those preferred extensions. In section 8, 'we demonstrate that
other inheritance theories, With other definitions of specificity, can be described 'in these terms.
This enables us to use the definitions of this section and section 3 to give similax soundness and
completeness results for several existing inheritance theories.

Theorem 2 (Soundness and Completeness)
Let r be an inheritance hierarchy, with a, x E Vr, and let Pref r, a) be the set of

preferred extensions of r w.r.t. a. Then r 1> a+X iff there is some preferred extension
Xr E Pref r, a) such that Xr (resp., a4x and

a a X X

The complete model-theoretic nterpretation of r2 in figure 2 is therefore the set of mod-
els of preferred extensions. In this case, specificity cannot disambiguate the hierarchy, and both
extensions are preferred. The propositional theories w.r.t. platypus are

atypus A atypus furry anim rry anim
pi (PI al) A (fu a] mammal)

A (mammalDmilk-producer A (platypusD egg-layer)

8That is, if every topological sort places a and t before x, then Xr and Yr agree on edges s Ht-
9 Since r > a--+ z whenever some preferred extension (of r w.r.t. a) entails 'X", 1> is analogous to propositional

satisfiability. This is the essence of credulous inheritance: a conclusion is admissible if there is some (preferred)
possible world-state supporting it. In section 7 we discuss the problem of skepticalm'heritance-"valid" conclusions-
entailed by a preferred possible world-states. In terms of the framework of this section, these are the conclusions
supported by all preferred credulous extensions.
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entailing the conclusions

platypus furry animal mammal milk-producer egg-layer

and
platypus A (platypus D furry animal) A (platypus D egg-layer)

A (egg-layer -mammal)

which entails
platypus furry animal ",.,Mammal egg-layer

The preferential semantics allows the conclusion that platypus is-a x if x is entailed by the models
of ether of these theories, so plavtPus i's-a

platypus furry animal mammal milk-producer egg-layer

and platypus 's-not-a mammal. The hierarchy 'is unambiguous w.r.t. its other nodes. The conclu-

sions w.r.t. furry animal are furry animal, mammal, and milk-producer, since Xr2furry animal is

furry animal A (urry animal D mammal) A (mammal milk-producer)

Xr2
nanmm I s

mammal A (mammal D milk-producer)

which entails mammal and milk-producer, and Xr, is milk-producer. Xr2nilk-producex egg-layer s

egg-layer A (egg-layer -mammal)

entailing furry animal and mammal.
In contrast, specificity does provide a preference over the credulous extensions of the hierarchy

in figure 3 w.r.t. blue whale and whale. The interpretation of r3 w.r.t. blue whale 'is therefore the

interpretation of the sgle preferred extension, Xr3 from figure 6:blue wale

blue whale A (blue whale whale) A (whale mammal)
A (whale aquatic creature)

This entails the conclusions (w.r.t. blue whale)

blue whale whale Mammal aquatic creature

Similarly, specificity prefers the extension w.r.t. whale in which whales axe aquatic, with the cor-
responding propositional theory

whale A whale mammal) A (whale aquatic creature)

and the hierarchy entails the inferences that a whale is-a whale, mammal, and aquatic creature.
The herarchy 'is unambiguous w.r.t. mammals and aquatic creatures, so there is only one credulous
extension w.r.t. each of these:

mammal A (mammal -aquatic creature)

and a mammal is-a mammal, but 's-not-a aquatic creature; and

aquatic creature

so an aquatic creature is-a aquatic creature.
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Figure 7 blue whale computes specificity onr,3 wr.t. blue whale.

5 Computing Specificity

The preference criterion approach to ambiguity resolution 'is satisfying from a eniantic perspective,
but it does not tell us much about how to de-rive the preferred extensions of a herarch In this
section, we give a polynorr'al-time-O(n')-algorithm for computing r, the specificity extension
of I' w.r.t. a. This algorithm demonstrates that upwards inheritance 'is tractable for credulous
(goal-directed) on-path reasoning. In section 7 we extend this result to include ideally skeptical
reasoning; in section 8, we give a similar algorithm for off-path inheritance.

There'are several other computational theories of inheritance in'the hterature. Those of Horty
et al. [18, 191 and Haugh 16] as well as the ambiguity-propagating algorithm of our 36, section 41
are 44 skeptical"-they attempt to compute only those conclusions that are unopposed. We discuss
A eptical theories 'in section 7 below, where we show that none of these previous theories are
'Ideally skeptical. Geffner and Verma 14] 'also offer an algorithm that 'is sound but 'incomplete for
their inheritance theory. No previous path-based theory has been shown tractable for credulous
inheritance.

Etherington 12, p. 89] gves an algorithm for finding extensions of general default theories.
Kautz and Selman 21, theorem 1] have adapted this algorithm to find a single arbitrary) ex-
tension of a disjunction-free ordered default theory. This class 'Includes the inheritance theory
of Etherington and Reiter (12, 13]. However, Kautz and Selman's 0(n2) algorithm finds only a
single arbitrary extension of the hierarchy, and cannot be used to detertmne whether a particular
conclusion is supported, Indeed, Kautz and Selman demonstrate that goal-directed reasoning
determining whether there is an extension supporting some particular conclusion-is, for ordered
default theories, A(P-hard 2 theorem 3 Sin-fflarly, they show that skeptical reasoning for the
same class of theories is YP-hard 21, theorem 7 In 33, theorem 2 Levesque and Selman demon-
strate that downward inheritance reasoning (as espoused, e.g., by Touretzky 39, 40]) is P-hard,
whether skeptical or cr-Odulous, on- or-off-path.

Our algorithm is therefore the first sound and complete algorithm for credulous inheritance
reasoning. It generates Er Er s a subhierarchy of r

a the specificity extension of r w.r.t a.
containing only and exactly the amissible edges of r w.r.t. a. For example, the specificity extension
of the hierarchy figure 3 w.r.t. blue whale 'is shown in figure 7.

The following algorithm always yields a uique specificity extension Er for a herarchy r w.r.t.a
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focus node a.

COMPUTE-SPECIFICITY-EXTENSION 1P a)

Let Er' contain the a-reachable nodes of r, and no edges.a

R = 

For each node x in El', in topological ordera

aEl' will be the specificity extension
; of F w. r. t a.
; R will hold the redundant edges of r
; w. r. t a.
; From a to ... :

Add edges v x from to Er

For each edge v x in Er, in reverse topological ordera

Let E* be Er minus any nodes that are preemptorsa

of v x (i.e. remove any edges into and out of
preempting nodes)

If E* no longer contains a positive path from a to v
then remove the edge v x from Er

a

For each remaining positive edge p - x
If there is'a positive path from p to x in Era

that goes through no negatively a-reachable nodes
then move p x from Eyr to Rla

Restore the redundant edges in R to Ej;r

Return Era

Restore x-edges

Now weed out preempted x-edges:
; Remove potential preemptors

; Is v still positively a-reachable.9

; If not, it's preempted

; Check if it's redundant

; If so,
; Remove the edge-temporarily

; Redundant edges are still admissible

Theorem 3 Complexity of COMPUTE-SPFCIFICITY-EXTFNSION)

Constructing EF is 0(n')a

The following theorem is essentially a proof of correctness.for COMPUTE-SPECIFICITY-
EXTENSION. It says that EF contains all and only those edges of r that ae admissible w.r.t.a

a.

Theorem 4 (Correctness of comPUTE-SPECIFICITY-EXTENSION)

Let r be an inheritance hierarchy, with a Vr, and let Er be the specificity extensiona

of r w.r.t. a. Then EEr = v (-7)xlv (--i)x admissible in rw.r.t. al
a

The subhieraxchy of admissible (w.r.t. a) edges inrmay still be ambiguous. For example,
all of the edges 'in a diamond ambiguity such as the platypus diamond of figure 2 axe admissible;
,r2 the specificity extension of r2w.r.t. platypus, is simply r2and, liker2, has two credulous

platypus'
extensions w.r.t. platypus. However, the ambiguities that can be resolved by specificity have been:
the credulous extensions of Er are precisely the preferred credulous extensions of r w.r.t a.

Corollary 41 Let F be an inheritance hierarchy, with a E Vr. Let Pef r a)
be the set of preferred credulous extensions of r w.r.t a and let Er be the specificitya
extension of r w. r. t. a. Then Xr C- Pref (r, a) iff Xr is a credulous extension of Era a a

w. r. t a.



-- V� � 4 - m-,

L. A. Stein Resolving Ambiguity in Nonmonotonic Inheritance 16

Corollary 42 Let I' be an inheritance hierarchy, with a E Vr Let Er be thea

specificity extension of r w.r.t. a. Thenr >a--+x iff x is positively a-reachable in
Er (resp., a4 x and negatively a-reachable).a

This means that an inference a--+x is supported byr-alternately a preferred credulous ex-
r. Since verify' g reachability

tension of r w.r.t a entails X' iff x is positively a-reachable 'in . M
is linear M' the number of edges, it follows that computing the credulous conclusions of r is also
tractable. -

Corollary 43 (Comp lexity.of Credulous Inheritance)
Deciding whether r 1> a--+x is 0(n') (resp., a4x).

6 Reason Maintenance and Inheritance

In this section, we define a reason maintenance system for inheritance hieraxchies. A reason main-
tenance system is a construction that keeps track of the assumptions or justifications supporting a
particular conclusion; several systems of this type appeax 'in the literature [8 9 24, 25, 281.

In the case of inheritance hierarchies, the reason maintenance system keeps track of the multiple
credulous extensions of a hierarchy (w.r.t. each node), using a set Of DrODositional labels for the
nodes of that hierarchy. This function mirnics the behavior of de Kleer's assumption-based tuth
maintenance system (A TMS) [8]; when we M'troduced the labeling scheme in 35], we called 'it the
ATMS-labeling of the hierarchy.

The reason maintenance labeling keeps track of all of the possible interpretations-the credulous
extensions-at once. We exploit this feature to draw contingent conclusions: that 'is, to determine
what follows if we make a certain assumption. For example, in figure 2 we can conclude that
if platypuses ae mammals, then they produce milk. In section 7 below, we use the labeling to
examine the problem of skeptical inheritance-computing what conclusions hold in every credulous
extension.

For each pair of nodes, a and x in Vr we define two labels: xr, the conditions underaqr, the conditions under which a is not an x. may bewhich a is an x, and ra . a and a

thought of as operators on nodes returning boolean formulae. For example, We would expect that
�hearty eaterg, would be [T]-lumberjacks are expected to be hearty eaters-while thelumberjack
negative label �quiche-eaterl, would be [T]-lumberjacks normally don't eat quiche. How-umberjack
ever, xjr isn't always _[x�r: both the positive label �quiche-eaterg,a I a hearty eater and the negative

label lquicheeater1r, are ], since r 1 gives us no 'information about whether hearty eatershearty eater
tend to eat quiche.

In general, we might reason about whether a 'is an x in some particular r as follows-.

Let Cosr(x) be the positive children" of x in r-the nodes pi E Vr with positive
edges - x E Er-andlet Cnegr(x) be the negative children" of x r-n E Vr

n --ix E Er. Suppose that, for all p E POsr(x), a 'is not a p; i.e., r a--+p. Then
r [-/> a-+x, because there is no support for x So

)jr _jxjr
Wos r (x a a

Here, we have 'Introduced a notational shorthand: )jr really means
D�r), where an empty disjunction is to be read as(VPECPosr(x) a 3
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Figure 8: The labeling of r2 .r.t. platypus.

On the other hand, if a is a p, for some p E !$03r(x), but a is definitely not an n for
any of x's negative children n, then a is als o an x: x s positive children provide it with

supporting argument, and tbem are no explicit counterarguments. That 'elds

�00sr (x)jr A ,�-Wnegr (x)]r) D H,a a a

Finally, it could be that at least one Of CP08r(x) is true, but at least one Of �Iegr(x)
is also true. In this case, x 'is ambiguous: 'it has some support, but there is also a
counterargument. If x 'is ambi ous, 'Its value is unconstrained. In some credulous
extens' d expect xjr

ions we woul a to be true, and in others it should be false. When
this situation arises, becomes a hoice-point and we introduce X'-the free variable
corresponding to the node xinto the labeling scheme. The truth value assigned to 

I 0 8 xlr
shouldn't matter most of the tme, but in this special circumstance-when 0 r a
and �Cnegr(x)g, so x 'is ambiguous-we want p�r to vary freely with X"'.a a

(x)�r )jr) (jxjr
(100sr a A Wnegr(x a a X

Conjoi'ng these three constraints gives us the conditions under which a 'is an x. The positive
label for x w.r.t. a is given by:

p]r = )jr )jr)) V (x)jr A Wnegr(x )jr A )]a [(TCPOqr(x a A -We9r(x a G$0sr a a

whenever x is not a leaf.
In addition, we have a�r = T]-a 'is always an a-and Vx, if x �4 a 'is a leaf of the hierarchy,

jxjr I -trivially's k a--+ x. These rules for generating labels rm'rm'c the construction of paths-a

reachability-by concatenating the edges of the hierarchy.
There is a smilar labeling scheme for rxjr, the conditions uder whichrl> a4x:a

1. rjr a is never a non-a.
a

2. If x a is a leaf of r, T-xjr since x cannot be a-reachable, r[�> a4x.

3. For a generic node, x,

(x)�r) )jr )gE71'a = ((--T(�Osr (x)lr A Wnegr a V b$Osr(x a A Cnegr(x a A )



.w --- ---

L. A. St ein Resolving Ambiguity n Nonmonotonic Thheritance 18

For example, the labeling of the platypus diamond of figure 2 w.r.t. platypus 'is shown in
1'2figure 8. In this hieraxchy, manunaljvlatyvu, [mammall. Although this label says very lttle-

platypuses are mammals in those extensions in which they are mammals-the propagation of labels
r2yields milk-producerjpj,, ers in precisely those,typ.s = manunall-platypuses axe also milk-produc

extensions in which they are mammals. This is exactly the sort of contingent reasoning that we
would expect our interpretation of nheritance hierarchies to capture.

Theorem demonstrates that these labels keep track of all of the credulous extensions of a
hierarchy at once. In the following sections, we present several useful corollaries of this theorem.

Theorem (Correspondence Theorem)
Let r be an inheritance hierarchy, with ax V. Then there is a corres ondence

between the set of credulous extensions of r mr.t. a, and the truth-assignments to
the free variables in the labels of r mr.t. a, such that the truth-assignment assigns
�x�r = T] iff the corresponding extension supports a--+x (esp., rxjr and a4x).a a

The mapping from extensions of r w.r.t a to truth-assignments. assigns a variable X' [T] iff a is-a
iin the extension; the inverse mapping creates an extension containing those edges q - s. E Er for

which �qg - pjr = T], and q --is E Er whenever jqg = [T] and Tsjr A proof of thea a a a

Correspondence Theorem may be found in appendix A.
It follows imediately that the labels of an inheritance herarchy are computing reaebabil-lty:

Corollary 5.1 Let r be an inheritance hierarchy, with ax G Vr. Then xjr isa

satisfiable iff x is positively a-reachable inr. (resp., rxjra and negatively a-reachable).

Of course, reachability is not really what we are interested in. r supports an Mference if its
conclusion 'is reachable by an admissible path, not 'ust any path. That is, the labels are not taking
into account specificity-the preemption of an argument by a more specific counterargument.

Happily, we have a way of constructing the subhierarchy of admissible edges 'nrw.r.t a-this
is Er. It follows imediately from theorem ? and corollary 5.1 that satisfiability of the labels of
Er W.r.t a corresponds to admissibility inrw.r.t. a, i.e. >.

Corollary 52 Letr be an inheritance hierarchy, with a, x E Vr, and let Er be thea
,r r

specificity extension of r mr.t. a. Then Xja a is satisfiable iff r>a--+x (esp., rX�aa
and a4x).

This means that to take specificity-into account-to reason only about rs preferred extensions w.r.t.
a-we can simply apply COMPUTE-SPECIFICITY-EXTENSION to r a and label the resulting
Er. Any contingent conclusions-or, as we shall see in the next section, skeptical conclusions-that
we draw using the labels of Er w.r.t a apply to r taking specificity into account.

An alternative but more complex approach to labeling with specificity might be to 'integrate
the specificity criterion directly into the labeling scheme. In this case, we would condition the
acceptance of a node on its non-preempted children. Unfortunately, even for a relatively simple
preemption scheme such as the one described in section 32, these labels axe quite complicated. For
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example, the specificity label" for a--+x is

v

I

v

; admissiblel fils�-xEE/f

A v
.n is admissiblel fijs�-xE-I

v
is admissiblel jils�--,xE-E

v
admis-siblel fijs�--TE41I

I

On each line, the left-hand portion-Mr' or n�r-is smply the old term Cposr,(x) or na a egr
X's children-and the right-hand portion formalizes "and that child 'is not preempted." For more
complex preemption schemes, such as that described in section 8, the labels become still more
complicated.

Fortunately, we do not 'nave to resort to embedding specificity in the labeling scheme. The speci-
ficity extension of a hierarchy provides us with precisely the 'information we need-a subhierarchy
containing only admissible edges-and simple reachability 'in the specificity extension 'is equivalent
to reachability by an admissible path 'in the complete hierarchy. Thus, instead of using the more
complex "specificity labels" on the full hierarchy, we can compute the specificity extension of the
hierarchy and use the smpler labels defined in section 6 above.

We can use this labeling 'in updating the hierarchy. Consider, for example, the hierarchy of
figure 2 If we later discover that platypuses axe mammals, the labeling automatically tells us that

r`2they are milk-producers as well (since milk-producerj = [manunal], and now mammaljr` -
platypus a 

[Manunal = [T]. In fact, we can incorporate various types of ambiguity resolving nformation-
from domain-specific knowledge to updated beliefs-into this labeling smply by adding further
constraints.

IThe complexity of tis extended labeling algorithm, including further constraints, is unknown.
Since it is a special case of boolean satisfiability, the problem may be ArP-hard. However, for the
limited case of determining that a label 'is falsifiable-i.e., that there is some credulous extension
in which the corresponding 'Inference does not hold-there is a polynomial algorithm due to Kautz
and Selman 21]. In the next 'section, we explore the problem of skeptical inheritance: computing
the intersection of credulous extensions.

7 Skeptical Inheritance

Up to this point, we have been discussing credulous inheritance-reasonffig 'in which a conclusion
that holds in some plausible (preferred) extension 'is acceptable. This type of reasoning is analogous
to finding satisfiable sentences. In this section, we discuss skeptical nheritance: computing those
inferences that hold in all plausible interpretations. These conclusions axe the valid consequences
of the hierarchy-what must follow from the reasoners beliefs, no matter which possible world-state
actually exists.

The labeling scheme of section 6 provides a language for expressing these two types of 'Inher-
itance. We have seen that credulous inheritance permits a conclusion a-+x iff x�,` is satisfiable.
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Figure 9 Applying ambiguity blocking inheritance tor.5w.r.t a yields Br,a

Formally, ideally skeptical inheritance supports exactly those conclusions true in every (pre-
ferred) credulous extension. It follows from theorem 5 that'a isa x in every credulous extension
of r w.r.t a iff �xjr 'is valid. Similarly, ntersecting preferred credulous extensions corresponds toa

Frtaking the valid labels of a-

C oro Rary 53 Let r be an inheritance hierarchy, with a, x E V, and let Er' bea
the specificity extension of r mr.t. a. Then xlr is valid (tautological) iff a+x holdsa

r
in every credulous extension of r w.r.t. a, and TxJ1a is valid iff a-+x holds n every
prefe"ed credulous extension of r mr.t a (resp., rx�r and negatively a-reachable).a

Corollaxy 53 tells us that a a is valid iff a--+x holds in the intersection of rs preferred
credulous extensions (w.r.t. a). Determining this set of conclusions is exactly the problem of
ideally skeptical inheritance.

In the -next sections, we present two path-based approaches to skeptical inheritance that have
received some attention in the literature. We demonstrate that these approaches are not 'Ideally
skeptical: they do not compute exactly the always-true conclusions of a herarchy. We show fur-
ther that no path-based approach can be both sound and complete for ideally skeptical inheritance.
The problem of ideally skeptical inheritance-intersecting credulous extensions-lies outside the
language of path-based nheritance theories. The difficulty lies in the fact that some conclusions
may be true in every credulous extension, but supported by different paths 'in each. Any path-
based theory must either accept one of these paths-and be unsound, since such a path 'is not 'in
every extension-or reject all such paths-and with them the ideally skeptical conclusion--and be
incomplete.

7.1 Ambiguity'Blocking Inheritance

The first attempt at skeptical inheritance 'is due to Horty et al. [18, 19];10 Haugh 16] gives an
equivalent ircumscriptive definition. They argue that an ambiguous line of reasoning should not

loAccording to Horty (personal communication a "skepticar' approach to inheritance 'is one which offers a unique,
unambiguous set of conclusions for any inheritance hierarchy. This differs with our intuition that skeptical" means
44 unwilling to believe uncertain conclusions." In Horty's view, computing the intersection of the credulous extensions
is only one way to reason skeptically."
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Figure 1 0: B r6 computes "paxity."a

be allowed to interfere with other potential conclusions. Because this approach discontinues a line, of
reasoning as soon as an ambiguity has been reached, Haugh calls it amb' uity blocking inheritance.
Although Horty 't al., and Haugh describe a specific theory-including, e.g., a partticular specificity
criterion-ambigUity blocking inheritance potentially defines a general approach. We '� arap ase
ambiguity blocking inheritance here:

Let Br initially be r. Starting from the focus node a, consider each node in topological order.
rif r is truly ambiguous w.r.t a at x, remove all edges 'into and out of x from Ba . When

the entire hierarchy has been scanned, Br is truly unambiguous w.r.t. a. This is the ambiguity
blocking skeptical extension of r; ambiguity blocking inheritance concludesthat a networkr
admits. a--+x exactly when r > a s, s, - x (resp., a4x and a - , s,, ---nx).

While mbiguity blocking inheritance seems reasonable, it results in some anomalous conclu-
sions. Consider, for example, figure 9 Ambiguity blocking inheritance onrwith focus node a
determines that e is ambiguous w.r.t. a, so 'it eliminates all edges to and from e. In particular,

r. > a--+ f . This is cert 'nly one
it eliminates the edge e --if, making f unambiguous w.r.t. a: Ba ai
possibifity. But it is also possible that a--+e; and f a-+e, it i unclear whether a--*f-that is, a
might not be an f. It is certainly not safe to assume from the mbiguity at that the path a b -d f

is always true. But this is precisely what ambiguity blocking inheritance does. This anomaly was
first noted by Horty et al. [18, 41].

A more severe anomaly follows from this first. Ambiguity blocking inheritance computes a kind
of 44 parity" on the number of ambiguities in a path. According to ambiguity blocking inheritance,
the network in figure 10 is skeptical as to whether a is-a e or an i, but allows the conclusions that
a is-a g and a j. SnDilarly, this net 'is skeptical about whether b or f is-a j, but allows the paths
from a and d to j. More than the first anomaly, this result calls into question the intuitiveness
of ambiguity blocking inheritance. In any case, ambiguity blocking heritance 'is unsound w.r.t.
ideally skeptical inheritance: there are inferences a+x such that Br > a---+x, but xjr is falsifiable.a a
Figures 9 and 10 both illustrate this unsoundness of ambiguity blocking 'Inheritance.

I r is truly am biguous w.r.t a at x if r 1> a--+ x and r 1> a4x.



12 Matt Ginsberg has independently proposed a hierarchy with similar properties, in which Nixon is always politically
motivated.
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Figure 1 1: 11'6a results from ambiguity propagating inheritance.

7.2 Ambiguity Propagating Inheritance

Ambiguity propagating inheritance allows ambiguous lines of reasoning to proceed. An argu-
ment thus cannot be certain unless there are no counterarguments; in contrast, ambiguity bocking
inheritance considers only unambiguous counterarguments. Like abiguity blocking inheritance,
ambiguity propagation defines a family of algorithms. Haugh 16] gives a circumscr' tive definition;
in 36], we describe an (JErD algorithm. Again, we paraphrase:

Starting from the focus node a, consider ach node of r in topological order. if r is truly
ambiguous w.r.t a at x, rather than eliminating a edges to and from x, retain x but mark it as
ambiguous w.r.t. a. Although paths to and from x will not be included in the final result, they
can still act as counterarguments during this processing and prevent other nodes from being
unambiguous. ir is the a-connected subgraph of r with those edges E Er such that
neither nor y is marked ambiguous w.r.t a.

For example, the cascading ambiguities of figures 9 and 10, which gave ambiguity blocking
inheritance difficulty, present no problem for ambiguity propagating 'inheritance. Fgure 11 shows
J[Ir6

a

I-Ir - if IIr 1> a-+x, then air is satisfiable. In fact,a is sound w.r.t. ideally skeptical inheritance: a a

1jr computes the subbieraxchy of r containing exactly those edges of r that are 'in every (preferred)
credulous extension of r w.r.t. a. However, 1jr 'is incomplete: there axe some inferences a--+x that
are supported by every credulous extension of r w.r.t a but have different supporting arguments n
different extensions. These conclusions are not supported by Hr. We demonstrate such a hierarchya

in the next section. In these circumstances, we need to reason about inferences rather than paths.

7.3 Ideally Skeptical Inheritance

12Consider the hierarchy in figure 12. Every credulous extension w.r.t. seedless grapevine supports
the inference seedless grape vine--+Plant, so ideally skeptical inheritance concludes that seedless
grape vines re plants. Suppose, for example, that a seedless grape vine 'is a fruit plant; then it is a
plant. Suppose that it is not a fruit plant; then it is unambiguously an arbor plant, and therefore
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Figure 12: The intersection of credulous extensions is not a path-based notion.

a plant. In any state of the world, no matter how we resolve the abiguities of the taxonomy, a
seedless grape vine is a plant. This is reflected in the fact that' antj"7 = [T].see&ess grape vine

if-we.wishtodeterrrinewhat's.,trueinaLl-poss-ibleworl-ds,wp-ca-nnotavo'dthiski-dofreasop-'M&
T.-her-e are facts which axe true 'in -ons, but which have no ust;fic t' --r h C

all credulous extensA L& j a lon.. t
intersection of those extensions. This "is why we cannot generate an "ideall skeptical extension"
no particular set of edges of r from seedless grape vine to plant is in every credulous extension,
so no such path can be the "ideally skeptical extension." Thus every path-based approach to
skeptical 'Inheritance wl always be ether unsound or 'incomplete with respect to -ideally skeptical
inheritance.

Theorem 6 Any path-based inheritance theory will be either unsound or incomplete
for ideally skeptical inheritance- the intersection of credulous extensions is not a path-
based notion.

Proof: A path-based theory insists that admissible conclusions are only those
supported by admissible paths. If a path-based theory supports the conclu-
sion seedless grape vne--+plant, it must admit at least one path that supports
seedless grape vine--4plant. But the only paths that support seedless grape vine--+plant
are

seedless grape vine - grape vne - fruit plant tree plant

and
seedless grape vine - grape vine - vine arbor plant plant

Neither of these conclusions is 'in every credulous extension. A theory accepting either
of these conclusions 'is therefore unsound for ideally skeptical inheritance. Alternately,
a path-based theory can reject 'both of these (unsound) paths. However, the theory
then accepts no path supporting the conclusion seedless grape vine--4plant, so it cannot
accept that conclusion. Since that conclusion holds 'in every credulous extension, such
a path-based theory 'is 'incomplete for ideally skeptical 'inheritance.

This theorem deserves a few remarks. The first is that 'Its proof depends only on the definition
of a path-based theory and not on any particular properties of any individual path-based theory.
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Therefore, it applies to the class of path-based theories as a whole. The second 'is that the hierarchy
I'7 does not involve specificity. Tt is therefore independent of any choice of specificity criterion, and
holds for all such criteria (assuming that no specificity criterion would resolve diamond ambiguities) 

This result demonstrates that we can only compute the always-true inferences by, in effect,
reasoning about all of the credulous extensions. Fortunately, 'in acyclic hierarchies such reasoning 'is
tractable. Corollary 53 establishes that a conclusion holds in the 'intersection of preferred credulous

,r r
extensions (of r w.r.t. a) whenever a�a a (resp. T-aj aa i valid. In section 5, we emonmstrated
that constructing Er-eliminating specificity-requires polynomial time. Kautz and Sehnan 21]a

describe a polymonial time procedure for computing the validity of a label (without specificity).
By applying Kautz and Selman's algorithm to Er, awe can compute the intersection of preferred
credulous extensions-ideally skeptical inheritance-in polynomial time.

Corollary 61 (Complexity of Skeptical Inheritance)
Ideally skeptical inheritance-computi�g the intersection of preferred credulous

5)extensions-is 0(n

Proof: By application of Kautz and Selman's NORMAL-UNARY-SKEPTICAL 21,
p. 196] to the result of our COMPUTE-SPECIFICITY-EXTENSION (section 5). The
complexity of the algorithm follows directl from theorem 3 and Kautz and Sehnan's 21.,
theorem 91. Its correctness follows follows from that theorem and our corollary 53.

8 Off-Path Inheritance

The inheritance theory presented above uses a specificity criterion called on-path preemption. In
this type of ambiguity-resolution, an edge is inadmissible if every non-redundant admissible prefix
contains a preemptor. In this section, we consider an alternate specificity criterion: that of off-path
preemption. In off-path preemption, an edge is inadmissible -if any admissible prefix contains a
preemptor.

. The terms on- and off-path preemption were popularized by Touretzky, et al. 4. On-path
preemption appeared first 'in Touretzky's work on inferential dstance 39, 40]. Off-path preemp-

13tion is described a credulous version by Sandewall 32], in an ambiguity-blocking skeptical
version by Horty, et al. [18], and in both ambiguity-blocking and ambiguity-propagating versions
by Haugh [16].

Previous comparisons between on- and off-path preemption have resorted to arguments about
the correct semantics of hierarchies with the topology of r8. The difference is reflected the
hierarchy of figure 13 Tnr8, the edge b --ie preempts the 'Inference a+e-barring both a b - d - e,
and a - - d e. On-path preemption aows a--+ e since a - d e (as well. as a4e, since ab - -e).
These arguments, based on the "intl'tive" interpretation of rs wth various names assigned to ts
nodes, are nothing more than ad hoe attempts at proof-by-example.

We have argued that our approach to inheritance makes more principled comparison possible.
In particular, by isolating the preemption strategies from the underlying theory, we can compare
these criteria directly. In this section, we present the same approaches to off-path preemption as
we have described for on-path, above. At the end of this section, we show that the principles
brought out by analyzing the two types of 'inheritance within our framework can be constructively
compared, and give some opiruons as to the relative merits of on- vs. off-path preemption.

13 Sandewall's notion of extension differs significantly from ours: his extensions are actually expansions a la Touret-
Orv_ and nrp I;yn;f.,-rl in nr#-f,-rr,-r1 vnnncin-nc nt k:n+
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Figure 13: On- vs. off-path preemption.

Path-Based Definition The off-path definition of admissibility is:

An edge v - x is off-path admissible inrw.r.t. a if no truly unambiguous off-path admissible
prefix a s, - - s v, contains a reemptor of v x (resp., v --ix).

The definition of preemptor remains the same. Because off-path preemption says that no
(unambiguous) path through v to x may contain a preemptor of v (I)x, this definition does not
need to explicitly exclude redundant paths.

We say thatroff-path supports a--+x (resp., a*x) if there is some sequence of off-path admis-
sible edges a s - Sn X (resp. a s ... Sn - __1X Mrw.r. t a.

Model-Theoretic Semantics Here, we s' ly replace the definition of admissibility in the
model-theoretic semantics of section 42 with that of the preceding paragraph.

If Xr and yr are two credulous extensions of an inheritance herarch rw.r.t. focus node a,
a a y

then off-path specificity prefers Xr to yrif there are some nodes v and x such thata a

1. Xr and yr agree on all edges whose endpom'ts topologically precede x,

2. The edge v (-i)x is off-path nadmissible inrw.r.t. a, and

3. yr contains that admissible edge.a

4. Xr does not contain it.a

The model-theoretic semantics for credulous extensions remains as described in section 41.
Minimal extensions under this ordering are the off-path preferred credulous extensions of r w.r.t.
a, and their models ae the off-path preferred models of r w.r.t. a: roff-path supports an 'Inference
iff that inference 'is entailed by some off-path model of r w.r.t. its focus node. By changing specificity
cri ria, we obtain different conclusion sets and correspondingly different preferences over credulous
extensions. In general, it should be possible to obtain these results using a preemption strategy
corresponding to any upwards theory of inheritance. 14

"Because the definition of credulous extension is upwards, the approach presented here does not lend itself directly
to the analysis of downwards inheritance theories.
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Computing Specificity The algorithm for computing the pecificity extension of a hierarchy
w.r.t a focus node can be adapted for off-path preemption:

COMPUTE-OFF-PATH-SPECIFICITY-EXTENSION r a)
or will be theaLet or no edges.contain the a-reachable nodes of r, and off-path specific'ty extension
of r w. r. t a.

For each node x in Qrin topological order From a to

Add edges v x from r to or Restore x-edgesa

For each edge v x (resp., v x) in 0"', in reverse topological order ; Now weed out
For each potentially preempting edge w, x (resp., w, x) in or ; preempted x-edges:

If w, is positively but not negatively a-reachable in f2ra
and Qr contains a positive path from w to v ; ... then w, preempts v H X

then remove the edge v . (resp., v x) from Qr ; o remove it from r

Return Qa

a',� a contains only the (off-path) admissible edges of r w.r.t. a. Computing off-path
support is reduced to verifying reachability ' far. The complete procedure runs polynomial
time.

Labeling Since far eliminates the inadmissible edges of r w.r.t. a, we can use the labels of section 6
to calculate contingent conclusions and deally skeptical inheritance, 'in much the same way as we
did for on-path preemption. It follows imediately from the properties of r and theorem thata

a a is satisfiable iff roff-path supports a--->x and IX a is valid iff a-+x is an ideally skeptical
or

conclusion of r using off-path preemption. (resp.1 T4a a anda74x).

On- or Off-Pathl' By defining off-path preemption this framework, we can compare its under-
lying assumptions to those of on-path preemption, presented above. By examining the differences
in preference criteria, we see the principles behind these two types of reasoning

On-path preemption: an edge 'is nadmissible 'if every (non-redundant) admissible prefix
contains a preemptor.

Off-path preemption: an edge 'is inadmissible if any (unambiguous) admissible prefix
contains a preemptor.

That is, off-path preemption replaces the existential quantifier 'in the on-path definition of admis-
sibility with a universal.

Let tj, ... , t, be many types of ts, each differing from the typical t 'in specific ways. For example,
t might be brds, and the ti might be flightless brds, tny birds, songbirds, etc.. Each of these
categories inherits most of the default properties of birds, but overrides some particular, default.
Now, if some particular bird inherits from several of these ti, what are its expected properties?

Off-path preemption says that a particulax bird is atypical for a particular default if it 'is a
member of any ti that overrides that default-e.g., doesn't By if it's a penguin-even if 'It's a
member of many other subclasses-songbirds or even tree-dwening birds-that are normal for the
default. In other words, off-path preemption overrides default behavior whenever possible.

In contrast, on-path preemption remains agnostic about overriding defaults. If something 'is a
member of an atypical subclass ti, it certainly may be atypical for the corresponding property of t:
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penguins may not y. However, if it is also a member of tj which does not override that default-a
songbird or tree-dwelling penguin-then 'it may axguably possess default behavior-it may be a
flying penguin, after a.

The reason for defining t1i ---itn as subtypes of t is generally to enforce certain distinctions
between the tis and typical ts: subclasses are not the same as their superclasses, or we wouldn't
have defined the subclass in the first place. The argument in favor of off-path reasoning says that
anything which is a t should probably be assumed to be at least as unusual as tis. Off-path
preemption's strategy is to assume maximal atypicality. In contrast, on-path preemption concedes
that there are arguments both ways. One argument relies on the default behavior of subclasses,
while the other depends on the explicit nformation about atypicality. On-path inheritance makes
no distinction between these, while off-path inheritance favors the explicit overriding of defaults.
If we are confident that our hierarchy is fully fleshed out and contains all relevant information, it
may well be that off-path preemption provides a more appropriate description of our intuitions. 15

9 Comparisons wth other Inheritance Theories

Previous attempts to compare existing inheritance theories have proceeded largely on the basis
of aalysis of specific results on particular examples. Because existing theories ether translate

I" k 'I U,-h
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as preemption) in complex path-based or translation criteria, little if ay principled aalysis has
been possible. Touretzky et al. 4 attempt to oercome this difficulty. They delimit a space of
existing and potential inheritance theories, dentifying several dimensions along which these theories
vary. Nonetheless, this work till relies largely on examples rather than principles, and does not
separate ambiguity-resolution from the space over which the ambiguities arise.

A second attempt to unify and compare existing nheritance theories is due to Haugh 16].
Haugh translates nheritance theories into circumscriptive meta-theories. Hs theory is modular
with respect to the preemption axioms used, and indeed he presents preemption axioms for theories
of credulous inheritance, skeptical inheritance both as presented by Horty, et al. [18] and a
corresponding ambiguity-propagatmig form, and various types of off-path preemption. However,
he does not distinguish a set of interpretations corresponding to these preemption axioms, making
it dffficult to 'Identify the intuitive principles to which his various axioms correspond. Haugh's
confounding of meta-strategies for addressing ambiguity-credulous versus skeptical reasoning
with particular ambiguity-resolving heuristics-on- versus off-path, etc.-i's a further symptom of
this failure to identify'the underlying space over which ambiguity quantifies.

The numerous preemption strategies 'in the literature result from differing interpretations of
the notion of "subclass," or specificity. The underlying principle 'is that more specific information
should override more general. But there is little agreement on a single definition of "more specific"
at the level of the nodes and edges of an inheritance hierarchy. In the body of this paper, we
present on-path preemption, which 'is conservative with respect to the acceptance of abnormality.
In section 8, we present off-path preemption, which provides a more promiscuous approach to
abnormality in inheritance.

The different treatments of true ambiguity are reflected in the debate over skeptical inheri-
tance. In section 7 we describe previous approaches to skeptical inheritance, and demonstrate the
shortcomings of path-based skeptical approaches.

'5An anecdotal aside: I was particularly surprised to reach this conclusion, myself. I'd been a long-standing
opponent of off-path preemption, but when I'd gotten the principles worked out, I have to admit that I found myself

T _11- A_ 'L_1_

the "right" intuitions-LAS
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By making various choices on the skept'cal/credulous spectrum, and in on- vs. off-path pre-
emption, we can describe many of the existing theories of inheritance. For example, Sandewall's
theory 32] is off-path and credulous; Horty, et al.'s [18] is off-path and ambiguity-blocking. Touret-
zky's original theory 39, 40] is a downwards version of the on-path creduous theory presented in
sections 35.

By describing other inheritance theories in the framework presented here, we obtain not merely
soundness and completeness results, but a more profound understanding of the underlying princi-
ples. This allows us to make. comparisons based not on ad hoc examples, but on intuitions that
underly them.

Acknowledgements

This work was completed wth the help, advice,- and support of many people. In particular, I
would like to thank my dissertation supervisor, Leora Morgenstern; my readers, Eugene Chaxiliak,
Tom Dean, and Drew McDermott; Sanjaya Addanki and IBM; Ken Bayse, Mark Boddy, Robert
Goldman, ad Mark Johnson; David Etherington, Jeff Horty, Henry Kautz, Ron Loui, Bart Selman,
Lokendra Shastri, Rich Thomason, and David Touretzky; the anonymous reviewers for Artificial
Intelligence; and my family.

A Proofs of Theorems

The proofs of inheritance theorems axe given for the positive cases only (e.g., a V.,

proofs of the negative cases (e.g., Xr > a+x) are similax. Many of these proofs are inductive. The
following two definitions provide the basis for these inductive proofs.

Definition: A node x Vr is a leaf of r 'if x has no children in r, i.e., $Osr(y = Cnegr(Y) 0.

Definition: The depth of a node x 'in a hierarchy r, 6x, r, 'is defined recursively:

1. If X 'is a leaf of r, 6x, r = .

2. If x is not a leaf of r, 6 (x, r = 1 + max (f 6 (w, r I w CPO sr W U C egr W 1)

A.1 Credulous Extension Semantics

Theorem (Soundness and Completeness for Credulous Extensions)
Let r be an inheritance hierarchy, with a, x C Vr. Let Xr be a credulous extension ofa

r w.r.t. a, and let Xr be the propositional theory corresponding to Xr. The followinga a

are equivalent:

1. F > a-+ x (resp., a4 x).

2. x is positively a-reachable in Xr (esp., negatively a-reachable).

3. Xr (resp.,a X X

4. Xra X X
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Proof:

I 2: By definition, a hierarchy Xr > a--+x iff x 'is positively a-reachable in Xr by ana a

admissible path; but since a credulous extension is unambiguous, every path 'is
admissible.

2 3: Assume that x 'is positively a-reachable in Xra i.e. (� SI s,,, a SI ...
s, x G Exr. Then

a

Si A A Sn X

A (Si i+i)
1<i<n-1

is a sub-theory of Xr; since a theory validates any subtheory, Xr (1) and 'Its

a a
ts. So Xr Xra therefore Xr s,componen a Si SI MIlarly Xra a a a SI S2�

so Xr etc. So Xr
a $2 a X.

Assume x is not positively a-reachable in Xr r �_ j. Since Xra, but X a a X�
Xr U In particular, Xr f- -; and by the deduct'

I-x a I-x a ion
X r D This is just Since Xr is a conjunct'

theorem, a X a I a X a ion
yr -of lauses of the form `SD (-,)t (and the singleton '), a X eanc fh.3,t.-- a

Xr yreither a' = X' or there is some conjunct a' 's, in a such that Aa r- SI X.
._1 _1nmilar argument, we can show that either S = x orBy a si there is some S2such that D is in Xr

SI S2 and Xr k :)-X', etc., so that there must be

a chain of conjuncts 'a D'si, 's, D 21-1 Sn- D Sn� Sn D ".,x in Xr. Since everya
conjunct of Xr corresponds to an edge of Exr, this implies a sequence of edges

a a

a - i '''Sn - x-making x a-reachable n Xr; contradiction.a

3 4: This follows from the soundness and completeness of propositional logic a
formula is derivable from a propositional theory iff every model of that theory
entails that formula.

A-2 Soundness and Completeness

The following lemma 'is used in the proof of several theorems, in this section and elsewhere., It says

that any unambiguous a-connected subhierarchy of r can be extended to makel't max'mal-i.e. a
credulous extension of r w.r.t a.

Lemma 21 (Extension Construction)
Let r be an inheritance hierarchy, and let fvi xi} be an unambiguous a--connected

subhierarchy of r. Then there is an extension Xr of r mr.t a containinga Ivi - (-7)xil

(i.e. f vi (,)xil G Exr).

Further, if f vi (--i)xi} are all admissible inrw.r.t. a, then there is a preferred extension
of r mr.t a containing vi xil.

Proof: Con'struct X - Extend(f vi xi , Fa) as follows:a
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i. Let (xij C Exr.
ta

2. For each node x, in op ological order, add the edge v (x E Er to Exr if
a

(a) v is positively a-reachable in Extend(f vi x, ra) (as constructed so far),

(b) v (--i)x is admissible inrw.r.t. a, and

(c) adding v (--i)x won't make Extend(jvj xi}, ra) (as constructed so far) am-
biguous.

By construction, Xr = Extendqvi - --,)xi},ra) 'is a credulous extension of r w.r.t.a

a: it is unambiguous and a-connected, and any edge that could be added wthout
contradicting one of these two properties has been.

Further, 'if every edge in Ivi (--i)xil 'is admissible inrw.r.t. a, we claim that Xra
Extend(jvj xijra) is a preferred credulous extension of r w.r.t a.

Let yr 4 Xr be a credulous extension of r w.r.t. a. Assume by way of contradiction
that yr Xr. Then there are some nodes s, t E Vxr such thata a a

1. Xr and yr agree on a edges whose endpoffits topologically precede t in anya a

topological order,

2. s (--i)t is inadmissible rw.r.t. a,

3. Xr I> a - s 8in. s - -7)t, (m > ), anJ

4. yr [2 a s, ... sn sa

If s (--i)t is admissible inrw.r.t. a, then either

1. S (--i)t is 'in f vi - (--i)xi}. But then 'it must be admissible, since vi (--i)xi is
adn-lissible.in r or

2. it was added during the construction. But then 'it is admissible inrw.r.t. a, by
condition 2b.

So Xr does not contain an nadmissible edge, and it is 'is therefore a preferred extension
of r w.r.t a.

The following lenuna says that every edge of a preferred credulous extension of r is admissible in

Lemma 22 Let r be an inheritance hierarchy, with a E Vr, and let Xr Ea

,Pref r, a) be a preferred credulous extension of r mr.t. a. Then every edge v x in
Xr is admissible inrw. r. t a.a

Proof: Assume that there's an edge in Xr that 'is inadmissible inrw.r.t. a. There must
be some inadmissible edge, say v -x, for which every edge whose endpoffits topologically
precede x is admissible. Since vx E E�r, there must be some path a-sl ... s,.v-x E ExGa
(a credulous extension of r w.r.t. ais a-connected). Certainly, this path is not admissible
inrw.r.t a (else v x would be amissible inr w.r.t. a); but by hypothesis, v x is

the only inadmissible edge in 'it (since all other edges topologically precede v x) So
s Sn V's admissible inrw.r.t. a. Consider yr ra), where Xrlxa a a

is

b b G Exr and topologically precedes x inrl
a
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Certainly Yr is a credulous extension of r w.r.t a (bY lemma 21, since XJ., is ana a

unambiguous subhierarchy of r w.r.t. a). Further, Y T -.< XF.a a 

1. XI' and yr agree on all edges whose endpom'ts topologically precede x,

2. v x is nadmissible in F w.r.t a,

3. r J> a s ... s v x, anda

4. Yr[ a s ... n V X-a

But this means that r V Pref r, a); contradiction!a

Theorem 2 (Soundness and Completeness)
Let r be an inheritance hierarchy, with a, x E Vr, and let Pef ra)be the set of

preferred extensions of r mr.t. a. Thenrl> a---* x iff there is some preferred extension
Xr Xr (resp., a-/4x anda c Pref r, a) such that a X X

Proof:
This foRows directly from lemma9.1 and tbeorem 1, condit;
-A- - L&- .On 1 and 4 if rj> a--+ x,
then there is an admissible path a -s - s x 'Mr. So-by lemma 2 1-Extend (f a -
Sli ... Sn Xxa) is a preferred credulous extension of r w.r.t. a; call 'it Xr Byais posit -reachable in X. X.theorem 1, whenever x ively a , then Xra a

Assume thatr[4. a--+x, 'i.e. that there 'is no admissible path from a to x 'Mr. Then
by lemma 22, any credulous extension containing such a path-and hence an
inadmissible edge-cannot be a preferred credulous extension of r w.r.t a.

A.3 Computing Inheritance

Theorem 3 Complexityof COMPUTE-SPECIFICITY-EXTENSION)

ConstructingEr is O(n')a

Proof:

We assume that an 'inheritance hierarchyr = Vr, Er) 'is represented as:

Vr is an axray[integer] of nodes in topological order
Er is represented by two arrays,

Er+ and Er-, both axray[nodexnode] of boolean

COMPUTE-SPECIFICITY-EXTENSION (r a)
R : array[nodexnode] of boolean;
Er, E* graphs with structure equivalent to ra

unreachable : array[node] of boolean

For v = to JVrj
For x : Ito W
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EEr+[vx] false
a

EEr_[VX] false

R[vx] : false

n:= TOPSORT-REACHABLE-SUBSET rja a

Forx :-_ 1tondo

For v = to n do

If Er'[Vrlvl, rlxll
EEr [VEr [v], VEr [X]] true

a '2

If Er -[Vr[vll Vr1X1]
Ej;r_[VEr[v1) VEr[xll true

a

For v (x 1) to a do
if FEr [VEr [V], VEr [X]]

For z 1 to n
unreachable[i] = false

E* = REMOVE-NEGATIVE-PREEMPTORS (Er, v x)a
If not (POSITIVELY-REACHABLE? (E*, a, v))

EEr'[Vj;r[v1,VEr[X]] :false

If Enr r [v] Vr [x]Im E. 

For i = to n
unreachable[i] false

E* = REMOVE-POSITIVE-PREEMPTORS (Er v x)

If not (POSITIVELY-REACHABLE? (F*, a, v))
Emr - Vm� [v], VEr [x11 :_ false

For p = X 1) to a do
if EEr + [VEr [PI, VEr [x11

If REDUNDANT? (Er, a, p, x)a
R[p, x] :=true
EEr + [p, x] false

For = to n do
For x = to n do

El;r+[px] = E;r+[px]orR[px]0 a

Return ra

AuXilliary code may be found in figure 14.

The complexity of this algorithm is 0(t + n 3 + n 2 p + b) + n2r), where n is the

number of nodes the hierarchy jrj), t is the computational complexity of

a call to TOPSORT-REACHABLE-SUBSET, p is the complexity of REMOVE-...-

PREEMPTORS, b is the cost of POSITIVELY-REACHABLE?, and r represents the

call to REDUNDANT?.

Examination of the code in figure 14 yelds a cost of (e) 0(n 2 for TOPSORT

(and hence for TOPSORT-REACHABLE-SUBSET), where e = Erj I rJ2 -_ n2 ; this

is a smiple variant of depth-first search taken from Aho, Hopcroft, and Ullman 3.

POSITIVELY-REACHABLE is smilar, using unreachable[] as mark[] and potentially

terminating early (before the entire herarchy has been searched) if the first if term

returns true. Its complexity is also (e), since 'it too searches each edge at most once.

POS-REACH-W/0-NEGS? follows POSITIVELY-REACHABLE; the test FOR n: 1

to x - ) is performed at most once per node, the complexity of POS-REACH-W/0-

NEGS? is (e + n') or simply O(n 2) REDUNDANT? 'is therefore 0 (n 3), calling POS-
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TOPSORT-REACHABLE-SUBSET rin, a, rout)
Adapted from 3, p. 222].

For i = to I ri. do

mark[i] = false

i : 0

TOPSORT (a)

For j = to i do

Vr., [] :-- TST[i + 1

Return i

TOPSORT (a)

mark[a] :-_ true

For x = to IVri,, I do

If mark[x =alse then

If 7+,,, [Vr,. [a] Vr,,, [x]] or E- [Vr,,,,, [a], Vr,,,, [x]]-g-ari ri
then TOPSORT (x)

+ 1

TST[i = a

POSITIVELY-REACHABLE? (E*j b, x)

; assumes an external array unreachable[integer]

; of boolean, initialized to false

If = X

Return true

Else

If unreachable[b]

Return false

Else

If > X

unreachable[b] true

Return false

Else

reached = false

For v = to + 1)

If not (reached)

If EE-+[Vy-[b], E-[v]]

reached

POSITIVELY-REACHABLE? E*, V, X)

unreachable[v] = not (reached)

Return reached

REDUNDANT? (Er,
,a Ib, )

For i : I to n

unreachable[i] = false

For v = + 1) to (x -

If POS-REACH-W/0-NEGS? (Er, b, v)a

and POS-REACH-W/0-NEGS? F�, V, X)

Return true

Return false

REMOVE-NEGATIVE-
PREEMPTORS (l', v, x)a

E = Vrr , EEr)
la

For s = to n
If EEr - [VEr [s] VEr [X]]

and not EEr + [VEr [s] , VEr [x11

For t = to na I%

If EEr+[Vl;r[.sl, l;r[t]]
a 4% Is

Er*+[VE*[sjVy-[i]] :=false
If EEr VEr [s] , VEr [t]]

a 4% a

EE- VE* [s I VE* [t]] false

If EEr + [VEr [t], VEr [s]]
a a a

EE*'[Vy*[t], E-[s]] false

if EEr VEr [], VEr

EE*-1VM*[t1'VE*[s]] :=false
Return *

REMOVE-POSITIVE-PREEMPTORSI's identi-
cal save that line (***) reads

If EEr Vzr [s] VEr [x11
a a a

and not KEr [ VEr [s] , Vyr [x]]
a a a

POS-REACH-W/0-NEGS? (Er, b, v,
a

; Like POSITIVELY-REACHABLE, backwards,

; but with the extra constraint that none of the

intermediate nodes can be negatively a-reachable

If b = x

Return true

Else

If unreachable [x]

Return false

Else

If b > x

unreachable[x] true

Return false

Else

For n. = to (X 1)

if EEr VEr [n] VEr [x]]

unreachable[x] true

Return false

reached :-- false

For v (x 1) to b

If not (reached)

If EEr + [ VEr [v], VE r [x]]
a

reached

POS-REACH-W/0-NEGS? (Er, b, v)a

unreachable[v] = not (reached)

Return reached

Figure 14: Auxilhary code for COMPUTE-SPECIFICITY-EXTENSION
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REACH-W/0-NEGS? twice 0(2n') 0(n')) for each node between b and . Finally,
2REMOVE-...-PREEMPTORSl's simply O(n

The total complexity of COMPUTE-SPECIFICITY-EXTENSION 'is therefore
O(n 2+ n 3 + n 2(n2 + n 2 + n2n3) or 0 (n').

Theorem 4 (Correctness of COMPUTE-SPECIFICITY-EXTENSION)

Let r be an inheritance hierarchy, with a E V, and let Er be the spec city extension
-of r w.r.t. a. Then

Ezr = v - --i)xlv - --i)x admissible inrw.r.t. al
a

Proof: The proof proceeds by induction on the length of the longest path from a to v
in r.

Base Case: Consider the case in which the edge a x E Er 'is the longest path from a to
* Mr. In this case, r> a--+ x-because a x is not redundant (else there would be
* longer path from a to x in P) and contins no preempting 'Intermediary-and x
is positively a-reachable in Era again, X has no a-reachable negative preemptors
inr.

Induction Hypothesis: Assume that for every node x E Vr wth the longest path from
a to x inrof length < k, v (--i)x is amissible inrw.r.t. a iff v (I)x E Er'a-

Induction Step: Consider a node x with the longest path from a to x, a - s Sn Xi
k. Claim: an edge v x is in Er iff t 

a 1 is admissible in r w.r.t a.

Let v x be admissible inrw.r.t. a. Then there 'is some non-redundant sequence
of admissible edges a - tj - - t - v - x E Er containing no preemptors. Of Sn Y-

Further, m < k (since the length of the longest path from a to x 'is k + 1, and the
length of this path is m 2 So a - tj ... t, v has length at most k, and by the
induction hypothesis, since it is composed of edges admissible inr, 'it 'is entirely
contained in 'Er. Is v - x in Er? Assume not. Then it must be the case that if wea a

REMOVE-NEGATIVE-PREEMPTORS from Er, x is no longer POSITIVELY-
REACHABLE?. But none of a, t, ---tni Vis a negative preemptor of x, so the path
a - tj tn - v - x remains in E* and so in Er. Contradiction.a

Let v - x be in Era. Then by the induction hypothesis, every positive path from
to v in Er is admissible in r w.r.t a (since the length of the longest path

to v is at most k). Certainly, there must be such a path, or v would not be
POSTIVELY-REACHABLE? and v x would not be added to Ej;r. Further, there

a

is such a path with no redundant edges and no preemptor of x, since any edge that
is REDUNDANT? 'is temporarily removed from Er and we further REMOVE-
NEGATIVE-PREEMPTORS before determining that v remains POSITIVELY-
REACHABLE? (else v x would not be Er). So there 'is an admissible positivea

path from a through v to x; and v x 'is admissible inrw.r. t a.
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Corollary 41 Let r be an inheritance hierarchy, with a Vr. Let ef r a)
be the set of preferred credulous extensions of r w.r.t a and let Er be the specificity

a

extension of r mr.t. a. Then Xr c ref (r, a) iff Xr is a credulous extension of Era a a

w. r. t a.

Proof:

Consider Xr E Pref r, a), a preferred credulous extension of r w.r.t. a. C m: Xra a

is a credulous extension of r

Xr s a subhierarchy of Er By lemma 22, every edge of Xr is admissible in a a a

w.r.t. a. By theorem 4.2, every admissible edge of r w.r.t a 'is M' -EEr so
a

Exr C EEr
a a

Xr is unambiguous: This follows directly from the fact that Xr is a credulous
extensionofrw.r.t a

Xr 'is maximal: Imagine that there is an edge v - x in Er that 'is not in Xr.a a a

Certainly, this ege 'is inr; but Xr is maximal w.r.t rand a. So adding
a

v x would make Xr not a-connected (and hence an extension of neitherrnora

Er) or ambiguous W.r.t a (with similar result for r) or not preferred. Bya a

theorem 42, since this edge is in Er, it is amissible r w.r.t. a. So ad(linga

it t Xr would not prevent Xr from behig a preferred cred-alous extensiona a 1 Of

rw.r.t. a. Therefore, no such edge eists.

XEr 'Let a be a credulous extension of Er w.r.t. a. C m Xrai a E -ref r a).
Er Er

a is Er ,a Certainly, every edge of Xa ML a so by theorem 42, every edge of Xa
,Er

admissible inrw.r.t. a. By lemma 2 , ,a Mt1st therefore be contamed'in a

preferred credulous extensionofrw.r.t. a; call it Xr . Let v x be an edge of Xra a
Er 

that is not an edge of X a i.e., V. x E Er - E �r By lemma 22 v x is admissible
a Xa a

Er
inrw.r.t. a; by theorem 42, thi's means that it is in Er. Since it is not in Xa a IaEr Er
adding it to XI a Wuld make Xa a ambiguous-but then Xr must be abiguous-

or not a-connected-but then Xr must not be a-connected. So no such edge cana Er
exist, and Exr - E ,r 0, i.e. Xr = X a Er = Xr

a X a a a and aa a E -ref r, a).
a

Corollary 42 Let r be an inheritance hierarchy, with a E Vr. Let Er be the
a

speciflcity extension of r wr.t. a. Thenr >a-+x iff x is positively a-reachable in

Er (resp., a4x and negatively a-reachable).a

Proof:

if r>a--+x, then there is some (non-redundant) sequence of admissible positive

edges a s, Sn X inr (containing no preempting intermediary). Since each of
is r; so x isthese edges is admissible inr, by theorem 4 each of these edges in Ea

positively a-reachable Er
a

Er does not contain a positive path from a to x, then (by theorem 4 theIf a re 'is no

ssible edges from a to x 'in r, so --+X.
sequence of adn-ii r[/> a
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Corollary 43 (Complexity of Credulous Inheritance)
Deciding whether II> a--+x is 0(n') resp., a-74 x).

Proof: By corollary 42, r 1> a--4 x iff x is positively a-reachable n Er
I a. By theorem 3,

finding Er is 0(n'). Deternunffig reachability can be accomplished by depth-first ora

breadth_first search, either of which is (e) O(n 2 < O(n5); since the two passes are
independent and sequential, the total complexity is O(n 5

A.4 Labels

The next lemma says that if x is (positively or negatively) a-reachable, then a- a

Lemma 5.1 Letr be an inheritance hierarchy, with a, x E Vr. Let L(r, a) be the
ATMS labeling of r w.r.t. a, with xjr' pqr E (I, a). Thena a

�x�r (_rxlr A )jr )jr)
a a C. 0 sr(x a �negr (x a

2. rx�r (qx�r A QCOsr (x)lr Onegr (x)jr).
a a a a

IP

Similarly,
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Theorem (Correspondence Theorem)
Let r be an inheritance hierarchy, with ax E Vr. Then there is a correspondence
between the set of credulous extensions of r mr.t. a, and the truth-assignments to
the free variables in the labels of r mr.t. a, such that the truth-assignment assigns
�x - T] iff the corres onding extension supports a-+x (esp., T7xjr and a4x).

a p a

Proof.-

Let T be the set of all possible truth-assignments to the variable corresponding to the
nodes of Vr. If T T is a truth-assigmnent to the variables corresponding to Vr,
and Txjr is a propositional formula over these variables, then TQxjr) is the truth-valuea a

assigned to the formula xjr under T in the traditional sense.

Let Xrj be the set of credulous extensions of r w.r.t a.a

Truth Assignments to Credulous Extensions.

Define �o: T --, jXr as
a

Ej nr f El-

L JLEr I TQs]') T(T t I') = T]

Uls --it E Er I T(Tsjr = [T] and p1r) [T]}
a a

We claim that p(T) is a credulous extension of r w.r.t a.

1. Certainly, �o(T) is a subhierarchy of r.
Ttjr2. �p(T) is unambiguous: By lemma 5.1, the formula A �qr is unsatisfiable:a a

p r A p r T t jr A (_ T t r A QCOsr (t)jr V Cnegr (t)�r))
a a a a a a

(T t jr A _ T t jr) A (TCPO$r (t)jr V Wn egr (t)jr)
a a a a

(t)�r V (t)jr)
I A TOOsr a �Cnegr a

So it cannot be the case, for any S1 i S2 i t, that both s t and S2 - --it are 'in EW(T)

3. �p(T) is maximal: Assume by way of contradiction that there is some edge s (I)t 

Er - Ew(,r), and Wp(T)i Ep(T) Is (--i)t}) is unambiguous and a-connected. Then
'ther T(Ts�r) �4 [T], or T�t jr) (resp., T(Mr))�4 [T].el a a a

T(�s�r) �4 T: Then s is not positively a-reachable in �o(T), and adding s
would not preserve a-connectedness.

T( t r) (resp., T(Mr)),4 T: But T(Tt ]r) is either [T] or I T assigns aa a a ng to a n Vr anboolean truth-value to every variable correspondi o de in
jr is a propositional formula over these variables. So TQ t r) But

a I a

TQ t g) (T(�00,qr (t)�r A (-T(Wne9r(t)M))a a a

(t)�r A TQnegr (t)jr A T(t)V(T(�00-gr a a
(t)�r A (-TQnegr (t)g) V T(t)T(�Oosr a a
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In particular,

T(WOsr(OM I I I

Posr (t), 1(T a aThis means that Vp c C )�") = [-L]. In particular, qs�r)
[T], and s is not positively a-reachable in �o(T), so adding s t would not
preserve a-connectedness. By a similar arguments T(Mr) [T] means thata

(t)�r) Tffs�r) [T]; s is not positively a-reachableT(�Gqegr a a
�p(T); and adding s --it would not preserve a-connectedness.

Then T(�x�r = T] iff x is positively a-reachable in �o(T), so by theorem 1, qxjr)a a

[T] iff �p(T) > a--+x.

Credulous Extensions to Truth Assignments:

Define -0: Xrj --, T asa

T if Xr 1> a--+ x
X a

if Xr V a--+ x
a

Then (,O(Xr))qxjr - T] iff Xr 1> a--+x. The proof proceeds by duction on x, r):a a a in

Base ases: If x is a leaf of r, then either

1. x a. Then Xr 1> a--+a. Also, air [T], so O(Xr))qxjr) (,O(Xr))([T])
a a a a a

[T] or

2. x a. Thenr[-/> x--+a, and JaIr so O(Xr))qx�r) (,O(Xr))([
a a a a

I I ].

Induction Hypothesis: Assume that, for all nodes x E Vr wth 6x, r < n,
(O(Xr))qxjr = T] iff Xr 1> a-*x.

a a a

Induction Step: Let y E Vxr, 6y, Xr = n. Then
a a

(,O(Xr))qy]r) ((,O(Xr))( (Y)jr A __(O(Xr))(�C (Y)jr)))
a a a RPOsr a a negr a

V((,O(Xr))( (Y)g A ,O(Xr (Y)�r
a TOOsr a a))(Wnegr a) A a y

Since Vw E COsr (x) U Cnegr W, 6w, r < n, the nduction hypothesis applies and
(O(Xr))(�w�r = [T] iff Xr 1> a--+w. Now, ether

a a a

1. Xr > a--+y. Then y s positively a-reachable in Xr a, but not negatively a-rreachable: IP Ez Cosr(y)) X. > a---+p, but Vn E Cnegr(Y), Xa a--->n. Then
(O(Xr))&jr = T], but Vn c Cnegr (Y), 0(Xr))Qn�r) [I];3p E CPOsr (Y), a a a a

and (,O(Xr))(TYjr = T]
a a

2. Xr V> a---+y. Then y is not positively a-reachable n Xra: either y is negatively
a-reachable, or y is not a-rea;chable at all. In either case, Vp E Cposr (),
Xr [�> a--+p, and so (,O(Xr))qPjr) But then (,O(Xr))qyjr) as

a a a a a

well.
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Corollary 5.1 Let F be an inheritance hierarchy, with a, x E V. Then x� isa

satisfiable iff x is positively a-reachable in F. (esp., Tx-Jr and negatively a-reachable).a

Proof: If Tx1r is satisfiable, then there is a truth-assignment to the variables cor-
responding to the nodes of such that Tx�r) -- [T]. �p(T) is a credulous extensiona

of r w.r.t a such that T(Ty�r) = [T] iff �p(T) > a--+y; so �p(T) > a--4x. By theorem ,a

this means that x is positively a-reachable in �o(T), and sce �o(T) is a subhierarchy
of r, x is positively a-reachable inras well. Conversely, if x 'is positively a-reachable
mr, then by lemma 21, there is an extension Xr of r w.r.t a containing a positivea

path from a to x; by theorem Xr 1> a--+x; and Xr) 'is a valuation of the vaxiablesa a

corresponding to the nodes of r that assigns Ex�r = [T].a

Corollary 52 Letr be an inheritance hierarchy, with a, x Vr, and let Er be the
a

�xgr Er
specificity extension of r w.r.t. a. Then a is satisfiable iff rl>a--4x NV-, r4aa
and a4x).

�xlg
Proof: By corollary 5.1, a a is satisfiable iff x is positively a-reachable in El. Bya

corollary 42, x is positively a-reachable in Er iff r 1>a

A.5 Skeptical Inheritance

Corollary 53 Let r be an inheritance hierarchy, with a, x E Vr, and let Er bea

the specificity extension of r w.r.t. a. Then xjr is valid (tautological) iff a+x holdsa
lxFr

in every credulous extension of r w.r.t. a, and �,a is valid iff a--+x holds in every
Preferred credulous extension of r w.r.t a (esp., rxjr and negatively a-reachable).a

Proof: If xjr 'is valid, then ever truth-assignment to the variables corresponding toa y
rqr. In particular, if Xra a is a crethe nodes of r satisfies �, dulous extension of r w.r.t.

a, then O Xr) satisfies xrO(Xr)qxjr) = [T]. But by theorem 5, OXr) assigns
a a a a a

,O(Xr)qx�r) = [T] iff Xr > a--+x. Snce the choice of Xr was arbitrary, this holds for
a a a a

every credulous extension of r w.r.t. a, and every credulous extension of r w.r.t a
supports a--+x.

Conversely, assume that x�r is not valid. Then there is some truth-assignment T that
falsifies xjr: TQxjr)a a Consider the credulous extension �p(T); by theorem ,
�o(T) [/> a-+x. So there is some credulous extension of r w.r.t a that does not support
a--4x.

r
aIt follows that Ma is valid iff a--+x holds 'in ever credulous extension of Er w.r.t a;y a

but by corollary 41, the credulous extensions of Er w.r.t a axe precisely the preferreda

credulous extensions of r w.r.t a.
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Theorem 6 Any path-based inheritance theory will be either unsound o incomplete
for ideally skeptical inheritance; the intersection of credulous extensions is not a path-
based notion.

Proof in text

Corollary 61 Complexity of Skeptical Inheritance)
Ideally skeptical inheritance-computing the intersection of preferred credulous
extensions-is 0 (n 5

Proof in text
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