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Control algorithms that exploit chaos’s unique properties can vastly
improve the performance of many practical and useful systems. The
program Perfect Moment is built around such an algorithm. Given a
differential equation and two points in the system’s state space, it au-
tomatically maps the space, chooses a set of trajectory segments from
the maps, uses them to construct a composite path between the points,
and causes the system to follow that path by monitoring the state and
switching parameter values at the segment junctions. The creation of
and search through the maps are computationally intensive processes.
However, the sensitivity of a chaotic system’s state-space topology to
the parameters of its equations and the sensitivity of the paths of its
trajectories to the initial conditions make this approach rewarding in
spite of its computational demands. This program and its results are
illustrated with several examples, among them the driven single pendu-
lum and its electronic analog, the phase-locked loop. In this particular
case, strange attractor bridges, which traverse boundaries of basins of
attraction and thus alter the reachability of different state space points,
can be used to broaden the capture range of the circuit.
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Abstract

Control algorithms that exploit chaos’s unique properties can vastly
improve the performance of many practical and useful systems. The
program Perfect Moment is built around such an algorithm. Given
a differential equation and two points in the system’s state space, it
automatically maps the space, chooses a set of trajectory segments
from the maps, uses them to construct a composite path between the
points, and causes the system to follow that path by monitoring the
state and switching parameter values at the segment junctions. The
creation of and search through the maps are computationally intensive
processes. However, the sensitivity of a chaotic system’s state-space
topology to the parameters of its equations and the sensitivity of the
paths of its trajectories to the initial conditions make this approach re-
warding in spite of its computational demands. This program and its
results are illustrated with several examples, among them the driven
single pendulum and its electronic analog, the phase-locked loop. In
this particular case, strange attractor bridges, which traverse bound-
aries of basins of attraction and thus alter the reachability of different
state space points, can be used to broaden the capture range of the
circuit.



1 Introduction

Control algorithms that exploit the special properties of chaotic systems open
a new category of problems to effective design — interesting and useful ap-
plications whose performance is rich but whose analysis is mathematically
and computationally demanding. Traditional control theory simply avoids
chaotic zones, which often comprise a large and rich part of a chaotic sys-
tem’s state space. The aim of this work is to actively use chaotic behavior to
improve performance. The algorithms presented in this paper intentionally
route systems through chaotic zones, using extensive simulation, qualitative
and quantitative reasoning about state-space features and heuristics drawn
from nonlinear dynamics theory to navigate through the state space. Tra-
jectory segments are selected from a collection of automatically-constructed
state-space maps and pieced together into a path between the specified states.
The controller causes the system to follow these segmented paths by mon-
itoring the system state and switching parameter values when the segment
junctions are reached.

These algorithms can be applied to any system, but are designed to ex-
ploit several specific properties of nonlinearity and chaos. For example, the
denseness with which chaotic trajectories cover a section of state space —
the strange attractor — has obvious implications for reachability. The clas-
sic “sensitive dependence on initial conditions” endows small control actions
with large, global effects. Topological changes induced in a system’s state
space portrait by parameter variations add another degree of leverage to the
picture; small changes in the control parameter can give the path-finding
algorithm a large range of behaviors to exploit.

Striking results have been achieved with these algorithms[2]: a very small
control action, delivered precisely at the right time and place, can accurately
direct the system to a distant point on the state space — hence the name
Perfect Moment. An equally small change can be used to move a particular
state from the basin of attraction of one fixed point to the basin of another.
Control actions can briefly push a system directly away from the goal state
in order to reach a globally superior path to that state and “strange attractor
bridges” can open conduits between previously-unreachable regions.



2 Context

The equations for an n-dimensional nonlinear system can be written
dz -
E=F@MWWM0 (1)

where Z is an n-vector of system state variables and F is a nonlinear function
of the state # and the parameters ki. Necessary conditions for chaos — in
continuous-time systems — are that F' be nonlinear and nonintegrable and
that the dimension of the state space be at least three. The distance between
state-space trajectories of a dissipative chaotic system grows exponentially
with time, yet the trajectories remain on a bounded subset of the state space,
called a strange attractor, within which are embedded an infinite number
of unstable periodic orbits. The largest positive Lyapunov exponent A of
the system governs the growth of the distance between trajectories. The
parameters k; can strongly affect the direction and magnitude of the vector
field F; small changes in these parameters can have local and global effects
on state-space features, causing fixed points to multiply or to mutate into
other kinds of attractors. Between these topological changes or bifurcations,
parameter changes can also cause dramatic changes in the position, shape and
size of existing attractors. More details about the concepts in this paragraph
may be found in [5].

These properties make possible a new spectrum of nonlinear control de-
sign techniques which derive their power from not treating the system as a
linearized cousin to its true nature, as do most traditional techniques. This
field has only recently seen development; the first generation of schemes
therein exploit the denseness of strange attractors and of unstable periodic
orbits[4, 7], but many other tacks are also possible. State-space regions where
the system is sensitively dependent on initial conditions, once identified and
characterized, can be used to magnify the effects of small control actions.
The statistical properties of strange attractors determine the robustness of
control schemes that use them. To make a point reachable, one need only
identify parameter values that cause a strange attractor covering that point
to appear; the parameter sensitivity of these features reduces the size of the
control action necessary to accomplish this. This type of analysis and design
requires extensive and detailed knowledge about the state-space features of
the system under control. The first part of the next section discusses a com-
puter algorithm that constructs a set of maps that detail these features and
the second part describes a program that searches through them to find an
ensemble of segments that together form a useful system trajectory.



Figure 1: Finding a Path Through a Collection of State-Space Portraits: A
= origin, B = destination.

3 Issues and Algorithms

Envision a stack of state-space maps, each plotted at a different value of the
control parameter in a different color on a transparent sheet. Looking down
through such a stack, one could easily choose a set of segments that together
form a path from one point to another. See figure 1.

This task is relatively easy for a human expert and quite difficult for a
computer. The ease with which human vision performs pattern recognition
and processes coincident information on different scales, coupled with domain
knowledge that allows interpretation, inference and prediction of the effects
of parameter and state changes, makes state-space exploration intuitive and
straightforward to a nonlinear dynamicist. One simply selects a “representa-
tive” set of trajectories on each of a “representative” set of maps, then looks
through them for a “good” path. The quotes highlight the concepts that are
difficult to mechanize. This section discusses solutions to these three prob-
lems; the algorithms that embody these solutions use the cell-to-cell mapping
formalism of Hsu[6], which is reviewed briefly in the next paragraph. They
are written in the Lisp dialect Scheme|[8] and run on HP series-300 and series-
700 workstations and on the Supercomputer Toolkit[1].

The state space is partitioned on a grid. Each of the n state variables
zi,t = 1...n is divided into m; equal intervals h;, so the space contains
M = I;m; cells. Each parallelepiped in this grid is identified by an n-vector
of coordinates z;, called a cell vector, where the ith coordinate gives the grid
height in the ith dimension. A state-space trajectory can be represented as
a list of the cells touched, together with time of entry to and exit from each



cell; a description of the entire flow can be given as a set of M mappings,
each of which describes the travels of a trajectory that starts at the center of
a cell. Coarse discretization — large h; — lowers accuracy, speeds searches
and is useful in early stages of work.

Trajectory Selection and Generation

The first stage in the mapping process is the selection of a “representative”
set of trajectories: enough to characterize the system’s dynamics across the
useful region of the state space, but no more than necessary to do so, as the
speed of the later stages of the program degrades rapidly with the size of the
search space.

A trajectory emanating from a point is generated by numerical integration
of the system equations from that initial condition. Perfect Moment uses an
adaptive-time-step fourth-order Runge-Kutta algorithm.

Selecting a representative set of trajectories from the uncountably infinite
number of possible ones is much more subtle. One solution is to start a tra-
jectory from the center of each grid square and integrate until it relaxes to an
attractor or exits the grid. This requires a good choice of h;: small enough
so that each region is explored and yet large enough to restrict the amount of
information to the minimum necessary to capture the characteristics of the
space. The initial choice A is currently made by the user and heuristically
revised downwards by the program over the course of the mapping and path-
finding process. This will eventually be fully automated, based on nonlinear
dynamics knowledge. For example, only one trajectory in the basin of attrac-
tion of an asymptotically-stable fixed point need be plotted. Some related
issues that arise in problems of this nature are addressed in much more detail
in [9], wherein domain knowledge about nonlinear systems is used to infer
when important trajectories are missing from state-space portraits.

The selection of the dimensions of the region under consideration is also
subtle. If Perfect Moment restricted its attention to trajectories within the
bounding box of the origin and destination points, counterintuitive moves —
ones that send the system away from the apparently “correct” direction in
order to reach a faster path — would be impossible. The heuristic overrange
parameter R° allows for this; an R° value of 1.1 implies that the search
region is formed by expanding the bounding box defined by the origin and
destination points by 10% in all directions. Like h?, this parameter is initially
chosen by the user and revised dynamically by the program. One of the
heuristics used in this revision expands the grid to cover the entire area of
any attractor that is present.



Map Selection

The final choices of the state-space mapping process concern the con-
trol parameter: its interval between successive maps Ak and the total range
over which the space is explored [kiow, knign]. Like h;, these numbers are
user-chosen and automatically-revised: if successive maps at the specified
parameter interval are significantly different — for example, if bifurcations
have occurred or attractors have expanded or shrunk to cover or uncover the
control objective or some other useful point — that interval is explored fur-
ther. This magnification is iterated on a finer and finer scale until successive
maps are similar or until a user-specified iteration depth is reached.

Segment Selection

After the mapping process is complete, the path-finder searches through
the collection of maps for useful path segments, first on a coarse grain and
then with iteratively-refined accuracy. Useful segments may be drawn from
any region on any map — they may be sections of strange attractors or of
transient trajectories that are relaxing to attractors. Optimization criteria
are specified by the user and might include time, path length along one or
more of the state variable axes, etc. Total time is minimized in all examples
in this paper; changes to and generalizations of this choice are obvious and
easy.

A gross trajectory between the endpoint cells of size hy, that contain the
origin and the destination is found first and used as the core of the path. The
parameter hy, is chosen according to the amount of “spreading” undergone
by trajectories emanating from the origin. It is initially determined by rules
that use Lyapunov exponents and integrations of the variational system from
the origin and is revised upwards if the search fails. The cell size is then
reduced and the process is repeated within the endpoint cells to connect
the core segment to the origin and destination. This strategy allows for
counterintuitive moves within both endpoint cells at any level of the search.
It also reduces the work: the finer discretization makes the later searches
slower, but they occur in smaller regions. The critical steps here are (1)
the reduction of h; between iterations and (2) the termination condition.
If hp and R® are such that the grid contains c; cells on a side, the next-
level search divides the endpoint cell into [[;¢; cells, each with the same
aspect ratio as the endpoint cell. The path-finding process halts when the
error introduced by omitting the smallest segment, integrated over the entire
path, falls within the control tolerance. If the length of the segment first falls
below the machine epsilon or below the effective resolution of any physical
I/0 devices, the program is restarted with different heuristics.



Effecting Control

The system state can be caused to evolve along a trajectory consisting of
a series of path segments {S°,...,5'} via the following set of control actions.
Because of the recursive, longest-first nature of the path-finding algorithm,
the segments are not followed in the order in which they are found, so the
list must first be sorted into the proper order {S®,...,S"}. Beginning at
the specified origin, the control parameter is set to &} to initiate the first
segment S™ and the state is monitored until Z = S7,,,. The parameter is
then changed to kj, rerouting the system onto S*. This procedure is repeated
through all segments in the path. After the final switch, if necessary, the
system can be stabilized at the destination by a linearized control scheme[2,

7.

It is vital that parameter switches take place quickly and accurately, both
in time and in magnitude. Speed is a formidable limit here, since control ac-
tions moderated by computer I/O must occur roughly ten times faster than
the natural frequencies of the system under control. Mechanical devices are
well within Perfect Moment’s current grasp and control of circuits with band-
widths on the order of kilohertz is conceivable with current technology([l].
Quantization, experimental and modeling error are all but unavoidable; the
optical encoder currently used to measure the position of the pendulum de-
scribed in section 4, for example, has an angular resolution of 0.7 degree.
Since the ultimate goal of this project is to control real physical systems,
it uses a programmable “backdoor” correction network to compensate for
such errors — a simple autonomous linear controller programmed with the
linearization at each segment junction point.

Problems and Caveats

A variety of conditions can cause these algorithms to fail. Most impor-
tantly, the system state must be observable, either directly or indirectly.
Though the control parameters add dimensions to the space that can open
conduits between previously-unreachable regions, some destinations may still
be unreachable — repellors which persist for all parameter values, for in-
stance. Small control tolerances are fundamentally unachievable in the face
of huge Lyapunov exponents, inaccurate computer arithmetic, slow I/0 or

bad models.

Perfect Moment currently handles systems that have a single control pa-
rameter. This could easily be generalized, but a higher-dimensional param-
eter space would slow the mapping and search processes and introduce no
new ideas or techniques, so this angle is not pursued here.

This program relies on pre-simulation. None of the algorithms detailed
in this section run in real time, nor could they: many hours of CPU time are
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required for their integrations and searches. Perfect Moment’s intended use is
to find paths that will be followed many times or paths that are particularly

important.

Synopsis

¢ Inputs: system equation; origin A and destination B; optimization criteria;
control tolerance; grid interval h?; overrange R?; control parameter interval
AK® and range [kiow, khign); iteration depth.

o State-space mapping:

1.

2.
3.

Set up grid by expanding bounding box of A and B by the factor R°.
Construct state-space portraits at each ki, + nAK for (kioy, + nAk) €
[k1ow, knign], starting a trajectory at the center of each cell.

Revise R if required by attractor size.

Construct portraits with half the Ak in ranges where successive plots
ﬁxhjll)lit large differences. Iterate this step up to the specified iteration
epth.

This mapping will only be repeated if the path-finder below fails to find an
adequate solution.

¢ Path-Finding:

1.

Using these maps, variational integrations from A and the grid interval
R, find the shortest path between the endpoint cells of size hy, con-
taining A and B. This segment is designated S; it starts at S9,;, and
ends at §%;, ., with k = ko.

- Reduce h; and find the best path between the cells containing (1) S2.;,

and A and (2) B and S9,,, ;. Iterate on successively smaller scales until
the the last segment causes the path to exceed the control tolerance.
Record the k; value and the starting and ending states S?,;, and S%inal
of each segment.

. If the search fails, repeat with heuristically modified h; and inter-step

reduction factor.

. If step 3 fails repeatedly, redo the mapping with a larger R®, wider

parameter range [kiou,khigs] and greater iteration depth and restart
the path-finding program.

Sort the segrqents into the proper order and §enerate the control recipe:
the ordered list of parameter values and endpoints for each.

4 Examples

All of the examples in this section are simulated, but the models and controls
reflect the physical parameters of a mechanical pendulum and a phase-locked

8



S o
P

..‘. ;’?'5‘\: : o ' ' : o *
‘"\ )E B ) .:. LT

8

Figure 2: Driven Pendulum Poincaré Sections: (a) Damped Oscillations with
Small Drive (b) Chaotic Behavior with Larger Drive

loop circuit that have been constructed as test cases for these techniques and
are in the process of being instrumented.

The driven pendulum is arguably the most closely-studied simple chaotic
system[3]. Its normalized equation is

d*0 do .
- = v(t) — 'B’ﬁ —sind (2)

with angular position 8 and velocity %g—, applied torque per unit mass y(t) =
egl coswgt at the pivot and damping ratio (2 x actual/critical) 8. wy is the
ratio of the forcing frequency to the natural frequency and the normalized
time unit is the inverse of the natural frequency. Both € and wy play roles
in chaotic state-space changes and thus can be used as parameters. In the
experimental setup constructed for this project, however, changing € is much
more difficult, so wy is used as the control parameter and ¢ is fixed at 1.2.
The damping f is also fixed at 0.007 throughout.

For small-amplitude drives or drive frequencies near the natural frequency,
the pendulum remains “locked” to its natural frequency; the damping causes
the oscillations to slowly die out, as shown in the Poincaré section of fig-
ure 2(a). Larger € and smaller w, cause chaotic behavior, as in figure 2(b).

If the pendulum is started from the initial state A = (0,5) with no ap-
plied torque, the system follows the trajectory shown in figure 3(a). Perfect
Moment was used to construct a segmented path to the control ob jective B
= (-.5, -3.3) in this figure. The program was given a tolerance of 2%, cell
size h} = 0.05; and a range [10, 20] and step Awy; = 1 for the parameter
wq. As this range encompasses no bifurcation regions, the mapper never
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Figure 3: Driven Pendulum (a) Uncontrolled Trajectory (b) Search Regions
(c) Controlled Trajectory
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Figure 4: Phase-Locked Loop Block Diagram

reduced Awqy and so produced eleven equally-spaced maps of the region de-
fined by expanding the bounding box of (0,5) and (-.5,-3.3) by R = 3; see
the solid and dashed boxes on part (b) of the figure. The variational system
integrated forwards from A indicated a choice of Ay = 2h; for the initial
length of the wy-edge of the endpoint cells. The fastest trajectory segment
between those two cells was found on the map constructed for wy = 15. The
cell dimensions were then reduced in such a way that each endpoint cell was
divided on the same grid as the original region in the dashed box and the
search was repeated. The two segments found in this search caused the path
to meet the specified tolerance, so no further iterations were required. The
total path, shown in figure 3(c), contains three segments but the two smaller
ones are invisible because of the magnitude of the cell-size step between the
first and second pass of the path-finding algorithm and the scale of the figure.
Stabilization of the system at B is discussed elsewhere][2, 7].

Equation 2 also describes the dynamics of a particular kind of phase-
locked loop (PLL) circuit. A block diagram of a PLL-based phase modulator
is shown in figure 4. The difference between the output and reference phase
is filtered and used to drive the voltage-controlled oscillator (VCO) so as to
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minimize the difference (8, — 0,.s) and “lock” the output phase to that of the
reference signal. The phase detector (PD), often a simple mixer, is the main
source of the nonlinearity and of the harmonics that necessitate the filter.
The voltage into the summing box, which corresponds to the applied torque
in the previous example, modulates the output phase §,. Once a PLL is
locked to a sinusoidal signal, changes in frequency can be tracked over some
lock range. Initial lock can be acquired over a smaller capture range. These
ranges depend in a complicated way on the global, nonlinear properties of
the loop and define a rectangular region on the system’s state-space. The
forward path gain puts an upper bound on the former; the latter is smaller
because of the filter’s rolloff.

Perfect Moment can exploit the phase-modulating input 7(t) to improve
the capture range of the circuit. This usage is different in spirit from the
paths described in the previous example, as the control objective is a wide
range and not a single point. The best approach to this task is to use Perfect
Moment to find a drive frequency w§ which, in conjunction with a particular
reference frequency Weapture < Wz < Wiock, creates a strange attractor that
overlaps the capture range limits of rectangle. Whenever an input reference
frequency of w, is detected, an external drive with wy = w9 is applied until
the system enters the rectangle. The drive is then immediately turned off,
allowing the circuit to settle within the existing lock range. The strange
attractor bridge found by the program effectively expands the capture range
to include the entire lock range.

One final, brief example is presented here to demonstrate Perfect Mo-
ment’s use of counterintuitive moves. In a mathematically unrelated but
familiar example, the Lorenz system, a strange attractor segment has been
used to bridge boundaries of basins of attraction between two fixed points[2].
A trajectory emanating from the right-hand starting point in figure 5 — at
a low parameter value — would normally converge to the left hand fixed
point along the tightly-wound spiral at the bottom left of the figure. The
right-hand path in the figure was found by a single pass of the first two steps
of the path-finding algorithm; it contains two segments: a chaotic trajectory
at a higher parameter value that travels most of the way to the other fixed
point and a short section of the non-chaotic spiral that surrounds the sec-
ond fixed point. Note that this trajectory makes an initially-counterintuitive
move directly away from its control objective. Not only has this manipula-
tion allowed the trajectory to jump the basin boundary and converge to the

opposite fixed point, but it has also bypassed much of the slowly-converging
spiral around that point.
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Figure 5: Segmented Path to a Fixed Point (from [2])

5 Summary

A chaotic system’s behavior, and thus its state-space features, are strongly
affected by parameter values. Moreover, the trajectories that make up those
features separate exponentially over time. Small changes in parameters or
state can thus have large and rapid effects; this leverage is a powerful tool
for control algorithms. This paper demonstrates how fast and accurate com-
putation can be used to synthesize paths through a chaotic system’s state
space that exploit this leverage to accomplish otherwise-impossible control
tasks. Nonlinear dynamics provides the mathematical tools used to choose
values, tolerances, heuristics and limits for the algorithms that select and
piece together trajectory segments to create these paths. These algorithms
find shorter and faster trajectories than traditional control methods, make
unreachable control objectives reachable and improve convergence. They
do this by constructing strange attractor bridges, making counterintuitive
moves, and utilizing regions of sensitive dependence. However, this perfor-
mance gain does have a cost: the complexity of the tasks that are executed
by Perfect Moment and the accuracy demanded by the very sensitivity that
gives the program its power make computation speed a vital issue.

Preliminary versions of these programs have been successfully tested on
simulated models of several systems, but the ultimate goal of this project is
the control of real physical devices. Versions of the driven single pendulum
and the phase-locked loop discussed in this paper have been constructed and
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are in the midst of being instrumented for control. A double pendulum is
also under development, but its instrumentation is much more difficult. Much
work will have to be devoted to system identification and observation issues
— modeling error, sensor and actuator inaccuracy due to D/A and A/D
conversion and time delay, etc, — before the gains demonstrated in these
simulations can be fully realized in the corresponding physical systems.
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