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Programmable Applications:
Interpreter Meets Interface

Michael Eisenberg
MIT Laboratory for Computer Science

Abstract. Current fashion in “user-friendly” software design tends to place an over-
reliance on direct manipulation interfaces. To be truly expressive (and thus truly
user-friendly), applications need both learnable interfaces and domain-enriched
languages that are accessible to the user. This paper discusses some of the design
issues that arise in the creation of such programmable applications. As an example,
we present “SchemePaint,” a graphics application that combines a MacPaint-like
interface with an interpreter for (a “graphics-enriched”) Scheme.

Despite the fact that it is hard to write, hard to maintain, and hard to
market, the fact of the matter is that good software exists. A visit to the
local home-computer shop will prove it. The shelves are lined with beau-
tifully packaged paint programs, music programs, statistics programs, CAD
systems, games, databases, word processors. Many of these programs are
best-sellers, and deservedly so. Their users will swear by them, and compare
the features of one wonderful program against another, waiting for the next

release of some favorite application to see what new amazing functionality
has been added.

But underneath the well-earned praise of the best applications software,
there is often a muted note of frustration. Somehow it seems that the soft-
ware never does quite enough. The competitor’s music program allows you
to specify notes other than those in the twelve-tone scale; the word proces-
sor that your friend owns permits text regions of non-rectangular shape; the
physics simulator at the school next door has a wider choice of integration al-
gorithms. Or perhaps some straightforward task is impossible in everybody’s
version: the paint program can’t be found that allows the user to draw a
logarithmic spiral, or a sine wave, or a Lissajous figure.




After several years of running into barriers, users begin to write to the
software company, asking for more functionality; often their wishes are granted.
But like the legend of the Monkey’s Paw, the granting of wishes only makes
the problem worse. Now the paint program, version 5.0, includes spirals; and
Lissajous figures (just specify two component frequencies); and sine waves
(the dialog box asks for frequency, amplitude, and phase); and reflections
in mirrored spheres; and color gradients; and non-regular hexagons; a hiero-
glyphics library; and much, much more. The menus have metastasized into
nested submenus, each of which leads to a scrolling box whose list of choices
branches off into multiple dialog boxes. It’s impossible to keep straight which
options are included in the software, which are included in somebody else’s
software, and which are still in the works for version 6.0. And the program
still doesn’t do enough.

The problem with version 5.0 of the paint program is actually a corollary
of the problem with version 1.0. In fact, the problem with version 5.0 orig-
inated before version 1.0 ever existed. It originated on the drawing board,
with a design decision that insisted on keeping the activity of programming
sacrosanct. It began with the assumption that users never, ever want to

write programs, no matter how small those programs might be or how much
fun the user might have.

1. A Paradigm For Software Design

The potential exists for a new class of applications software, more ex-
pressive, more extensible, and more respectful of the user’s imagination than
that which preceded it. Instead of dividing the world into computer gurus
and computerphobes, these applications would welcome the spread of a pro-
gramming culture. And because these applications would make maximum
expressive power their fundamental goal, they would truly be user-friendly,
rather than—as is often the case—user-condescending,.

The central design precept behind this software is easy to summarize, if
tricky to realize. Applications should contain both an extensive, learnable di-
rect manipulation interface and an interpreter for at least one well-supported
programming language. In other words, we would like to combine the very
real successes of the most popular home-computer applications (typified by



“Macintosh style” interfaces) with the unimaginably rich expressive range of
programming languages.

Ideally these two aspects of program design can combine symbiotically.
The goals of the interface include learnability; ease of understanding; ex-
plorability; and aesthetic elegance. Perhaps most important, the interface
should allow the user to perform those tasks best suited to the human skills
of hand-eye coordination. On the other side, the goals of the programming
language should include a good match between language primitives and do-
main concepts; the ability to express important domain processes in short,
simple programs; and pathways for incrementally increasing program com-
plexity.

If these two “halves,” interface and interpreter, were merely to coexist
passively—if we were merely to slap together, e.g., the best paint-program
interface with a Logo interpreter—we would already have a product arguably
more exciting than most. But, again, these two halves can in fact do more
than coexist in conceptual isolation. They can support one another, each
building on the strengths of the other. Interface features can interact with
programming constructs in a variety of imaginative ways. It is in such direc-
tions that many of the most interesting design possibilities await.

It is not easy to understand in retrospect why the two communities—those
interested in learnable user interfaces and those interested in programming
environments—have ever perceived themselves as being at odds with one
another. The reasons may have more to do with sociology and researchers’
personal style than with any kind of deep intrinsic philosophical division. To
the user-interface designers, we might well ask, why not include programma-
bility as one of the desiderata of a complete application? After all, if the
point of an application is to provide the artist /musician/scientist with the
most natural and attractive system possible, why not allow those who wish
to program the opportunity to do so? And to the community of language
designers and implementers, we might ask, why this fascination with the
general-purpose programming environment? Why not include the develop-
ment of domain-specific interfaces—maybe a whole collection of them—as
part of the task of designing a useful language? The questions here go be-
yond adding menu- and window-objects to the language, but rather include
issues such as the potentialities for building enriched language implementa-
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tions, tailored to some particular domain.

In a very real sense, the two communities share and have always shared
an important mutual interest—how to cultivate the use of programming as a
means of expression. But despite this, despite the real gifts that the language
designers and interface designers can offer one another, they often seem to
view themselves in inexplicable opposition. Interface designers have taken it
as an article of faith that users can’t and won’t write programs, and that the
only way to sell an application is to trumpet that NON-programimers can use
it. (This without asking whether programmers can use it, or indeed whether
non-programmers are happy in their condition.) Language implementers, in
their turn, have treated interface and application writing as an afterthought
to the main job of creating a general environment not particularly suited to
anything; the resulting system is more of interest (really, only of interest)
to professional programmers, and slights the myriad potential smaller-scale
programming projects in which professionals of other stripes might indulge.

Language implementers are also not the only community that ignores the
waiting audience of applications-users. In academic computer science, the
study of programming languages is associated with issues such as denota-
tional semantics, compilation techniques, and parallelism; and even “soft-
ware engineering” typically focuses on specification, coding, and debugging
of large systems software projects. These concerns are undoubtedly impor-
tant; but at the same time, the design of personal tools and applications is
unfortunately viewed as a “soft” issue, unworthy of rigorous scientific study.
Why should this be the case? The creative potential of the individual, la-
boring to find a voice through the machine, is slighted. It is as if students of
writing were to ignore novels, short stories, love letters, and folk songs, and to
concentrate upon Webster’s Unabridged Dictionary. We should rather look
forward to the day when the subjects of “language design” and “software en-
gineering” can also connote the creation of enjoyable, learnable customized
languages and applications.

The remainder of this paper presents a fuller portrait of combined in-
terface/interpreter systems, or what might be called “programmable appli-
cations.” Sections 2 and 3 briefly review some of the problems inherent in
providing only one or the other of the interface/interpreter dyad. Section
4 is a preliminary discussion of the design issues involved in creating pro-
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grammable applications. In Section 5, a sample programmable application
is presented: “SchemePaint,” a program that combines the direct manip-
ulation features of standard paint applications with a “graphics-enriched”
Scheme interpreter. This example helps to make concrete some of the issues
that were introduced in the previous sections. Section 6 presents some of the
more interesting and provocative objections to the programmable application
concept, and responses to these objections. Finally, Section 7 is a discussion
of where programmable applications might lead: we present a number of pos-
sibilities for additional sample projects, and draw the (very skeletal) outlines
of a research agenda for the future.

2. Direct Manipulation and Its Discontents

“Direct manipulation” is of course a broad term, and one whose definition
is better indicated in practice than through abstract classification. Although
there are many variations on the theme already in existence, the best collec-
tive example of direct manipulation is provided by the Apple Macintosh—
its operating system and its most popular software packages. Specifically,
we might regard programs whose complete interface is embodied in menu
choices, icon selection, dialog boxes, and mouse clicks as good examples of
direct manipulation systems.!

Direct manipulation at its best has a number of extremely attractive
features, of which learnability and ease of use are among the most important.
It is possible to learn the rudiments of the Macintosh operating system in
an hour or two; and beginning projects can be undertaken on the best Mac
software within an afternoon. Many programs show a wonderful attention
to matching the techniques of manipulation to the user’s intuitions. Just to
cite one example: the ImageStudio drawing program {S6} includes an “index
finger” icon which may be used as a kind of “smudging device”; by moving
the finger back and forth over an already-drawn line, one can get the effect of
“rubbed pastel” on the screen. This is a delightful feature, and the illusion
of smudging a pastel line by hand is surprisingly strong; it is hard to imagine

1t should be mentioned in this context that “Macintosh-style programs” are now widely
available on other home computers, and on high-end workstations. Thus, although our
discussion uses the Mac as a source of examples, our observations should not be interpreted
as applicable only to Apple machines and software.



even an occasional ImageStudio user either missing or misunderstanding this
feature of the program.

Marvelous examples such as this abound in Mac-style software. But
problems arise when these marvelous examples pique the user’s interest and
imagination, and suggest some new wrinkle not anticipated by the interface
designer. Perhaps—just to pursue the “smudging finger” feature described
in the previous paragraph—one would like to designate only certain colors
as “smudgable”; that is, one would like some colors to be responsive to the
smudging operation and others to be unaffected by it. This is a perfectly
reasonable thing to want, but if it is not explicitly included in the interface
the user has no hope of obtaining the desired effect.

It is worthwhile to underscore the point of the previous paragraph. The
complaint is not that there are certain features missing from certain pro-
grams, or that those programs need to incorporate a new list of menu items.
The complaint is rather that pure graphical interfaces are almost invariably
severely limited in expressive power; the semantics of clicking/dragging/selec-
tion are simply too impoverished to accommodate the imagination of long-
term, serious users. This statement is a matter of empirical fact rather than
logical deduction; one might come up with the occasional circumscribed do-
main in which a graphical interface is close to ideal. Moreover, speaking pre-
cisely, it is of course possible to devise graphical mouse-driven programming
languages that are Turing equivalent and hence have all the expressiveness
one could wish. In pragmatic terms, however, these ob jections beg the issue.
As of yet, there are no purely graphical programming languages in widespread
use, and it remains unclear whether such languages will ever win converts
away from textual programming. And—as to the first objection—there are
still very few interesting applications that are sufficiently circumscribed so

as to be both non-programmable and unimprovable by the incorporation of
a language.

Once one starts examining the shelves and shelves full of applications soft-
ware, the omission of programmability looms as a pervasive, near-universal,
and nearly always major flaw in even the best systems. A music-composition
program advertises that it allows crescendi and decrescendi to be notated
directly on the screen: the composer selects one bar as piano, a later one as
forte, and (via menu) notates the bars in between as a crescendo, and the
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program will play the music with smoothly increasing amplitude. All well
and good. But because amplitude is not programmable, the composer cannot
express the notion of increasing it nonlinearly, varying it with a little bit of
randomness, or making it dependent on the pitch or timbre of the note being
played. We turn to the educational software aisle: here’s an astronomical
observatory program that allows the student to view a representation of the
sky from any point on earth, at any time from centuries ago to centuries
in the future. Simply click on a location (via a mouse-sensitive map of the
earth), and click on a time (via a mousable year/month/day selector), and
the stars appear on the screen. Mind-boggling effort and ingenuity has been
lavished on the creation of this program, and the result is indeed beautiful.
But because we cannot write programs in which time is a variable, we cannot
see the path of Orion animated, night by night, over the course of a suminer;
the retrograde motion of Mars is likewise hard to see; nor can we chart a
course to the North Pole and see how the night sky smoothly shifts as we
change location. Well, perhaps this video-editing system in the brand-new
multimedia aisle will satisfy us. Here, we can cut-and-paste video clips into
sequences—just what an editor needs. But might not a video editor actually
need something a bit different? Suppose she has retrieved two video clips
and wants to find the perfect frame from which to cut from the first to the
second; might she not wish to view the same two clips over and over, incre-
menting the final frame of the first clip until the effect was just right? This
would be a crisp, half-page program to write in a language with “video-clip
data objects”; but because the editor is limited to mouse clicks, she has to
construct each viewing sequence by hand.

There are certain key elements—really, defining elements—of program-
ming languages that are absent from virtually all existing “pure” direct
manipulation interfaces. First, users of these interfaces rarely have access
to the standard control structures and concepts of programming languages:
conditionals, loops, recursion, and so on. The user of our sample musical-
composition program, for instance, can specify where a crescendo starts and
ends; but he cannot express the notion that if a note is higher in pitch, it
should be played a bit louder. Likewise, our hypothetical video editor can-
not express the concept of repeatedly viewing two clips in sequence, varying
a frame number at each iteration. A user of any standard paint program
cannot make a simple spiral, because he cannot write what amounts to a



two-line tail recursive procedure in Logo.

A second element missing from direct manipulation interfaces is the abil-
ity to create compound data objects—arrays, lists, and structures. Often one
can select groups of objects on which to perform a particular operation (e.g.,
a set of graphical elements to move); but cannot re-use the same grouping
repeatedly, append it to some other grouping, create an ordering among a
set. We might have drawn several trees while working with a paint program,
but we cannot designate that group as a stable entity: every time we want
to re-color all the trees, resize them, whatever, we have to select the whole
set all over again. We cannot recolor all pixels whose RGB color is within a
certain range, both because we cannot express conditionals (as noted in the
previous paragraph), and because we cannot create stable groupings based
on those conditionals. To take one last example: in the astronomical observa-
tory program, there is no straightforward way to take statistics—to ask, for
instance, the mean number of hours per evening that Venus is visible during
a year—since doing so would most likely require lists or arrays of numbers.

Finally, there is no way of naming procedures or ob jects; thus there is no
way of using abstraction to build more complex operations from simple ones.
Having created a graphic procedure to draw a fractal flower, we might want to
draw a bunch of flowers, varying slightly by color, length, petal-number, and
placement; but without a named flower procedure, and without the ability
to parametrize that procedure by color, length, and so on, we are stuck. We
cannot use our flower procedure to make a more complex bouquet proce-
dure, or window-box procedure, or to make geometric designs incorporating
fractal flowers. Again, without the presence of named procedures in the
observatory program, we cannot express the general idea of looking for the
closest approach between two objects in the sky over a given period as seen
from a given location; and we cannot use a procedure for that purpose to find
the closest approach between the moon and sun over a given year (as seen,
e.g., from Boston); and we cannot use that procedure to write another that
looks for the occurrences of solar eclipses in a given century; and we cannot
use that procedure to write another that graphs the number of solar eclipses
visible from the Northern Hemisphere by century. The ability to name com-
posite objects and operations, and the ability to employ named parameters
within operations, are crucial to the process of abstraction. Without these



abilities we cannot express higher-level concepts than those we began with.
The concept of an “eclipse” is not built into the observatory program, but
if we can write procedures we can express that concept nonetheless; we can
write procedures that search for eclipses, record them, take statistics about
them.

What is missing, then, from a “pure” direct manipulation interface is pre-
cisely what a programming language provides: the ability to express straight-
forward control constructs, the ability to create stable composite sets of data
objects, the ability to build complexity through naming operations and ob-
jects. And because these things are missing, the boundless range of concepts
expressible through them is likewise unavailable. As a result, the designers of
direct manipulation interfaces are inevitably confronted by frustrated users.
Typically, rather than redesign the system by incorporating programmability,
the interface designers will instead add patchwork fixes—unrelated, ad hoc
features tacked on to the original interface. The next-generation observatory
program may include “eclipse searches”; the next-generation video-editing
program may include a “repeated viewing” menu selection; and so on. Like
the “version 5.0” graphics program mentioned in the opening paragraphs of
this paper, these newer-generation programs do not address the core reasons
for users’ discontent. The problem in the observatory program, for instance,
has nothing to do with the absence of “eclipse searches” per se; and no finite
set of similar enhancements can possibly fix the problem. What is missing
is a medium of expression in which concepts can be built, named, saved,
re-used, extended, combined. What is missing is language.

3. The (Too-) General Purpose Programming Environment

The previous section argued the expressive inadequacy of direct manip-
ulation unleavened by programmability. But it’s possible, of course, to go
to the other extreme and leave everything to programming—i.e., to provide
the user with only the bare-bones interface that usually accompanies a pro-
gramming language environment. For example, rather than provide a paint
program to the artist/user, the designer might simply sit him in front of
a Lisp machine and tell him that everything he needs is here, somewhere.
This may be acceptable (barely) to the Lisp expert, but will almost cer-
tainly alienate anyone who views himself as an artist first and programmer
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afterward.

There are really two major gaps in general-purpose programming envi-
ronments vis-a-vis their use in applications. First, programming languages
themselves, while tremendously expressive, are insufficient for many tasks
that people do more naturally without linguistic mediation. For instance, it
is possible to write a Logo program that will draw a horse; but it’s much
easier for most of us to draw a recognizable horse using a pencil than using a
turtle. There is simply a kind of wisdom that people have in their hands, in
their eyes, that defies representation in code (and often in English as well).
It is easier to draw a face than to explain to someone else—computer or
human—how to draw a face.

For many applications, then, a programming environment can benefit
from the addition of direct-manipulation tools that take advantage of those
extra-linguistic talents that users may have. But as it happens, programming
environments rarely do come bundled with interfaces geared to some specific
(non-programming) domain. For instance, no Lisp or Pascal environment
of which I am aware comes with a loadable “paint interface” that augments
the existing language system with mouse-driven tools for drawing polygons,
splines, and so on.

There is of course a standard reply at this juncture for defenders of
programming environments. They will say that these desirable interface
features—mousable icons, menus, dialog boxes, et al—are, or ought to be,
constructible within the environment. But why should expertise in building
dialog boxes in Pascal be a prerequisite for using a paint application? To
put it another way: even if the user has some mild programming experience,
and even if he wishes to put that experience to use in working with a paint
application, he should not be expected to have sufficient time or expertise to
build that application from scratch. The artist /programmer is interested in
language constructs that employ color, pen-size, texture, perspective; he is
not therefore interested in constructs that build the interface itself.

The first problem, then, with “pure” programming language environ-
ments is that they are incomplete on their own in the absence of direct
manipulation interfaces. Ideally, such an interface should provide the user
with a quick, simple, engaging method for performing those functions that
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are impossible (or maybe just too tiresome) to do by programming.

The second problem with general-purpose environments is that they are
designed for the benefit of the professional programmer, and as a consequence
are unsuited to other users. Consider what a musician might need in a pro-
gramming language: wave-form objects, bar objects, sound libraries, chord
libraries, a variety of others—along with primitive procedures to manipu-
late these object types. A standard programming environment will probably
not provide any of these objects and procedures. To be sure, such “frills”
could be built up within a sufficiently powerful environment; but, as noted
a moment ago, this should be the application programmer’s task, not the
musician’s (or other professional’s) task. The musician should sit down at a
fully-prepared musically enriched programming system—not a wilderness of
tiny building blocks from which such a system might someday arise.

There is really a key requisite for a programming environment geared
toward non-computer-science professionals: meaningful tasks, within the do-
main of the user’s interest, should be expressible by a line or two of code in
the user’s very first program. This does not preclude, of course, the possi-
bility that the environment could accommodate large programs; but it does
constrain the environment to be much more “enriched” for a particular do-
main than its more general-purpose cousins.

To sum up, then, the second complaint about “pure” programming en-
vironments: they lack the linguistic tools that form the best possible match
with domains outside of programming. (This is in contrast to the first prob-
lem mentioned above, which focuses on the lack of “extra-linguistic tools.”)

As such, the only people who feel intellectually comfortable within these
environments are hackers.
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4. Strategies for Integrating Mind-Work and Hand-Work

The previous two sections focused, Scylla-and-Charybdis-fashion, on the
problematic aspects of direct manipulation (in isolation) and general purpose
programming environments (likewise in isolation). In this section, we explore
some of the key design issues that arise in steering a middle ground. The level
of discussion here is necessarily speculative; many of the issues are unresolved,
or allow (as design issues often will) for multiple answers. A few topics may
represent embarkation points for empirical research. Nevertheless, it is worth
at least introducing these issues here; and additionally, several of the topics
first discussed in this section will be returned to and elaborated upon in the
sections that follow.

4.1 Special-Purpose Language versus General Language

A Dit earlier, we observed that general-purpose programming environ-
ments were unsuited to professional (non-computer-science) domains. This
leads naturally to the question of just how domain-specific languages should
be implemented. Granted that a “music language” or “mathematics lan-
guage” should be written: how do we write it?

The most straightforward approach to this question is to invent a special-
purpose language with syntax and vocabulary all invented from scratch. Such
“little languages” do indeed currently exist in certain domains: the command
languages supplied with many standard database programs comprise one type
of example, as do the Mathematica language {59} and the Lingo language
associated with Macromind’s Director program.{S53} Though in some indi-
vidual cases, these applications occupy the “overemphasis-on-programming”
end of the spectrum—i.e., they make too little use of direct manipulation—
nevertheless, by and large these are highly successful products. Certainly the
best of them do not suffer from the flaws of “pure” direct manipulation inter-
faces listed earlier. In the case of Mathematica, for example, an expressive
and powerful application language has to date formed the basis of several
textbooks and a quarterly journal.{21, 41, 42}

As we have noted, the designers of these applications have chosen to
invent a completely new language—new syntax, new control structures, vo-
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cabulary, everything—to go with each new program. There are admittedly
certain advantages in this approach. Presumably, when creating a special-
purpose language, designers can pursue the goals of learnability and domain-
appropriateness. A hypothetical “database language,” for instance, might
be created in accordance with principles of language learnability, so that the
database users could be expected to understand the language in a relatively
short time. Or there could be extensive testing done with professionals in
the user community to motivate particular choices of syntax and vocabulary.

It is dubious whether care of this kind has often (if ever) been taken in
practice; but even so, the special-purpose language route does in principle
have these points in its favor. There are strong advantages, though, to pro-
ceeding in a different way—namely, starting with a “standard” language like
Lisp or Pascal as a base, and extending it for use with a particular domain.

Why make a “musical Pascal” or “musical Lisp” rather than a brand
new “Musica” language? First, it is quite plausible that a number of ap-
plications might all be associated with (or accompanied by) the same base
language. This would give users an important edge: it would mean that
any user who learned the rudiments of (say) Pascal would be able to rapidly
gain proficiency in any Pascal-based application. Someone who learned how
to write Pascal procedures and functions could do so for a “music Pascal,”
a “graphics Pascal,” and so on. (In contrast, most ad hoc application lan-
guages are so distinct that they represent a significant learning effort even
for the experienced programmer.)

Conceivably, several applications based on the same programming lan-
guage could be combined in such a way as to yield a more powerful “multi-
domain” application. For instance, the set of additional procedures and
objects that extend Pascal into “graphics Pascal” could be combined with
the set that extend Pascal into “music Pascal”; and the net result would be
a still-more-extended language that has capabilities for both graphics and
music. We will return to this issue at greater length in the final section
of this paper, in the discussion of domain-specific libraries; but for now, the
point is simply that by using a standard base language, the common problem
of “program integration” between separate applications is alleviated if not
eliminated entirely. (In contrast, special effort must be expended to permit,
e.g., a database language to be called from within some other application.)
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The use of a general programming language (as opposed to an ad hoc lan-
guage) as the basis for an application-specific dialect can also benefit from
the continuing efforts of a large, long-term community of programmer/users.
For instance, despite the criticism of general programming environments ear-
lier, it is nevertheless true that considerable work has gone into the design of
these environments (in the form of structure editors, debugging systems, in-
cremental compilation, and so forth). Much of this effort can be appropriated
into application programming environments as well. Moreover, in contrast
to ad hoc languages, most existing general languages have a formalized se-
mantics and an agreed-upon standard (at least for some “core” version of
the language). This means that users of (say) a “graphics Pascal” can com-
municate the essential meanings of their programs even to Pascal users who
have never worked with the same particular graphics application. (Compare
the situation of Mathematica users, whose programs cannot be understood
by anyone who has not worked with that one particular application.)

To sum up this topic, then: a strong case can be made for incorporating
a well-supported language into a newly-designed application, as opposed to a
unique ad hoc language. Even so, in the final analysis, this decision is far less
important than the decision to allow programmability altogether. From the
user’s standpoint, the expressive power gained by using just about any lan-
guage will outweigh the possible disadvantages of working with the “wrong”
language. It should also be mentioned that—quite possibly—multiple lan-
guages could be incorporated into application interfaces. A graphics program
(say) might be accompanied by programming environments for “graphics
Pascal,” “graphics Scheme,” “graphics Basic,” or whatever language the user
finds congenial.? Again, though religious arguments might rage about the

advantages of one language versus another, the key issue is the availability
of some language.

4.2 Embedding a Domain-Specific Language Within a General Language

Throughout this paper so far, in describing domain-specific programming,
the notion of an “enriched language” or “enhanced language” has come up.

It is worth at least a brief digression at this juncture to elaborate on this
notion.

2This list might include, of course, some new ad hoc language as well.
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As a starting point, we might consider a typical programming environ-
ment for some language—for the sake of specificity, we can use Scheme as an
example. A Scheme system must by definition contain a certain “core por-
tion” of the language: perhaps a dozen special forms (listed under “essential
syntax” in the Revised® Report on Scheme {34}), a hundred or so primitive
procedures, and a variety of foundational object types (numbers, strings,
symbols, pairs, procedures, vectors, and so on). Virtually every Scheme sys-
tem contains much more than this central core: PC Scheme contains “window
objects,” MacScheme has “bytevector objects,” MIT Scheme has “error con-
dition objects.” In every case, these object types (and the procedures and
special forms associated with them) are not required by the Scheme standard,
but they add to the range of expression of the programmer; and because these
enhancements are embedded within the overall Scheme system, they obey the
usual conventions of Scheme syntax. (For instance, one can write procedures
in PC Scheme that take “window objects” as arguments, using the same
syntax that would be employed for writing numeric procedures.)

In a sense, then, these Scheme implementations already come prepack-
aged with their own “miniature embedded languages” dealing with notions
such as windows; that is, the core language has been enhanced with a number
of new object types and primitive procedures designed for working with some
domain not covered by the bare standard of the Scheme language. Admit-
tedly, these particular “embedded languages” are rather skeletal, and deal
with circumscribed domains mainly of interest to programmers; but they
illustrate in principle how “enhanced languages” can be constructed.

Just to pursue a slightly more elaborate example; suppose we would like
to add, as part of a larger graphics package, a collection of color-related
procedures to Scheme. The key questions in doing so would be to note

e What new kinds of objects have to be added to the language, and

e What new kinds of object-specific procedures and special forms have
to be added to the language.

To start with, we might choose to construct colors (in accordance with
many graphics systems) out of three floating-point values ranging from 0 to
1 and standing for the red, green, and blue components of the color (with 1
corresponding to the maximal amount of some component, and 0 the mini-
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mum). Thus, we start with a new Scheme constructor:

make-color-object red green blue procedure

This procedure takes three numeric arguments which should

range between 0 and 1. It returns a new color object constructed

from these values. For example, the expression
(make-color-object 0. 0. 1.)

returns a color-object corresponding to the color blue.

In addition to our new constructor, we create selectors for the color compo-
nents, and an object-type predicate:

get-color-object-red color-object procedure
get-color-object-green color-object procedure
get-color-object-blue color-object procedure
These three procedures each take a color object as argument

and return the appropriate component value (expressed as
a number between 0 and 1) as result.

color-object? object procedure
This predicate returns true if the object is of
type color-object, and false otherwise.

Finally, we would presumably wish to include a procedure that will set the

current graphics “pen color” and “background color” to some particular
value:

set-pen-color! color-object procedure

This procedure, when called on a color-ob ject, changes the
current foreground color to the desired value. If the

pen is now used to draw lines or points, they will appear
on the screen in the specified color.

set-background-color! color-object procedure
This procedure, when called on a color-ob ject, changes
the default background color to the desired value. The
next time the screen is cleared, it will appear as

a solid background of the specified color.

These procedures constitute the bare bones of a “color-manipulation lan-
guage” that could now be employed within our graphics package. For in-
stance, we now have sufficient means to write procedures that vary colors
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at random, that produce colors by combining other colors, that check for
“closeness” between colors, and so forth. Very likely, some of these pro-
cedures would themselves be supplied as additional primitives in our color
package (rather than assuming that the user should write them); but the
rudimentary set presented here at least lays the conceptual groundwork for
a more extensive language. As an example—just to indicate how we might
create higher-level constructs—we present a Scheme procedure that averages
two colors:

(define (average-between—colors colori color2)
(make-color-object

(average (get-color-object-red colori)
(get-color-object-red color2))

(average (get-color-object-green colori)
(get-color-object-green color2))

(average (get-color-object-blue colori)
(get-color-object-blue color2))))

Now we could use this new procedure to construct new colors from existing
ones. In the following expressions, we first construct “basic” red and blue
color objects, and then use these to construct other shades:

(define red (make-color-object 1 0 0))
(define blue (make-color-object 0 0 1))
(define purple (average-between—colors red blue))

(define reddish-purple (average-between-colors red purple))

This still-very-brief example should provide some illustration of the way
in which a few new basic elements, once embedded within a larger language,
can be used to build “compound thoughts” from simpler ones. We now have
the ability to interpolate between colors, and could consider, e.g., writing
a procedure that paints a region with colors smoothly varying from blue
(at left) to red (at right). In other words, “interpolating between colors” has
become an operation that we can work with, even though it was not explicitly
contained in our original set of objects and procedures.

In microcosm, this example also illustrates a principle of software design
articulated by Abelson and Sussman in their book Structure and Interpre-
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tation of Computer Programs. These authors write of program-building as
an effort of language construction: i.e., rather than writing software whose
main focus is the decomposition of problems into subproblems and sub-
subproblems and so forth, we can instead write software that provides us
with a language in which the entire problem domain can be expressed. As an
example, Abelson and Sussman present a digital circuit-simulation language
(embedded in Scheme) in which the primitive objects consist of wires; there
are procedures that act like AND/OR gates combining these wires; and there
are a few additional procedures that examine the states (logical 1 or 0) of
wires, that propagate wire values through a circuit, and so forth. Again, be-
cause the system is written as a language, with its own primitives and means
of combination, we can build greater complexity from the original founda-
tion: we can construct flip-flops, counters, full-adders, and all sorts of digital
devices, and—more importantly—these new devices now become part of our
conceptual vocabulary. That is, having built a procedure that constructs
flip-flops, we can now treat that procedure as a new primitive with which to
express still more complex ideas (e.g., we could now create a procedure that
creates shift-registers by combining together a series of flip-flops).

There are still many issues left unresolved in this discussion—indeed,
in Abelson and Sussman’s treatment as well. For instance, we might ask
if there are broad design principles in the embedded-language-construction
process: given that we wish to construct, say, a “music Scheme,” how do we
start? We might ask if there are methods for comparing two alternative sets
of language primitives—whether it is possible, e.g., to construct a “better”
(more learnable, more compact, more elegant) set of primitives for color
manipulation than those suggested above. Or again, coming back to the
main issue of this paper, we might ask if there are strategies for integrating
such constructed languages with powerful interfaces—for instance, we might
want to combine the digital simulation language with an interface that allows
us to construct circuits by dragging gate-icons about on the screen.

We will return to these issues in subsequent sections of this paper; but, as
a final note, it is worth mentioning that the “embedded language” idea has
been used with notable success in at least one instance—the Logo language.
Logo was originally devised as a dialect of Lisp with a learnable syntax suit-
able for children. As such, it is a perfectly good general-purpose language. In
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practice, however, the overwhelmingly popular aspect of Logo is not so much
its syntax or Lisp-like origins, but rather its characteristic association with
turtle graphics. It is this embedded “turtle language” within Logo that has
helped the language truly make its mark; one can no more think of a “Logo
system without a turtle” than of a Lisp system without lists. Thus, Logo is
in many ways a prototype of the domain-specific embedded-language idea:
it is a general-purpose programming environment enriched with a collection
of objects and procedures around some particular domain. What is missing
in a pure Logo environment, arguably, are the direct manipulation interface
features that would make it a much more powerful medium for graphics of all
kinds; but on the linguistic side, Logo provides a good working example of
the “enhanced language” concept. We will come back to this issue in Section
5 of this paper.

4.3 Interface-Level Programming versus Application-Level Programming

The previous discussion was devoted to elaborating upon the notion of
developing a “domain-enriched” version of an established general-purpose
language such as Scheme. It is worth contrasting the activity of programming
in this type of domain-specific dialect with a different sort of programming—
what might be called “interface-level programming.” The distinction has its
grey areas; but since this issue often arises in talking about programmable
applications, we might as well face up to the topic now.

Interface-level programming is what users do when they are allowed “un-
der the hood” of an application—most likely by obtaining the source code
for the application. A user who does interface-level programming can go
mucking about in the code of the application itself: he may change the win-
dow arrangement, or the appearance of icons, or the default meanings of
particular keystrokes. This type of activity is often associated with the term
“tailorability”: an application is said to be tailorable if it allows the user to
alter the presentation or behavior of that application.

Tailorability is certainly desirable in applications, and reflects a laudably
democratic spirit on the designer’s part. By permitting users to indulge
in interface-level programming, tailorable applications encourage the user to
think about and participate in the design issues that underlie the construction
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of the application.

That said, tailorability is oversold as a design philosophy. Consider once
more the examples of frustrating direct manipulation interfaces that we listed
earlier: we wanted the paint program to include Lissajous figures, and the
observatory program to include eclipse-searches, and the video program to
allow repetitive playing of video-clips. These aren’t presentational issues to
be solved by allowing the user under the hood of the original applications:
we don’t want to add a “Lissajous figure” choice to the paint program menu,
even if such an alteration were straightforward. The problem was that the
application was missing a language in which Lissajous figures, and billions of
other ideas, could be realized as they were needed.

To put it another way: users, by and large, don’t need or want to confront
the problems of a designer. They do not want to deal with interface issues,
but rather with domain issues. A student working with the observatory
program does not care about what fonts and icons and window arrangements
the program uses; he cares about astronomy. Thus he needs a language
in which to talk about astronomy, as opposed to talking about astronomy
programs. The objects of interest are “star objects,” “planet objects,” values
for latitude and longitude, and so on; and it is the ability to write powerful
programs with these objects that constitutes real progress for the user.

Of course, there is no reason that interface-level and application-level
programming can’t coexist: we should allow users under the hood whenever
they want to go there. But, as software designers, we flatter ourselves to
think that users are interested in our job. Languages are best used not to
tailor applications but to tailor the way that we conceptualize a domain.

4.4 Where Does the User Begin?

Suppose, as a consequence of frustration, that a user actually goes out
to the computer store and purchases his first programmable application: a
“graphics Scheme” system perhaps similar to the one described later in this
paper. Could any user—particularly one new to programming—possibly take
advantage of the power of such an application? How would he begin?

This is an especially thorny question. Conventional wisdom in much of
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the computer industry is that the “average user” does not want to deal with
a programming language under any circumstances. Any user foolish enough
to purchase a “graphics Scheme” would never bother to learn programming,
according to this view; the overhead in time and mental effort is simply too
great.

Conventional wisdom has been wrong before and may be wrong now;
only actual case histories, based on experience, will eventually decide this
particular issue. Nevertheless, if programmable applications are to attract
new users, they had better be structured in such a way as to make the entry
into programming as gentle and useful as possible. Users may well begin their
work with the application by focusing all their attention on the interface; but
at some point they will wish to put their toe into the water of programming,
and when that occurs the system should encourage their efforts.

There are several “learnability-enhancement” strategies that should all
be investigated in concert in the design of programmable applications. First,
sample programs with extensive documentation (and with suggestions for
experimental changes) might be provided along with the application; when-
ever the user wished to, he could load and peruse these educational files.
Thus, our hypothetical graphics-Scheme user might begin his foray into pro-

gramming with the kind of simple turtle programming that enchants many
elementary-school-age Logo users.3

Second, there could be “learning-mode” programs that, when run, ac-
tually step the user through the creation of code; this type of embedded
tutoring would follow in the tradition of programming tutors created in the
past for Logo {30}, Basic {7}, Pascal {10, 23}, and Lisp {6}, among oth-
ers. Unlike most programming tutors, however, this type of system would
focus not on abstract problems to teach language syntax, but rather would
concentrate on tasks that are centered in the application domain. Thus,
the graphics-Scheme user might learn recursion in the context of creating

a spiral—a graphics task that is both interesting and yet at the same time
unachievable in the interface alone.

Finally, it is conceivable that sequences of interface actions could be trans-

3Compare the discussion of “programming by modification” in Lewis and Olson {26}.
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lated into readable (and editable) programs. Thus, the graphics-Scheme user
might draw straight lines on the screen, and the program could respond by
saving sequences of Scheme expressions into a file:

(show (make-line (make-point 15 20) (make-point 18 40)))
(show (make-line (make-point 18 40) (make-point 5O 40)))

and so forth. By now editing this code, naming it, parametrizing it, the
user could begin to get some feeling for the flexibility of programming. This
kind of “save-a-program” feature could be associated with particularly simple
operations (to avoid the difficulty of trying to represent every interface op-
eration in some canonical textual form). It might also constitute an element
of the programming tutor mentioned above.

4.5 Other Kinds of “Direct Manipulation”

Earlier in this paper, we noted that “direct manipulation” is a broad
concept, and that attempting a formal definition of it is tangential to our
main argument. For our purposes, a “mouse-based” interpretation of direct
manipulation will suffice—i.e., we will identify the concept with the “point-
and-click” interfaces typical of Macintosh applications.

Nevertheless, it is worth leaving a reminder to ourselves that mice are
not the last frontier in human-computer interfaces. Wondrous innovations—
“DataGloves,” tactile-feedback devices, 3-D viewing devices—are on the near
horizon.{19, 27} It is important to realize in this regard that direct-manipula-
tion interfaces based on these marvelous inventions will be every bit as frus-
trating as their mouse-based ancestors, as long as the interfaces are not
combined with the expressiveness of programming. Merely substituting a
DataGlove for a mouse will not cure the observatory program of its inability
to represent new concepts, nor will a 3-D viewer add spirals (or perhaps he-
lices) to a paint program. To be sure, these devices are great to have, and
they offer new ranges of expression to the computer user; but they do so
primarily by expanding only the “extra-linguistic” side of applications. The
need for language remains untouched—indeed the potential for creative col-
laboration between language and interface becomes even more complex and
exciting as the tools for interface construction evolve,
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5. SchemePaint: a Programmable Application

In this section, opinionated generalities are finally dispensed with, and
we present an actual working prototype for a programmable application.
“SchemePaint” is a program that combines the essential core of a direct-
manipulation paint system (similar in spirit to MacPaint {S$7}) with an in-
terpreter for a graphics-enriched Scheme (similar in spirit to Logo). The pro-
gram allows users to create hand-drawn (or perhaps more accurately, mouse-
drawn) pictures and to combine these pictures with complex computer-drawn
graphics. SchemePaint also includes a few embryonic (but interesting) at-
tempts at integrating its direct manipulation and interactive language “per-
sonalities.” At present the program runs on Macintosh computers with color
graphics (such as the Macintosh Ilci).

5.1 The SchemePaint Interface

The current SchemePaint interface consists of three windows: a graphics
window (in which drawings will be created), a “palette” window (which is
used to alter properties like pen-color interactively), and a Scheme interpreter
window. The first two of these windows may be thought of loosely as the
“direct manipulation” side of the program, and the third as the “language”
side. In addition, there are seven menus presented by the program: the
first four of these are general Scheme-system menus?, and the last three are
SchemePaint-specific. Figure 1 shows the initial SchemePaint screen.

In getting started with the program, SchemePaint may be thought of as
a small (and rather spare) direct-manipulation paint program. By selecting
a pen-size and pen-color (from the palette window), the user can draw lines
directly within the graphics window. Figure 2 depicts a hand-drawn line
created with this portion of the SchemePaint interface.

The palette window enables the user to select among twelve suggested
colors and three pen-sizes. It also includes selections for filling screen re-
gions (with a given color), for using the pen as an “eraser,” for typing text
within the graphics window, and for dragging the Logo turtle (to be described

4The program was written in MacScheme, published by Lightship Software {S8}; and
these first four menus are provided with the language system itself.
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w File Edit Command Window Paint Make A Map Turtle

transcript

MacScheme™ Top Level
>>> (start-schemepaint)>

done
22>
|
SchemePaint
(-140, 100) (190, 100)
fill
proc
[-1&0, -100 100, -£00)

Figure 1: The initial SchemePaint screen. The interpreter window is
labelled “transcript,” and the graphics window is labelled “SchemePaint.”
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Figure 2: Drawing a line by hand in the graphics window.

shortly). Menu options allow the user to create a variety of “standard” shapes
with the mouse; these shapes include circles, straight lines, rectangles, and
arbitrary polygons.

5.2 SchemePaint’s Embedded Graphics Language

Besides its direct-manipulation features, SchemePaint includes a Scheme
interpreter and an “enhanced” Scheme language with an extensive set of
graphics primitives. These primitives may be classified into several major
categories:

e Turtle graphics

e Planar maps (and two-dimensional dynamical systems)
o Color-related features

o Miscellaneous features

> 5.2.1 Turtle Graphics

SchemePaint’s turtle-graphics-related primitives are the same core set
that accompany most Logo interpreters. There are procedures for moving and
turning the turtle (including £d, rt, setpos, home, seth), for changing turtle
color and pen-state (including set-pen-color!, pd, and hide-turtle), and
for examining the turtle’s state (including penup? and getpos). Addition-

25



ally, the “turtle mode” selection on the palette window—mentioned a bit
earlier—allows the user to drag the turtle about on the screen, and to turn

the turtle. Thus, it is possible to first write an octagon procedure for the
turtle:

(define (octagon side)
(repeat 8 (fd side) (rt 45)))

and then to place an octagon at some desired screen location by dragging
the turtle to an appropriate starting point and evaluating (e.g.)

(octagon 25)

in the Scheme interpreter.

Because SchemePaint is embedded in Scheme, it can take advantage of
some of the elegant semantic features found in Scheme—notably the use of
procedures as first-class objects. As a very brief example, one could edit the
octagon procedure above so that it takes a “turtle-move” argument as well
as a “side-length” argument:

(define (octagon mover side)
(repeat 8 (mover side) (rt 45)))

Using the new version of octagon it is easy to express a “standard” octagon:

(octagon fd 25)

In addition, one can economically express any number of “octagon varia-
tions”:

(define (zig side)
(£d side) (rt 144) (fd (/ side 2)) (1t 144) (£d side))

(repeat 8 (octagon zig 20) (rt 45))

The picture produced by this last expression is shown in Figure 3.

5The “background grid” option has been turned off in this and subsequent figures.
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SchemePaint

Figure 3: A turtle-drawn figure in SchemePaint.

Finally, SchemePaint’s turtle graphics facilities include menu-selectable
equivalents for some common turtle commands (including  clearscreen,
hide-turtle, show-turtle, and home).®

> 5.2.2 2D Maps and Dynamical Systems

Besides employing turtle graphics, SchemePaint also allows the user to
create and display point-, line-, and polygon-objects, and to apply to these
objects a variety of planar maps (functions from the plane to the plane). As
an example of how these facilities may be used, we can begin by creating a
“point object” as follows:

(define the-origin (make-point 0. 0.))

Here, we have created a Scheme object representing the point (0, 0); this
point may be displayed on the graphics screen using the SchemePaint prim-

6The motivation for including these menu selections is not that these particular com-
mands are hard to remember, but rather that they are often used in “direct mode” (i.e.,
typed directly at the interpreter as opposed to being included in procedures). As a result,
they constitute “cliches” whose execution is more easily specified by selection than by the
occasionally tedious act of typing.
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itive show:

(show the-origin)

When this expression is evaluated, the point (0, 0) is displayed in the current
default foreground color on the graphics screen.” We now create a simple
“translation map”—a map that adds 5 and 6 to the x- and y-coordinates
(respectively) of its argument points:
(define sample-translation-map
(make-map (x y)
(+ x b)
(+y8))

Our definition employs a SchemePaint primitive named make-map that cre-
ates a “map object” which can now be applied to a given point (or line,
or polygon) to produce a new point (or line, or polygon). The appropriate
apply-map primitive takes as its arguments a map and an object to which
to apply the map:

(apply-map sample-translation-map the-origin)
(5.06.0)

We can display this new point on the screen by using show, just as we did
with the origin:

(show (apply-map sample-translation-map the-origin))

And we can go further to show the results of applying our sample map repeat-
edly to the origin by using yet another primitive named show-n-iterat ioms.
This primitive takes three arguments: a starting point (line, polygon) object;
a map to be applied; and the number of successive times that we wish to ap-
ply the map. It is used as in the expression below:

(show-n-iterations the-origin sample-translation-map 10)

By evaluating this expression, we see a succession of 11 points (including the

origin itself) representing the results of applying the map 0-10 times. The
graphics screen that we get is shown in Figure 4.

"The default screen coordinates correspond to the region of the plane from (-100, -100)
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SchemePaint

Figure {: A series of points produced by iterating a translation map.

Again, it is not hard to start building complexity once a powerful set of
primitives has been supplied. For example, here is a procedure that takes as

its argument a list of map objects, and returns a randomly chosen map from
that list:®

(define (select-random-map list-of-maps)
(1ist-ref list-of-maps (random (length list-of-maps))))

If we supply a list of map objects to our new primitive, we will get back one of
those maps, chosen at random. We can now write a procedure—analogous to
the show-n-iterations primitive seen a moment ago—that takes a starting
point, a list of maps, and a number n of iterations to use, and repeatedly

applies some map (chosen from the list), n times, starting with the given
starting point:

at the lower left corner to (100, 100) at the upper right. This arrangement may be altered
by using a primitive named reset-canvas-coordinates!.

8This procedure employs the common Scheme primitive procedures random and
list-ref. Again, because SchemePaint is embedded in Scheme, we can make free use
of all the standard Scheme features.
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(define (show-n-random-selections list-of-maps starting-point n)
(define (loop ct this-pt)
(cond ((> ct n) ’done)
(else (let ((new-pt
(apply-map (select-random-map list-of-maps)
this-pt)))
(show new-pt)
(loop (+ ct 1) new-pt)))))
(loop 0 starting-point))

The show-n-random-selections procedure may be used as the basis for
creating a wide variety of fractal shapes on the graphics screen. For instance,
the following expression, when evaluated, will produce a picture of the famous
Sierpinski triangle:
(show-n-random-selections
(1list
(make-map (x y) (+ 40 (* x 0.5)) (* y 0.5))
(make-map (x y) (* x 0.5) (+ 40 (* y 0.5)))
(make-map (x y) (* x 0.5) (* y 0.5)))
the-origin
2000)

The resulting picture is shown in Figure 5.

This necessarily brief discussion can only provide a hint of the kind of ex-
periments that one can perform with SchemePaint’s dynamical systems pro-
cedures. In addition to those mentioned in passing here, there are primitives
for composing maps (to create new, more complicated maps); for creating
line and polygon objects; for resetting the plane coordinates corresponding
to the graphics window; and for integrating two-dimensional systems of dif-
ferential equations.® Some pictures produced with SchemePaint’s dynamical
systems procedures are shown in Figures 6-8, and in Color Plates 1 and 2.

SA paper devoted exclusively to SchemePaint and its capabilities is currently in
preparation.
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SchemePaint
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Figure 5: The Sierpinski triangle, produced by an iterative
process of random selection among three affine maps.

A

Figure 6: Iteratively applying a rotate-and-scale map to a polygon.
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Figure 7: A fractal produced by iteration of a “superposed affine” map.

Figure 8: A design produced by iterating a scale-and-translate map. The
pattern visible on two of the surfaces was done using the “programmable coloring”

feature described in Section 5.9.1.
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> 5.2.8 Color-Related Procedures

SchemePaint’s color procedures are similar to those described earlier in
this paper. Color objects are composed of three real numbers (in the range 0-
1) corresponding to the R, G, and B components of the desired color.1® There
are primitive procedures for setting the current pen-color and for setting the
background color; for extracting the components of color objects; and for
creating color objects from numeric components. Other primitives allow for
interpolation between colors (as suggested in the earlier discussion), for filling

screen regions with colors, and for retrieving the color of individual pixels on
the screen.

Just as an example of how these color procedures may be used, we present
a procedure that takes as its argument a color-object and alters that color
by randomly shifting its red component up or down by 5 percent:

(define (shift-color-red-component color-object)
(let ((red-pct (* 0.05 (get-color-object-red color-object)))
(plus-or-minus (if (= (random 2) 0) 1 -1)))
(make-schemepaint-color-object
(with-lower-upper-limits
0. 1. (+ (get-color-object-red color-object)
(* red-pct plus-or-minus)))
(get-color-object-green color-object)
(get-color-object-blue color-object))))

Naturally it would not be hard to extend this idea to represent the notion
of shifting any component of a color object by any desired percentage; and
we could then vary that idea to express the notion of choosing a color at
random from a region of R,G,B-space; and we could vary that notion to
write a procedure that chooses randomly between a discrete set of colors.

SchemePaint’s color-related procedures may be used in conjunction with
both the turtle graphics primitives and with the dynamical systems primitives
mentioned earlier. Thus, evaluating a call to set-pen-color! will reset the

100f course, the actual number of distinct representable colors may be much smaller
than implied by this data structure—eight- and sixteen-color systems are not uncommon.

The number of representable colors depends on the graphics hardware of the individual
machine.
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turtle’s pen color or the (default) color in which points, lines, and polygons
are shown on the screen.

> 5.2.4 Miscellaneous Features

In addition to the features mentioned thus far, SchemePaint includes
several other capabilities in its “enriched language” component. Text may
be displayed on the graphics screen using a draw-string primitive (which
takes a string and cursor position as arguments); this complements the direct-
manipulation “text mode” of the program. SchemePaint likewise includes
primitives for copying rectangular regions of the graphics window, for saving
graphics screens in files, and for restoring graphics screens from saved files.

It may also be worth noting that SchemePaint makes free use of all the
standard facilities of the MacScheme language environment, including its
debugger, editor, byte code compiler, and file system.{58}

> 5.2.5 SchemePaint Pictures

Because SchemePaint allows the user to produce both hand-drawn and
machine-drawn figures, the pictures that one can create with the program
are much richer in scope than those created by either a “pure programming”
or “pure interface” environment. Color Plate 3 is an illustration of the idea:
it depicts a bee in a honeycomb.!! The bee figure would be difficult to draw
without a direct-manipulation interface (e.g., by writing a Logo program),
while the honeycomb would be tedious (though admittedly not impossible)
to create with a program such as MacPaint.

Color Plates 4-8 illustrate the same basic idea—combining hand-drawn
and code-drawn figures—in a variety of ways. Color Plate 4 depicts a hand-
drawn snake slithering through a Logo-style “rotated octagon” figure. The

expression that generated this figure (using the earlier octagon procedure)
is as follows:

(repeat 8 (octagon 30) (rt 45))

11The artwork for Color Plates 4-8 is by Orca Starbuck; this note is a special thanks for

her generous and talented assistance. On the other hand, the author must be blamed for
the artwork in Color Plate 3.
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Those who insist on the conceptual difficulty of programming might be ad-
vised that this is the sort of “rotated polygon” figure routinely generated by

moderately experienced fourth grade Logo programmers in classrooms across
the country.

Color Plates 5, 6, and 7 include Logo-style figures found in the book Turtle
Geometry by Abelson and diSessa.{1} Plate 5 includes recursively-drawn tree
figures; Plate 6, the well-known fractal shape dubbed the “dragon curve”;
and Plate 7, a figure generated by what Abelson and diSessa call an “inspi”
procedure (an easy variant of the standard Logo spiral-drawing procedure).
Finally, Plate 8 uses yet another recursive procedure, much like the tree
procedure of Plate 5—except this one is used to make peacock feathers. In
every case, the turtle-drawn figures may be combined freely and expressively

with hand-drawn figures, thus providing the artist/user with the best of both
worlds.

9.3 Further Directions in Interface/Language Cooperation

Thus far, our description of SchemePaint has focused on the interface and
language aspects of the program in isolation from one another. Of course both
portions of the program do interact with the graphics screen, and in that re-
spect they may be said to “cooperate”; and moreover, there are numerous
cases in which either language or interface may be used to effect some oper-
ation. (For example, the pen color may be changed either by direct selection
from the palette shown on the screen or by evaluating a set-pen-color!
call.) It must be admitted, though, that these cooperative strategies are
rather straightforward. In this section we describe some additional features
of SchemePaint—features intended as experiments in developing more sym-
biotic relations between interface and interpreter.

> 5.8.1 Programmable Colors

The first of these special features —“programmable coloring”— cannot
be found (to my knowledge) in any currently available graphics application.
It is, however, a genuinely useful addition to the the graphical artist’s reper-
toire. The idea is that the user can first write any function from z- and
y-coordinates to colors, and can then dictate that the mouse must use this
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function as its effective “pen-color.” (Another way of phrasing this is to say
that the pen-color depends on z and y.)

An example may help to explain this notion. Suppose we would like the
pen-color to be red for all z-values less than 0 and green otherwise.!? We
can write such a function as follows:

(define (red-negative-x-green-positive-x x y)
(if (< x 0) red green))

We can now cause this function to be the effective pen-color by performing
two operations. First, we evaluate a call to the special SchemePaint primitive
set-mouse-function!:

(set-mouse-function! red-negative-x-green-positive-x)

And now, by selecting a special palette box labelled “proc” we can tell the
mouse to use as its pen-color the very function that we just passed as argu-
ment to set-mouse-function!.!® Now, when we drag the mouse across the
screen, we will see a red line for positions at which the z-coordinate is less
than 0, and a green line otherwise. Using the default coordinates, we can see

the mouse change color as we drag it from the left half of the screen to the
right.

Programmable colors allow the user to create a wide variety of enjoyable
effects. We can create “noisy” colors (with a bit of randomness thrown in),
colors that reflect some numerical function of position, colors that can only
appear in certain regions of the screen. Here is an example: this function
produces a color of red near the origin, blue at any distance more than 100

units from the origin, and “intermediate” values at distances of less than 100
from the origin:

'?Recall that the default screen coordinates range from (-100, -100) in the lower left
corner to (100, 100) in the upper right. Using these default coordinates, then, the suggested
function would correspond to a red pen-color anywhere in the left half of the graphics screen
and a green color in the right half.

13In general, selecting “proc” causes the mouse to use as its pen-color the function most
recently passed as argument to set-mouse-function!. If we wish to change the mouse

back to a “normal” coloring mode, we simply select one of the other color choices on the
palette.
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(define (red-near-origin-blue-far-away x y)
(let ((distance-from-origin
(sqrt (+ (square x) (square y)))))
(it (> distance-from-origin 100)
blue
(interpolate-between-colors
red blue (/ distance-from-origin 100.)))))

Here is another example: this function produces vertical black and red stripes
of width 10 on the screen.

(define (vertical-stripes x y)
(if (< (modulo (round x) 20) 10)
black
red))

SchemePaint’s set-mouse-function! primitiveisin fact a special case of
a more general SchemePaint function named set -mouse-drag-procedures!.
This latter function allows the user to specify the behavior of the mouse in
“drag mode” (i.e., when the desired functionality involves holding the mouse
button down and dragging the cursor across the graphics window). Here,
the mouse behavior may be not only defined as a function of the current
x- and y-coordinates of the mouse cursor, but also of the previous x- and
y-coordinates'4, the color of the pixel at which the mouse is now (and was
previously) located, and the time since the dragging operation began. The
range of specifiable behavior using this general function is thus a superset of
the (already wide) range expressible via set-mouse-function!.

> 5.8.2 Naming Hand-Drawn Objects

The just-described “programmable colors” facility was one in which Scheme-
Paint’s language subsystem was used to communicate “instructions” to the
interface subsystem. It is possible to work the other way round—to have
interface operations send information back to the language subsystem. An
example of this type of facility is provided by SchemePaint’s use of certain

14That is, the coordinates for the last point at which the mouse was located during the

dragging operation; this facility allows for the speed of mouse-movement to be taken into
account in defining mouse behavior.
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default names for several classes of objects (points, lines, rectangles, and
polygons) created using the mouse.

As an example, suppose that we wish to draw a polygon “directly” on the
screen, by selecting the proposed vertices one by one with the mouse; this
is the standard method for creating polygons in most direct-manipulation
paint programs, and is permitted in SchemePaint as well. To perform this
operation in SchemePaint, we choose a “draw object” menu selection, and
then (from within a dialog box) choose the type of object that we wish to
draw—in this case, a polygon. Once the polygon has been drawn, it appears
on the screen; and a corresponding polygon object is now the value of the
Scheme name *last-polygon-created*. Thus, if we evaluate the name
*last-polygon-created*, we now have a data structure representing the
object just made via direct manipulation.

As in the case of programmable colors, this linkage between interface and
language gives us a great deal of power and flexibility. For instance, suppose
that we had earlier written a procedure to find the geometric center of any
given polygon:!®
(define (find-geometric-center polygon)

(let ((vertices (polygon-vertices polygon)))
(make-point
(average-of-list (map point-xcor vertices))
(average-of-list (map point-ycor vertices)))))

We could now use this procedure to find the geometric center of our newly-
drawn shape:

(find-geometric-center *last-polygon-created#)

Evaluating this expression returns a point ob ject representing the center of
our polygon. We could now plot this point (note that we do not need a special
“show geometric center” menu option); or we could use this information to
plot lines from the geometric center to each vertex of the polygon, as follows:

15Technically, this procedure computes the center of mass of equal masses placed at the
vertices of the polygon.

38



(for-each
(lambda (vertex)
(show (make-line
(find-geometric-center *last-polygon-createds*)
vertex)))
(polygon-vertices *last-polygon-createds))

Going further, we could now display new copies of our polygon at a variety
of centers (for instance, we could plot a lattice-pattern of polygons); or we
could plot a smaller copy of the original polygon centered at each vertex of
itself.

Using the mouse to create a new polygon at this juncture would alter
the binding for the name *1ast-polygon-createds; thus, if we wish to hold
onto the data structure for some polygon that we have drawn, we need merely
bind some other name to it before creating a new one:

(define my-first-polygon
*last-polygon-created*)

Evaluating this expression will bind the name my-first-polygon to the
newly-created polygon; now, if we use the mouse to create a new shape, the
name *last-polygon-created#* will be re-bound, but the name my-first-
polygon will still be bound to the earlier data structure.

It should also be mentioned that there are analogous special names *last-
point-created*, *last-line-created#, and *last-rectangle-created*
appropriate to other types of objects created using the mouse.

> 5.8.8 Escher Kit

SchemePaint has been designed as a rather general-purpose graphics pro-
gram; but people often use graphics applications with some special purpose
(or narrow range of purposes) in mind. For instance, they may wish to
use their just-purchased paint application to make geometric diagrams; or
architectural drawings; or circuit layouts; or political cartoons. In such a
circumstance, it is not unusual for users to become so frustrated with the in-
expressiveness of their graphics application that they will go out to software

stores hunting for a “geometric-design” (or other special-purpose) graphics
package.
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We have already argued that programmable applications are far more
powerful and expressive than “pure interface” applications; it it thus much
more probable that they will satisfy the needs of a new user with some special
range of tasks in mind. Moreover, in many cases, programmable applications
lend themselves especially well to “specification” for some range of tasks: the
application need only be augmented with an additional loadable “library” of
special-purpose primitives and objects.

We will return to this subject at length in the final section of this paper;
but as prelude to that discussion, it is worth presenting an example of a
“special-purpose library” that may be loaded into SchemePaint. This is a
library of procedures for drawing recursive tiling designs (like those made
famous by the late Dutch artist M. C. Escher).!¢

Imagine, then, that we happen to be interested in using our SchemePaint
application for (above all else) drawing tiling designs. Conceivably, we could
write some procedures ourselves for this purpose; but, if we wanted to use an
extensive package of tiling-specific procedures, we could alternatively load in
a special library of Scheme procedures designed for users with interests like
our own. (Presumably, this would be one of many “special-purpose” libraries
made available to the SchemePaint user.) In the current SchemePaint ver-

sion, this can be done via a menu selection!”, or via evaluating the following
expression:

(1oad-schemepaint-library “escher")

Having loaded the “Escher library” into SchemePaint, we now have a variety
of new objects and primitives to play with.!® Moreover, we have not merely
extended our language, but have also extended our interface: the Escher
library includes a new “Escher palette” window with which we can create

pictures to use in tiling designs. The SchemePaint screen now appears as
shown in Figure 9 below.

Without going into detail on the functionality of the newly-loaded Escher

16These procedures are modelled on the “picture language” invented by Peter Henderson
{22} and described in a Scheme implementation in {3}.

17The “load file” selection supplied with MacScheme

8Indeed, the Escher library may be considered a kind of “second-level language” em-
bedded within the SchemePaint language which is itself embedded within Scheme.
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Figure 9: The SchemePaint screen, now including
an “Escher palelte” window.

library'®, we can now create “primitive pictures” within the new window
(or via language), and can combine them together using special “picture-
combiners” that create more complex pictures from simpler ones. Using the
newly-added functionality, we can create tiling designs like those shown in
Figures 10-11 below and in Color Plate 9. Note that we have not lost any of
the “basic” functionality of SchemePaint in using our Escher library: Figure
11, for instance, includes a hand-drawn figure accompanying a computer-
drawn tiling design.

One of the key aspects to note about this example is that the notion of a
“loadable library” applies both to the language and interface subsystems of
SchemePaint. Just as the original application is designed so that language
and interface work in tandem, so the extensions to the application are likewise
designed to augment the capabilities of both portions of the application. We
will return to this topic in the final section of this paper.

19More discussion is included in a forthcoming paper devoted to SchemePaint.
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Figure 10: A tiling suggestive of tadpoles and seagulls; created
using the “Escher library” of SchemePaint.

Figure 11: A balloon with an Escher-like decoration.
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5.4 Graphics vs. Other Domains

Because SchemePaint is presented here as an example of a programmable
application, much of its purpose is to demonstrate the usefulness and fea-
sibility of the idea of programmable applications in general. Naturally, no
single example or domain can quite accomplish this task; the notion of pro-
grammable applications would be best exemplified by a collection of sample
programs in widely varying domains. Such a collection would also illustrate
the applicability of the programmable-application idea as a general theory
of software design (rather than a one-shot strategy for a particular graphics
application).2?

In some ways, the domain of computer graphics is a good “polemical”
choice with which to illustrate the strengths of programmable applications.
In particular, it is possible to point to a picture such as Color Plate 4 and to
identify visually (and unambiguously) which portions are produced by “in-
terface” and which by “program”; and it is easy to argue further that without
both these components, an application is inevitably limited in expressiveness.

In other ways, however, “computer art” is not the ideal domain for the
purpose. Among other things, some of the functionality of SchemePaint may
be mimicked by the commands of a system such as HyperTalk {55} (which I
will later argue is not a particularly good example of a programmable appli-
cation) or by macros in some of the more elaborate paint applications. This
leads some observers to comment of SchemePaint that it is “like HyperTalk
but with a more extensive graphics language” or that it is “like SuperPaint
macros” or “like Logo with a mouse.” Such characterizations are partially
(though far from entirely) correct, inasmuch as these various other systems
can perform some SchemePaint-like functions.

Comparisons of this sort would be far less likely if the domain of the
application in question were music, physics education, video editing, cir-
cuit design, or one of the many other possible domains to which the overall
programmable-application design strategy could be applied. Again, for this
reason, it will eventually be important for there to be a collection of exam-
ples, and a body of design lore surrounding them, all supporting the design

20We return to this theme in the final section, in the discussion of future work.
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strategy argued for in this paper.

6. Objections and Responses

The notion of building programmable applications is not without its skep-
tics. Over the past several months, I have engaged in many conversations—
even debates—about the issues discussed in this paper; and in the course of
that time, I've heard a wide variety of thoughtful responses, both positive
and negative. In this section, I present—I hope, faithfully—a summary of
the most pointed objections to the programmable-application concept, and
my own replies to these objections.

> Objection 1: The programmable-application approach for software design
is predicated, first and foremost, on the notion that users want to pro-
gram. This is visionary. Users—especially the great majority unfamiliar
with programming—do not want to be bothered with the difficulty of writing
code. Teachers of programming know how hard it is to learn, and how even
understanding the simplest recursion is bought at the price of long study; to
think that users will desert the simplicity of a direct-manipulation interface
in order to spend months learning a new language is unrealistic. Software
designers are therefore better advised to come up with newer and more ex-

tensive direct-manipulation interfaces, rather than to build programmable
applications.

Response 1: If someone really and truly does not want to learn to program,
ever, they shouldn’t have to. Such a person will have to be content with the
inevitably limited (and limiting) tools associated with “pure” direct manipu-
lation interfaces. On the other hand, my own belief is that more people would
enjoy learning to write programs than the “interface-alone” camp would have
us believe. It is worth reminding ourselves, in this context, that most of the
leading thinkers in the computer industry during the early 60’s insisted that
home computers were an idea without a future, a project bound to fail; the

public out there just wouldn’t want to deal with such a powerful, complex
machine.

There is a chronic tendency among software designers—much like those
in the entertainment industry—to underestimate “the public.” (Typically,
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“the public” is seen as that mass of people who couldn’t possibly understand
the things that the speaker understands.) Programmable applications should
not be written to be obscure, but they don’t condescend to their audience
either: they assume that the user wants to create things that the designer
could never in a million years anticipate. And if, in the future, we look back
and say that the designers of programmable applications made the mistake
of overestimating the public, then so be it: it would be a refreshing mistake
to make.

In the same context, it is worth reiterating several points made earlier
in this paper. First, a well-designed programmable application should have
an extensive direct-manipulation interface, suitable for beginners wishing to
“get the feel of” the system. (SchemePaint, for example, is equipped with
what one might call a “version 17 MacPaint-like interface.) Thus, even con-
firmed non-programmers should be able to get some mileage out of these
applications. Second, programmable applications should be designed with
an eye toward leading the user gently into programming: hence the earlier
discussion of embedded tutoring systems, sample “starter programs,” and so
forth. Along the same lines, it is worth noting that programmable applica-
tions would very likely be an excellent venue for teaching programming. One
could imagine a computational art course, geared toward artists and struc-
tured around an application such as SchemePaint; and similar courses might
employ applications for music, robotics, astronomy, whatever. It is perhaps
no surprise that very few people apparently wish to learn programming when
most introductory courses focus on topics such as sorting algorithms; these
computer-science-driven examples are remote from the interests and passions
of many beginning students. Conceivably, a culture rich in programmable
applications would help foster a society rich in programming talent.

Finally, it is again important to stress that users shouldn’t need extraor-
dinary or arcane programming skills to make good use of programmable
applications: if the application is well-designed, it will be possible to write
interesting and useful programs of at most five or six lines. Consider once
more the code used to generate Color Plate 4, or the Logo code to generate
a spiral: these are simple, elementary-school level programs whose effects
seem marvelous by direct-manipulation standards. Learning to write these
programs is not a trivial task, but neither does it require deep mathematical
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training. Programmable applications, then, should not be expressly geared
for experts (though they should reward expertise); rather, by structuring
their enriched languages around the key concepts of their domains, they
should spark the imagination of the casual programmer.

> Objection 2: What you are suggesting here is just that people learn Scheme
(or maybe “Scheme-with-a-mouse,” or “Pascal/Logo/ Boxer/Lisp/Basic-with-
a-mouse”). Isn’t this just adding a bit of frilly interface to a programming
environment?

Response 2: Clearly there are overlaps in those features that make for a
good programmable application and those features that make for a good
general-purpose programming environment; and, as argued earlier, there are
strong reasons to equip programmable applications with enriched versions of
existing languages (rather than with brand-new special-purpose languages).

On the other hand, what is being proposed here is far more than just tack-
ing a few mouse commands onto Scheme (or some other language). First, in
designing a programmable application, the bulk of the effort will probably go
into structuring the domain-enriched eztensions to the language—in essence,
the task here is designing new embedded languages within the overall syntac-
tic structure of some existing language. Designing an astronomy application
for Scheme is not “just Scheme,” nor is a Pascal for video editors “just Pas-
cal”; rather, these are long-term, subtle, and highly creative design projects
in their own right. And even the SchemePaint example taken in isolation,
including as it does extensions for dynamical systems and interface-related
procedures (such as the set-nouse-function! procedure mentioned earlier)
provides far more than just the standard set of Logo turtle primitives.

Fans of one particular programming language often feel slighted by the
implication that not everything need be done in that one language. The
programmable application concept, however, makes no a priori commitment
about the suitability (or preferability) of any one particular language as the
“base language” for all examples. As mentioned earlier, it is quite plausible
to imagine an application such as SchemePaint in which the user can choose
between a selection of different interpreters—in essence, the user could choose
to configure the application as “PascalPaint,” “LogoPaint,” or whatever she
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prefers.?’ This is not to say that all languages are equally good at repre-
senting all domains—every professional programmer is well aware that this
is false.?? Nevertheless, the question of which language is best is secondary
to the question of whether some language (or set of languages) is provided
in the first place.

Pursuing this point for a moment: users of multi-language programmable
applications might well find themselves making choices among “best” or “pri-
mary” languages for given application domains. For database systems, a lan-
guage based around Prolog might be ideal; for applications involving massive
parallelism (such as cellular automata, or simulations of ant colonies), a lan-
guage like *Logo {35} might provide the foundation of a perfect match; for
algebra, a language like ISETL {8} might be preferred. Although these may
not be the only languages provided with the given application, they may
win over many users precisely because of their felicitous match with the ap-
plication’s domain. And just as novice programmers might learn Scheme
through an application such as SchemePaint, so experienced programmers
might come to learn a new language like ISETL through its special utility in
a particular application.

In any event, the key design questions in creating programmable applica-
tions will tend to be somewhat language-independent. The important issue is
not what one can achieve given that one starts with Scheme/Logo/Pascal, but
rather what the artist/musician/astronomer needs in an application. Con-
siderations of this kind might lead the designer toward some choice of pri-
mary user language: and if the choice leans toward an “enriched Pascal”
rather than an “enriched Scheme,” that’s the way it goes. The domain,
and not the designer’s favorite language, should be the driving force behind
the design process. Once the designer has created an “enriched Pascal” for
some domain, she might then use that experience to guide the creation of an
“enriched Scheme,” “enriched Logo,” and so forth—and even if these other

*INote that this question is potentially distinct from the question of how the applica-
tion is implemented. For example, the application could be written in Scheme, but still
provide Pascal, Logo, and Basic interpreters as options. This distinction relates back to
the question of “tailorability” mentioned earlier; the important language system for the
user is the one that focuses on the domain of graphics, not the one in which the overall
application happens to be implemented.

22Though no two of them agree on what is true.

47



choices of language are not as good as Pascal for the given situation, they
are nevertheless far preferable to having no user language whatever.

> Objection 3: Couldn’t SchemePaint be done in HyperTalk? Isn’t what you
are proposing just a variation on that system?

Response 3: 1t is true that HyperTalk is a language-plus-interface program-
ming environment in which applications—specifically, HyperCard applications—
may be built; and the HyperTalk language could conceivably be used from
within those applications. (In this sense, HyperTalk can act as “implement-
ing language” and as “user’s language.”) Based on observation, however, it
seems overwhelmingly the case that this system is used as a tool for design-
ers to work with, rather than as the language base for the users of applica-
tions. Thus HyperTalk is a marvelous system in which to build thousands
of opaque direct-manipulation interfaces, but is not designed (or employed)
to extend those interfaces with languages from which the user can bene-
fit. And again, even if it were used for this latter purpose, building (say)
an “astronomy-enriched HyperTalk” remains as formidable a design task as
building an enriched version of any other language. It can hardly be said,
then, that the task of designing programmable applications has been even
remotely facilitated (much less “solved”) by the existence of HyperTalk.23

This is not to say that HyperTalk is not a useful system; but, at the risk
of belaboring a point, it is a system geared toward the issues of “tailorability”
mentioned earlier. That is, it is a system in which it is easy to talk about
interfaces and applications, but not about the domains of those applications.
As for SchemePaint, it is intended as an example (eventually one among
many) of an application in which the user’s view of the language is centered

on the domain (in this case, graphics) rather than the implementation of the
program itself.

23A more recent entry in the personal-computer world, Microsoft’s Visual Basic system
{510}, is likewise billed as a language-plus-interface environment. Visual Basic, unlike
HyperTalk, has the advantage of employing an existing language that many users might
already know; thus, users of applications built in Visual Basic might be more inclined
to write Basic procedures that work with those applications. My current and perhaps
groundless suspicion, however, is that Visual Basic (like HyperTalk) will be used and
marketed as a tool for designers rather than as the basis of extension languages for users.

48



7. Related Work; Future Work; a Research Agenda

In the previous sections of this paper, we have argued the desirability of
programmable applications; discussed some of the central issues involved in
creating these applications; and illustrated the design principles underlying
these applications through SchemePaint, a representative example. In this
last section, we begin by discussing some recent work related to the notion
of programmable applications (with particular emphasis on work similar to
SchemePaint). Then, after examining this work, we sketch a possible frame-
work for an agenda of future design and research.

7.1 Related Work

As noted at various points in this paper, there do exist commercial pro-
grams that in one fashion or other illustrate the programmable-application
concept. Mathematica is one example; although it does not make exten-
sive use of direct manipulation in its interface?, its domain-specific language
suggests the type of power that a programmable application for mathemat-
ics can provide. The Director animation program, also mentioned earlier, is
closer to the programmable-application ideal: it includes both an extensive
interface (based on an earlier version of the program named VideoWorks)
and a language, “Lingo,” in which animations may be coded. Director also
includes extensive programming support, providing (among many other ex-
cellent features) a scrolling box in which all the Lingo primitives are listed.
Yet another example is the 4th Dimension database system {54}, which in-

cludes a visual programming language in which database searches and other
operations may be written.

In all these cases, the application designers have chosen to include a new
domain-specific language—and in every case, the applications do pay some
price for this decision (see the discussion in Section 4 earlier). The Mathemat-
ica language, for instance, is burdened with what to this eye seems a motley
syntactic structure—a mixture of Lisp, C, and Prolog styles, all coexisting
uneasily. Likewise the Lingo language, not taking advantage of an underly-
ing general-purpose environment, does not include floating point numbers;

24For instance, one cannot specify a functional relationship between z and y in Mathe-
matica by simply drawing the function on the screen with the mouse.

49



thus it is difficult to use Lingo to animate physical systems that require more
than trivial computations. Quibbles aside, however, these recent programs
do represent powerful, creative, and immensely impressive achievements in
integrating languages into applications.

Applications that use a well-supported language as the basis of their “pro-
gramming side” are harder to come by. Perhaps the best-known example,
AutoCAD {S1}, is one of the most successful applications of all. AutoCAD—
currently the best selling CAD software package {20}—is an extensive graph-
ics program written for professional architects and designers, and including
a huge library of files written in AutoLisp, a “design-enriched” Lisp dialect.
Users of AutoCAD can perform a variety of graphics operations either via
menu choices or through a command language (which can be augmented via
AutoLisp procedures).

The choice of Lisp as a base language is a happy one for AutoCAD; the
application has clearly benefitted from the contribution, by users and third
parties, of loadable extension files (this is much like the “library” concept
mentioned earlier in the discussion of SchemePaint). On the other hand,
AutoCAD differs somewhat from the programmable-application “ideal” de-
scribed here in that it uses its programming language more as the basis of
a (remarkably extensive) command language, rather than as the basis of a
true programming environment for users. In other words, the application
uses Lisp more to assist experienced programmers and designers in providing
new interactive commands rather than to lead new and inexperienced users
into Lisp programming themselves.

AutoCAD, Mathematica, and Director are several of the more impor-
tant current applications that include a high degree of programmability for
the user. There are likewise several examples of programming environments
which in some sense attempt to integrate programming and interface (or
application) construction. Two examples—HyperTalk and (briefly) Visual
Basic—were mentioned in the previous section. A third example, the Boxer
system, is much closer in spirit to the concerns of this paper.

The Boxer language and environment {13, 14} is one in which many of
the ideas of programmable applications are reified. Boxer includes a variety
of creative features—some in the language, some in the editor—that allow
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interface elements such as menus to arise naturally in the construction of pro-
grams. In philosophy as well, Boxer pays particular attention to the value of
short, personalized, but nonetheless powerful programs. On the other hand,
Boxer is a general-purpose programming environment, and as such it does
not substantially ease the task of building large domain-specific applications;
such applications would have to be written via embedding an enriched dialect
within Boxer, as within any other general-purpose environment. Moreover,
the Boxer environment is geared toward the use of one particular language—
namely, the Boxer language; and conceivably, application designers working
in Boxer might run into subtle conflicts with the semantic decisions (e.g.,
dynamic binding) automatically enforced by that language.

Before leaving this overview of work related to programmable applica-
tions, it is worthwhile to note several examples of programs similar in struc-
ture and/or design to SchemePaint in particular. Certainly, AutoCAD be-
longs in this category, and represents an immeasurably more massive effort.
AutoCAD does not include procedures for turtle graphics, however (though
presumably a package of this sort would not be hard to include within the
program); and SchemePaint includes at least a few features (including pro-
grammable colors) not included in AutoCAD. Moreover, SchemePaint, unlike
AutoCAD, has the goal of leading novice users into programming via an ex-
tensive direct-manipulation interface; whereas AutoCAD (as noted earlier)
appears to place much more stress upon providing the user with an extensive

command library rather than upon leading users into writing (even simple)
programs.

Beckman {9} describes an elegant Scheme package for graphics; and a
Boxer program including direct-manipulation graphics and turtle graphics
has also been implemented by Bruce Sherin.{36} This latter program in-
cludes some functionality that SchemePaint does not—including, most inter-
estingly, the ability to translate direct-manipulation commands into Boxer
statements.?® It is perhaps worth noting that some commercial graphics
applications also include “macros” among their facilities—a typical arrange-
ment allows for sequences of operations to be associated with new menu

350n the other hand, SchemePaint likewise includes features that the Boxer program

does not, including procedures (and interface facilities) for handling color graphics and
dynamical systems.
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options—but inasmuch as parametrizable procedures and control structures
are missing from these applications, they cannot be said to be truly pro-
grammable.

7.2 Candidate Domains for Programmable Applications

Earlier it was mentioned that SchemePaint is only one sample program—
an existence proof—intended to demonstrate the viability of the program-
mable-application strategy of software design. Naturally it is important to
show not only the viability but also the versatility of that strategy; and to
that end a range of examples, in widely divergent domains, will eventually
be required.

Possibilities for such additional examples are joyfully easy to supply. One
can almost walk up and down the aisles in the local computer-software shop,
thinking of all the glorious programs that one could own if only these mag-
nificent efforts in interface construction had been matched by efforts in ex-
pressive language construction. What follows, then, is a brief (and somewhat

fanciful) catalog of domains around which one might construct programmable
applications:

Music Composition

A programmable music composition tool might contain, on the interface side,
a piano keyboard and drum machine connected via MIDI interface to the host
computer; screen icons for specifying notes, timbre, amplitude; waveform
construction and manipulation kits; rhythm construction kits appropriate for
use with the drum machine; and many other staples of current commercial
programs. On the language side, one might construct “note objects” with
appropriate parameters (pitch, timbre, attack, decay, etc.); these might be
connected sequentially (using appropriate parameters such as portamento)
into passages and melodies, or superposed into chords; passages might be
augmented with “bar division objects,” or compared against melodic libraries
(a boon to any musician who has wondered if the tune he has just written
can be found in some fake book); harmonic strategies could themselves be
subject to linguistic representation, so that the musician could listen to the
same basic melody with a choice of orchestrations. A user might write simple
procedures to search a composition for a particular sequence of notes, or
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for every instance of an augmented seventh interval; or he might write a
procedure that determines whether a given passage may be sung by a soprano
(and what range the singer would need to perform that passage); or he might
write a procedure that searches for any note whose associated waveform is
similar to that of a brass instrument (by some metric) and changes that note
to sound slightly less “brilliant.”

A Programmable Atlas

A particularly useful programmable application, combining features of data-
bases and simulations, could be structured around a “programmable at-
las” for students of geography. This application would include a direct-
manipulation interface allowing the user to call up onto the screen any of
a large collection of geographic maps; perhaps, by selecting a location on a
global map, the user could interactively “focus in” on a particular region.
Other interface choices might allow the user to search for geographic features
(cities, rivers, volcanoes), or to choose between map “modes” (e.g., one could
select contour maps or maps that highlight national borders). Through the
language component, the user could perform complex database searches (for
instance, one could write a procedure to find all cities of a certain minimum
population within fifty miles of the San Andreas fault). Other types of pro-
cedures might also be envisioned: one could write, for instance, a procedure
that takes as its argument a particular mineral resource and returns a list
of those nations containing natural supplies of that resource. The graphical
component of our hypothetical atlas would support a wealth of fascinating
programming projects: we could imagine writing a program that takes as
argument a particular geographic path and then graphs that path by using
animated icons superimposed upon the usual “background” maps. In this
way we could write procedures to view the itinerary of Magellan’s expedition,
Napoleon’s Russian campaign, or the migration patterns of bird species.

Thermodynamics Simulator

Imagine an application to help high school students visualize the behavior of
ideal (and non-ideal) gases. One might begin at the interface side: allowing
students to position “billiard ball” gas particles of equal mass; to give these
particles initial velocities; and then to interactively measure such quantities
as average velocity (related to gas temperature), average changes in momen-
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tum due to collisions with walls (related to pressure), how these quantities
vary with volume or with number of gas particles, and so forth. On the
language side, we might write procedures involving “gas particle objects” as
arguments: thus we could investigate a variety of phenomena beyond the
range of any purely interface-driven system. For instance, we might inter-
actively “boost” the kinetic energy of a selected particle and ask how long
a time, on average, is required before that particle “settles down” to an en-
ergy near the system temperature (an experiment analogous to “relaxation
time” investigations in chemical kinetics); we might write a procedure to
draw a histogram of the number of collisions experienced by a collection of
particles within a given time period; we might investigate mixtures of gas
particles with different masses (a gas composed of “billiard balls and ping-
pong balls”); we might choose to experiment with non-elastic collision rules.

Graph Theory

A relatively straightforward educational application might be designed to
teach the concepts and algorithms of graph theory. Graphs could be con-
structed via direct manipulation: the student would use the mouse to position
vertices and connect these vertices via (possibly weighted and/or directed)
edges. The graphs constructed in this manner would then be accessible from
the programming component, so that standard algorithms (e.g., finding a
minimal spanning tree) could be illustrated.

Artificial Creatures

As a final example, we might imagine an environment designed for researchers
in the field of “artificial life,” and based around the constructions described
in Valentino Braitenberg’s well-known book Vehicles.{11} Simple “creatures”
(from the early chapters of the book) could be created via an interface de-
signed for that purpose; these creatures might be “wired together” directly
on the computer screen, and their interactions in a two-dimensional “world”
could be observed in real time. More complex rule-based creatures, includ-
ing the capacity for remembering past interactions with their environments,
might be created via a “creature-construction language.” This language
would also include procedures to represent creatures’ reproduction (and mu-
tation) rules, strategies for cooperation and competition with other creatures,
and so on. In addition, the language would provide primitives for measuring
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(and performing statistical analysis on) experimental quantities; for example,
the researcher could measure the average life-span of all creatures of a given
“species” during some multi-species simulation.

These five examples barely begin to illustrate (much less exhaust) the
potential range of programmable applications. In the course of this paper,
still more possibilities have been mentioned, almost in passing: a circuit-
design tool, a programmable astronomical observatory, a language-based
video-editing tool. Hypertext and hypermedia systems show promise for
combining visual browsers with languages extended to work with “hyper-
databases”; design environments for creating (e.g.) mechanical devices or
optical systems are also strong candidates for the programmable-application
approach, combining as they do a visual (even aesthetic) dimension and the
need for simulation in rich, complex domains.

7.3 A Research Agenda

There are polemical reasons for designing new programmable applications
along the lines just discussed: presenting a wide variety of these applications
would not only prove the range and versatility of the concept, but would act
as a “living argument” for its appeal to users. The pleasure experienced by
people working with these systems would far outweigh, in persuasive force,

any theoretical (or conjectural) argument that a paper such as this could
possibly muster.

Beyond this, however, an existing body of work in programmable appli-
cations would begin to lend some lore to this strategy of software design:
there would be case histories to appeal to, variations to compare. We might
learn, for example, whether users of multi-language systems ever switch their
attention from one language to another; whether programmable applications
develop a reputation of being particularly hard (or easy) to debug and main-
tain; what kinds of user communities develop around such applications. In
this sense, a design agenda of the kind outlined in the previous subsection
acts in part as a research agenda as well. Before we can adequately resolve
research questions about programmable applications “in general,” we need a
cluster of examples, each acting as an ob ject-to-think-with.

This is not to say that framing possible research questions even at this
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point is useless. The very notion of programmable applications as a “stan-
dard” design strategy suggests new emphases for research in both language
and interface design. The following paragraphs, then, outline several poten-
tial areas of research that are related to (or facilitated by) the creation of
programmable applications:

7.3.1 Language Learnability

Over the past decade an impressive and informative body of research
has been generated, dealing with the question of how people learn to pro-
gram. Some studies focus on the types of syntactic and semantic errors
commonly made by novices {5, 31, 37}, some on the pedagogical role of
explicit structural models of the language {28, 29}, some on how students
acquire “higher-order” goals of organization {15, 38, 39}, some on particular
programming topics such as recursion {24, 25, 33}, and some on the appar-
ent “styles” of coding or learning among students {12, 40}. One topic that
tends not to be addressed, however, is the relation between problem domain
and language learning. That is, because most studies have been conducted
with students in computer-science courses, they have tended to assume that
“programming” is a skill identifiable with the writing of computer-science-
related programs. Computer languages are implicitly identified with their
roles within general-purpose (and hence domain-unenriched) programming
environments. This assumption is particularly apparent in the types of tasks
given to experimental subjects: students are compared according to how well
they write programs that (e.g.) read in a list of numbers from a file, throw
out the negative ones, and take the average of the remaining values. Students
could not be compared according to how well (for instance) they can write
programs to alter the sound of a piece of music or edit a video, because (by
assumption) these are tasks unavailable to novice programmers.

Because programmable applications are domain-enriched environments
geared toward learnability, we can imagine using these applications to incor-
porate new questions of domain specificity into studies of novice program-
mers. As an example, we might ask of programmer “style” whether it is
a constant across domains (does a “top-down programmer” show the same
tendencies in music as she does in electrical engineering); or we might ask
whether art students learn programming through a graphics application more
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quickly and errorlessly than they would through a general-purpose environ-
ment (and if so, what this implies specifically about the role of “external”
domain knowledge at the early stages of learning to program); or we might
ask whether debugging techniques such as tracing are more easily assimilated
within some domains than others; or we might ask about the transferability
of certain language constructs (does a student who writes a recursive graphics
program within his paint application ever attempt to find uses for recursive
strategies in a physics-simulation system).

Certainly among ezpert programmers, there is good reason to believe
that knowledge of a program’s function—expressed in the language of the
“external” domain—is important to the understanding of program texts.
Pennington {32}, in a study of program comprehension, asked a group of
forty professional programmers to read, modify, and summarize a moder-
ately complex program (in either COBOL or FORTRAN). In analyzing the
programmers’ summaries, Pennington writes:

“High comprehension... programmers almost uniformly use a cross-referencing
summary strategy that combines statements about the domain world with
statements about the program world.” (Emphasis in the original.)

Similarly, in a study of software design, Adelson and Soloway {4} found
that the professional programmers they interviewed exhibited strong differ-
ences in design activity depending on whether the task at hand was a familiar
one or not. In particular, expert designers given a task in an unfamiliar do-
main were unable to form an overall mental model (what the authors call a

“global model”) of the running system, leading to the potential for design
errors.?8

These studies indicate that for expert programmers, programming skill is
hard to separate from domain knowledge—the “real-world” knowledge that
the programmer is using or modelling. It would not be surprising to find that
domain knowledge likewise has an effect on how programming languages are
learned—we might plausibly expect that it would be easier to learn program-

26Adelson and Soloway interviewed both expert and novice designers for their study;

even their “novice designers,” however, were professional programmers with several years’
programming experience.
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ming in a familiar (presumably non-computer-science) context.2”

Programmable applications could well act as excellent environments in
which to study this question of how computer languages are learned across
many domains of student interest. Indeed, these applications could enlarge
the population of experimental subjects: just to throw in an additional po-
tential research study, one could compare the performances of art students
learning “PascalPaint” to those of electrical engineers learning “Pascal Cir-
cuit Designer” to see whether (e.g.) certain syntactic errors or semantic
misconceptions among students seem to transcend the differences between
those students’ interests and backgrounds.

Before leaving this topic it is worth noting that research into language
learnability would reflect back upon the design of programmable applica-
tions themselves. If we find that students are fearful about moving beyond
“interface-driven activity” then we might investigate strategies for making
the programmability option more accessible within these applications. We
might ask, for instance, whether sample projects should be incorporated
within applications; and, if so, whether they can be ordered in a way that
respects the difficulty, sophistication, and relevance (within the domain) of
the concepts that they employ. Or we might ask about the value of new kinds
of collaborations: whether, perhaps, teaming an experienced graphics artist
with an experienced programmer around an application like SchemePaint
can facilitate mutually educational interdisciplinary projects.

7.3.2 Incorporating Knowledge Bases into Programmable Applications

As many of the examples in this paper have suggested, the programmable-
application design strategy lends itself especially well to large, complex, and
open-ended domains—graphics, music, and engineering, to name a few. In
domains such as this—domains that tax the creative powers of the user—it
would be desirable if our software could provide us not only with a tool, but
also (where feasible) with intelligent assistance. For instance, in the course
of designing a digital circuit, we might like our application to have some

27Pragmatically speaking, we would at least expect that the students’ motivation to learn
programming would be higher in a familiar context—a point also made in the previous
section.
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representation of our intentions: the program could supply us with a library
of similar devices, or it might offer a selection of test inputs for the circuit,
or it might catch design bugs (e.g., a possibility of a “race condition” in the
circuit).

Pursuing such examples, then, it would be exciting to investigate the
possibility of augmenting our programmable applications with “intelligent”
knowledge bases that assist the user in her work. One promising strategy
would be to incorporate a suite of independently loadable, special-purpose
knowledge bases that the user could call upon for assistance in performing
specialized tasks. For instance, an artist using a programmable graphics ap-
plication might wish to call upon knowledge bases that assist in (e.g.) draw-
ing faces, or flowers, or architectural blueprints. By restricting our cadre
of “intelligent software assistants” to these relatively constrained tasks, we
avoid (to some extent) the difficulties posed by trying to invest our programs
with tremendous networks of commonsense knowledge: it is easier to con-
struct an assistant to help draw flowers than to construct an assistant to
help an artist think of something to do with an empty canvas. Moreover, our
hypothetical intelligent assistant need not direct the user, but rather would
probably act in an advisory capacity—checking the user’s input for syntac-
tic (or perhaps factual) errors, advising the user of program functionality of
which she may not be aware, suggesting relevant references or examples from
a database of previous work. In this sense, the proposed intelligent assistants
are close in spirit to the critics described by Fischer et al in their work on
design environments.{17, 18}

In the same vein, one might think of the “programming tutors” mentioned
in Section 4 as instances of the intelligent assistants described here—though
presumably these tutors would be somewhat more directive in style. As an
example: a composer using a music application might interrupt her work
to load in a programming tutor that would lead her through some music-
based procedures—perhaps even employing examples relevant to her partic-
ular musical interests. Or conversely, a skilled programmer using such an
application might wish to load in a music tutor. By incorporating a suite of
pedagogical assistants within a programmable application, we might well an-
swer the familiar complaint against educational programming environments
(“microworlds” )—namely, that they are too non-directive, offering students
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no assistance with the content of a given domain (cf. Fischer {16}.)
7.8.3 Software Engineering/Software Design Issues

In many ways, creating programmable applications presents novel chal-
lenges in software engineering and design. Rather than being structured
as conceptual “pyramids” of nested problems and sub-problems and sub-
sub-problems all packaged underneath an opaque interface, programmable
applications are instead conceived as new languages in which to re-express a
domain. The design task will thus stress concepts such as language learnabil-
ity, fidelity of language primitives to a given domain, syntactic and conceptual
consistency among sets of embedded languages, and integration of language
with interface. At the same time, “classic” concerns such as program cor-
rectness, reliability, maintenance, and reusability all remain important, but
are viewed in potentially new ways.

As a first example, we might consider once more the question of how
to combine language structures and interface features symbiotically, and to
ask whether there are general software design strategies for doing so. In
SchemePaint, for instance, we were able to write procedures that specified
an operative pen-color; perhaps we might want to pursue more ambitious
versions of this kind of functionality. For example, in a system for 3-D
graphics, we might want to write procedures that specify “mouse-distance”
along the z-axis (into the screen); or we might want to write procedures that
dictate the position of a light source such that subsequent solids drawn with
the mouse cast an appropriate shadow. The point of these examples is that we
would like to classify them as instances of more general strategies for the ways
in which a language can augment the power of an interface.2 Conversely,
we might like to classify SchemePaint’s “nameable mouse-created objects”
as part of a spectrum that includes Canvas{52} macros and other techniques

28These questions do of course overlap with the notion of “tailorability” discussed earlier;
one might argue that we are simply talking about the question of how to make applications
tailorable by using a language to customize an interface. On the other hand, the examples
in the text stress the use of our application’s language to alter the interface behavior in
terms relevant to, and derived from, the application domain (here, graphics). In this sense,
our examples depend crucially on the existence of a domain-enriched language, which to

some extent separates them from the more general interface-altering functions usually
suggested by the notion of tailorability.
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for creating linguistic representations of direct-manipulation activities.

Another important question, raised earlier in Section 4, relates to how
one goes about building “enriched languages” appropriate to some specific
domain. Suppose, for instance, we wish to follow the example of Abelson
and Sussman by writing a circuit-design language: should wires be primitive
objects in the language? Should AND/OR gates? What are the consequences
of choosing one set of primitive objects rather than another? Is there any
way to gauge the appropriateness of these decisions in terms of how electrical
engineers might learn or use the language? And if we address these questions
in the domain of digital circuits, have we learned anything at all for designing
(say) a music language? Questions of this type embody the bedrock design
issues for programmable applications, and represent relatively new territory
in the study of software engineering.

The use of loadable libraries, such as the “Escher-language library” of
SchemePaint, raises yet another host of issues. Some of these issues are
staples of software-engineering courses—how to modularize programs using
“packages” and generic interfaces—but others are relatively new. For exam-
ple, there is the question of interface modules—our Escher library augmented
not only the SchemePaint language, but the interface as well. We might ask,
then, if the potential “interference problems” between interface modules are
different in kind from those between language modules; and, if so, what new
design strategies can help overcome these problems. Yet another question is
how we might actually foster a kind of “constructive interference” between
language libraries: are there strategies for combining libraries that allow us
to do more than simply take the set-union of two sets of primitives? For
example, suppose we add to SchemePaint a library for 3D graphics. Can
we now create three-dimensional Escher tilings??® Will our turtle commands
or dynamical systems primitives have to be rewritten to accommodate the
addition of a third dimension? Moreover, the same questions arise on an
even larger scale when we think of combining entire applications. Suppose,
as suggested earlier in this paper, that we can somehow combine a music
and graphics application by loading them together. How much “coopera-
tion” between the two applications can we expect? Can we create musical

2%Some of Escher’s works did indeed employ depth perspective and “space-filling”
designs.
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compositions whose amplitude is specified by a curve drawn interactively
within the graphics application? Can we incorporate playable music scores
into pictures (so that, e.g., when the user selects that score with the mouse
the appropriate music is played)? '

Turning away from these wild scenarios, we might return to the more
mundane (but thorny) questions usually asked by software engineers. What,
for instance, is the prospect of software reusability in the design of pro-
grammable applications—can the designer of (say) a programmable atlas
make use of the graphics primitives incorporated into SchemePaint? What
about software maintenance—can we count on the well-known staying power
and longevity of programming languages to carry over into applications based
on those languages? Are bugs harder to find in these systems than in other
types of applications? What is the role of the user community in design-
ing, extending, and even maintaining these systems? All these questions
are part of the larger project of understanding the typical “software lifecy-
cle” of programmable applications; and all will require active study as new
programmable applications come into existence.

7.8.4 On Beyond Mice

Finally—and following up on a point made earlier in Section 4—we recall
that there is an entire toyshop-full of new interface devices that are likely to
appear in the near future. An active question for research, then, will be how
to extend our programmable-application design strategy to ever more pow-
erful and expressive interfaces. To take a rather less-than-exotic example, we
might imagine incorporating a mouse-with-tactile-feedback into our graphics
application: it might be desirable, for instance, to create the illusion that
the mouse is “bumping into” certain colors or points on the screen, and to
make the conditions for “bumping” programmable. Or—to go just a little
further out—we might wish to write a program that moves a Logo turtle
in three-dimensional space while we watch its progress with a 3D-viewing
device. Or—a bit further out still—we might write a DataGlove application
that allows us to associate touching a virtual object with a procedure call: for
instance, we might extend our earlier “vehicles” program so that we could
watch simulations of the vehicles moving in three dimensions and interact
with them by touch—perhaps handing them food, blocking light receptors,
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or “rewiring” them by hand. The temptation at this point is to suggest even
further-out examples, but this would risk the accusation of composing spec-
ulative fiction; so our examples will conclude here, in the anticipation that

ten years from now a reader seeing this paragraph will regard its caution as
quaint.
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Software

[S1] AutoCAD. Autodesk, Inc. Sausalito, CA.

[S2] Canvas. Deneba Software. Miami, FL.

[S3] Director. MacroMind, Inc. San Francisco, CA.

[S4] 4th Dimension. Acius, Inc. Cupertino, CA.

[S5] HyperCard. Apple Computer, Inc. Cupertino, CA.
[S6] ImageStudio. Letraset, USA. Paramus, NJ.

[S7] MacPaint. Claris Corporation. Santa Clara, CA.

[S8] MacScheme. Lightship Software, Inc. Beaverton, OR.
[S9] Mathematica. Wolfram Research, Inc. Champaign, IL.
[S10] Visual Basic. Microsoft Corp. Redmond, WA.
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Color Plate Key for SchemePaint Pictures

Plate 1. A “basins-of-attraction” map created using the dynamical
systems package. The colors red, green, and blue correspond to the
three complex cube roots of 1; points are shaded according to which
root they approach under Newton’s root-finding method.

Plate 2. Tree-like figures created by iterating “superposition
maps” in the dynamical systems package.

Plate 3. A hand-drawn bee in a computer-drawn honeycomb.
Plate 4. A snake slithers through a simple rotated-octagon figure.

Plate 5. A hand-drawn zebra munches on fractal (turtle-drawn)
trees.

Plate 6. The “dragon curve” decorates a hand-drawn seahorse.

Plate 7. The waves are generated by the inspi procedure from
Abelson and diSessa’s book Turtle Geometry.

Plate 8. A peacock displays fractal feathers.

Plate 9. An Escher-esque tiling of fish and butterflies.

Artwork for Plates 4-8 by Orca Starbuck.
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