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Abstract

Visual processing tasks often require the matching of contours in two
images. Examples include determining image motion and matching
features for object recognition. We propose a scheme that takes par-
tial constraints on the matching between contours in two images and
finds the matches between these contours using local affine transfor-
mations. This new scheme is motivated in part by existing ideas for
both recovering optical flow and matching features for object recog-
nition, and in part by short-term motion processing in the primate
visual system. The scheme assumes that contours are locally approx-
imated by orthographic projections of planar objects. A local affine
transformation is determined for each contour point using oriented el-
liptical Gaussian neighborhoods that smoothly integrate information
over proximally connected contours at several spatial scales. At the
largest scale satisfying available constraints a minimal solution mecha-
nism employs a modified pseudoinverse to directly predict matches that
are closest to the simplest purely translational correspondence. Using
this scheme, the matches for points along contours can be determined
in parallel without iteration. The scheme’s matching performance is
assessed by simulation on noisy synthetic and natural contour imagery.
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1 Introduction

At the heart of many visual processing tasks lies the determination of correspon-
dence between features in two images. For example, correspondence is at least
implicitly required in stereopsis, structure from motion, and object recognition.
Often the matching is underconstrained because the features can be matched in
more than one way. Furthermore, the search space for possible matches may be
prohibitively large. Assumptions, usually derived from regularities of the physi-
cal world, are therefore necessary to constrain matching solutions uniquely. For
example, in stereopsis one can constrain the search to small areas along an epipo-
lar line by exploiting uniqueness, continuity, and probabilistic assumptions about
disparity [24, 26, 33].

We address the problem of matching contours in a pair of images, assuming
partial constraints on the matching are available. As illustrated by Figure 1, we
are given: (1) an image containing a set of contours; (2) a second image obtained
by displacing, stretching, rotating, scaling, and distorting these contours; and, (3)
matching constraint lines for several points along the first set of contours con-
straining the match for each of these points to a line in the second image. The
contour images may, for instance, be obtained by applying an edge finding algo-
rithm to either sampled time-varying imagery or two different views of a scene.
The constraint lines accompanying these two images can often be estimated for
many matching applications. One such application is the measurement of visual
motion. In determining optical flow along isobrightness contours, the tangential
component of motion frequently must be constrained by additional assumptions
due to the aperture problem [25, 10, 17, 1, 14]. Local measurements of motion
in regions without trackable features (such as edge corners) can capture the com-
ponent of image velocity only in the direction normal to isobrightness contours.
Therefore, the match for a point in one image frame is often constrained at best
to a line in the next image frame.

Another problem requiring the matching of contours arises in alignment-based
methods for object recognition (for an overview of alignment approaches, see [22,
9, 40, 18, 5]). In these methods, global transformations between model and object
views are compensated for by a normalization stage, which aligns the two views
and allows subsequent comparison. These views can be represented by contours.
Alignment schemes require that object and model features be matched at some
stage. Assuming that model and object views can be roughly aligned using global
image properties or several pre-matched “anchor points” [18], constraint lines can
often be estimated for each object contour point by the tangent at the closest model
contour point [4]. (The main inaccuracies in this method will occur for constraint
lines at high curvature points, which are simply ignored in the matching process.)
A similar method can be used in finding correspondence for apparent motion.

This paper describes a new scheme for solving these contour matching problems.
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Figure 1: To find a point-to-point correspondence between contours in two images
we are given constraint lines for several points in the first image. Each constraint
line narrows down the match for a point in the first image to a line in the second.




First, we outline several previous methods for matching contours in the contexts of
both recovering optical flow and finding matches for object recognition. Second, we
describe the new scheme which uses local affine transformations to predict matches
between contours. Next, we briefly review some motivating data concerning the
computation of pattern motion in the primate visual system. Finally, we present
simulation results obtained on noisy synthetic and natural imagery.

2 Previous Matching Ideas

In computing optical flow, several methods have assumed that the motion of pat-
terns can be described at least locally by pure translation [21, 32, 1]. This assump-
tion can be used to track objects in the case of simple observer motion, but a more
general assumption is necessary to account for objects undergoing combinations of
translation with three-dimensional rotation, scaling, and deformation. A common
approach to the general motion problem is to find the velocity field with the least
variation that is consistent with local motion measurements [17, 27, 2, 11, 19].
This idea is based on the observation that objects are locally rigid. Such meth-
ods have been applied either in a region-based manner {10, 16], or along image
contours [12, 13, 28]. These schemes usually require slowly converging iterative
methods, such as the conjugate gradient method, to efficiently recover a global
solution constrained by hundreds of linear equations [13]. They also suffer from
stability problems at or near the degenerate case of translating linear contours.

A number of methods have assumed that objects in motion can be described
by planar patches, an idea originally developed for the recovery of structure from
motion [43]. This idea is the basis for the “velocity functional method” of Waxman
and Wohn [44]. Their method determines the second order terms of the Taylor
series expansion of optical flow by satisfying the normal flow constraints within
fixed image neighborhoods. In each neighborhood a residual indicating “goodness
of fit” is used to segment the motion field into analytical regions. Because the size of
these neighborhoods remains fixed, however, highly non-planar segment boundaries
cannot be accurately described. The method also has difficulties with matching
contours that are perspective projections of less than biquartic complexity (such
as ellipses, parabolas, etc). This singular situation, termed “the aperture problem
in the large”, primarily arises when the normal flow in the fixed neighborhoods
does not adequately constrain the series coefficients. As with smoothness, the
solution becomes unstable (sensitive to noise) as objects approach these singular
configurations.

Other methods that exploit local planarity include affine motion methods that
select local neighborhoods using iterative successive refinement (7, 6]. At a given
spatial scale a low pass filter with appropriate bandwidth is applied to the residual
motion field. Then, assuming the motion field varies smoothly, the residual motion



field obtained at large spatial scales influences the calculation of the motion field at
smaller scales. Although convergence is often quite rapid for nearly planar surfaces
in motion, many iterations are required for highly non-planar surfaces undergoing
large motions. No attempt is made to shape neighborhoods so that normal flow is
integrated primarily along connected contours. Finally, singular conditions similar
to those affecting the Taylor series approximation methods again leave even the
largest spatial scales unstable.

In object recognition, several contour matching schemes employ correlation
measures or examine angles and intersections between contours. Such methods
either assume perfect alignment, or conduct a complete search through feature
space. They cannot deal with un-parameterized distortions, or inaccuracies preva-
lent in contour images. They also typically lack efficient implementation. Recently,
a number of methods have been devised for comparing contours using affine in-
variant curvature [8], arc length [3], or moments [15]. Such methods parameterize
contours according to one of these measures, normalize the contours by shifting
their representation in parameter space, and correlate the resulting invariant rep-
resentations. The main drawback of these methods is that they are global mea-
sures, applicable only to complete curves. As a result, these methods cannot deal
with noise or occlusion. Furthermore, as the objects producing the contour image
becomes less planar, the affine invariance becomes less valid for describing trans-
formations. Another disadvantage is that the calculation of these affine invariant
quantities requires a high degree of differentiation along contours, implying both
that contour tracing, contour thinning, and contour enhancement be performed in
order to ensure a unique path along the contour, and that contour smoothing be
performed in order to avoid large errors in the differentiation due to noise. Finally,
these recognition techniques are intended as verification steps taken after a match-
ing has already been hypothesized by exponential search or inaccurate heuristics.
This is also true of other affine matching techniques {20, 42].

3 The Proposed Solution

In the scheme described below the transformations of contours within local image
neighborhoods are assumed to be affine. We implicitly find the affine transforma-
tion through a least squares fit to available match constraint lines and pre-matched
points. The affine transformation is established between local contour segments,
rather than complete curves (as in [3]), based on the displacement field within a
small patch (as in [44]). It constrains the matching by assuming that contours are
the orthographic projections of locally coplanar points, thereby reducing the re-
covery of correspondence to a local, linearly constrained, non-iterative calculation.

Local neighborhoods are constructed so that constraint line information is
smoothly integrated primarily over proximal connected contours. This is accom-
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Figure 2: The unknown match point, p’;, on contour 2 for p; on contour I is
assumed to lie along a known constraint line described by a normal vector, n;.

plished by using elliptical Gaussian neighborhoods oriented along the contour. To
choose the appropriate size of the neighborhoods, we consider several neighbor-
hoods of differing sizes simultaneously for a given point. From these neighbor-
hoods, we choose the largest neighborhood within which an affine transformation
can accurately satisfy the available constraints. A stable, unique solution is guar-
anteed for the chosen neighborhood by using a modified pseudoinverse method
to find, subject to the constraints, the matches that deviate the least from the
minimal purely translational correspondence.

The following sections detail each facet of the scheme in an incremental fashion.
We start with the matching of contours that are orthographic projections of rigid
planar surfaces.

4 Matching Globally Planar Contours

Let us first assume that the transformation between two image contours can be
described by a global affine mapping. That is, each contour point p; = (z;,¥;) in
the first image maps to contour point p’; = (z},y!) in the second image by the



linear equation

p'; = Ap; +t (1)
where the 2 x 2 matrix A accounts for the two-dimensional shearing, scaling, and
rotation in the image plane about the global origin, p, = (0,0), and the vector t
accounts for two-dimensional translation in the image plane. Next, consider the
contours in Figure 2. Suppose that the exact location of p’; is unknown, but that
it lies along some known constraint line in the image. The perpendicular distance
between the match point p; and the constraint line should be zero. Therefore, if
n; is the perpendicular from p; to the constraint line, and fi; is the unit normal to
the constraint line, then the constraint line is described by

(p; +n; —p'))"h; = 0. (2)
Substituting (1) into (2) yields
(Ap:)"h; +t7Th; = p{ i + |ny]. (3)

Since the right hand side of this equation can be computed from available infor-
mation, we obtain one linear equation constraining the six parameters of the affine
transformation for each point. If we represent the six affine parameters as a vector

T
a= [ Ao Aor A Apn Ly ty] , (4)
then (3) can be rewritten as
c;a =d; (5)
where
C;, = { ﬁ,‘xl',' ’IAlz‘ry,‘ fliy$5 ﬁ'iyyi ﬁ,’x ﬁ'iy ] (6)
d; = p{ i, + ;. (7)

(Note that ¢; = 0 and d; = 0 if either no constraint information is available for
point p;, or p; does not lie on a contour.) Thus, for a system of k£ points and
associated equations (where k is the number of points in the image),

Ca=d (8)

where C' is a k x 6 matrix with rows ¢;...ci, and d is a vector with elements
dy...d,. When there are more than six independent equations, (8) should be
solved in the least squares sense. Specifically, we solve the system

CTCa=0C"d (9)

which minimizes the mean squared distance between each match and its constraint
line. This equation predicts matches for all points, even points without constraint
lines, provided that an affine transformation is uniquely determined by existing
constraint lines in the image. (Later, we extend this prediction to the underdeter-
mined case.)



5 Incorporating Matched Feature Points

In some matching problems, the exact point-to-point correspondence may be known
for some special feature points, such as corners, terminators, high curvature points,
inflection points, and isolated points. To incorporate the influence of a feature
point match between p; and p’; we once again assume the match is given by equa-
tion (1) and minimize the distance,

|(Api + t) — p';|. (10)
Hence, the two constraint equations for each feature point p; are given by
Fa=p/ (11)

where
- T Y, 0 0 10

F’-OOxiyiOI' (12)
(Once again, F; = 0 and p; = 0 when p; has no given feature point match.) Note
that these two equations describe two perpendicular lines that intersect at p’;.
Feature matches can therefore be treated as a special type of contour point that
contributes two constraint lines instead of one. Again, for a system of k feature
points, we have

Fa=g (13)

where F'is a 2k x 6 matrix consisting of rows Fj ... Fi, and g is the length 2k
concatenation of p’, ... p’,. Combining (13) with (8) yields

[(1;;)0]a=[(1;:)d]’ (14)

where «, a number between 0 and 1, is the accuracy of feature point matches
relative to the accuracy of contour point constraint lines. Finally, finding the best
affine transformation amounts to solving the least squares relation

((1 —a)CTC+aFTF)a: (1-a)CTd + oFTg, (15)

obtained by differentiating (14) with respect to a and setting the result to zero.
Again, solving this system of equations for a determines the best global affine
transformation about the global origin, p,.

6 Matching Locally Planar Contours

Since contours are generally perspective projections of non-planar, non-rigid ob-
jects, (1) cannot in general accurately describe matches globally. The scheme

7



therefore enforces this affine transformation assumption only locally. That is, the
constraint information is integrated within a local neighborhood around each con-
tour point, p;. This local neighborhood is constructed by weighting the constraints
at each point.

To fulfill this neighborhood requirement, it is convenient to describe the com-
putations using a local coordinate system at each contour point, p;. The location
of each point, p;, is measured with respect to the local origin, p;, instead of the
global origin, p,. To make the calculations local we also weigh constraints for
each point, p;, by some locality measure, w;. The “closer” p; to p;, the larger
this weight. Employing the method of weighted least squares to incorporate this
weighting scheme into (15), we find the local affine transformation, and hence the
match, for each contour point, p;, by satisfying a system of equations

Ra =1 (16)

where
R=(1-a)CTWC + oFTW?F (17)
1=(1-a)0TW2d + aFTW?g. (18)

The diagonal matrix W establishes the local neighborhood at p; and is given by
W = diag(wy . . . wi). (19)

Note that the resulting 6 x 6 matrix, R, and the six-dimensional vector, 1, can
both be written explicitly as summations of point locations, normals, and weights
by expanding the matrix definitions. Therefore, the elements of these matrices can
easily be calculated in parallel for each local neighborhood using simple adders.
In the following sections we consider appropriate ways to shape and scale this
neighborhood, thereby defining W.

7 Neighborhood Shape:
Oriented Elliptical Neighborhoods

The weight for each point determines the relative influence of its constraints upon
the solution. The set of all point weights therefore determines the extent and
shape of the local neighborhood. We determine the weights according to several
neighborhood criteria. First, the neighborhood integration should monotonically
decrease with distance from the local origin, since distant points are less likely to be
coplanar with p;. Second, the neighborhood should be smooth so that matching
solutions vary continuously along contours. (Note, however, that this will not
mandate the smoothest solution along the contour.) Finally, the neighborhood
should be maximally elongated and oriented along the contour in order to integrate
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Figure 3: (a) Integration along nearly linear contour segments is primarily along
the contour, while (b) integration over symmetric sections of the contour is circular.
Oriented local neighborhoods are determined by the product of v;, a Gaussian of
the distance from the local origin p;, and p;, a Gaussian of the distance from the
azis of local orientation passing through p;. The width of the latter Gaussian is
determined by the strength of the local orientation.

information primarily along connected proximal contours without serial contour
tracing.

With these criteria in mind, we suggest that the weight for p; actually be the
product of two Gaussian weights:

Wi = Vi (20)
The first weight, +;, is given by

% = exp (_lpi|2/203ize)' (21)

The set of all 4’s constructs a circularly symmetric Gaussian neighborhood about
the local origin. The standard deviation of this Gaussian, o;,., is the effective size
of this neighborhood. This parameter is discussed in the next section. The second
weight, u;, is given by

pi = €xp (-61’2/203hape) (22)
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where 6; is the perpendicular distance from p; to the axis of local orientation pass-
ing through p;. It modulates the circularly symmetric Gaussian and orients the
resulting elliptical neighborhood to integrate information primarily over connected
contours without explicitly performing connectivity analysis or contour tracing.
The width of this Gaussian, o,p,p, ranges between 0 and oo, corresponding to
maximal local orientation and circular symmetry respectively. Hence, the stronger
the local orientational preference of the contour, the higher the aspect ratio of the
elliptical neighborhood, and the larger the relative influence of points that lie closer
to the local axis of orientation. This neighborhood construction is illustrated in
Figure 3.

We now determine ,p4pe (assuming first that we know o,;,.) keeping in mind
that the oriented neighborhood must be narrow for linear contours and wide for
circularly symmetric contours. To capture this notion, we propose that the major
and minor axes of the elliptical neighborhood be respectively aligned with and
proportional (by some proportionality constant ) to the major and minor axes of
the principal component ellipse of the local binary contour image. The principal
component ellipse can be derived through principal component analysis of the
inertia matrix

Jez  J.
[ oy Jyy (23)
where
k k k
Joz = Z7zzbz$¢2, Jzy = Z'y?b,-x,-y,-, Jyy = Z’yfb'y? (24)
=1 =1 =1

are the second local moments about the local y, —zy, and = axes respectively,
and b; is the value of the binary contour image at p;. First, the second moment
extremes are the eigenvalues of J,

Moy = Mj'_p, Min = _J”_+‘]_yﬂ (25)
2 2
where
p= \/(Jm — Jy)? + (2J5y)% (26)

These eigenvalues give the axes magnitudes of the principal component ellipse,
to which the neighborhood axes should be proportional. If the major axis of the
neighborhood is 05,e = BAmas, then the minor axis is simply BAmin = %\‘ﬁi:o,izc.
This desired minor axis is the effective width of the modulated Gaussian in the

direction perpendicular to the axis of orientation; that is,

Amin 1
)\_asize = (J.;ze + Js_h2ape)-; . (27)
Rearranging, we obtain
/\min/Ama:ﬂ
Oshape = —F————--0g{ze- (28
" - Gy )
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Next, é; is given by the scalar product of p; and the unit normal to the axis
of local orientation, defined by the unit eigenvector of J corresponding to the
eigenvalue A,,,.:

@l _ [\/P + sign(Joy )(Jyy — Joz);, — ii/g?%(‘]xy)\//’ + Sign(Ja:y)(Jm - Jyy)‘ . (29)

Hence,

6 = ©Tp; (30)

(see [16] for a more complete analysis of using the principal component method to
find the orientational preference of binary images).

Note that, although there may be problems with finding the orientation of a
contour that is surrounded by several other contours, surrounding contours should
not in general affect the final solution long as we have chosen a sufficiently small
neighborhood in which to carry out the calculations. This issue is addressed next.

8 Neighborhood Size:
Choosing From Multiple Neighborhood Scales

For several reasons it is desirable to include in the computation a mechanism for
selecting the size of each integration neighborhood. As the size of the local neigh-
borhood decreases, the local planarity assumption is better approximated, and the
possible interference from nearby contours decreases. However, if the neighbor-
hood is too small, lack of adequate constraints on the local affine transformation
produces an unstable solution. Clearly there is a tradeoff between extracting suf-
ficient information for unique solutions within large neighborhoods, and satisfying
local planarity assumptions and insulating computations from interfering contours
with small neighborhoods.

To solve this problem we use a number of spatial scales computed in paral-
lel. Out of several possible solutions obtained for different neighborhoods (several
values of o,..) around p;, the solution corresponding to the largest spatial scale
that best satisfies (16) prevails. There are several possible ways to determine how
well a given spatial scale uniquely satisfies the constraints. For instance, one could
use the least squares residual to determine how well the assumptions fit the local
neighborhood. Using this method, we solve equation (16) at several scales and
choose the largest scale for which the least squares residual is small. Alternatively,
one could use the condition number of the matrix R to determine if a given local
scale is too small. Under this criterion we take the solution at the smallest spa-
tial scale for which the condition number of R is lower than some number,

"cmax-
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Finally, we could choose the spatial scale based on some combination of these two
methods.

The condition number criterion is adopted here for the sake of efficiency in serial
simulation. First, this criterion allows us to try smaller scales, which require less
integration time, before larger ones. Second, it does not require that we actually
solve (16) at each scale, as does the least squares residual. In setting the maximum
condition number, &,,,,, one must consider the accuracy of the constraint lines and
feature points. If these quantities are known to be accurate, then «,,,, should be
high to promote precise solutions. If, however, the accuracy is low, then k.
should be low to decrease the solution’s sensitivity to such errors.

9 Minimal Solutions for Ambiguous Cases

Despite selection of the optimal neighborhood, the solution to (16) can be under-
determined or unstable, even in the largest neighborhood. This situation occurs
when there exists more than one affine mapping between two contours. Consider,
for example, a linear contour where the constraint lines for all points are identical.
In this case any combination of scaling or shearing along the constraint line, in
addition to any translation taking the line to the constraint line, satisfies the con-
straints. Another example is the matching of concentric circles. If at each point
along the first circle the constraint line is parallel to the tangent to the circle at
that point, then any amount of rotation, coupled with an appropriate scaling, is
possible (see examples in Figure 4).

For these singular cases, we select the minimal solution. Intuitively, the min-
imal solution, chosen from the set of solutions which satisfy the available con-
straints, is closest to the smallest purely translational matching. This idea is based
entirely on intuition. First, it is conceivable that many object transformations not
described by a unique affine transformation (a first order transformation) can be
described by a unique translation (a zero-th order transformation). Second, when
even the translational matching is ambiguous, it seems that the solution should
be closest to the normal component of the match to reflect the lack of constraints.
These notions are illustrated in Figure 4. Any amount of rotation of the circle, or
any amount of tangential translation of the line, results in a set of match vectors
that deviate more from their normal components.

In formulating the mechanism for choosing the minimal solution defined above,
we must retain some important features. First, the mechanism must uniquely
(stably) determine matches, regardless of the quantity or quality of the constraint
information. Second, the mechanism must preserve continuous matches along con-
tours. Finally, the minimal solution must have a closed form solution that is
efficiently calculated at each point without iteration.

12



One way to satisfy all these requirements is to minimize the cost function

k
A =Y (wilApi + t — (p; + tmin)])?, (31)

1=1

which summarizes over the entire neighborhood the squared deviation between pre-
dicted match vectors and ti,, the smallest pure translation that satisfies neighbor-
hood constraints in the least squares sense. Even for collinear points with parallel
constraint lines (which can be matched by many purely translational transforma-
tions), A is uniquely minimized by the average neighborhood normal component.
Furthermore, A is robust to noise because it integrates information over the entire
local neighborhood, as opposed to directly minimizing the deviation between each
match and the normal component, which is sensitive to noise in the constraint
line. As for smoothness, calculation over Gaussian local neighborhoods guarantees
continuous variation of A. Finally, A is computed independently of (in parallel
with) the final solutions at other points, as opposed to global selection methods
which select the set of contour matches to optimize an overall measure, such as
smoothness along the contour.

Assuming t,,;, has been computed (see later section), minimizing A is identi-
cal to finding the affine transformation that matches feature points (the feature
matches for each point p; simply being p; + tmnin). Therefore, to minimize A we
solve a system of linear equations, similar to those of (13), given by

Ra=h (32)

where

Q = STW?S, h = STW2v. (33)

Here S, similar to F', is a 2k x 6 dimensional matrix with rows S; ... S, where

z; v 0 0 1 0

5510 0 @ w0 1] (34)
and v, similar to g, is a length 2k concatenation of vy ... vy, where
Vi = P;i + tmin. (35)
To minimize A subject to the matching constraints we solve
ngn(aTQa — 2a”h) subject to Ra = 1. (36)

Once again, t,,i, is the smallest least squares neighborhood pure translation,
which we have not yet mathematically defined. In the next section we simplify the
existing constraints in order to directly compute this default, and eventually the
match vector itself, later in the paper.

13
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Figure 4: Minimal solutions for ambiguous transformations are intuitive: (a) con-
centric circles could be matched with any amount of rotation, but pure expansion
should be the default; (b) parallel lines could be matched using a translation in any
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10 Simplifications Arising from
an Implicit Formulation

Before deriving closed form solutions for t,,;, and the match vector, it is useful
to digress and consider how we will eventually obtain final matches for contour
points given the computed local affine transformations. This analysis will simplify
subsequent computations.

It turns out that a point’s match depends only on the translational component
of its local affine transformation. That is, the final match for each local origin, p;,
is given by

p'jzApj+t=A[0]+t=t‘ (37)

0
Therefore, we need only implicitly solve for the rotation, scaling, and shearing
components and thereby directly compute the match vector. In fact, an implicit
formulation should be more efficient and stable. Increased efficiency follows from
inverting 2 x 2 and 4 x 4 submatrices of the 6 x 6 R matrix instead of inverting
R itself. Increased stability follows from analysis of the elements of R: since the
coefficients of t do not depend on the size of the local neighborhood, while the co-
efficients of A grow as the square of the local neighborhood, uniform random noise
affects these elements differently. By separating the translational components, this
undesirable property should disappear.
To separate the components, first let (16) be rewritten as

R, R. r 1.
E¥dIHE .
where R; is a 2 x 2 matrix relating the translational affine coefficients, t, to the
2-dimensional vector, l;, R, is a 4 x 4 matrix relating the rotational, shearing,

and scaling affine coefficients, r, to the 4-dimensional vector, 1,, and R, isa 4 x 2
coupling matrix. Likewise, ¢} and h can be represented by

Q, Q. h,
o= 1& & h=[ht]' (39)

At this point, it is advantageous to expand and simplify several of these sub-
matrices. Expanding, we obtain

k
QT:[% OQ] Qt=(§w3)], Q=0 (40)

k k
ht = Zw? [ Z; + tminx } = (Zw?) tmin' (41)

i=1 Yi + tminy i=1
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(taking advantage of the fact that Y%, w?z; = Y5, w?y; = 0 for elliptical neigh-
borhoods due to odd symmetry), where

k 2
2| Ty Tl
0=y ] (2
and [ is the 2x2 identity matrix. Note that the elements of ), are second moments
taken within the elliptical neighborhood. With this in mind, these second moments
should be roughly proportional, by some factor 5, to the second moments, J,.,
Jzy, and Jyy, that were used to derive this neighborhood (see (24)). Therefore, a
reasonable estimation is
Qe = nJ. (43)
All of these simplifications will allow us to solve directly for the default trans-
lation. They will also guide the subsequent derivation of the match vector itself.

11 Determining The Default Translation

What remains to be seen, before deriving a closed form expression for the match,
is how the default pure translation is determined. Using (38), finding t,.;, for the
neighborhood is much like finding the best local affine transformation with the
rotational, shearing, and scaling components set to zero (i.e. A = I, the 2 x 2
identity matrix), or

P=rmm=[100 1] (44)

Thus, we simply solve a system of equations
Ritmin = (I — RTr i), (45)

Since the determination of a purely translational matching merely requires the
intersection of two constraint lines, this system of equations is underconstrained
only when there are no feature point matches and the constraint lines are parallel.
In this case, we choose the solution closest to the average normal component by
finding, using the general pseudoinverse (denoted by +), the smallest translation
satisfying the constraints. Hence,

tmin = R: (lt - Rzrmin)- (46)

The pseudoinverse formulation used for this and all subsequent calculations
is presented in Appendix B. It differs from the conventionally used form in sev-
eral ways. First, to promote stability, the SVD threshold is chosen such that the
maximum allowed condition number, Kmq, (introduced previously), mandates the
absolute minimum eigenvalue for a given matrix. Second, values below this thresh-
old are not immediately deemed singular, but rather continuously default to zero

16



as they drop below the threshold. Without this latter modification, matching solu-
tions along contours may vary discontinuously, defeating the smoothing properties
of the Gaussian neighborhoods and producing rather non-intuitive results.

12 Direct Match Computation

Finally, we are now in a good position to solve directly for the match vector.
Making use of the separation of affine components and the simplifications made
possible by this separation, (36) is equivalent to

r7(Q,r — 2h,) + (TX, w?) t7(t — 2t,,;) (47
+IT(R,r+ Rt -1)+TT(Rt+ RTr - 1,)

min
tr I, T,
where I'; and T, are the Lagrange multipliers for the translational and rotational

parts of the constraints respectively. Taking the partial derivatives with respect
toI'y, I';, t and r and setting them to zero respectively leaves

RZr + Rtt = lt (48)
Rrr + Rct = lr (49)
X
t=—F——— tmin
r= T_lxr + Cmin, (51)
where 1 1
Xt p— _§(RZPT + R;Ft)? x‘l‘ = _§(Rfrr + Rcrt)’ (52)

since Q7 'h, = rpis, the default for rotational, shearing, and scaling components.
Finally, substitution of (50) and (51) into (48) and (49) then allows us to solve
for x; and derive

I, — RTR#1,
t = (Rt — RZR#RC)+ - (RZR,#RC - Rt)tmin + tmin (53)
~ (R R¥R, — R )rpmin

where

Rf=Q:1(RrQT_1)+=[J—O|J| J_?I JI](RT[J_OIJ' J-?| Jl]) (54)

(using the approximation of (43)) and

-1 _ Jyy _er
J |J|_[_ny Il (55)

17



Equation (53) not only minimizes the overall deviation between neighborhood
matches and the best pure translation, but it also guarantees a unique, stable
match regardless of the constraints or the neighborhood. When R, and Q, are
non-singular, then Rf = R:!, and the default, r,,;,, factors out of the solution.
Otherwise, one must use the pseudoinverse. The latter case occurs when the
neighborhood contour points are collinear, since at least three non-collinear point
matches are required to uniquely define an affine transformation. When this situa-
tion occurs, (), affects the solution by altering the eigenvalues or R,. It essentially
transforms the Euclidean affine parameter space to one in which finding the closest
affine solution vector to the purely translational affine transformation,

Amin = [ :mt‘n ] ’ (56)
mn
yields an affine transformation that minimizes A.

This completes the development of the matching scheme. Applications will
undoubtedly need to extend or modify certain details. For instance, the devel-
opment here, though robust to noise in the constraint lines, says nothing about
how such lines are determined. It is important to note, however, that the scheme
has been developed in a general context and is therefore applicable any problem
requiring that full correspondence between contours in two images be found given
only partial matching constraints.

13 Biological Plausibility

The scheme developed in the previous sections is motivated in part by a number
of psychophysical and neurophysiological findings regarding the recovery of short-
range motion in the primate visual system. Evidence of varying detail indicates
that the primate motion system may employ several components of the match-
ing scheme, including the affine assumption, the influence of feature points, local
Gaussian neighborhoods, oriented elliptical neighborhoods, multiple spatial scales,
and minimal solution mechanisms.

Positive evidence for the affine assumption is sketchy. Interestingly, however,
neurons have been discovered in area MST of the macaque monkey that seem to
be selectively responsive to divergence [34], deformation [34, 29], and rotation [35]
of the visual field, respectively equivalent to the scaling, shearing, and rotational
transformations that can be described by an affine transformation. Although the
role of these neurons is not entirely clear, they may be involved, along with area
MT neurons selective to pure translation [1], in the computation of a local affine
approximation to the flow field. Psychophysical experiments indicating that hu-
mans can more easily estimate the structure of a moving wire-frame from only two
apparent motion frames when the projections undergo an affine transformation
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can also be taken as weak evidence for the visual system’s employment of this
approximation [39].

Terminator feature points have been shown to increase the perception of rigid
motion when added to a moving linear contour with a single inflection point [31],
much like specially matched feature points affect the determination of an affine
transformation here. Furthermore, the perception of rigid contour movement in-
creases as the distance between a terminator and the inflection point decreases,
suggesting that the visual system employs some smooth local integration process,
such as the Gaussian neighborhoods proposed here. This observation for the most
part rules out any type of globally calculated smoothness assumption [12, 13], since
the smoothest velocity field for a purely translating contour is a pure translation
regardless of terminator locations.

Further results obtained using the same contour stimulus have also indicated
that moving terminators placed off the contour can weakly influence the percep-
tion of motion, an effect that can be blocked by non-moving terminators placed
between the moving terminators and the inflection point [31]. This result supports
the notion that motion measurements are integrated primarily along contours by
oriented receptive fields, much like the oriented neighborhoods employed here. Not
surprisingly, oriented receptive fields have been measured in area MT with esti-
mated dimensions 15 arc min X 5 arc min in central vision (see [29]).

Parallel short-range motion analysis by several spatial scales is also supported
by psychophysical evidence. Several results indicate that both input to and in-
tegration within the motion system consists of several spatial scales [1, 41, 29].
Moreover, experiments involving the motion of random dots have indicated that
perception of global flow, as opposed to local independent motion, increases as
the global distribution of dots becomes more coherent [45] (see [36]). This result
suggests that the visual system applies an appropriate assumption to the largest
possible area of the image, much like the mechanism for choosing the largest neigh-
borhood that satisfies matching (motion) constraints.

Finally, evidence for minimal solution mechanisms in the visual system can be
gathered from experiments regarding the perception of non-rigid motion, which for
the most part occurs when the perception of pattern motion is similar to the normal
velocity measurements rather that the actual motion field. Perception of coherent
pattern motion of two moving sine wave gratings has been found to decrease with
the angle between their primary directions [1]. Similarly, the perceived rigidity
of a translating sine wave contour (of the form asin (az + Bt)) decreases as the
wave becomes more shallow (the angle at the intersection of the curves with the
z axis is less than 15 degrees) [30]. Given these results, it has been suggested
that the visual system pays more attention to the normal velocity in such highly
unstable (ambiguous) situations in order to boost the signal to noise ratio [31].
This suggestion is consistent with the minimal solution mechanism proposed here,
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which effectively minimizes the summed squared deviations between neighborhood
matches and the average neighborhood normal component when the best purely
translational matches are ambiguous.

14 Implementation and Results

The matching scheme was implemented in C on a Sun workstation. Five spatial
scales were employed. The sizes, in terms of the variance of the local Gaussian
neighborhood, o.., were 4, 8, 16, 32, and 64 pixels. These sizes were chosen so
that the largest neighborhood was on the order of the size of the examples, thereby
ensuring that the largest local neighborhood could roughly include the constraints
of the entire example. Input consisted of two 256 x 256 pixel binary contour im-
ages. Some were synthetically produced, while others were extracted zero crossings
of smoothed and differentiated natural imagery [23]. Though the method should
be able to deal with any set of contour images with partially constrained matches,
the two images chosen for each simulation were relatively aligned to reflect the
fact that constraint lines are most easily derived from mildly differing imagery
(i.e. time sampled imagery for short-range motion, or roughly aligned objects
for object recognition). The “correct” matches between each pair of images were
known for synthetic imagery and hand-picked for natural imagery. The constraint
line for each contour point was determined by finding the local orientation of the
contour, then taking the line with the same orientation that passed through the
“correct” match. In the context of visual motion, these constraint lines roughly
mimicked a local measurement of normal velocity and allowed comparisons to be
made with the results of previous methods for recovering optical flow.

To assess the affect of noise upon the matching process, 10% random noise
was added to the components of the normals describing the constraint lines and
feature point matches. Assuming this equal noise distribution, a value of 0.5 was
used for a, the accuracy of feature point matches relative to the accuracy of con-
straint lines. Furthermore, the parameter k.., used both for selecting the size
of the neighborhoods and for setting the SVD threshold in pseudoinverse opera-
tions, was experimentally determined by applying the scheme to the worst case
(most ambiguous) matching problem, the matching of parallel lines (see example
1b in appendix A). The average percentage deviation of matches with respect to
the actual normal components of the match (the expected minimal solution) was
determined for several values of k,,,. Using the results, shown in Figure 5, the
tradeoff between stability (low £,,.,) and accuracy (high k,,,,) was balanced by
choosing K., = 74.0, the highest value for which the average percentage error
did not exceed the percentage noise. This value was used for all subsequent exam-
ples, the results of which are shown in Appendix A. Note that this choice seems
particularly appropriate considering the large increase in matching error as &,qq
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Figure 5: Average percent matching error vs. Kpq.. for the matching of parallel
lines with 10% random noise in the constraint lines.

increases beyond this value.

15 Discussion

As demonstrated by the results presented in Appendix A, the proposed contour
matching scheme robustly recovers the correspondences of both synthetic and nat-
ural contour imagery. First, unlike most other methods for matching contours,
this scheme yields intuitive solutions for ambiguous cases, such as parallel lines
and rotated ellipses. Moreover, matching solutions continuously approach stable
defaults as the matching becomes more ambiguous. For example, as a translated
sine wave becomes more linear (smaller amplitude), the solution defaults gradually
to the normal components of the match. In the context of short-range motion, this
behavior agrees with psychophysical results indicating the non-rigid perception of
small amplitude translating sine waves [30] (see earlier section on biological plausi-
bility). A similar default occurs as a rotated ellipse becomes more circular, where
the solution again agrees with psychophysical data indicating that the smaller the
aspect ratio of the rotating ellipse, the less accurate the final velocity field and the
more non-rigid the interpretation. Note that the smoothness assumption [12, 13]
yields similar results, except near the two highest curvature points of the ellipse,
where the matching is more accurate. More attention must be paid to human
perception to determine which of these interpretations is more psychophysically
accurate.

A second attribute of the scheme concerns the usefulness of specially matched
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feature points. While feature point matches obviously aid the matching process
of the ambiguously matched parallel lines, the scheme did not exploit any feature
point matches for subsequent examples and nevertheless recovered the actual cor-
respondences. This observation indicates that, while feature point matches are
especially important for the matching of ambiguous examples, they are no more
powerful than redundant constraint lines when used in conjunction with an unam-
biguous example.

A third observation is that analysis at several neighborhood scales greatly en-
hances the scheme’s ability to recover exact matches, particularly those collective
matches not modeled precisely by a global affine transformation. For example,
the three-dimensional distortions used to generate the space curve did not present
a problem to the matching scheme. The attribution of this capability to sev-
eral neighborhood sizes is not obvious from the results, but instead from sim-
ulations that reported the sizes of the selected neighborhoods at every contour
point. Matching the views of the face, for example, required small neighborhoods
for matching contours with intricate detail (such as the eyes and nose) and large
neighborhoods for matching nearly linear contours (such as the occluding bound-
ary between the face and the background). It is not until we examine the matches
predicted for the three-dimensional rotated wire frame that we see the limitations
of multiple scales. Though the overall matching solution is quite accurate, the
matching of overlapping contours undergoing separate motion is highly inaccurate
because information has in this case been integrated over independent contours.

16 Conclusion and Future Work

A method for determining matches between contours in two images has been pro-
posed, developed, and tested, assuming that constraint lines, each narrowing down
the match for a contour point in the first image to a line in the second image, are
available for several contour points in the first image. Suggested applications in-
clude the determination of optical flow in short-range motion and the matching of
aligned contour views in either alignment-based object recognition or long-range
motion.

To determine the match for a contour point we find the best affine transforma-
tion, in a weighted least squares sense, that satisfies the match constraint lines and
feature point matches within an oriented elliptical neighborhood. This neighbor-
hood is established by weighing the constraint equations. The weight for a given
point constraint is the modulation of the Gaussian distance to the local origin,
which establishes a circularly symmetric local neighborhood, by the Gaussian dis-
tance from the axis of local orientation, which attempts to limit the neighborhood
to a single contour. The width of the modulating Gaussian is set such that the
axes of the elliptical neighborhood are proportional to the local axes of inertia.
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To determine the width of the circularly symmetric Gaussian, the effective size of
the local neighborhood, we consider several sizes simultaneously and choose the
smallest one which yields a stable, unique solution, as determined by the condition
number of the constraint matrix, R. In the event that this condition number ex-
ceeds the parameter k,,,, even at the largest neighborhood, there is more than one
possible solution, from which we choose the smallest affine transformation which
predicts the set of neighborhood matches which deviate the least from the small-
est least squares purely translational matching. Unique determination of both the
smallest pure translation and the final match is guaranteed through the use of a
modified pseudoinverse operation.

This entire procedure is repeated for every contour point. Note, however, that
the match for each point may be computed in parallel. Furthermore, since the
predicted match for a point is simply given by the translational component of the
local affine transformation, finding the match involves explicitly solving for only the
two translational components of the affine transformation. A closed form solution
for the match involves using a continuous version of the pseudoinverse to invert a 2
X 2 matrix and a 4 x 4 matrix, the coefficients of which are weighted summations
of local point constraint parameters that may be determined in parallel.

The matching scheme only relies on two parameters. The parameter, o, which
ranges between 0 and 1, indicates the expected accuracy of feature point matches
relative to constraint line information. The parameter £,,,,, which must be set
according to how much noise is expected in the constraint lines, places a bound on
the condition number of any constraint matrix.

As for biological plausibility, more experimentation is necessary to compare
the performance of the scheme with that of the visual system, in both motion
perception and object recognition. However, the scheme is motivated by current
biological evidence for short-range pattern motion and can, in many cases, explain
such evidence better than other models can.

Simulation results show that the scheme performs well for most examples, in-
cluding noisy synthetic imagery and edges extracted from natural imagery. Mini-
mal solutions obtained when the recovery is ill-posed are intuitive, and agree with
psychophysical data. It seems that the non-rigidity of contour transformations
arises primarily near ambiguous situations, and incorporation of terminators im-
proves the correspondence significantly for such near-ambiguous examples.

Despite the scheme’s performance and biological plausibility, further research
remains. First, the precise conditions under which the local affine transformation is
uniquely determined by the constraints should be better understood. Currently, it
is difficult to predict when the minimal solution mechanism is necessary to guaran-
tee uniqueness without examining specific cases individually. Second, simulations
should more rigorously test matching capabilities and limitations. Specifically,
experiments should test the theoretical effectiveness of using oriented elliptical
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neighborhoods to limit the interaction of independent contours. They should also
assess matching performance upon examples larger than the largest neighborhood.
With this data, the optimal number and sizes of available neighborhoods can be
suggested. Third, application specific problems can be addressed. In recovering
optical flow, it should be straightforward to test the scheme using extracted nor-
mal velocities from actual motion frames. In alignment-based recognition, pre- and
post-processing steps for finding the constraint lines and final matches should be
developed and tested. Finally, extensions and modifications to the method can be
considered. An extended scheme which makes use of available depth information
to form ellipsoidal neighborhoods, where the three-dimensional Gaussian distances
are used to weight point constraints, may effectively deal with the current inac-
curate matching caused by overlapping, independently moving contours. Finally,
prediction mechanisms such as Kalman filtering techniques can be incorporated
for applications, such as recovering optical flow, that are aided by temporal im-
provement of continuous matching solutions over multiple image frames.

A Simulation Results

In each example presented the first contour image is shown in black, and the
second contour image is superimposed as dotted contours. In column I, vectors
describing the constraint lines are shown for sampled points along the first contour,
and special match vectors are indicated by small squares at the endpoints. 10%
random noise has been added to these vectors. The computed and actual match
vectors for sampled points are then shown in columns IT and 1], allowing qualita-
tive comparison. Quantitative results are also presented. At each sampled point,
the relative error is computed by normalizing the distance between predicted and
actual matches by the length of the actual match vector. The average relative
error, computed over all sampled points, is reported for each example. Note that
predicted matches do not necessarily lie exactly upon the second contour, espe-
cially for the matching of ambiguous examples. In practice, final matches may be
found by taking the point on the second contour that is closest to the predicted
match.

Rows la and 1b respectively present the matching of synthetic parallel lines
with and without terminator matches. Rows 2a and 2b respectively present the
matching of translated synthetic large and small amplitude sine waves. Next, row
4a presents the matching of a synthetic ellipse rotated in the image plane by 20
degrees, and row 4b presents the matching of synthetic rotated concentric circles.
In row 4a an orthographic projection of a synthetic wire-frame is matched for
purely translational correspondence, and in row 4b the same wire-frame is rotated
by 20 degrees about each axis and matched. Row 5 presents the matching of an
orthographic projection of an arbitrary synthetic 3D space curve rotated by 10
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degrees about each axis, translated, scaled by a factor of 1.2, and stretched by a
factor of 1.1 along each axis. Finally, the matching of the edges obtained from a
pair of roughly aligned natural views of a Volkswagen (borrowed from [5]), a tank,
a doll face (borrowed from [37]), and a pair of scissors (borrowed from [5]) are
respectively presented in rows 6 through 9.
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B Modified Pseudoinverse

This appendix describes two modifications to the general pseudoinverse. The gen-
eral pseudoinverse is defined for any n x m matrix A. First, A is uniquely diago-
nalized as

A=QiAQ] (57)

where (); and @), are n x m and m X n orthonormal matrices respectively, A is the
m X n matrix of the singular values of A,

N 0 0 -.- 0
A= : : (58)

0 Vi, 0 .o 0
(in this particular case for n < m), and A; - -- A, are the eigenvalues of ATA. This

process is called singular value decomposition (SVD). Given this diagonalization,
the general form of the pseudoinverse is

At = Q2A+Q{ (59)
where )
1/A;; if A >t
+ _ i iy =
A= { 0 otherwise (60)

and ¢ is a threshold below which values are effectively singular. The higher the
threshold, the more stable, but the less precise, the result. To regulate stability,
we choose this threshold such that the condition number of AT A is less than some
number, K,q4,. Thus, our threshold is

A7"‘1«0!((7
t= (61)

K‘ma.a:

since the condition number is the ratio of the maximum to minimum eigenvalues.
This is the first modification.

The problem with this formulation of the general pseudoinverse is that the
solution suddenly becomes singular when A is not full rank. This discontinuity,
due to a very small change in A, is quite sharp because the elements of At do not
continuously vary with the elements of A. Consider instead that the elements of
At gradually default to zero using:

1/ A if Aij > ¢
+ _ ij iy =
Al = { A;;/t* otherwise - (62)

Now the elements of A* are continuous functions of the elements of A. This is the
second modification. (See [38] for a more detailed presentation of SVD and the
general pseudoinverse.)
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