WIPO WORLDWIDE SYMPOSIUM ON
THE INTELLECTUAL PROPERTY ASPECTS OF
ARTIFICIAL INTELLIGENCE

Stanford University,
Stanford (California), United States of America

March 25 to 27, 1991

World Intellectual Property Organization



Acknowledgements

This paper appeared in the Proceedings of the World Intellectual Property
Organization Worldwide Symposium on The Intellectual Property Aspects of
AI pp. 101-119, Stanford, CA, March 1991. The proceedings are available
from WIPO, Geneva, Switzerland.

An earlier version of a few short segments of this text appeared in the
“Musings” column of Chemical Design Automation News, June 1991. The
section on digital information draws in part from Pamela Samuelson’s article,
Digital media and the changing face of intellectual property law, Rutgers
Computer and Technology Law Journal, vol 16, # 2, 1990. The title of the
talk is inspired by Allen Newell’s article, The models are broken, the models
are broken, Univ of Pitt. Law Review, 1986, pp. 1023-1035.



1 INTRODUCTION 1

1 Introduction

Intellectual property and technology have collided. Again. As has happened repeat-
edly over several hundred years, the creation and spread of a new technology is forcing
rethinking and reassessment of intellectual property law. This time around it is soft-
ware in general and artificial intelligence in particular that motivate our discussion.

If we are to make progress in the intersection of law and technology, we must un-
derstand the essentials of each. We need to understand the fundamental assumptions
that underlie intellectual property law and we need to take account of the essential
character of software as a technology. Most importantly we need to understand how
and where the character of software may conflict with the assumptions that underlie
notions of patent and copyright.

In this talk I will argue that one fundamental fact about software distinguishes it
from previous technologies: programs are not only text; crucially, they also behave,
and it is their behavior that is most often central to these discussions. Because they
are both text and behavior, creating programs is simultaneously an act of authorship
and an act of invention; programs are both engineered devices and literary works. A
central goal of the talk is to make clear this important dual nature of software and
to explore some of the important consequences it has for intellectual property law.

I will begin by trying to clear away what I believe to be significant confusion about
the issues that face us at this symposium, by defining just a few technical concepts
that are central to our undertaking here. With those concepts clearly defined, we can
rephrase some of the questions that have arisen, framing them in a way that I believe
will expose the crucial issues and help us make progress toward answers.

Let me note at the outset, however, than we cannot yet answer the most funda-
mental question: Should computer programs be copyrighted, patented, both, neither,
or something in between? Grappling with that is not on the agenda today, but I be-
lieve we can still make considerable progress in setting down the proper foundation.

Instead the agenda is first, to determine what the problem is and isn’t. I will
claim that the essential problem does not lie in artificial intelligence or any of its
variants (like neural nets). The problems we are dealing with arise instead from
software in general; nothing essential would be lost if in all of these discussions we
were to replace the terms “artificial intelligence” and “neural nets” with “computer
program.” Almost all the fundamental problems in Al programs arise because they
are computer programs, not because they are Al.

Second on the agenda is exploring the character of software, attempting to make
clear the assertion that programs are by their fundamental nature simultaneously
both literary work and invention.

Third, I wish to explore the consequences of this view. One consequence is the
unraveling of some of the abundant confusion that software has generated in the world
of intellectual property. A second consequence is the realization that the now infamous



2 WHAT THE PROBLEM IS, AND ISN’T 2

litany of structure, sequence, and organization (SSO) is technically incoherent, i.e., it
makes no technical sense. While the repair needed to provide coherence is not major,
it is important to recognize that the phrase, as it is now understood and widely used,
is technically incorrect and serves only to confuse important issues.

Third, I will argue that the fundamental problem is in fact considerably broader
than software. It is instead rooted in the digital medium: almost all the hard issues
arise in any variety of information in digital form.

Fourth, I will propose an answer to the question raised at the outset of this
symposium that gets to the heart of the issue: What do we want to protect against?
I will offer a brief answer to that question, one that is surely incomplete, but one that
I think will get us well started.

Finally, there remains the question, How shall we proceed? Given some under-
standing of software and how it strains assumptions underlying intellectual property,
we have a significant problem on our hands of reducing or resolving the strains. I
have some suggestions about the process, spirit, and mindset in which we attempt to
do that.

2 What the Problem Is, and Isn’t

Let me begin with the assertion that the problem does not lie in artificial intelligence.
I will do that by showing you some work by Harold Cohen, an artist who works at the
University of California in San Diego. He is an artist, but his medium is computer
software: He writes programs that draw pictures. Here are two pictures drawn by a
program called Aaron, early in its development.

84945 Bg2 7%7/}@7@
8-22-85 425




2 WHAT THE PROBLEM IS, AND ISN'T 3

Both of these were drawn at the 1985 Al conference in Los Angeles. Harold had
brought the program with him and simply let it run during the conference, generating
picture after picture like these and giving them to attendees. The first of them hangs
on the wall of my office at MIT; the second I borrowed from a colleague at Stanford.

Note that despite being generated by a machine, neither picture appears “mechan-
ical.” The individual human figures appear in graceful and natural stances and the
composition—the placement of figures on the page—is aesthetically pleasing. This is
particularly impressive in view of Aaron’s ability to generate an endless stream of such
scenes, with no two precisely alike. Clearly the program is not simply reproducing
stored scenes previously drawn. It is instead generating new, different variations each
time, and it is doing so based on a set of principles, principles for artistic creation and
aesthetics, that enable it to generate work clearly deserving of the term “creative.”

This program and its results demonstrate several interesting things. First, it shows
that we need not talk about what will happen when or if programs become sufficiently
advanced to be creative. They already are. These pictures were generated six years
ago; more recent work by Aaron is considerably more sophisticated?

Second, computer programs provide particularly rigorous testing grounds for our
theories and understanding. A program is a set of explicit instructions that will
be executed with exacting precision; hence we discover by simply trying to write a
program how much (or how little) we understand a problem, and by running and
analyzing the program we can get a detailed and objective determination of which of
our ideas provided power in solving the problem. Hence by studying Aaron we can
learn something about how creative behavior can be accomplished. They key question
about the program is, “What does it know that makes its behavior possible?”

Aaron knows some things about the physical world, such as, humans have two
arms, two legs and a head. It knows that human anatomy enables a certain range of
motion of the limbs and it uses that knowledge in positioning the figures. It knows
that maintaining balance requires putting the center of gravity over the point of
support. Notice that all of the figures are well balanced in that way.

The program also knows things about the human world. It knows that there are
some joint motions that are anatomically possible but are not normally used (consider
the sorts of position brought to mind by the word “contorted”). It knows that humans
normally adopt balanced stances, and that we do so by using our arms and legs as
counter-balances. That’s not the only way to balance: we might also bend from the
waist to balance, but we don’t normally do that. All of the figures in the picture are
in normal, graceful positions, of the sort adopted by dancers, because of what the
program knows about the world.

2The cover of the proceedings offers one example, generated by Aaron and colored by Harold
Cohen.



3 THE PROBLEM ISN’T ARTIFICIAL INTELLIGENCE 4

Finally, Aaron also knows things about art and aesthetics. One fundamental
principle for composition embodied in Aaron, is “Put it where you can find space.”
This simple, general principle turns out to be deceptively powerful. To put it to work
we need to be more specific: How much space is enough? How far apart should these
figures be? What kinds of overlap are allowed?

Aaron’s aesthetic of composition specifies answers to these questions as well. With
regard to overlap, for instance, Aaron permits partial overlap in figures, but works
to avoid obscuring faces. This seems intuitively correct: having one figure obscure,
say, a foot, arm, or shoulder of another seems preferable to obscuring the face. If
placement of figures leaves no choice and requires obscuring a face, Aaron tries to
ensure that the face is not obscured by a foot, because that suggests the unpleasant
image of someone being kicked in the head.

3 The Problem Isn’t Artificial Intelligence

In Aaron we have a program whose output can realistically be considered to be
creative and whose performance derives from a set of explicit and clearly articulated
principles for creating aesthetic works.

Hence creative programs exist. What implications follow from this?

For intellectual property I believe the implications are relatively modest. F irst,
human action is still central to this activity: people specify the principles, then write,
debug, and run the programs. Determining relative degrees of ownership in the
program or its output may be problematic if there are multiple people involved in the
construction and running of the program, but that is a familiar issue and one that
is independent of Al and software. With human action inevitably at the core of the
creative process, the ownership issues seem clear, and more significantly, they remain
unimpacted by the nature of Aaron as an Al program.

As I argue in more detail below, the issues that do arise from programs like Aaron
come not from the fact that they are Al programs, but from the fact that they are
programs. The issues are difficult, intriguing, and are rooted in software in general,
rather than in any particular variety of software.

A second significant implication of these programs is their demonstration that we
understand something about creativity and aesthetics, an understanding rigorously
tested by our ability to build programs that capture some part of it. In particular,
we understand it sufficiently well to specify principles for accomplishing it. Those
principles happen to be captured in a computer program in this case, but they came
from human artists and can be expressed in English, as above. We can as a result
use that same sort of understanding to instruct one another in notions of creativity.
Indeed we do, as for example in books like A Whack on the Side of the Head: How to
Unlock Your Mind for Innovation, R. von Oech, Warner Books, 1988, or The Art of



4 THE PROBLEM ISN'T NEURAL NETS 3

Creative Thinking: A Practical Guide, R. Olsen, Harcourt, 1986. Books like these and
programs like Aaron demonstrate that the process is not fundamentally mysterious
or impenetrable.

And what in turn is the consequence of that? It is often suggested that mankind is
somehow diminished by the ability of machines to perform tasks that seem particularly
human. Isuggest instead that our ability to create such machines (i.e., such programs)
is in fact a significant accomplishment that embellishes rather than diminishes us. The
implication is not that creativity and aesthetics are any less remarkable, but that we
as scientists and artists are the more remarkable for our ability to understand some
parts of those fascinating and subtle phenomena. We not only understand well enough
to explain them to each other (as in the books), but understand a few aspects so well
that we can “explain” them to a machine, i.e., build programs that capture some of
the complexities. While our understanding is surely only a bare beginning, it is still
a substantial accomplishment worthy of pride, not an event that diminishes us.

4 The Problem Isn’t Neural Nets

There has also been considerable discussion at this Symposium regarding neural nets
and the difficulties they may pose. I suggest that for our purposes today, nothing
essential is lost if we consider neural nets to be simply a variety of computer program.

A concrete example will facilitate discussion. The simple net in Figure 1 below
computes the logic function known as “exclusive-or:” its value is 1 if either of its
inputs is 1, and is zero if both inputs are 1 or both inputs are 0. There are five
component units in the net, interconnected as shown, with weights (of +1 or -1) on
the interconnections. The behavior of each unit is the same: if the sum of its inputs
is greater than 0, it will emit a 1, otherwise it will emit a 0. The weights on the
interconnections influence how the output of a unit propagates to other units: a 1
emitted by unit #2, for instance, will be felt as a -1 input to unit #3 and a +1 input
to unit #4. If you try each of the four possible input patterns you can verify that
this network computes the exclusive-or of its inputs.

More elaborate, real-world applications of networks have been used in areas like
credit evaluation, where the inputs are facts about the applicant (e.g., how long have
you been at your current job, do you own or rent your home, etc.), and the output is
a score indicating the estimated riskiness of the loan.

For our discussion today nothing important is lost if we consider neural nets
to be a variety of computer program. These programs are indeed described in a
curious fashion, as a set of interconnections and weights, rather than traditional
code. They are also created in a curious fashion, typically by being given a set of
examples that exemplify what they are to compute, rather than an explicit description
of what computation to perform. But neither the creation process nor its results are



4 THE PROBLEM ISN’T NEURAL NETS 6

Output

Exclusive-Or

Inputs Output

0 0 0
0 1 1
i1 0 1
1 1 0

Figure 1: A simple neural network.

particularly mysterious. The creation process is a variant of interpolation, fitting a
curve to a set of points; more precisely it is a form of non-linear regression. The result
of the process—a specific neural net—is a specification for a mathematical function,
typically considerably more complex than the y = 522 — 3z + 2 variety we encounter
in elementary mathematics, but no more mysterious.

Given a program of this sort, what issues arise for intellectual property? Other
speakers have suggested that there may be questions concerning what to protect,
since there is no code (at least in traditional, i.e., textual, form), and that difficulties
that arise because the weights can be. varied to some degree without causing signifi-
cant change in the performance of the net (hence literal protection of the weights is
insufficient).

I suggest that neither of these presents any significant difficulties. To protect a net
we need simply protect three things: (i) the pattern of interconnectivity among the
units, (47) the weights on those connections, and (iii) the input and output categories,
1.e., the labels that tell us what kind of numbers to put into each input (e.g., in the loan
evaluation example, the length of employment), and how to interpret the number(s)
that appear at the output (the estimated risk of the loan).

The first two of these can in fact easily be described in the form of a matrix, a
table of numbers. The network in Figure 1, for instance, is captured in the table
below. To determine the influence that unit #3, for example, has on unit #5, look in
row 3, column 5. (Zeroes in the table indicate there is no connection between a pair



4 THE PROBLEM ISN’T NEURAL NETS 7

of units.)?
#1 #2 #3 #4 #5
FI[0 0 +1 1 0
#2010 0 -1 41 0
#10 0 0 0 +1
#410 0 0 0 +1
#5100 0 0 0 0

Given the ability of a table of numbers to capture the pattern of interconnections
and the weights, all we need to protect is one table and a set of labels. Any real
application of a net will have far more units and interconnections than the example
above, but the principle is identical: the important behavior of the net is entirely
characterizable by a table and a list of categories, i.e., a collection of easily described
elements.

The second claimed difficulty arises from the acknowledged fact that, in any sizable
network, with dozens of units and perhaps hundreds of connections, the exact weight
on each link is not critical. Changes of perhaps 10% seem to have little effect on the
performance of the net. In view of that, protecting the exact weights is insufficient.
And if small variations on the initial set of weights doesn’t degrade performance, how
might we protect against someone who copies the original set, varies them randomly
by a few percent, then claims independent creation?

One simple answer is already well known: we could easily employ the map-maker’s
trick of inserting false information into the program. As road maps often carry non-
existent streets, so neural nets could be trained to display the initials of the original
author when given an obscure or otherwise innocuous set of inputs. Behavior like this
from a competing net would give compelling evidence against independent creation.

Hence I suggest that, at least for our purposes today, the problem is not neural
nets. We may consider them to be computer programs, programs that are in fact
carrying out a rather simple variety of calculation. There are interesting and difficult
research problems in neural nets, including understanding how to create nets to carry
out specific tasks and determining the limits on the technology. These are interesting
unsolved research problems, but they are research issues in artificial intelligence. Here
today we are concerned with the result of that process—the computer program that
is created—and any problems of intellectual property that arise owe their origins not
to the fact that it is a neural net, but to the more general fact that it is a computer
program.

3For a good introduction supplying more detail on the general concept of neural nets and the
mathematics behind them, see D. Rumelhart et al., Parallel Distributed Processing, MIT Press,
1986, particularly Chapter 2.



5 THE PROBLEM IS SOFTWARE 8

5 The Problem Is Software

The difficulties we face, and they are numerous, arise most fundamentally from the
character of software as a technology. In this section I consider some of its problem-
atic characteristics and explore how they challenge long-standing assumptions that
underlie intellectual property law.

5.1 The Nature of Software: Hardware and software are interchangeable
As computer scientists learn early in their education, hardware and software are es-
sentially interchangeable. More precisely, they are what we might call behaviorally
interchangeable: any behavior we can accomplish with one we can also accomplish
with the other. Any software program can be mimicked, exactly, by a piece of hard-
ware, and the behavior of any piece of digital electronic hardware can conversely be
imitated exactly by a program.

For the sake of illustration, consider a software program written to play tic-tac-toe
(naughts and crosses). It is easy to write a program that will play a quite credible
game, one that will win unless you choose your moves carefully. Given such a program,
it would be quite simple to design a machine made from electronic components that
played the identical game. That is, the behavior—the choice of moves—of each would
be identical.

We could also proceed the other way around: if someone came to us with a machine
that played tic-tac-toe (or any other game), we could study the physical design of the
machine and create a software program that produced the identical behavior.

There would be some differences, of course: should we decide to change the be-
havior of either the hardware or software device (perhaps to improve it), we would
find the software quite easy to change (typically with a text editor), while changing
the hardware version would require the user of soldering irons or wrenches. It is in
fact in just this sense that hardware is “hard,” i.e., difficult to change, where software
is “soft,” i.e., malleable.

To show you that this equivalence of hardware and software is more than an
abstract principle, I invite you to come to Boston to the Computer Museum where
there is machine that will play tic-tac-toe with you. Two curious things about this
device are that it is quite large—approximately five feet on a side—and that it is
constructed entirely from Tinker Toys and string: every part in it is either a stick
or a connector from a Tinker Toy set. Hardware and software are thus not only
interchangeable, we need not even use electronic hardware to mimic the behavior of
a program.

There are two important consequences of this interchangeability. If hardware and
software are behaviorally interchangeable, the choice of which to use in any given
circumstance becomes what is termed an “engineering decision.” That is, the choice
will have no impact on what we can do, only how it will get done. The decision will



5 THE PROBLEM IS SOFTWARE 9

of course impact things like the cost of the final product, ease of modification, and its
speed (hardware is often faster, but not invariably so). So we may well choose between
them for reasons of cost, speed, or modifiability, but their fundamental capabilities
are identical. Hence nothing fundamental changes as a consequence of switching back
and forth between them, and we are free to use whichever one suits our current desires,
perhaps even changing from day to day.

The second consequence arises when intellectual property law comes into the pic-
ture. While hardware and software are interchangeable in the technical world, notice
the enormous difference in the variety of intellectual property protection available
depending on which of those we choose. If the device is implemented in software,
copyright protection will hold, yet the identical device implemented in hardware will
qualify for the far stricter protection offered by the patent regime.

We have here a clash of cultures: a change of no fundamental technical significance
leads to enormous variations in the level of intellectual property protection available.

This has lead historically to some interesting anomalies. For example, US Patent
#4,135,240, Protection of Data File Contents, offers an improvement in the way a
computer allows one user to access the files created by another user.* The invention
is described as a physical device that works to produce the behavior desired; the
diagrams and figures clearly show an electronic device, with logic gates, wires, etc.

But a brief comment in the patent is revealing: “To those skilled in the computer
art it is obvious that such an implementation can be expressed either in terms of a
computer program (software) or computer circuitry (hardware), the two being func-
tional equivalents of one another.. .. For some purposes a software embodiment may
likely be preferable in practice.”

In these two sentences we have, first, a restatement of the principle noted above,
and second a completely disingenuous remark concerning the embodiment that “may
likely be preferable in practice.” In fact no computer system to date has ever imple-
mented this invention in hardware, for a number of good reasons, including the fact
that file management is conceptually a part of the operating system, hence this inven-
tion belongs in the operating system software, where all the other file management is
done. The sham of describing it as a hardware invention was necessary because the
patent was filed in 1973, well before Diamond v. Diehr opened the door to software
patents in 1981, and well before Apple v. Franklin established in 1982 that copyright
protection applied to operating systems. Patent protection for physical devices was of
course available, and by minor slight of hand an invention that is sensibly embodied
in software was recast as a hardware device.

The current availability of software patents reduces somewhat the disparity in
available levels of protection, but the basic point still stands: for most purposes it

“This is in fact the Set UID bit in the Unix operating system.



5 THE PROBLEM IS SOFTWARE 10

is completely immaterial whether a device is implemented in hardware or software,
yet intimately associated with each of these is a very different level of protection.
Software viewed as a literary work naturally conjures up a copyright approach, while
hardware devices are obvious patent material. As a consequence an almost accidental
and easily changed technical property of the device has an enormous impact on its
intellectual property status.

5.2 The Nature of Software: Programs Also Behave

For some time computer programs have been viewed fundamentally as textual works.
In US law, for instance, a program is defined as “a set of statements or instructions. . . ,”
bringing to mind of course a written set of statements, and hence a textual work. In-
deed a quick glance at any program reinforces this view; they certainly look like
textual works.

This is also a seductive view, in part because we already have a body of law—
copyright law—well acquainted with textual works. And it almost works: because
a program is also a text, many of its text-like aspects are well served by traditional
copyright concepts and vocabulary. The confluence of these two produces an almost
irresistible tendency is to treat software just like any other copyrightable work. But
this may be a case of the old saying “When all you have is a hammer, everything
looks like a nail.” Are programs in fact properly treated as textual works, or are
we heading down that path simply because it is familiar and well-worn? There is
certainly considerable traffic in this direction, as for example articles like the one by
Clapes,® whose very title displays the mindset clearly, and whose position is a valiant
attempt to see a program as fundamentally a textual work.

A program is indeed a text and many of its text-like aspects can be accommodated
by traditional copyright concepts and vocabulary. But the view also causes serious
problems, not because it is wrong, but because it is sorely incomplete.

A second, crucially important, thing about a program is its behavior: a program
exists in order to get the computer to do something (“bring about a certain result”).
A word processing program can for instance, insert text, delete text, copy it, move
it, align the margins, etc. Hence a program can also be viewed as a collection of
behaviors.

This second aspect of software is crucial: despite the longstanding view of software
as a literary work, a program is not only text, it also behaves, and that behavior is
an essential aspect of what it means to be a program.

This is particularly interesting because literary works—books—do not behave; be-
havior is normally associated with machines. Yet programs are textual works created

S5Clapes, Lynch, and Steinberg, Silicon Epics and Binary Bards: Determining the proper scope
of copyright protection for computer programs, 34 UCLA L. Rev. 1493 (1987),



5 THE PROBLEM IS SOFTWARE 11

specifically to bring about some variety of behavior. Writing programs is in fact an
act of invention.
Put slightly differently,

Software is a machine whose medium of construction happens to be text.

Software is indeed a machine: it is as much a carefully designed artifact as any
physical machine and like any physical machine it is designed to do something. Soft-
ware is indeed a machine: the fundamental interchangeability of software and hard-
ware shows that any program could just as well be a physical machine.

But software is also a unique variety of machine because its construction medium
happens to be text.

All this phrasing is quite deliberate, chosen to emphasize assumptions underlying
intellectual property law. In the US at least, we have some two hundred years of
tradition suggesting a dichotomy between authorship and invention, and the clash of
assumption and technology is fundamental.

5.3 Consequence: Creating software is both authorship and invention
The significance of this for intellectual property is surely clear by now: creating
software is, inevitably and inextricably, both authorship and invention. It is also the
first technology with this character.

To those of us in the computer science world there is nothing remarkable about
this; it is in fact our everyday practice. The clash arises with the tradition in intellec-
tual property law that authorship and invention are distinct activities, with markedly
different policies attached to each. In the US the distinction has its origins in the Con-
stitution, with its discussion of “authors and inventors” and “their respective Writings
and Discoveries” (emphasis added). The dichotomy was given additional support by
the US Supreme Court decision in Baker v. Seldon, which has traditionally been
interpreted to mean that copyright and patent were mutually exclusive.

The distinction was largely successful: it held strong for some 200 years. But
software is different, and it breaks the underlying assumption.

One consequence can be seen in the apparent contradiction that, despite 200 years
of tradition that they are disjoint means of protection, software is protected by both
copyright and patent. I claim the confusion is entirely appropriate. The source of the
problem is not a contradiction in the practice of the law, it is instead the underlying,
unjustified assumption that the two concepts are entirely disjoint.

One step further back is the underlying assumption that literary works and in-
ventions are distinct categories. This is almost true; it is the fact that programs also
behave that causes the assumption to fail.



5 THE PROBLEM IS SOFTWARE . 12

5.4 Consequence: The same program is protected by both copyright and
trade secret

Software also presents problems because it is possible to protect the same piece of
code by both copyright and trade secret. When programs are distributed, only the
machine code is provided; the source code is held as a trade secret. This provides the
benefits of trade secret protection: no disclosure and in principle no time limit to the
protection. Yet should the source code be revealed, it will be found to have copyright
protection. Hence unlike a trade secret, which, once revealed, is public domain, the
code is still protected.

This curious combination arises from the confluence of a number of factors, in-
cluding the fact you can copyright an unpublished work, that software is routinely
licensed (not sold), and that the license gives you permission to run the code, but
not to read (and decompile) it. While it would make no sense to try to sell a book
under the condition that it not be read, it makes fine sense to distribute code in this
fashion. This defeats a fundamental underpinning that resides in at least the spirit,
if not the letter of the US copyright law: the limited monopoly over reproduction is
supposed to “promote the Progress of Science and the useful Arts” at least in part
by publication, disseminating the ideas. Yet here we have the monopoly without the
dissemination.

Once again, software breaks an important underlying assumption because it be-
haves. For an ordinary literary work the only way to “use” it is for a person to read
it. But code can easily be used without being read by a person. As a consequence a
basic mechanism—copyright—is rendered less effective in its intended effect.

5.5 Consequence: The problem of software patents

The patent metaphor similarly runs afoul of essential characteristics of software, par-
ticularly in attempts to define patentable subject matter. Historically patents have
been denied to laws of nature, “mental steps,” formulae, and scientific truths, partly
on the grounds that such things are ideas, that ideas cannot be owned (even tem-
porarily), and that patents are supposed to provide incentive to bridge the gap from
idea to application. This works when there is in fact a considerable gap between the
bare scientific truth and its useful application.

Algorithms are precisely specified methods for accomplishing a task. They are
at once objects of considerable mathematical analysis and sophistication (e.g., the
study of algorithms for sorting large collections of objects), and they are of imme-
diate practical use. The simplex algorithm of operations research, the Fast Fourier
Transform, and the Karmarkar algorithm for the traveling salesman problem, for in-
stance, are all mathematical ideas, but they are mathematical ideas about how to
compute something, and as such are immediately useful.

Perhaps the way out then is to deny protection, on the grounds that algorithms



5 THE PROBLEM IS SOFTWARE 13

are indeed like scientific laws, and on the grounds that incentive for application is not
needed when the application is apparent in the idea.

Yet as more and more of the world becomes describable (and described) in compu-
tational terms, more and more of what used to be invention in the physical world may
get done in software, in the computational world. Computer-aided design systems,
for instance, deal not only with shape but are beginning to incorporate descriptions
of processes for manufacturing. It may not be long before algorithms become a widely
used language for describing (and even inventing) industrial processes, e.g., a process
for polishing a rough casting to produce its final surfaces. To deny patentability for
such algorithms would be to deny some of the traditional incentive for creating new
manufacturing processes, and only because of how it was invented and expressed,
not because the process itself was any less non-obvious, or otherwise failed test of
patentable subject matter.

The problem is fundamental: the patent concept relies on distinctions and as-
sumptions that do not sit well in the world of software and digital information.

5.6 Consequence: SSO is technically incoherent

As we have noted, a program is not only a text; a second, fundamentally important
property of a program is its behavior. Each of these gives us a different view of a
program: we can look at it as a textual work and we can examine its behavior.

It is crucial to recognize these two views of the program are quite distinct. In
particular, they each have their own structure, sequence, and organization.

This is reflected in a useful piece of standard computer science jargon: Program-
mers talk about both the static structure and the dynamic structure of programs.
The static structure is the organization of the program as a textual document (the
program-as-text view); the dynamic structure is its behavior, what it does when it
actually runs (the program-as-behavior view).

As one illustration of how these two can differ, imagine a word processing program.
Two of the things that such a program can do (two of its behaviors) are deleting words
and deleting paragraphs. If we were to examine the text of that program, we would
likely find in it the sort of thing sketched in Figure 2, with one segment of code that
implemented the “delete word” behavior and another that implemented the “delete
paragraph” behavior.

The crucial observation here is that we can quite literally switch the sequence of
those two routines in the code (as in Figure 3), but the behavior will be completely
unchanged. By that I mean that there is no way that a user can determine which
of the two programs in Figure 3 he was using: If he had been using Version 1 and
without his knowledge we substituted Version 2, he would never notice the difference.

This demonstrates that the two aspects of a program—text and behavior—are
only loosely connected: we can make significant changes to one without affecting the



5 THE PROBLEM IS SOFTWARE 14

~— |

CODE FOR
DELETE WORD

CODE FOR
DELETE
PARAGRAPH

e

Figure 2: One structure and organization for the text of a word processor program.

~— |

~— |

CODE FOR CODE FOR
DELETE WORD DELETE
VERSION 1 PARAGRAPH VERSION 2
CODE FOR CODE FOR
DELETE DELETE WORD
PARAGRAPH

~

~——

Figure 3: Changing the structure and organization of the text can leave the behavior
unchanged.

other. Hence the structure, sequence, and organization of the tezt of a program is
distinct from the structure, sequence, and organization of the behavior of the program.

Another way to illustrate the independence of these two is to imagine using the
word processing program long enough that you become quite familiar with the behav-
iors it offers. Imagine being in the midst of using the program and saying to yourself,
“I know very well what this program can do, but I wonder what the code actually
looks like?” What might you be able to tell about the tezt of the program from your
experience in using its behavior?

Essentially nothing.

Where, for instance, in the program text is the code for the delete-word command?
You can’t tell. Does it appear before or after the code for the delete-paragraph com-
mand? You can’t tell. Hence you may know the structure, sequence, and organization
of the behavior of the program quite well, yet be able to draw almost no conclusions
at all about the structure, sequence, or organization of the text of the program.

Program text and program behavior are thus only loosely connected, each with
its own structure, sequence, and organization.



5 THE PROBLEM IS SOFTWARE 15

Note that this is not an artifact of the example we have chosen. It is in fact quite
common and arises in part as a consequence of the standard programming practice
of dividing programs into independent subroutines.

The independence of program as text (static structure) from program as behavior
(dynamic structure) has several significant consequences. The first consequence is
that it makes no technical sense to talk simply about the “structure” of a program,
because the term is ambiguous and the distinction matters (the dynamic structure
can be different from the static structure).

Second, with all due respect for an otherwise carefully argued position, Whelan
v. Jaslow® runs afoul of this distinction: The (by now infamous) litany of “structure
(or sequence and organization)” is flawed by the failure to distinguish between the
static and dynamic views of a program. As a consequence the terms are inherently
ambiguous, in the important manner noted above.

Indeed, the decision trips coming out of the starting gate, in note 1:

1. We use the terms “structure,” “sequence,” and “organization” inter-
changeably when referring to computer programs, and we intend them to
be synonymous in this opinion.

This is, alas, exactly wrong technically: it is precisely because a program is not
only text, but also behaves, that these terms (in all their meanings) are not synony-
mous. The problem is thus compounded: where the terms were merely ambiguous,
they have now been declared equivalent when they are not. The sequence of behav-
iors can be quite different from sequence of instructions encountered in the program
text (recall our ability to change the order in which the subroutines appeared in the
program text). The structure of the behavior is quite distinct from the structure of
the text (the behavior stayed the same even when the text was reordered).

References to, and hence questions about, “structure, sequence, and organization”
as used in Whelan are thus inherently technically defective and as a consequence often
unanswerable. Legal use and future decisions may yet provide workable definitions
for these terms, or supply better alternatives, but it is important to understand that
these currently make no technical sense.

6 Whelan Associates v. Jaslow Dental Laboratory, 797 F.2d 1222 (3rd Cir. 1986).



6 WHAT DO WE WANT TO PROTECT AGAINST? 16

6 What Do We Want To Protect Against?

The question has been raised several times in these discussions, “What is it we want
to protect against?” As one attempt to answer it, I suggest that

A qualifying work of software should be protected against the trivial ac-
quisition of functional equivalence.

It is, first of all, functional equivalence that matters, because the fundamental
value in a program lies in its behavior. The question is not whether the code in two
programs is identical, or whether the weights in two neural network are precisely the
same; the key is instead behavior. Do the two competing programs do precisely the
same thing? If so, then one is a complete substitute for the other and hence it doesn’t
matter which I use. Thus if you can, in some fashion, take the behavior you have
taken the value.

Second, it is the trivial acquisition of functional equivalence that matters. This is
important because trivial acquisition means the innovator will have no lead time in
which to benefit from the creation, and loss of lead time will then likely lead to loss
of incentive.

Third, note that “acquisition” is purposely vague: how you accomplish it is not
particularly significant. The focus here is not the means, it is instead the goal, the
valuable goal of equivalent behavior. Acquisition may be by straightforward piracy
(i.e., direct copying of either source or object code), it may be via reverse engineering,
exhaustive inquiry (in the case of neural nets or data bases), or by any other means
now known or yet to be invented. It matters rather little how a functional equivalent
is created if the effort involved is trivial.

Hence I suggest that we have the beginning of an answer to the question of what to
protect if we focus on functional equivalence as the key property, and recognize that
trivial acquisition is the issue, independent of the method by which it is accomplished.

Framing the answer in this fashion has several benefits. It focuses the discussion
on the important property of programs (behavior) and the important result of copying
(functional equivalence), rather than on the medium of creation (e.g., code, neural
nets, or databases). It focuses discussion on the situation we want to avoid (trivial
acquisition of equivalence), rather than on the means that can be used to bring about
that situation. In focusing on the situation rather than the means, it obtains a degree
of technology independence. Reverse engineering, for example, is currently largely
manual and hence sufficiently difficult that it does not enable trivial acquisition of
any sizable program. Under the suggested principle then, reverse engineering (e.g.,
“clean room” style re-implementation of a program) would be considered acceptable.
But as automated tools for reverse engineering continue to improve, we may someday
reach a point where the effort does deserve to be labeled trivial, and at that point
that approach may appropriately be judged off-limits. By focusing on the situation,



7 THE PROBLEM ISN’T (JUST) SOFTWARE 17

rather than the technology, we have a chance of creating principles that are not soon
outdistanced by technological change.

Finally, framing the issue this way also focuses the discussion back on the funda-
mental issue of incentive. No matter how elegantly written, our principles and laws
will be of little use if they lose sight of the goal that brought us to these discussions.

7 The Problem Isn’t (Just) Software
Earlier I suggested that the fundamental problems we face in this symposium do not
arise out of artificial intelligence, but out of the status of Al systems as programs. In
fact the problem is even broader than that.

The problems we face arise most centrally from the digital medium, i.e., any
information in digital form. The problems arise here because information in digital
form has a number of remarkable properties, properties that are at odds with some of
the fundamental assumptions that support enforcement of intellectual property law.

Any information in digital form, is, for instance, orders of magnitude easier and
cheaper to replicate. Floppy disks are treated as pieces of paper, yet each of them
holds the equivalent of 1500 printed pages and requires only seconds to copy, at close
to zero cost.

Digital information is trivial to distribute, worldwide, almost immediately, at very
little cost, over an existing infrastructure (i.e., phone lines); we need no additional
distribution channels.

Digital copies are indistinguishable from the original; no other medium has that
remarkable (and troublesome) property.

Digital information has a breadth of descriptive power we are only beginning to
explore: we use it to capture not only software and text, but music, photographs,
speech, shape descriptions (e.g., computer-aided design systems), and who knows
what else.

Digital information is easily used by multiple people simultaneously: one copy of
a file on a large computer can be read by hundreds of users at once and accessed by
tens of thousands of people over time at no additional expense.

Digital information is orders of magnitude more compact: a compact disk holds
500 Megabytes, the equivalent of 500,000 printed pages. The information formerly
held in 100 cartons of paper has been reduced to the size of something you can easily
slip in your pocket.

All of this undermines assumptions built into the enforcement, if not the princi-
ple of intellectual property law. What do we do when a wide variety of expensive
and complex finished products be duplicated ezactly, at effectively zero cost, and dis-
tributed almost instantaneously around the planet? When there is no degradation in
successive copies, the replication can continue unabated. When copying and distri-



8 DESIGNING THE FUTURE 18

bution is nearly free, there is little to keep the value from slipping out of our hands.
When hundreds can read the same copy, there’s no need to buy more than one.

Simply put, for other forms of intellectual property, physical law tends to support
intellectual property law. The mere weight and volume of the objects copied, the need
for distribution channels and physical transportation, etc., all stand in the way of the
intellectual property thief. All of that is missing in the case of information in digital
form.

The problem isn’t (just) software; it’s digital information.

8 Designing the Future

What can we do in the face of all this? I suggest that it is crucial to proceed in a
non-traditional fashion. Rather than asking “What does the law say?” we need to
begin to ask “What should it say?” Put another way, we need to begin treating this
as a design problem.

In its simplest terms, a design problem is characterized by a goal, a blank sheet
of paper, and some tools. First and foremost is the goal: we must know what we are
trying to accomplish. Second is the blank sheet of paper: initially at least, there are
no constraints on the solutions we can entertain. Third, the process is driven by the
goal, not by the tools. The primary question is not “What do we know how to do?”
but “What do we want to accomplish?”

I believe we also need to think of this as a problem of industry design. Any decision
about intellectual property law is also a decision about the grounds for competition,
and will thereby inevitably shape the future of the software industry. Narrow pro-
tection (e.g., protecting only literal source code), for instance, would permit more
latitude in creating functionally equivalent programs. This in turn would lead to a
marketplace with more software clones and likely shift the basis of competition from
functionality to other factors like price, quality of implementation, user support, etc.
Broader protection, by contrast, would likely lead to an increased emphasis on inno-
vative functionality in second comers: being competitive would require functionality
sufficiently better that it could win converts from established alternatives.

All this depends on the maturity of the industry as well: early on in most indus-
tries there are many small competitors and many new customers. As the industry
matures the tendency is toward fewer, larger, well-established companies seeking to
lure customers from each other. The best rules for the game thus may differ depending
on the stage of industry development.

Hence we are not only attempting to design the future, we are aiming at a moving
target. The problem is quite difficult, but I believe there is considerable utility in
conceiving of it as a design problem and conceiving of it in terms of industry design.

Consider, for example, the problem of patenting algorithms. Arguments in the



9 SUMMARY 19

legal community have dealt with the somewhat metaphysical problems of the meaning
of the term “process,” the nature of mental steps, whether algorithms are scientific
truths and so forth. We may in fact be better off asking simply, What would happen
to the software industry? Would we be better off with or without patents? If we
allow software patents, would, as some people claim, software innovation be crippled
because of the difficulty of finding all the relevant patents when creating a new system?
If we disallow patents do we reduce to any significant degree the incentive for creation
of or investment in new ideas? Perhaps the question is in fact better asked in these
terms, as one of industrial policy, economics, or psychology, rather than metaphysics.

A similar approach can be take to the question of the scope of copyright protection.
Rather invoking the near-mystical principle of idea vs. expression (which even Judge
Learned Hand admitted was “inevitably ad hoc”), we might phrase the question
pragmatically in terms of lead time: If the time between new releases of a product
is typically shorter than the time required to reverse engineer it, the industry will to
some extent take care of itself, if we require nothing more than independent creation.

9 Summary

I have argued that artificial intelligence is not currently a significant source of prob-
lems for intellectual property law. I have claimed instead that the interesting problems
arise from software in general and can only be solved by a clear understanding of the
character of software as a technology. One crucial part of that understanding is that
programs are not only text, they also behave; software is a machine whose medium
of construction happens to be text. Creating programs is as a result simultaneously
a work of authorship and a work of invention. In crossing that allegedly unbridgeable
barrier software creates significant conceptual difficulties, conflicting as it does with
assumptions that have long been a part of the legal system.

The problem is also larger than software alone: digital information of any va-
riety presents intriguing difficult problems for our current intellectual property law
framework.

We stand at a uniquely exciting time: information is going to be the key commod-
ity of the next century. We are faced with both the opportunity and the necessity of
designing the groundrules for that future.

It is in this sense that we need to put aside, even just temporarily, the vast and
often valuable experience we have with several hundred years of intellectual property
law. For a few moments, at least, we need to examine this problem free of two hundred
years of established concepts, categories, and assumptions. In the end it may turn
out that some or all of the existing mechanisms of copyright and patent will (once
again) prove sufficiently adaptable to gracefully accommodate even this technology.
But we need to know that those are the correct tools, not merely that they are the



9 SUMMARY 20

available tools.

And perhaps they will not prove sufficient. Software and digital information gen-
erally are unique forms of technology. That uniqueness may have an unavoidable
impact on intellectual property law: its clashes with assumptions underlying our cur-
rent practice may be so profound that some new form of protection will be required.
We must have the opportunity to face this question free of preconceptions and the
chance to design the future rather than forcing it into molds that were designed in
the past.



