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Abstract

The Toolkit is a family of hardware modules (processors, mem-
ory, interconnect, and input-output devices) and a collection of soft-
ware modules (compilers, simulators, scientific libraries, and high-level
front ends) from which high-performance special-purpose computers
can be easily configured and programmed. The hardware modules are
intended to be standard, reusable parts. These are combined by means
of a user-reconfigurable, static interconnect technology. The Toolkit’s
software support, based on novel compilation techniques, produces ex-
tremely high-performance numerical code from high-level language in-
put, and will eventually automatically configure hardware modules for
particular applications.

We have completed fabrication of the Toolkit processor module, and
an eight-processor configuration is running at MIT. As a demonstration
of the power of the Toolkit approach, we have used the prototype
Toolkit to perform an integration of the motion of the Solar System
in a computation that extends previous results by nearly two orders of
magnitude.
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The Supercomputer Toolkit:
A general framework for special-purpose computing!

Special-purpose computational instruments will play an increasing role
in the practice of science and engineering. Although general-purpose super-
computers are becoming more available, there are significant applications for
which it is appropriate to construct special-purpose dedicated computing en-
gines. The Supercomputer Toolkit is intended to make the construction and
programming of such special-purpose computers routine and inexpensive, in
some cases even automatic.

The Toolkit is a family of hardware modules (processors, memory, in-
terconnect, and input-output devices) and a collection of software mod-
ules (compilers, simulators, scientific libraries, and high-level front ends)
from which high-performance special-purpose computers can be easily con-
figured and programmed. The hardware modules are intended to be stan-
dard, reusable parts. These are combined by means of a user-reconfigurable,
static interconnect technology. The Toolkit’s software support, based on
novel compilation techniques, produces extremely high-performance numer-
ical code from high-level language input, and will eventually automatically
configure hardware modules for particular applications.

Our Supercomputer Toolkit is intended to help bring scientists and en-
gineers back into the design loop for their computing instruments. Tra-
ditionally, they have been intimately involved in the development of their
instruments. Computers, however, have been treated differently—scientists
are primarily users of general-purpose computers supplied by a few remote
vendors. Because a general-purpose computer is often not well-organized for
a particular problem, the construction of appropriate software can be a long
and complex task. By contrast, a computer whose design is specialized to a
particular problem can be straightforward to program for the application for
which it was designed. Moreover, the specialized computer can become an
ordinary experimental instrument, or a component of a measurement tool or
a process-control system, belonging to the group that made it.

Over the past three years, the MIT Project for Mathematics and Com-
putation and Hewlett-Packard’s Information Architecture Group have been
collaborating on the design and construction of a prototype Supercomputer
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Toolkit, and a system configured with eight processors is now running at
MIT.

This prototype is targeted at numerical computations where performance
is limited by the need to integrate systems of ordinary differential equations.
Such computations are characterized by a bottleneck in scalar floating-point
performance rather than in I/O or in memory bandwidth. These computa-
tions are typically not easy to vectorize. Highly pipelined vector processors
do not do well on them because the state variables of the system must in
general be updated by computing different expressions.

For suitable applications, we expect the Supercomputer Toolkit approach
to provide substantial advantages over general-purpose supercomputers. This
is not only because of the dedicated hardware, but because the Toolkit’s novel
compilation strategy generates outstandingly efficient code from general-
purpose library modules and programs written in high-level languages. Bench-
marks integrating systems of ordinary differential equations confirm that a
single Toolkit processor, programmed in highly abstract Lisp code, achieves
scalar floating-point performance equivalent to a Cray 1S programmed in
Cray Fortran. While this does not match the speed of the fastest available
supercomputer, the relative price advantage of the Toolkit allows it to be
used for applications that would be otherwise infeasible. We have already
used our eight-processor configuration to perform a computation of major
scientific significance—an integration, running for 1000 hours, of the com-
plete Solar System, which improves upon previous computations by almost
two orders of magnitude.

In general, we envision that the Toolkit will be used as follows: One begins
with an algorithm that performs the costly inner loop of a computation
that warrants constructing a special-purpose machine. For example, the
simulation part of a multidimensional optimization in the design of an analog
circuit, or the integration of the differential equations required for real-time
control of a nonlinear process, are appropriate for Toolkit implementation.
The Toolkit software compiles the program, targeted for a number of different
Toolkit hardware configurations, some proposed by the user, others generated
automatically by the Toolkit compiler itself. The compiler also produces, for
each configuration, a simulation that the user can run on the host machine
to help evaluate price-performance tradeoffs. After a configuration has been
selected, the user obtains the required modules, wires them together, and
connects the machine to a host computer. The configuration is verified by
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means of diagnostics that are automatically generated and loaded from the
host. The target program is then loaded, and the new machine is ready to
be used by host programs as a back-end processor.

The Toolkit’s advantage arises from two architectural principles, cou-
pled with supporting compiler technology. The first principle is the use of
problem-specific communication paths. Starting with a particular algorithm,
one can often find a static arrangement of interprocessor communication
paths that admits nearly optimal utilization of processing power for that
algorithm. Machines with specialized communication paths are currently
built to implement extremely high-performance signal-processing systems,
but these machines are expensive, because each one is manually configured
and programmed. We believe that for many important scientific applications,
high-performance configurations can be generated in a straightforward way,
perhaps even automatically, and easily constructed and programmed using
Toolkit modules.

The second principle is the use of synchronous ultra-long instruction word
machines. Even in problems that are not vectorizable, scientific applications
typically have substantial data-independent structure. One can configure a
totally synchronous machine, in which most interprocessor communication is
statically scheduled at compile time. In effect, the multiple VLIW execution
units of the machine are programmed as a single ultra-long instruction word
processor. This organization eliminates the need for synchronization, bus
protocols, run-time handshaking, or any operating-system overhead.

The Toolkit’s compiler uses a novel strategy based upon partial evalua-
tion [3, 4]. It exploits the data-independence of typical numerical algorithms
to generate exceptionally efficient object code, even from source programs
that are expressed in terms of highly abstract components. This has enabled
us to develop a library of symbolic manipulation components to support the
automatic construction of simulation codes. As a measure of success, our
Solar-system simulation code, constructed with this library, achieves 98%
utilization of the Toolkit’s available floating-point performance.

The Toolkit approach has obvious limitations. Neither our hardware ar-
chitecture nor our interconnection technology can be expected to scale to
systems with many hundreds of processors. On the other hand, the Toolkit
does realize a means, practical within the limits of current technology, to

provide relatively inexpensive supercomputer performance for an important
class of problems.



Section 1 of this paper describes the Toolkit hardware. Section 2 presents
the low-level programming model. Section 3 presents the high-level pro-
gramming model, illustrated by showing how to integrate systems of ordi-
nary differential equations starting from highly abstract programs. Section 4
describes our benchmark application to long-term integrations of the Solar
System.

1 Toolkit Hardware

At the highest level, the Toolkit hardware is a network of processors, mem-
ories, and I/O modules. The topology of the network is chosen or suggested
by the user, possibly with the help of the compiler. In our prototype, each
Toolkit hardware module is an individual board. The Toolkit processor mod-
ule is the only hardware module we have fabricated thus far, and is the only
one discussed in this paper. We hope to design other hardware modules to
provide a faster host interface, A/D and D/A channels, and a mass-memory
module.

Each processor is by itself a high performance computer with its own
private memory for code and data. Processors have two I/O ports that
may be connected with fine-pitch ribbon cables to a number of other similar
ports. Limiting the number of ports to two per processor simplifies the
hardware design, yet permits a variety of network graphs. Any connection
graph may be implemented by placing a processor on each branch of the
graph, as shown in figure 1. With this method, the number of branches at
any node is constrained by the bus fanout limits. The prototype has been
tested with eight ports sharing a common bus.

In addition to the data communication paths there is a separate “global
flag”. This one-bit signal can be set and sensed by each processor. Like the
data cables, the user manually configures this flag. Its primary use is for
software synchronization as described below in section 2.6.

Once the customized Toolkit is assembled, it appears to the programmer
that all elements run in lock step. The communication paths are under
complete control of the software. There is no hardware for arbitration or
bus protocol. The program specifies the source and sink(s) for data on each
bus on each cycle. Software convention determines whether the bus value is
data, address, or control information.
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Figure 1: Each Toolkit processor module has two bidirectional I/O ports. Any inter-
processor connection graph can be configured with each node having degree up to about
8. The figure shows how to build various network architectures: a mesh, a ring and
communicating clusters.

The prototype Toolkit is housed in a minicomputer chassis borrowed from
an existing Hewlett-Packard product line (HP9000/850). Our current collec-
tion of eight processor boards consumes about 1200 watts. All cables for
data, clocks, global flag, and host communication connect to the front edge
of each processor board. A user assembles a machine by plugging in the re-
quired modules and connecting the cables appropriately. When a particular
machine is no longer needed, it can be disassembled, and its modules can be
reassembled into other configurations.

1.1 Toolkit Processor overview

The processor design was guided largely by two factors: the class of prob-
lems we were targeting; and the use of off-the-shelf technology available in
1989. The class of problems is the solution of systems of ordinary differential
equations—computations characterized by a large number of floating-point
operations on a relatively small amount of data. Given the very small design
team, the technology choices were confined to readily available commercial
parts. No custom chips are used in the design, and all components use TTL



logic levels.

The processor architecture is centered around a high-performance floating-
point chip set. The remaining hardware is designed to feed operands to the
floating-point chips without interruption. Figure 2 shows a block diagram
of the processor with the ALU, Multiplier, register file, data memories, ad-
dress generators, I/O ports, instruction memory, and program sequencer.
Not shown in the diagram are the host interface, clock generator, and some
smaller buses. '

The prototype Toolkit processor contains about 220 integrated circuits
laid out on a 13 x 15 inch printed-circuit board as shown in figure 3. The
eight-layer board has 8-10 mil traces with 8 mil spaces. Trace impedances
range from 45 ohms to 80 ohms, with the higher impedance layers used for
the critical I/O port wiring. The cycle time is 84 ns, which results in an
instruction rate of 11.9 million instructions per second.

1.2 Floating-point unit

The heart of the processor is a pair of Bipolar Integrated Technology (B.I.T.)
floating-point math chips [5]. The ALU chip (B2120A-25) does all arithmetic
and logical operations in 25ns. The Multiplier chip (B2110A-55) performs
double-precision (64-bit) multiplication in 55ns. Both chips have 32-bit I/O
paths and full 64-bit internal paths. To simplify the architecture and timing,
all operations are done in double precision. Operations complete in one cycle
except for the Multiplier’s divide and square root, which are multi-cycle
operations.

Separate instruction bits to each math chip allow the ALU and Multiplier
to be controlled independently. The peak floating-point performance is there-
fore two operations per cycle, or 23.8 MFLOPS per processor at the current
84ns clock rate. Section 2.7 below describes an inner-product routine that
runs at this peak rate. In practice, we have been able to sustain roughly half
this rate—about 12 MFLOPS per processor—on the applications of interest.

1.3 Buses and Register File

As illustrated in figure 2, the toolkit processor architecture contains a central
five-port register file that communicates with each of the data memories, with
the math chips, and with the I/O ports. The five ports of the register file are
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Figure 2: The Toolkit processor consists of floating-point unit (ALU and Multiplier), a
register file, two data memories, each with its own address generator, two bidirectional
I/O ports, instruction memory, and a program sequencer. The figure shows the major
buses: X, Y, T, LEFT, and RIGHT. Not shown are the side paths, the internal paths in

the Math chips, the communication between the sequencer and the rest of the machine,
and the host interface.
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Figure 3: The Toolkit processor module is laid out on a 13” x 15” printed-circuit board.
The six large pin grid arrays consist of the four register files, the ALU and the Multiplier.
These chips occupy the center strip of the board with an almost symmetric complement of
ICs surrounding them. The other specialized chips are the left and right address generators
in the 68-pin square ICs, and the microprogram sequencer, the 48-pin dual inline package

chip.



connected to five buses. The X and Y buses carry operands from the register
file to the math chips, while the T bus returns results produced by the math
chips to the register file. The LEFT bus connects the register file to the left
memory and to the left I/O port, while the RIGHT bus connects the register
file to the right memory and to the right I/O port. Even though each I/O
port lies on the same bus as a memory, the processor timing does not permit
the I/O port and memory to communicate directly with each other; instead,
all communication is performed via the register file.

The central register file contains thirty-two 72-bit wide registers, to ac-
commodate 64-bit IEEE double-precision floating-point numbers with eight
bits of parity protection. The entire register file is constructed from four
B.LT. register-file chips (B2210A), each of which provides sixty-four 18-bit
wide registers. These four chips are organized as two dual-B2210A register-
files, which hold duplicate data.

Each dual-B2210A is a pair of chips cascaded to form sixty-four 36-bit
wide registers. To obtain 72-bit wide registers, the 36-bit registers are used
in pairs, one register holding the most significant half of the word, and the
other holding the least significant half. Logically, a dual-B2210A provides
thirty-two 72-bit registers, with two read ports, two write ports, and one
read/write port, where each port is 36-bits wide.

The register file design, which calls for two dual-B2210s with duplicate
contents, arises from the desire to prevent slow memory-write timing from
limiting the clock speed of the processor. The math chips respond quickly
enough to allow the X, Y, and T buses to each be made only 36-bits wide, and
used twice during each cycle in order to transfer a 72-bit quantity. Similarly,
the memory system is able to use the LEFT and RIGHT buses twice per
cycle to transfer data from the memories to the register file. However, the
memory chips are too slow to allow data to written to memory twice per.
cycle. This requires effectively making the LEFT and RIGHT buses 72 bits
wide for register-to-memory transfers. To allow for 72-bit register-to-memory
transfers, the two dual-B2210s are connected as shown in figure 4. Whenever
data is written into one of the dual-B2210As, it is also written into the other,
thereby ensuring that the contents of the two register files is identical. The
second register file provides the additional read ports required to access both
the the least-significant 36-bits and the most-significant 36-bits of a word
simultaneously.

The main buses, the data memories, the register file, the I/0 ports, and
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Figure 4: (a) The central register file is constructed from B.I.T. register-file chips
(B2210A) with two read ports, two write ports, and one read/write port. (b) Using two
pairs of chips provides the additional read ports (marked with “*” in the figure) required
perform 72-bit register-to-memory transfers. These ports carry the lower half of a double
precision value while the Left or Right bus carries the upper half.

11



the data cables are protected by one parity bit for each byte of data. Parity
is generated and checked by the math chips.

In addition to the data paths shown in figure 2, there are other buses in
the processor. The math chips have a 64-bit internal recirculation path which
leads from the output register back to one of the input registers. The output
of one math chip can be transferred on the T bus to the input register of
the other using this path. Some calculations can be directly chained without
going back through the register file. This path can be used, for example, to
pass results from the Multiplier directly to the ALU, freeing the X and Y
buses to bring in new operands.

There are two 16-bit “side paths” that permit transfers between the ad-
dress generators and the floating-point buses. One side path links the most
significant sixteen bits of the X bus with the left address generator. Similarly,
the other side path links the Y bus with the right address generator. The
side paths allow floating-point values to be passed to the address generators
for use in address computations. In the other direction, the side-path buses
permit constants in the address-generator’s immediate field to be driven onto
the X and Y buses, to be used as operands by the math chips.

1.4 Data Memory

To keep the system balanced with respect to bus bandwidth and to keep
the math chips as busy as possible, we chose to have two independent data
memories. Each holds 16K double-precision words for a total of 256K bytes
on each processor. The data memory is implemented with 20ns 16K x 4-bit
static RAMs. The RAMs are accessed once in each instruction cycle.

Each memory has an associated address generator. Every cycle the ad-
dress generator produces a new data address which is used in the next cycle-
to access memory. The address generators are implemented with a simple
16-bit single-chip microprocessor ALU slice (IDT49C402).2 The chip con-
tains a general purpose ALU backed by a 64-entry address-register file. The
address registers can be used to store base addresses or to index through

arrays. Immediate values are supplied to the address generators from the
instruction word.

2This chip and the sequencer chip are 16-bit CMOS versions of the familiar AMD 2901
microprocessor slice and the AMD 2910 microprogram controller.
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1.5 Sequencer and Instruction Memory

Overall program flow is controlled by a sequencer chip (IDT49C410). The
sequencer produces a new instruction address every cycle, as specified by the
current instruction and conditions gathered from elsewhere in the processor.
Conditional jumps are based on a number of floating-point flags, the global
flag, and a flag from the host processor. The processor is pipelined such that
in every cycle, the sequencer calculates the address of the instruction that
will be executed two cycles later. Thus a branch instruction issued in cycle
N will take effect in cycle N + 2. The instruction directly following a jump
instruction is always executed.

Each instruction controls the operation of the four main functional units:
floating-point, left and right address generators, and sequencer. Instructions
are 168 bits (21 bytes) in length, implemented with the same 20ns 16K x 4-bit
parts as the data RAM. A processor can hold 16K instructions or 336Kbytes.

1.6 Input/Output Ports

The 1/0 ports are connected to the Left and Right buses, along with the
the data memories and register file. Each port consists of a double precision
register and a very high current (160mA) TTL transceiver (74F30640). The
transceiver drives the interboard ribbon cables with the upper and lower half
of a data word in a time multiplexed fashion.

Each port transmits a word between processors in two cycles. Interboard
communication begins (in cycle 1) when some processor transfers the con-
tents of a register to its I/O port. During cycles 2 and 3, the transmitting
port drives the cable with the upper and lower halves of the data word. Also
during cycle 3, the receiving processors move the word from the I/O port
to a register. Since there is no hardware arbitration on the I/O ports, the
programmer must develop a convention for controlling access to each com-
munication channel.

The interboard connections are designed to avoid reflections and achieve a
“first wavefront” communication path. To avoid reflections, the transmission
lines are wired point to point with no branches. On the board they are routed
in a continuous path from an input connector, to the transceiver, and then
to an output connector. Cables, connectors, board traces, and terminators
all have an impedance of 80 ohms. The ports are implemented with open-
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collector drivers to prevent program errors from damaging the hardware.

1.7 Clocks

Clocks for the entire system are generated from a single crystal on a separate
clock/host-interface board. Copies of the master clock are carefully buffered
and distributed via coax cables to each processor. Clock skew is held to +1
ns by using buffers from a single IC package and matched-length cables. This
margin is quite adequate for our design.

The processors use a tapped delay line to create controlled clock edges
at 7ns intervals. Two programmable logic arrays combine various taps to
create a multitude of clock waveforms. Clocks are driven by high-current
TTL gates (74F1804) and are parallel-terminated with about 80 ohms. This
strategy gave us acceptable control of skews among the various clocks, but
the very-high edge rates probably contributed to problems we encountered
with clock bounce during debugging.

This clocking methodology proved to be very flexible during the design
phase. It promoted reliable design of setup and hold times. A wide variety of
clocking requirements for different off-the-shelf parts were easy to accommo-
date. On the other hand, the large number of clocks were complex to design,
modify, terminate, and control.

1.8 Host Interface

Processors communicate with the host workstation via a 16-bit general pur-
pose paralle]l interface. This is a serial protocol that runs at the speed of
the host processor, about 1 usec for each transaction. Eight of the sixteen
bits are used to address one or more processor boards. The remaining eight
bits contain data or control information. On the processor, the host interface
connects to a 29-byte-long scan path that threads through the instruction reg-
ister and address registers. It is constructed from 8-bit AMD29818 scannable
registers that are daisy-chained together. Shifting data along the scan path
provides a bidirectional interface with the host.

This interface is very slow compared to the rest of the machine, and it
restricts the useful range of applications of our prototype machine to those in
which only a small amount of data is transferred between the processors and
the host. This admits significant computations (simulations using ordinary
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differential equations), but we are aware of the limitations imposed here. The

host

2
The

tion

interface is one of the first areas of the design that should be improved.

Toolkit Low-level Programming Model

Supercomputer Toolkit processor is programmed as a very-long instruc-
word (VLIW) computer. The programmer has full control of all of the

hardware resources just discussed. Thus, in every cycle, the following oper-
ations can be performed in parallel:

Two floating-point operations, one in the ALU and one in the Multi-
plier. The ALU and Multiplier share input and output ports so two
values can be fetched from the register file and one result can be written

back.

Two memory-1/0 bus transactions, one on the Left bus and one on the
Right bus. Data is exchanged between memory and the main register
file, or between the register file and the I/O port.

Two address computations, one in the left address generator and one
in the right address generator. The addresses will be used to access
the data memories in the following cycle. The address generators have
internal register files to support these operations.

One sequencer operation, to generate an instruction address. Typical
sequencer instructions include conditional branch, jump, continue, and

call.

Two flags may be set: the global flag goes to neighboring processors;.
the host flag goes to the host workstation.

To program the Toolkit at this level, we use a primitive symbolic assembly
language. An instruction appears as a list of up to six tagged fields:

(

(flop ...)

(Imio ...) (rmio ...)
(lag ...) (rag ...)
(sequencer ...)
(flags ...))
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The fields may be listed any order. The assembler supplies default values for
omitted fields.

2.1 Floating-point Operations

The ALU and Multiplier operate simultaneously. Each Toolkit instruction
has a separate opcode field for the ALU and Multiplier. Any ALU opcode
can appear together with any Multiplier opcode. Most floating-point, integer,
and logical operations require one cycle. Divide requires 4 cycles and square
root requires 7 cycles. The entire list of available operations can be found in
the B.I.T. data sheet for this chip set [5].

The following six-cycle sequence illustrates the pipelining of these oper-
ations, as well as the assembler syntax for the floating-point portion of a
Toolkit instruction. As illustrated here and in the examples to follow, the
processor pipeline is controlled partly in hardware and partly in software.
For example, floating-point opcodes are specified in the same instruction as
the operand register numbers. Pipeline registers hold and delay the opcodes
while the register read takes place. Then, the opcodes and operands enter
the math chips together on the following cycle. The command to latch the
math chip result register (&1atch) is specified in another instruction, and the
command to write the result back to the register file is specified in a third

(t ...).

Cycle Instruction
1 ((flop (x r10) (y ri1) (* dmult x y)))
2 ((flop (x r12) (y r13) (* dmult x y &latch)
(+ dadd x y)))
3 ((flop (x r14) (y ri5) (* dmult x y &latch)

(t * r5) (+ dadd t z &latch)))

4 ((flop (* &latch) (+ &latch)))
5 ((flop (t + 16)))
6 ((flop (t * x7)))

The instruction in cycle 1 places the contents of 75 on the X bus, the

contents of ry; on the Y bus, and passes the double-precision multiply opcode
to the Multiplier.
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In cycle 2, the multiplier computes the product requested in cycle 1, and
then latches the result into its result register. Also during cycle 2, instructions
and data are passed to the Multiplier and ALU requesting both the product
12713 and the sum 12 + 3.

In cycle 3, the product riory; is driven from the Multiplier onto the T
bus and is written into rs. This value is also specified as an operand for
the next ALU operation. Simultaneously, the product riri3 and the sum
12 + r13 are computed and latched into the result registers of the Multiplier
and ALU. Data for the next multiplication is transferred from registers r4
and ry5. The second ALU operand, ry3 + 3, is transferred over the ALU’s
internal feedback path from the result register back to an operand register.

In cycle 4 the new sum (riory; + 713 + r13) is computed and latched by
the ALU. The Multiplier computes and latches ry4rys.

In cycle 5, the ALU result is written to rg via the T bus.

In cycle 6 the Multiplier result computed and latched during cycle 4 is
written to ry.

2.2 Bus Operations

Each of the two memory-I/O buses can perform a 64-bit transfer either be-
tween registers and memory, or between registers and an I/O port. There are
no direct register to register operations or memory to memory operations.
Register-memory transfers require an address to have been generated during
the previous cycle. For example, the instruction

((Amio m->r r23) (rmio r->m ri7))

loads rz3 with the contents of the left-memory address and stores r17 into the
right memory address.

2.3 Input/Output Operations

Communication between boards is accomplished by transferring 64-bit quan-
tities between registers and the I/O ports. For example, suppose that the
left I/O port of Processor 1 is connected to the right port of Processor 2 and
to the left port of Processor 3. This code fragment transmits the contents of
710 in Processor 1 to ry in Processor 2 and to ry5 in Processor 3:
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Cycle Processor 1 Processor 2 Processor 3

1 (Imio r->io ri10)
3 cee (rmio io=->r r20) (Imio io->r r25)

2.4 Address Generation

Each of the two address generators produces a new result every cycle, which
is used as the memory address for the following cycle. Each address generator
has its own internal ALU, and 64 16-bit registers to store addresses. Each
operation may take its sources from the registers, from a 16-bit immediate
field in the instruction word, or from the main register file via the side paths.

ALU operands are denoted by A and B, the constant field by D, a zero
source by Z. Available ALU operations include addition, subtraction, and
Boolean operations. The result of an operation can be passed to the address
generator output, and may be written back to the internal address-register
selected by B.

The syntax of the address-generator field of a Toolkit instruction is shown
in figure 5. Here are a few examples:

(lag (add dz nop low) (d 1117)) The left address generator performs
the addition of D and Zero with carry-in set low. The result, 1117,

is passed to the output, without writing it back to the address-register
file (nop).

(rag (add zb ramf high) (b ag-r0)) This performs pre-increment indexed
addressing using register ag-r0 as the index register. The right address
generator increments the contents of ag-r0 by adding it to zero with
the carry-in set high. The incremented result becomes the address-
generator output and is stored back into ag-r0 as specified by the
destination operation ramf.

(rag (add zb rama high) (a ag-r0) (b ag-r0)) This performs post-increment
addressing. It increments the contents of the B address-register and
stores the result in the B address-register, thereby updating the con-
tents of ag-r0. This time, the rama operation specifies that the address
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<field> ::= ( <lag | rag> <ag-op> )

<ag-op> ::= ( <source-op> <sources> <dest-op> <carry> )
<a~value> <b-value> <d-value>

<source-op> ::= add | or | and | exor | ...
<sources> ::= ab | zb | za | da | dz | ...

<dest-op> ::

nop | ramf | rama | oreg | ...
<carry> ::= low | high

a-value ::

( a <ag-register 0 - 15> )
b-value ::= ( b <ag-register 0 - 15> )

d-value ::= ( d <constant 0 - 65535> )

Figure 5: Syntax of the address-generator fields. A full list of operations can be found
in the documentation for the address generator chip, IDT49C402 [7].
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generator output should be the A-source, which is the (unincremented)
contents of ag-r0.

2.5 Instruction Sequencing

The sequencing operations [7] include conditional branches, subroutine calls,
and looping, all maintained through a 33-deep on-chip stack. For exam-
ple, loops are implemented using the sequencer operations push and rfct.
Push pushes the next address onto the internal stack, and sets an internal
counter to the number of loop iterations minus one. Rfct decrements the
counter and keeps branching to the saved address until the count becomes
negative, at which point it pops the stack and falls through the loop. Se-
quencer operations are pipelined and take effect one cycle after they appear
in the instruction stream. For example, the first instruction in the body of
a push/rfct loop will be two cycles after the appearance of the push in the
instruction stream.3

Figure 6 shows a subroutine that uses the loop instructions to upload
to the host a known-length vector by repeatedly calling the upload subrou-
tine, which uploads the floating-point number in r1. The vector is stored in
consecutive locations in left memory. The caller initializes the left address-
register named ptr to point to the first of these locations. The vector length
minus one is the constant n-1, which must be known at assembly time.

The program example shown in figure 7 embeds upload-vector in an
outer loop to produce a routine that uploads all elements of an n x n matrix
(where n is known at assembly time). The inner loop (over the elements of a
row) is counted, as above, in the sequencer. The outer loop (over the rows) is
counted by incrementing (with the ALU) the register count-up-rows, which
is initialized to —n, and branching back so long as the result is negative.
In keeping with the convention that the ALU is used for floating-point op-
erations, we assume that the initial (floating-point) value —n is stored in a
known location address-of-minus-n, and that one is a register containing
the (floating-point) value 1. We assume that the matrix is stored so that
M;; is at a base address plus ixrow-increment+j where row-increment is a
constant specified at assembly time.

3The instruction directly following a jump is referred to as the “jump slot” in modern
reduced instruction set computers.
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Cycle
(label upload-vector)

1 ((sequencer push true n-1)) ;do loop n times
; ;Generate address for first vector element during the
; idelay slot for the push:

2 ((1ag (add zb nop low) (b ptr)))

;;Body of loop is cycles 3 through 6
; sMove vector element to Ri
3 ((1mio m->r ri)
(sequencer cjs true upload)) ;subroutine call to upload
4 QO ‘ ;delay slot for the cjs
13 ((sequencer rfct))
; ;increment the pointer during the delay slot for the rfct:
6 ((lag (add zb ramf high) (b ptr)))

7 ((sequencer crtn true)) ;jreturn from upload-vector
8 O ;delay slot for the crtn

Figure 6: A Toolkit subroutine to upload a vector to the host, using a simple loop
counter in the sequencer. Note in this example that the sequencer operations push, rfct,
cjs (conditional jump to subroutine), and crtn (conditional return from subroutine) are
here all conditionalized with true, so that they always take effect.
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The routine is called with the left-address-generator register matrix-base
pointing to Moo. It uses left-address-generator registers row-pointer to hold
a pointer to the beginning of successive rows, ptr to hold the pointer to the
individual elements M;;.

The upload-matrix program uses a conditional jump based upon a flag
that signals whether the floating-point result is negative. Flags are set by
the ALU or the Multiplier when they drive the T bus.

2.6 Multiprocessing and Synchronization

Since all Toolkit processors are driven by a single master clock, the individual
processors are electrically synchronized in terms of when cycle boundaries oc-
cur. However, each processor has its own sequencer and instruction memory,
so the operations performed by the processors are, in general, independent
of one another. When data is transferred among processors the programmer
must arrange that the receivers all grab the data two cycles after the trans-
mitter puts it out. This can be passively arranged by cycle counting or by
an explicit synchronization action.

The one-bit global flag can be used to maintain synchronization among
processors during the course of a computation. One programming technique
is to maintain synchronization between processors at all times by having each
processor execute the same instruction sequence: All processors branch si-
multaneously, based on the condition being asserted on the global flag, in
effect, behaving as if there was one central controller governing all proces-
sors. This approach works well on vectorizable, data-independent problems,
but breaks down when local data-dependent decisions must be made. A
more complex alternative is to allow each processor to execute branches in-
dependently based on its own local data, with synchronization occurring only
occasionally when communication is required.

For example, a step in a multiprocessor program might require each pro-
cessor P; to perform a computation C;, where different C; may require dif-
ferent numbers of cycles. In this case, the global flag could be used as
a “busy” indicator: As long as each processor is busy, it asserts the flag.
When all processors are done, they release the flag, informing all processors
that they can proceed to the next phase of the computation. The subroutine
wait-for-all-boards, shown in figure 8, can be used to implement this kind
of synchronization. Any processor calling this routine will remain in a wait
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(label upload-matrix)

;; Initialize outer-loop by initializing row-pointer in the lag
;3 to the start of the first row. In the same cycle, use the rag
;s to generate the address for initializing the

;3 count-up-rows register.

((rag (add dz nop low) (d address-of-minus-n))

(lag (add za ramf low) (a matrix-base) (b row-pointer)))

;3 Initialize count-up-~rows

((rmio m~->r count-up-rows))

(label outer-loop)

((sequencer push true n-1)) ;ready to count the inner loop
;3 Initialize ptr to row-pointer

((lag (add za ramf low) (a row-pointer) (b ptr)))

; ;Next four cycles form the inner loop, as in upload vector
((Imio m->r r1) (sequencer cjs true upload))

O

((sequencer rfct))

((lag (add zb ramf high) (b ptr)))

; sIncrement count-up-rows, using the ALU
((flop (x count-up-rows) (y ,one) (+ dadd x y)))
;;Latch the result. In the same cycle, increment row-pointer in
;sthe lag to point to the start of the next row.
((flop (+ &latch))
(1ag (add da ramf low) (a row-pointer) (b row-pointer)
(d row-increment)))
;;Store the new value of count-up-rows, and jump back to the
;i8tart of the outer loop if the result is still negative
((flop (t + count-up-rows))
(sequencer cjp neg row-loop))

QO jdelay slot for the cjp
((sequencer crtn true)) ireturn from upload-matrix
O ;delay slot for the crtn

Figure 7: This Toolkit program uploads a matrix, using nested loops.
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Cycle
(label wait-for-all-boards)

1 ((sequencer ldct true wait-for-all-boards-done))

2 ((sequencer cjp true wait-for-all-boards-assert-ready))
(label wait-for-all-boards-assert-ready)

3 ((sequencer jrp global wait-for-all-boards-assert-ready)

(flags (global . low)))

(label wait-for-all-boards-done)

4 0

5 ((sequencer crtn))

6 0O

Figure 8: This routine uses the global flag to synchronize processors so that they will all
return in the same cycle when the flag is deasserted by all boards. The Toolkit assembler
default for the flags field asserts the global flag, ensuring that it will remain asserted
until all processors execute the instruction in cycle 3. As each processor calls the routine,
it waits at (3) in a 1-cycle loop and deasserts the flag. The loop is implemented with the
sequencer jrp conditional jump instruction, which branches either to the address specified
in the instruction, or to the address stored in the internal counter, depending on the state
of the flag. The counter register is loaded by the ldct instruction in cycle 1. Note that
a one-cycle loop is attained even though the sequencer is pipelined, by including a jump
instruction (3) in the “jump slot” of a previous jump (2). Interested readers should trace
through the control structure here in detail, noting that when the loop terminates, the
no-op at 4 is executed twice.

loop until all processors have called the routine, whereupon all processors
return in the same cycle.

2.7 Benchmark Examples

Figure 9 shows a single-processor program that computes the inner product
of two vectors at the processor’s peak speed of two floating-point operations
per cycle (23.8 double-precision MFLOPS at the current clock rate). The
two vectors are stored in memory, one in the left memory and one in the
right memory. The routine is pipelined to use a two-cycle loop that does two
multiplications and two additions.
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((sequencer push true n-1) ; vector length = 2n
(flop (x r10) (y r10) (* dmult x y)) ; c(r10)=0

(lag (add dz ramf high) (d 1lbase-1) (b al))

(rag (add dz ramf high) (d rbase-1) (b a1)))

((flop (x r10) (y r10) (* dmult x y &latch) (+ dadd x y))
(1mio m->r r1) (rmio m->r r2)

(lag (add zb ramf high) (b a1))

(rag (add zb ramf high) (b a1)))

;; The next two cycles are the inner loop.
((sequencer rfct)
(flop (x r1) (y r2) (v *)
(* dmult x y &latch) (+ dadd t z &latch))
(lmio m->r r3) (rmio m->r r4)
(1ag (add zb ramf high) (b ai))
(rag (add zb ramf high) (b al)))

((flop (x r3) (y r4) (t *)
(* dmult x y &latch) (+ dadd t z &latch))
(Imio m->r r1) (rmio m->r r2)
(lag (add zb ramf high) (b a1))
(rag (add zb ramf high) (b a1)))

((flop (t *) (* glatch) (+ dadd t z &latch)))
((flop (t *) (+ dadd t z &latch)))

((flop (+ &latch)) (sequencer cjp true done))
((flop (t + r5))))

(1abel done)

Figure 9: This routine computes the inner product of two vectors of length 2n at the
processor’s peak speed of 2 floating-point operations per cycle. One vector is stored in
left memory beginning at location 1+1base-1, the other in right memory beginning at
location 1+rbase~1. The inner loop, which does two multiplications and two additions,
is executed n times.
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Another Toolkit demonstration program (code not shown here) solves n x
n systems of linear equations Az = b by means of Gauss-Jordan elimination
with full pivoting, using the algorithm given in [12]. The running time of the
algorithm is dominated by the row reduction performed each time a pivot
is selected. This involves subtracting a multiple of the pivot row from each
other row of the matrix:

DO 21 LL=1,N
IF (LL.NE.ICOL) THEN
DUM=A(LL,ICOL)
A(LL,ICOL)=0.0
DO 18 L=1,N
A(LL,L)=A(LL,L)-A(ICOL,L)*DUM
18 CONTINUE
B(LL)=B(LL)-B(ICOL)*DUM
ENDIF
21 CONTINUE

The Toolkit implementation runs the inner loop (DO loop 18) at a rate of
one floating-point operation per cycle (11.9 MFLOPS). This is accomplished
by holding the matrix A in left memory, but copying the pivot row A [ICOL,*]
into right memory when the pivot is chosen. Using both memories provides
enough bandwidth to schedule a floating-point operation on every cycle of
the inner loop.

The bottleneck in this computation is the shared floating-point result bus
which is shared by the Multiplier and ALU. Thus, even though subtractions
and multiplications could be done simultaneously, only a single result can
be written to the registers on each cycle. In contrast, the inner-product
program can sustain two floating-point operations per cycle because it uses
the ALU result register to hold the partially computed sum, and writing to
the registers is not required.

3 High-level Programming Model

The Toolkit software environment includes a compiler that converts numeri-
cal routines written in a high-level language (the Scheme dialect of Lisp [6])
into extremely efficient, highly pipelined Toolkit programs. These compiled
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routines can be combined with hand-written assembly language programs by
means of a programmable linker.

The Toolkit compilation methodology requires the programmer to di-
vide programs into data-independent computations. A data-independent
computation is one in which the sequence of operations is not dependent
on the particular numerical values of the data being manipulated. For in-
stance, the sequence of multiplications and additions performed in a Fast
Fourier Transform is independent of the numerical values of the data being
transformed. The compiler generates Toolkit instructions for a program’s
data-independent computations, leaving the programmer to implement the
data-dependent branches in assembly language.

3.1 Compiling Data-independent Computations

The first stage of the compilation process uses the partial evaluation tech-
nique described in [3] and [4] to extract the underlying numerical computa-
tion from the high-level program. Unlike high-level language programs which
may include procedure calls and complex data structure manipulations, the
optimized programs produced by partial evaluation consist entirely of numer-
ical operations. This purely numerical program is further optimized using
traditional compiler techniques such as constant-folding, dead-code elimina-
tion, and common-expression elimination to produce a graph of numerical
operations to be performed.

The second stage of the compiler maps the graph onto the particular
architecture of the Toolkit processor to generate actual Toolkit instructions.
This process has two phases. First, the compiler chooses a preliminary order
of operations to reduce memory traffic with no regard for actual pipeline
delays. This order serves as advice to the second phase, attempts to fill all
available slots in the pipeline. It also imposes some other constraints. For
example, if two operands are to be loaded at the same time, the compiler
attempts to assign them to different memory banks.

This two-phase strategy seems to give very good performance. It com-
bines traditional “results-up scheduling,” in which the data-flow graph of the
computation is analyzed to determine the ordering of the instructions that
will maximize the immediate reuse of intermediate results, with “cycle-based
scheduling,” which works forward through the program from the operands
towards the results, choosing the order of the instructions incrementally in
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an attempt to keep the processor pipeline full.

Compiled programs bear little resemblance to hand-coded programs. In
hand-written programs, pipeline stages relating to a particular operation,
such as a multiply, tend to be located close to each other. In contrast, the
compiled code spreads computations out over time in order to fill in pipeline
slots. The compiler schedules loads and stores retroactively, intentionally
placing them as far back in time as possible, to leave memory access op-
portunities available for later instructions. Indeed, loading a register from
memory may occur dozens of cycles before the operand is used. Partial eval-
uation makes this extreme lookahead possible by providing huge basic blocks
of straight-line numerical code. The basic blocks produced by the partial
evaluator are so large that any non-trivial register allocation technique could
be expected to do well.

The compiled code tends to be extremely efficient, even when generated
from very high-level source code. As a simple example, figure 10 shows a
highly abstract definition of a vector addition procedure add-vectors, im-
plemented by applying to the addition operator a general transformation
vector-elementwise, which converts an n-ary scalar function f into an n-
ary vector function that applies f to the corresponding elements of n-vectors,
vl = (v],v3,...),v% = (v}, vd,..)),...,v" = (v},03,...), and produces the
vector of results (f(vi,...,v?), f(v3,...,v}),...). This implementation of
add-vectors is inefficient in most Scheme implementations. Since the pro-
cedures operate on vectors of any length, there must be a run-time loop that
counts through the vector index (here implemented in generate-vector).
An even greater source of inefficiency is the fact that the arity of the pro-
cedure argument £ is not known to vector-elementwise, which therefore
must explicitly construct lists for £ at run time. The compilation is specified
by applying add-vectors to two vectors, each consisting of four placehold-
ers (see [3]). The placeholders represent the inputs to the compiled program.
Specifying the number of vectors and vector length permits the compiler to
generate code after all tests and operations on data structures are performed
at compile time. This leaves only the actual component additions as the only
“real work” to be performed at run time.

Figure 11 shows the compiled output. The entire computation, including
moving data to and from memory, is accomplished in nine cycles. This
density of “useful” operations—4 additions in 9 cycles—is untypically low
for compiler output, because the program is so short.
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(detine (vector-elementwise f)
(lambda (vectors)
(generate-vector
(vector~length (car vectors))
(lambda (i)
(apply £ (map (lambda (v) (vector-ref v i))
vectors))))))

(define (generate-vector size proc)
(let ((ans (make-vector size)))
(let loop ((i 0))
(it (= i size)
ans
(begin (vector-set! ans i (proc i))

(loop (+ i 1NN
(define add-vectors (elementwise +))

(detine vector-1
(vector (make-placeholder ’vector-i-element-1)
(make-placeholder ’vector-i-element-2)
(make-placeholder ’vector-i-element-3)
(make-placeholder ’vector-i-element-4)))

(define vector-2
(vector (make-placeholder ’vector-2-element-1)
(make-placeholder ’vector-2-element-2)
(make-placeholder ’vector-2-element-3)
(make-placeholder ’vector-2-element-4)))

(add-vectors vector-i vector-2)

Figure 10: This highly abstract implementation of add-vectors works for an arbitrary

number of vectors of arbitrary length. Using placeholders, the definition is specialized to
add two vectors of length four.
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((flop) (lag (add dz nop low) (d 6)) (rag (add dz nop low) (d 1)))
((£1o0p)

(lag (add dz nop low) (d 7))

(rag (add dz nop low) (d 3))

(lmio m~->r r20)

(rmio m->r r19))
((flop (+ dadd x y) (x r20) (y r19))

(lag (add dz nop low) (d 4))

(rag (add dz nop low) (d 0))

(1mio m->r r3)

(rmio m->r r26))
((flop (+ &latch dadd x y) (x r3) (y r26))
(lag (add dz nop low) (d 6))

(rag (add dz nop low) (4 2))

(1mio m->r r9)

(rmio m~->r r8))

((flop (+ &latch dadd x y) (x r9) (y r8) (t + r20))
(lag (add dz nop low) (4 8))

(rag (add dz nop low) (d 8))

(lmio m->r ri9)

(rmio m->r ri7))

((flop (+ &latch dadd x y) (x r19) (y ri7) (¢t + r3))
(lag (add dz nop low) (d 9))

(rag (add dz nop low) (d 9))

(lmio r->m r20)

(rmio r->m r20))

((flop (+ &latch) (t + r9))

(lag (add dz nop low) (d 10))

(rag (add dz nop low) (d 10))

(lmio r->m r3)

(rmio r->m r3))

((flop (t + r19))

(lag (add dz nop low) (d 11))

(rag (add dz nop low) (d 11))

(1mio r->m r9)

(rmio r->m 19))

((flop) (Imio r->m r19) (rmio r->m ri19))

Figure 11: This is the compiled output for the program shown in figure 10.
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Figure 12 shows a straightforward recursive implementation of the FFT,
based upon some suitable representation of complex arithmetic (for example,
representing a complex number as a list of its real and imaginary parts).
Even though the program is simple, written with almost no concessions to
efficiency, the compiler transforms this into highly efficient code. A 128-point
FFT requires 4222 cycles (0.354 msec. at our clock rate), performing 3716
floating-point operations, plus the required moves to and from memory.* This
is still a rather low density of floating-point operations, compared with our
experience with ordinary differential equations (see section 4). For the FFT
computation in particular, one can do much better than this by using the
ALU and Multiplier together in inner product computations. The present
compiler, however, does not schedule the math chips simultaneously. Given
the contention for the floating-point result bus, we do not expect to obtain
a significant speed improvement in general. Inner product computations, of
course, are an important exception. See the comments in section 2.7.

3.2 The Programmable Linker

Currently, the compiler handles only straight-line code, and permits calls to
a library of hand-coded numerical subroutines. This restriction is severe but
tolerable for many important applications—many numerical programs consist
of long segments of straight-line code separated by just a few run-time tests.
For example, integrating a system of ordinary differential equations over an
interval with an explicit-formula integrator such as Runge-Kutta requires
run-time tests only to determine if the end of the interval has been reached,
and, for an adaptive integrator, whether to adjust the step-size. In contrast,
an implicit-formula integrator such as Backward Euler requires the solution
of systems of linear equations to choose good pivots, thereby generating
data-dependent operations. This is currently beyond the capability of the
compiler, and the Toolkit numerical subroutine library includes a hand-coded
linear-equation solver that can be used in conjunction with compiled code.
Combining compiled and hand-written assembly code is accomplished
with a programmable linker. As simple example, we show how to construct
Toolkit program that integrates a system of ordinary differential equations

4A 128-point FFT is small, but the compiled block can now be called as a subroutine
in computing larger FFTs.
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(define (fft data-list)
(let ((roots (roots-of-unity (length data-list))))
(define (internmal-fft data-list)
(let ((n (length data-list)))
(cond ((= n 1) data-list)
((odd? n) (error "FFT input not a power of 2"))
(else
(let ((even-terms (internal-fft (evens data-list)))
(odd-terms (w* (internal-fft (odds data-list))
roots)))
(append (map complex+ even-terms odd-terms)
(map complex- even-terms odd-terms)))))))
(internal-fft data-list)))

(define (w* data roots)
(it (null? data)
Q)
(cons (complex* (car data) (car roots))
(w* (cdr data) (cdr roots)))))

(define (evens list)
(if (null? list)
Q)
(cons (car list) (evens (cddr 1list)))))

(define (odds list)
(it (null? list)
0]
(cons (cadr list) (odds (cddr list)))))

Figure 12: A straightforward FFT implementation, which is transformed by the compiler
into efficient Toolkit code.
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using Runge-Kutta integration. The program, running on the Toolkit, reads
from the host an initial state and the number of steps to integrate, performs
the integration, and uploads the final state to the host. This is all straight-
line code except for counting the number of steps.

Figure 13 shows the Scheme source code to be compiled. (The details
of the procedure ode-system are not shown—this is any procedure that ac-
cepts a state vector and generates the vector of derivatives.) Even though the
formulation of the Runge-Kutta integrator is in terms of abstract vector op-
erations, this will exact no performance penalty. The compiler uses the spec-
ification of the input placeholder data structure to specialize all operations,
in this case, to vectors of length four. The compiler output, which integrates
the system for one step, is generated by the call to compile~kit-program
(shown in the figure) which combines the input placeholder data structure
with the Scheme program that defines the computation.

Figure 14 defines some address and data structures used by the linker
to handle the compiled output. The first four define expressions cause
the linker to allocate memory for the number of integration steps, for a
counter, and for the constants 0 and 1. The next two define expressions
allocate storage for the inputs and outputs of the compiled computation.
Figure 15 shows how the compiler output is included as a subroutine with
hand-written assembly code. The define-program expression generates the
program text that will be passed to the assembler. After some initialization,
the program downloads the number of integration steps and the initial state
to the Toolkit, and runs a simple loop that calls the compiler-generated
integrate-one-step subroutine. The assembly code is written in a mixture
of primitive assembly instructions and simple assembly-language macros.

Note that this assembled Toolkit program could be loaded onto multiple
Toolkit boards, producing a system that will perform multiple integrations
simultaneously, starting from different initial states.

It is amusing to observe that this style of pasting together hand-written
and compiled code inverts the traditional role of high-level and low-level
programming. Ordinarily, one writes code in a high-level language that may
call hand-written assembly-code subroutines for speed-critical applications.
Here, we write the inner-loops in a high-level language, and compile them
for inclusion as subroutines, called from hand-written assembly code.
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; ; sRunge-Kutta-4 integrator
(define (rkstep f state h)
(let* ((h* (scale-vector h))
(k0 (h* (f state)))
(k1 (h* (£ (add-vectors state (1/2* k0)))))
(x2 (h* (£ (add-vectors state (1/2#% ki)))))
(x3 (h* (f (add-vectors state k2)))))
(add-vectors state
(1/6* (add-vectors kO (2* k1) (2% k2) k3)))))

;;; This is any function that takes a state vector
;3; and returns the vector of derivatives.
(define (ode-system state) ...)

;;; We specify the stepsize here.
(detine (integrate~one-step state)
(rkstep ode-system state 1.e-6))

;;; This placeholder structure specializes the computation
;35 to a four-dimensional state.
(define input-placeholders
(vector (make-unknown ’x0)
(make-unknown ’x1)
(make-unknown ’x2)
(make-unknown ’x3)))

(compile-kit-program
© “integrate-one-step” ;name used by linker for the resulting program

input-placeholders ;input structure
integrate-one-step ;Scheme definition of program to compile
true) ;this flag defines automatically generates code .

;that copies the computation’s outputs back to
;its inputs -- handy for loops

Figure 13: This Scheme definitions generate compiled the code for integrate-one-step,
which performs one step of a fourth-order Runge-Kutta integration. The ode-system is
any Scheme procedure that accepts a vector as argument and returns the corresponding
vector of derivatives. The input placeholder data structure causes the compiler to specialize
the program to vectors of length four.
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(define integrator-limit-address (allocate-dual-memory 1))
(define integrator-counter-address (allocate-dual-memory 1))

(detine zero-source (dual-memory-constant-location 0.0))
(define one-source (dual-memory-constant-location 1.0))

(define integrate-one-step-inputs
(computation-input-data-structure-with~address-pointers
integrate-one-step))

(define integrate-one-step-outputs
(computation-output-data-structure-with-address-pointers
integrate-one-step))

Figure 14: Definitions used by the linker in handling the compiled result of the source
code shown in figure 13.

4 Example: A Breakthrough in Solar-System Inte-
grations

Even though our prototype Toolkit has been operational for only a few
months, we have already used it to perform a computation of major scien-
tific significance—an integration of the complete Solar System that improves
upon previous computations by nearly two orders of magnitude.

One of our motivating examples in embarking on the Toolkit project
was our experience with the Digital Orrery [2]. The Orrery, constructed in
1983-1984, is a special-purpose numerical engine optimized for high-precision
numerical integrations of the equations of motion of small numbers of grav-
itationally interacting bodies. Using 1980 technology, the device is about 1
cubic foot of electronics, dissipating 150 watts. On the problem it was de-
signed to solve, it is measured to be 60 times faster than a VAX 11/780 with
FPA, or 1/3 the speed of a Cray 1S.° In 1988, Sussman and Wisdom [11] used
the Orrery to demonstrate that the long-term motion of the planet Pluto,
and by implication the dynamics of the Solar System, is chaotic. The posi-
tions of the outer planets were integrated for a simulated time of 845 million

SWith the arrival of the Supercomputer Toolkit, the Orrery was officially retired, and
was transferred to the Smithsonian Institution in August, 1991.
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(define-program
¢
((sequencer cjp true start-of-program))
O

; ;include standard libraries here

;;include the compiler output as a subroutine'

(label integrate-one-step)

»0(include-computation integrate-one-step)

((sequencer crtn true))

0

(label start-of-program)

;;code that initializes various constants defined by the linker

(1abel restart)

; idownload number of steps from the host
»€(dynamic-download-both~memories integrator-limit-address)

; ;dowvnload the initial state
»0(dynamic-download-data-structure integrate-one-step-inputs)

(label integrator-restart)
,8(dual-memory-copy
(make-dual-copy-specifier zero-source

integrator-counter-address))
(label integrator-loop)

,@(jump-if-equal integrator-limit-address
integrator-counter-address
’return-answer)
;;otherwise, increment counter by one:
»0(dual-memory-falu-memory-operation ’DADD
one-source
integrator-counter-address

integrator-counter-address)
»@(cjs ’integrate-one-step)
»@(jump ’integrator-loop)

(label return-answer)
»0(dynamic-upload-data-structure integrate-step~outputs)
,0(jump ’integrator-restart)))

Figure 15: The compiled code generated by the program in figure 13 is combined with
hand-generated assembly code, producing a program that integrates a system of ODEs for
a given number of steps, starting with an initial state.
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years, a computation in which the Orrery ran continuously for more than
three months. Before the Orrery, high-precision integrations over simulated
millions of years were prohibitively expensive, and astrophysicists had done
only a few small experiments using carefully scheduled resources.

It was natural, then, that our first task for the new Toolkit was to dupli-
cate some of the Orrery’s outer planet integrations. This allowed us to check
out and debug the Toolkit on a real problem. We quickly implemented a
high-order multistep integrator of the Stormer type—written in Scheme and
compiled using the Toolkit compiler—and discovered that each board of the
Toolkit was about three times faster than the entire Orrery on this program.
Some of this speedup was because the Orrery did not have a single instruc-
tion to compute square root or divide. In the Orrery, such operations were
performed by Newton’s method, using a table to get initial approximations.

Wisdom and Holman [13] then developed a new kind of symplectic in-
tegrator for use in Solar-System integrations. This integrator allows the
particles to advance as if they were only in the field of the Sun. It then
corrects their velocities by adding the change in momentum accrued over the
drift time by perturbations of the other planets. This integrator is about a
factor of ten faster than the traditional Stormer’s method, but it is not as
accurate over short timescales. Over long timescales it appears not to accrue
too much error.

With the speedups available from the Toolkit and the new integrator,
we performed a 100-million-year integration of the entire Solar System (not
just the outer planets, as with the Orrery), incorporating a post-Newtonian
approximation to General Relativity and corrections for the quadrupole mo-
ment of the Earth-Moon system. The longest previous such integration [10],
recently published, was for about 3 million years.

The results of our integration verify the principal results of the Orrery
integrations. We also found good evidence for chaotic motions in the inner
Solar System. In particular, we found a Lyapunov exponent for the inner
Solar System similar to that predicted by Laskar [8] in his integrations of
the averaged equations of motion. We also verified Laskar’s prediction that
certain pendulum-like resonant variables alternate between circulation and
libration. A more complete analysis of the data from the integration will be
forthcoming.

Our integration used eight Toolkit boards running in parallel. Each board
ran a Solar System with slightly different initial conditions. The evolving
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differences were compared to estimate the largest Lyapunov exponent. The
differences in initial conditions were chosen to be 1 part in 10® in one coor-
dinate of a planet. We found that, the chaotic amplification of this difference
is such that a 1 cm difference in the position of Pluto at the beginning of the
integration produces a 1 Astronomical Unit difference in the position of the
Earth at the end of the integration.

Programming the integration proceeded essentially along the lines of the
simple Runge-Kutta example presented in section 3.2. The integrator and
the force law were written as high-level Scheme programs. The accumulation
of position was implemented in quad precision (128 bits), and the required
quad precision operators were written in Scheme.® The Scheme source was
compiled with the Toolkit compiler, and the resulting routines were combined
with a small amount of Toolkit assembly code, similar to figure 15. 7 The
compiled code contains almost 10,000 Toolkit cycles for each integration step,
and more than 98 percent of the cycles perform floating-point operations.

The host-side control program was also written in Scheme. The Toolkit
was downloaded with initial conditions. It was then repeatedly run for 10°
7.2-day integration steps, with the state uploaded to the host at the end of
each 10° step segment—this took about 12 minutes of real time. The 100
million year integration took about 5000 such segments, for a total time of
about 1000 hours of run time.

5 Conclusions

In hindsight, there are a few places where the architecture could be improved.
Most serious is the fact that there are no datapaths that allow results to
be stored in code memory, so that, for example, all repeat counts in the
sequencer must be fixed at compile time. Even worse, the sequencer chip
provides no method of to get at the addresses stored in its internal registers

6In hindsight, the use of quad precision appears to have been overly conservative for this
problem, and we plan to rerun the computation at ordinary double precision to confirm
this.

"Instead of running a separate Solar System on each board, we could have used an
alternative parallel decomposition of the problem into one body per board, as was done
with the Digital Orrery. In that case,-the hand-generated assembly code would have been
slightly different, because we would have to copy state information among boards, but the
bulk of the code generation would have still been done by the compiler.
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without executing the instructions at those addresses. This makes it very
difficult to catch and process interrupts, e.g., those caused by parity errors. A
better design would make that state more accessible. It would be convenient
to set and sense condition codes based upon results of address-generator
computations. Also, the ALU and Multiplier share a single result bus which
limits the opportunities to use these units simultaneously. But these are
mostly annoyances rather than significant problems.

A more serious limitation of our prototype Toolkit is that we have pro-
vided only slow communication with the host. This limits applications to
those that require very little communication, such as the long-term integra-
tion of systems of ordinary differential equations. It is relatively easy to
improve this by fabricating a special board with connections to the fast in-
terprocessor communication channels. Such a communications adapter could
buffer communications to and from the host, at host-memory speed. Improv-
ing this communication is a top priority for future hardware development.

Our software-support system also has a long way to go. While the com-
piler makes it easy to compile straight-line segments of code, automating the
translation of large algebraically-specified systems such as force laws, it has
no concept of data-structure or of data-dependent conditional jump. Thus,
for example, all of the complex control structures that support variable step
size and variable order integrators (such as Gear’s method for stiff systems),
and even the process of selecting a pivot in a linear equation solver, must cur-
rently be painfully constructed in assembly language. The resulting assembly
code must be combined with compiler output for the straight-line portions of
the computation. All multiprocessor programs also must be painfully glued
together, because, though we have made strides in the automatic schedul-
ing of multiple processors [3], we have not built that into the Toolkit code
generator.

Nevertheless, despite its prototype status, the Toolkit demonstrates a
means practical within the limits of current technology, to provide relatively
inexpensive supercomputer performance for a limited, but important class
of problems in science and engineering. The key is to avoid the generality—
both in architecture and in compilation technology—that cause computers
of comparable speed to be expensive to design, build, and program. The
result is machines that are not as fast as the fastest supercomputers, but
whose price advantage permits them to be used for applications that would
be otherwise infeasible.

39



Acknowledgements

The Toolkit project would not have been possible without continual support
and encouragement from Joel Birnbaum. Henry Wu devised the board in-
terconnection strategy. John McGrory built a prototype host interface and
debugging software, and Carl Heinzl wrote an initial set of functional diag-
nostics. Dan Zuras spent his vacation coding high-precision scientific subrou-
tines. Rajeev Surati wrote a simulator that has become a regular part of our
software development system. Karl Hassur and Dick Vlach did the clever
mechanical design of the board and cables. Albert Chun, David Fotland,
Marlin Jones, and John Shelton reviewed the hardware design. Sam Cox,
Robert Grimes, and Bruce Weyler designed the PC board layout. Darlene
Harrell and Rosemary Kingsley provided cheerful project coordination.

References

[1] H. Abelson, A. Berlin, J. Katzenelson, W. McAllister, G. Rozas, and G.J.
Sussman, “The Supercomputer Toolkit and its Applications,” Proc. of the
Fifth Jerusalem Conference on Information Technology, Oct. 1990. Also avail-
able as AI Memo 1249.

[2] J. Applegate, M. Douglas, Y. Giirsel, P. Hunter, C. Seitz, G.J. Sussman, “A
digital orrery,” IEEE Trans. on Computers, Sept. 1985.

[3] A. Berlin, “Partial Evaluation Applied to Numerical Computation,” Proc.
1990 ACM Conference on Lisp and Functional Programming, Nice France,
June 1990.

[4] A. Berlin and D. Weise, “Compiling Scientific Code using Partial Evaluation,”
IEEFE Computer December 1990.

[5] Bipolar Integrated Technology, “B2110A/B2120A TTL Floating-point chip
set,” Bipolar Integrated Technology, Inc., Beaverton, Oregon, 1987.

[6] IEEE Std 1178-1990, IEEE Standard for the Scheme Programming Language,
Institute of Electrical and Electronic Engineers, Inc., New York, NY, 1991.

[7] Integated Device Technology, High-Performance CMOS Data Book Supple-
ment, Integated Device Technology, Inc., Santa Clara, California, 1989.

40



[8] J. Laskar, “A numerical experiment on the chaotic behaviour of the Solar
System”, Nature, vol. 338, 16 March 1989, pp. 237-238.

[9] Joel Moses, “Toward a general theory of special functions,” CACM, 25th
Anniversary Issue, August, 1972.

[10] Thomas R. Quinn, Scott Tremaine, and Martin Duncan “A Three Million
Year Integration of the Earth’s Orbit,” Astron. J., vol. 101, no. 6, June 1991,
pp. 2287-2305.

[11] G.J. Sussman and J. Wisdom, “Numerical evidence that the motion of Pluto
is chaotic,” Science, Volume 241, 22 July 1988.

[12] W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical
Recipes: The Art of Scientific Computing, Cambridge Univ. Press, 1986.

[13] J. Wisdom and M. Holman, “Symplectic Maps for the N-body Problem,” (to
appear).

41



