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Abstract

The task of shape recovery from a motion sequence requires the establishment of
correspondence between image points. The two processes, the matching process and the
shape recovery one, are traditionally viewed as independent. Yet, information obtained
during the process of shape recovery can be used to guide the matching process. This
paper discusses the mutual relationship between the two processes. The paper is divided
into two parts. In the first part we review the constraints imposed on the correspondence
by rigid transformations and extend them to objects that undergo general affine (non
rigid) transformation (including stretch and shear), as well as to rigid objects with smooth
surfaces. In all these cases corresponding points lie along epipolar lines, and these lines
can be recovered from a small set of corresponding points. In the second part of the
paper we discuss the potential use of epipolar lines in the matching process. We present
an algorithm that recovers the correspondence from three contour images. The algorithm
was implemented and used to construct object models for recognition. In addition we
discuss how epipolar lines can be used to solve the aperture problem.
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1 Introduction

Correspondence is a process of relating information in one image to its equivalent in
others. Using correspondence a vision system can infer the 3-D structure of the observed
scene, an inference that is significantly more difficult to make from a single 2-D image.
The establishment of correspondence is itself a difficult task. Various methods were
developed in recent years to achieve correspondence for stereo vision (e.g., [Marr and
Poggio 1979, Grimson 1980, Baker and Binford 1981]), motion analysis (e.g., [Koenderink
and Van Doorn 1975, Ullman 1979, Longuet-Higgins 1981, Hildreth 1984]), and object
recognition (e.g., [Fischler and Bolles 1981, Grimson and Lozano-Pérez 1984, Lowe 1987,
Huttenlocher and Ullman 1987]).

In motion analysis the stage of establishing correspondence is usually viewed as in-
dependent of the stage of shape recovery [Ullman 1978]. According to this view, the
correspondence is determined so as to minimize the observed 2-D motion along the im-
age sequence. No assumptions are made at this stage with respect to the shape of the
moving objects or to the transformations they undergo. In this way correspondence can
be found even for objects that undergo non rigid transformations, and when the images
contain a number of objects moving differently.

The distinction between the two processes of correspondence and shape recovery is
useful when the motion between the frames is relatively small, in which case a mini-
mization process can resolve the correspondence correctly. When, however, “long range
motion” is considered, minimization techniques often fail to find the correct correspon-
dence. Information about the transformation may be used in these cases to guide the
process of establishing correspondence.

An important application that requires correspondence under “long range motion”
conditions is the construction of 3-D representations for object recognition. In this process
shape information is accumulated over time until a complete model is constructed for
the object. During this period the object may be observed in positions that significantly
differ from one another. Yet, it is desired for this process to tolerate such differences.

Correspondence is not only useful for constructing object-centered models, but also
for viewer-centered ones. Recognition schemes that use viewer-centered representations
were recently developed. In [Ullman and Basri 1991] an object is represented by a small
number of its 2-D images together with the correspondence between the images. The
appearance of an object from different viewpoints is predicted by the linear combinations
of its model images. These predictions are exact for rigid objects. Similar representations
were used by Poggio and Edelman [1990]. Their approach approximates the appearance
of objects from arbitrary viewpoints using radial basis functions.

Point-to-point correspondence between images is therefore crucial for constructing
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both object-centered as well as viewer-centered representations. In the object-centered
case this follows from the fact that structure from motion algorithms require full corre-
spondence between the images. Once the correspondence is known structure recovery is
fairly straightforward. In the viewer-centered case full correspondence between images
provides implicit information about the depth values of the points. The stability of a rep-
resentation, measured by the errors induced when the appearance of the modeled object
is predicted from arbitrary viewpoints, tends to increase as the images used to construct
the models are taken from viewing angles that are relatively distant from one another.

One assumption that is generally used in different vision applications such as motion
and object recognition is that the objects observed are rigid. Lee and Huang [1990] have
recently addressed the question of how rigidity affects the solution to the correspondence
problem. They showed that under an orthographic projection the correspondence to
points can only be determined up to straight lines (known as “the epipolar lines of the
points”), and that four corresponding points determine the position of these lines. They
did not specify any method to resolve the correspondence within the lines.

The epipolar line idea is not new. It is extensively used in stereopsis, but rarely used
in establishing correspondence in motion analysis. Bolles and Baker [1985] used epipo-
lar lines to analyze motion sequences obtained by a translation along a straight line.
Yachida [1986] and Ayache and Lustman [1987] used it in developing their trinocular
stereovision algorithm. In this paper we examine the use of epipolar lines in establishing
correspondence for depth reconstruction. In the first part of this paper (Section 2) we
review the theory behind epipolar lines and how to compute them from a small number of
corresponding points. The formulation we use is somewhat different from that presented
by Lee and Huang [1990], and we analyze the similarity and the differences between or-
thographic and perspective projection models. We show that epipolar lines exist even in
more complicated situations, such as when an object undergoes a general linear transfor-
mation (including stretch and shear), and when objects with smooth bounding surfaces
are considered. In the second part of this paper (Section 3) we show that the correspon-
dence is not determined uniquely even when three or more images are given. Additional
images can, however, be used to heuristically resolve the correspondence [Yachida 1986].
We have applied this method to arbitrarily curved images, and used the results to con-
struct object models for recognition. In addition we discuss how epipolar lines can be
used to solve the aperture problem.

2 Correspondence from Two Images

The correspondence problem discussed below is defined as follows. Given a pair of 2-D
images, for every point in space that is projected to both images find its location in the two
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images. Often only feature points (such as contour points) are considered. We examine
this problem assuming the images differ by a rigid transformation. We consider two
projection models, orthographic projection (with a uniform scale factor to compensate
for depth changes) and perspective projection. We begin our discussion by introducing
general properties for both projection models, and later prove these properties for each
of the models separately. Finally, we extend these properties to more complicated cases,
such as objects that undergo general affine transformations (rather than rigid ones) and
objects with smooth bounding surfaces.

Our analysis consists of three steps:

1. We show that rigidity divides the images into sets of epipolar lines. Their corre-
spondence is determined by the transformation that separates the images, but the
correspondences of points along the lines cannot be determined.

2. The epipolar lines can be recovered from a small set of corresponding points, four
in the orthographic case and seven in the perspective case.

3. These results apply also to objects that undergo general affine transformation and
to objects with smooth bounding surfaces.

Proposition 1 establishes that in a pair of images related by a rigid transformation a
point in one image can potentially match in the second image any point that lies along
a straight line (which is referred to as “the epipolar line of that point”).

Let P, and P, be two projections (either orthographic or perspective) of a rigid object
from two given viewpoints. Let (z,y) be the projection of some object point in P;.

Proposition 1: The corresponding point to (z,y) in P, lies along a straight line
given by:
(&',9') = u+ a(2)v

where u,v € R? are constants (namely, independent of z), and « is a scalar function of
z.

Following Proposition 1, given the transformation that relates the two images, the
correspondence is determined up to a straight line. The vectors u and v are determined
both by the transformation and by the 2-D position of the point (z, y), while a is the only
component that depends on z, the depth value of the point in 3-D. There is a one-to-one
mapping between the position of p along the epipolar line in P, and its depth value.
Every different depth value corresponds to a different location of p along the epipolar
line, and every different location along the epipolar line determines a different depth
value.



In some cases epipolar lines vanish and point correspondence is uniquely determined.
This occurs in the degenerated case when v = 0. In this case the position (z/,y’) does
not depend on the depth value of the point. Under orthographic projection this occurs
when the object is rotated around the line of sight and then translated arbitrarily. Under
perspective projection v vanishes when the object is rotated around the camera.

The epipolar lines are parallel in the orthographic case, since in this case v depends
solely on the transformation and is therefore common to all object points. This is not
always true in the perspective case. In this case the epipolar lines are parallel only if the
transformation includes no translation in depth. If, however, ¢, # 0 the epipolar lines
coincide at a single point known as the focus of ezpansion.

A rigid transformation divides the image into epipolar lines within which correspon-
dence cannot be determined. Every epipolar line in one image has its corresponding
epipolar line in the second image, in the sense that, all the points that lie along some
epipolar line in the first image share the same epipolar line in the second image and vice
versa. This is established in Proposition 2.

Proposition 2: Let p1,p2 € P, be two points that lie along some common epipolar
line. The epipolar line of p; and the epipolar line of p, in P, coincide.

Since rigidity alone does not determine the correspondence except up to epipolar
lines, it may in some cases be sufficient to recover the epipolar lines rather than all the
parameters of the transformation that separates the two images. Interestingly, under
orthographic projection the epipolar lines are determined from two images while the
transformation is not. Four non coplanar points are required for this task. The trans-
formation breaks up into its planar parts and non planar parts. The planar parts of
the transformation are determined by the epipolar lines, while the non planar parts, the
rotation in depth, cannot be recovered. In the perspective case both the epipolar lines
and the transformation are determined from two images. In this case seven points are
required.

The results above apply in two additional cases that extend beyond the set of rigid
transformations. Epipolar lines exist when the objects considered undergo general 3-D
affine transformation, which includes stretch and shear. The same applies under ortho-
graphic projection to objects with smooth bounding surfaces. In this case the contours
change their position on the object with the viewpoint. (See a discussion in [Basri and
Ullman 1988].) This motion is projected along epipolar lines (See section 2.3 below). In
both cases, corresponding points lie along epipolar lines, and these epipolar lines can be
recovered from a small set of corresponding points.



2.1 Orthographic Projection

In this section we repeat the results presented in the beginning of Section 2 and prove
them for the orthographic case. Let P; and P, be two images of a rigid object from two
arbitrary viewpoints. Let p = (2,y,2) be an object point, its position in P; is given by
(z,y), and its position in P, is given by (z’,y’) which is the orthographic projection of
sRp + t, where s is a scale factor, R is a 3 x 3 rotation matrix, and t is a translation
vector.

In the following analysis we assume that the transformation between the images
(namely, s, R, and t) is known. We select a point (z,y) in the first image and compute
its possible positions in the second image. We show that the set of these positions forms
a straight line, and that the exact position along this line is determined by its depth
value.

Proposition 1la: Given a rigid transformation defined by {s, R,t} and a point
(z,y) € Py, its corresponding point in P, lies along the epipolar line given by:

(2",y) =u+2zv

where u,v € R? are constants.

Proof: Denote r;;, (1 < 2,5 < 3) the elements of R, ¢, and ¢, the horizontal and
vertical components of the translation, since

a’ . 3(7’11.”() + 12y + 7’132) + tr
Yy’ s(ro1T + rogy + ros3z) +
we define

Sro1T + STy +
v = ( ST13 >
ST'o3
Notice that since the transformation is given, u and v are determined for a particular
point (z,y), and consequently its corresponding point lies along the straight line u + 2v.
When the depth value, z, of the point is given, the location of the corresponding point
along the line is determined, and vice versa, selecting a corresponding point along the
line determines its depth value. When v = 0 the epipolar line vanishes into a point.
In this case the images are separated by a rotation about the line of sight (plus some

arbitrary translation). For symmetry reasons we obtain the same results for points in
the second image, namely, that their corresponding points in P, lie along straight lines.

- ( ST11T + STy + iy >
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The epipolar lines in each of the images are parallel. This follows from the fact that
v depends solely on the transformation, and therefore has a common value for all image
points. All the points in P, that lie along a single epipolar line share the same epipolar
line in P,. This is established in the following Proposition.

Proposition 2a: Let py, p2 € P be two points that lie along some common epipolar
line. The epipolar line of p; and the epipolar line of p; in P, coincide.

Proof:  All the epipolar lines are parallel. According to the definition of an epipolar
line, since p; and p, lie along a single epipolar line, both are possible matches of a
single point, q, in P,. Therefore, the epipolar lines of p; and p, intersect in q, and since
epipolar lines are parallel they must coincide. Consequently, rigidity determines the
correspondence between epipolar lines, but does not resolve the correspondence within
these lines.

When only two images are given the transformation cannot be fully recovered. The
epipolar lines, however, can be recovered using a correspondence set of four non coplanar
points. A linear equation from which the epipolar lines can be computed is given below.
We shall use the following notation. Let (z;,y;) € P; and (z!,y!) € P, be a pair of
corresponding points, namely, they are the projections of a common point in 3-D space,
pi = (2,9, 2). We shall have n such correspondences. (To solve this equation n must
be > 4.) Denote X = (z1,..,2,), ¥ = (Y1,-4¥n), 2 = (21,0, 20), X = (2},...,2"),
y = (y1,-yp), and 1 = (1,...,1) € R™. According to [Ullman and Basri 1991], x, y,
z, X', y’, and 1 are all embedded in a 4-D linear space. This follows from the identities
below

x' = sriX+ sripy + sri3z + t,1

/

Y = sraX + sray + sresz + i, 1

Consequently, {x,y, 2,1} span a 4-D linear space to which x’ and y’ also belong. There-
fore, there exist nonzero scalars ay, ay, by, by, and ¢ such that:

a1X + agy + bix' + by’ + ¢l =0

These coeflicients are determined (up to a scale factor) by four non coplanar points. The
epipolar line are immediately derived from this equation. (This result is proved somewhat
differently in [Huang and Lee 1989, Lee and Huang 1990].)

The epipolar lines break the transformation that relates the images into its planar
components and its non planar ones. The planar components can be recovered from the
epipolar lines, while the non planar ones cannot be determined from two images. The
translation component perpendicular to the epipolar line is given by c. (The translation



components can be discarded altogether if we consider differences between points rather
than the points themselves.) The values of the other coefficients are given below.

a; = 8Tz
o = —8T3
by = ry

by = —ri3

The scale factor is therefore given by the ratio

.- a? + a3
b3 + b3

The relative angle between the epipolar lines determines the planar parts of the rotation,
as explained below. A 3-D rotation can be decomposed into a sequence of three successive
rotations: a rotation about the Z-axis by an angle «a, a second rotation about the Y-
axis by an angle 3, and a third rotation about the Z-axis by an angle v. Under this
decomposition the following identities hold

r3, = sinasinf
r33 = —cosasinf
re3 = sin fsin-y
ri3 = sinfcos~y
We therefore obtain that
1@
a = tan"!—
as
_ 1
v = —tan"l——
by

while 8 cannot be determined.

We can visualize this decomposition in the following way. After compensating for
the translation and scale changes, we first rotate the image P, by a. Consequently, the
epipolar lines point in P, to a horizontal direction. We then rotate the second image, P;,
by —v. As a result, the epipolar lines in P, also point horizontally. The images obtained
are related by a rotation about the vertical axis, which is a rotation in depth. Following
such a rotation the points move horizontally, which is, along the (rotated) epipolar lines.
This motion cannot be recovered since it depends both on the angle of rotation, 3, and
on the depth of the points.



An essentially similar break up of the transformation was suggested by Ullman [1983].
In his proof, however, a correspondence set of five points was required to recover the
planar parts of the transformation. We can see here that four non coplanar points are
sufficient, since the epipolar lines can be recovered from four such points, and the break
up is completely described by the epipolar lines.

2.2 Perspective Projection

In this section we repeat the results presented in the beginning of Section 2 and prove
them for the perspective case. We use the following notation. An object point p is
denoted by (zz, 2y,2). It is projected in P; to the position (z,y) and in P; to (z',y').
(There the actual 3-D position of the point is denoted by (z'z’, 2’y’, 2').)

Proposition 1b: Given a rigid transformation that includes a rotation R and a
translation t, and given a point (z,y) € Py, its corresponding point in P, lies along the
epipolar line given by

(z",y) =u+a(z)v
where u,v € R? are constants, and « is a scalar function of z.

Proof: Denote

z, T
v | =Ry
zr 1

!

z x z,
2y | =Rz y | +t=2] y, |+t
1 1 2z

we obtain that

and so we define



Parallel epipolar lines are obtained when ¢, = 0. In this case v is independent of the
position of the point and depends solely on the transformation. If, however, ¢, # 0 the
epipolar lines intersect in one point, called the focus of ezpansion. This point stands for
z = 0, and its location in P; is given by

zg _ 1 (¢
y6 tz tz

The location of the focus of expansion in P, corresponds to the case when v = 0. This
condition implies the following linear equation system

t,x, = tyz

tzyr = tyzr

from which this location can be retrieved. (Recall that z,, y,, and z, are linear functions
of z and y.)

Similar to the orthographic case, points that lie on a common epipolar line in one
image share the same epipolar line in the other.

Proposition 2b: Let py, p2 € P; be two points that lie along some common epipolar
line. Assume both p; and p, are not the focus of expansion. The epipolar line of p; and
the epipolar line of p; in P, coincide.

Proof: If ¢, = 0 the epipolar lines are parallel and the proof is identical to that of
the orthographic case. If t, # 0 the epipolar lines in each image intersect in the focus of
expansion. Since the points lie along a common epipolar line in P, there exists a point q
in P, that is a possible match to both points, q is not the focus of expansion. Therefore,
the epipolar line of p; and that of p, intersect in q, and since both lines also intersect in
the focus of expansion they must coincide.

In the perspective case the transformation can be determined in general (up to a
scale factor) by a correspondence set of seven points [Longuet-Higgins 1981, Tsai and
Huang 1984]. There is still no proof for whether this is the minimal number. Roach and
Aggarwal [1979] showed by counting the number of unknowns that five points may be
sufficient. For the sake of completeness we review in Appendix A one method to recover
the transformation from eight corresponding points using essentially linear operations.
This method appeared in Tsai and Huang [1984].

It is worth noting that although in the perspective case the transformation can be
recovered from two images the computation may in many cases be unstable. This happens
when the object is relatively distant from the camera, in which case depth differences are
relatively small and perspective distortions are negligible, and when the depth translation
components are small, in which case the epipolar lines are nearly parallel. These cases are
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essentially similar to the orthographic case. In both cases the transformation obtained is
unstable, and a third image may be required to recover the transformation reliably. The
epipolar lines, however, remain stable since they depend mainly on those components of
the transformation that can be measured reliably.

2.3 Extensions

In the previous discussion we showed that rigidity determines the correspondence up to
epipolar lines and that the position of points along these lines is determined by their
depth values. We also showed that the epipolar lines can be recovered from a small
set of corresponding points. In this section we consider two additional cases to which
epipolar lines apply. These cases include images of objects that undergo general affine
transformation and contour images of rigid objects with smooth bounding surfaces.

An affine transformation in 3-D space is composed of a general linear transformation
followed by a translation. The set of affine transformations contains, in addition to all
the rigid transformations, also stretch and shear. Similar to the rigid case, in a pair
of images of an object that undergoes an affine transformation, corresponding points
lie along epipolar lines. This is true both when the images are orthographic as well as
perspective projections of the object. This follows from the fact that in proving the
results above we never used the special properties of the rotation matrix.

When a pair of images is given, whether the objects in these images are moving
rigidly or whether they undergo an affine (non rigid) transformations is indistinguish-
able. Basri and Ullman [1991] (see also [Poggio 1990]) showed that under orthographic
projection the set of images of a rigid object is contained in a 4-D linear space, and that
additional (quadratic) constraints distinguish between these images and other vectors in
this space. These other vectors are, in fact, images obtained by applying a general 3-D
affine transformation to the object. The quadratic constraints cannot be recovered from
two images. Hence, it is impossible to distinguish between the two cases when only two
images are given. A similar ambiguity holds under perspective projection. It is worth
noting that general affine transformations approximate the way moving objects are ob-
served in movies from different viewpoints. This effect is known since 1859 as the La
Gournerie Paradox and was recently discussed by Jacobs [1991].

A second interesting case is that of rigid objects with smooth surfaces. The bounding
contours of such an object are generated by surface patches that are tangent to the
line of sight. These patches are usually referred to as the rim [Koenderink and Van
Doorn 1979] or the contour generator [Marr 1977] of the object. Since the surface of
the object is smooth, when the object rotates in depth a new set of surface patches that
are now tangent to the new line of sight replaces the original rim, generating a new set
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of bounding contours. Establishing correspondence between the original and the new
bounding contours of the object is therefore problematic, since the contours undergo in
addition to the rigid transformation also some arbitrary motion that depends on the
exact shape of the object.

Tracing the positions of these contours is useful for any shape reconstruction and
object recognition scheme that is based on contour matching. A method to predict
the appearance of objects with smooth bounding surfaces for recognition was recently
developed [Basri and Ullman 1988]. The method assumes an orthographic projection
and uses the 3-D curvature of points along the contours to follow their change in position
with viewpoint. The curvature values were computed from a few images of the object by
matching the contours in these images.

The next observation demonstrates that epipolar lines are useful in determining cor-
respondences between orthographic images of objects with smooth bounding surfaces.
We first look at the simpler case of an object that rotates about the vertical axis. Let
p be a rim point, and let us take a horizontal section of the object through p. (Namely,
if p = (2o, Yo, 20) we consider the plane y = yo.) The intersection of the surface of the
object with this plane forms a space curve, C. When the object rotates, the rim point p
changes its position on the object along C. Denote the new rim point by p’. Since this is
a rotation about the Y-axis, the epipolar lines in both images are horizontal. Therefore,
all the points on C including p and p’ are projected to a common epipolar line in both
images.

We now extend this observation to general rigid transformations. Rotation is the
only component that affects the rim. Translation and scaling do not change the rim and
therefore can be disregarded. A 3-D rotation can be decomposed into three successive
rotations, around the Z-, Y-, and Z-axes. (The same decomposition used in Section 2.1.)
As we did in Section 2.1, we apply the first rotation to the first image, and (the inverse
of) the last rotation to the second image. Both rotations are image rotations, and they
do not change the rim. They rotate the epipolar lines in the two images into a horizontal
direction. (See Section 2.1.) Therefore, after applying these rotations we obtain the
situation described above for the simpler case, namely, the two images are related by a
rotation about the vertical axis, and their epipolar lines are horizontal. Therefore, the
observed position of the rim points change along epipolar lines.

Figure 1 shows the epipolar lines in two orthographic projections of a VW car. Notice
that the matching between silhouette points along epipolar lines is good although they
are generated by smooth surfaces.
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Figure 1: Epipolar lines in two orthographic projections of a VW car. Note the fact that corresponding
points lie along epipolar lines. The silhouette contours deserve special attention for being generated from
smooth surfaces.

3 Resolving Point Correspondence

In the previous section we have shown that rigidity alone is insufficient to solve the
correspondence problem uniquely from two images. It divides the images into epipolar
lines, their matching is determined by the transformation that separates the images, but
the correspondence of points within the lines cannot be resolved. In this section we
examine the problem of establishing correspondence in three or more images. We show
that, similar to the case of two images, the correspondence is not determined uniquely.
Additional images, however, provide constraints that can be used to solve the problem
heuristically (e.g., the trinocular stereovision algorithm [Yachida 1986]). We discuss
several additional constraints that can be used together with epipolar lines to find the
correspondence between images. These methods were implemented and the results are
presented below.

It should be noted that the use of epipolar lines to determine correspondence is limited
to those regions in the images that are consistent with a rigid (or affine) transformation.
When the images contain a number of rigid objects moving independently each of the
objects may determine a different set of epipolar lines. A segmentation process must be
applied to separate these objects and divide the images into regions with consistent sets
of epipolar lines. We shall not address the segmentation problem in this paper.
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3.1 Correspondence from Three Images

We have so far explored the establishment of correspondence from two images. We
showed that the correspondence between points in the images cannot be uniquely re-
solved even if the transformation is known. We now address the following question. Can
the correspondence be resolved when three or more images are considered? Structure
from motion theory demonstrates that the answer to this question is not trivial. When
correspondence is given, under orthographic projection two images are not sufficient to
recover the transformation, but three are [Ullman 1979, Huang and Lee 1989]. The cor-
respondence problem is nevertheless different from the structure from motion problem.
Point correspondence cannot be resolved by using any number of additional images. Yet,
additional images provide information that can be used to filter out less likely solutions.

Proposition 3 establishes that point correspondence cannot be resolved from any
number of images. Let Py, P,, ..., P, be k images. Let (z;,y;), 1 <1 < k be the locations
of a point p = (z,y,2) in P;. (Assume w.l.g. that 2y =z and y; =y.) Let T;,2<i < k
be the rigid transformation applied to p in F;, assuming orthographic projection.

Proposition 3:  Given T, ..., T, the set of possible locations of p in P, ..., Py forms
a straight line in R(k~1)x2
(12, Y2y ooy Thy yk) =u-+2zv

where u,v € R¢=1*2 are constants.

Proof:  This is obtained simply by defining u = (uy, ..., ux) and v = (vy, ..., v}), where
u;,v; € R? are the corresponding vectors u and v from Proposition la.

This proposition implies that the number of possible correspondences for each point
is infinite. Every possible assignment of z yields to a different location of the points in
all of the images. An equivalent claim can be made in case of perspective projection.

There is, however, one additional consequence to this proposition. Determining the
correspondence between two of the images immediately implies the correspondence in
all other images. This property suggests a hypothesis-verification heuristic to recover
correspondence. The algorithm first selects a point in the first image, hypothesizes its
correspondence in the second image, computes accordingly its position in the third, and
then verifies its appearance in the predicted location. This algorithm is used in Trinocular
stereopsis [Yachida 1986]. The algorithm can be defined in two versions. The first requires
the transformation between the images. It predicts the position of points in the third
image by explicitly computing their depth values. The second requires the epipolar lines
between all pairs of images. It predicts the position of points in the third image by
intersecting epipolar lines.

Version 1.
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1. Select a point p = (z,y) € P; and find its epipolar lines A in P,.
2. For all candidates q, ..., q, along A compute the corresponding depth value 2y, ..., z,.

3. For every possible depth value, z, ..., z,, compute the position of the point (z,y, 2;)
in P; and verify its actual appearance at this location.

Version 2.

1. Select a point p = (z,y) € P, and find its epipolar lines A in P, and B in Ps.
2. For all candidates qy, ..., q, along A compute their epipolar lines Cj,...,C,, in Ps.

3. Intersect each of the lines, Cy,...,C,, with B and verify the actual appearance of p
in these locations.

The two versions of the algorithm are essentially similar. The first version uses the
transformation between the images to compute depth values. The second version replaces
this computation by intersecting epipolar lines. Note that the transformation can be
computed from three images using four non coplanar points [Ullman 1979]. The second
version can be used only if the epipolar lines C; intersect with B. The meaning of
this requirement is for every image its epipolar lines with respect to the other images
should all be non parallel. (So that, if we take for example Ps, its epipolar line with
respect to P; is not parallel to its epipolar line with respect to P, and so forth.) This
requirement is equivalent to requiring the transformations to be independent. Unless
this condition is met structure-from-motion algorithms cannot recover the transformation
from correspondence [Huang and Lee 1989].

One observation following this algorithm is that, since epipolar lines are defined for
pairs of images, one can use different sets of anchor points to recover the epipolar lines in
each of the pairs. This is different from most existing structure from motion algorithms,
which require from the set of anchor points to be identical in all three images.

Note that the use of three images rather than two is reasonable since three images are
required to recover structure from motion under orthographic projection [Ullman 1979,
Huang and Lee 1989] and to form a viewer-centered representation for a rigid object
[Ullman and Basri 1991].

The algorithm handles both rigid objects as well as objects that undergo general
3-D affine transformations. There is, however, some difference between the two cases.
When four or more images are considered certain configurations of epipolar lines may be
consistent with some affine transformations but with no rigid ones. This is concluded from
[Basri and Ullman 1991}, since three images are necessary to determine the functional
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constraints that distinguish rigid transformations from affine ones. These constraints
then restrict the possible configuration of the epipolar lines in larger sets of images.

Stability problems are anticipated in applying the above algorithm when contour
pieces are tangential to the epipolar lines. The image in which such an event occurs should
be used in this case as the third image. Notice that the three images are symmetric, in
the sense that, the algorithm can treat them in any order.

It should be stressed that both versions do not guarantee uniqueness. Occasionally
candidates may be found consistent with all three images. Further pruning between these
candidates is required. In general the algorithm gives better results for sparse images
than for dense ones and for images with arbitrarily distributed texture than for images
with uniform texture. (Density refers here to the number of points actually considered
by the algorithm relative to the total area of the images.) A common way to reduce the
density of an image is to consider its edge map. Edge images are in general still too dense,
and a naive implementation of the algorithm would fail to provide a unique solution for
many of the points. To avoid this problem we suggest to apply this matching procedure to
edges rather than to points, using the assumption that continuous edges tend to remain
continuous in all images. Unlike Ayache and Lustman [1987], our implementation is not
confined to straight line segments, but is applied to arbitrarily curved ones. We exploit
the shape variance of image contours to discriminate between correct and false matches.

The modified algorithm was implemented and run on real images. An example is given
in Figures 2-4. In these figures correspondence was sought between three edge images of
a VW car (Figure 2). We first selected a contour from the first image. Then we found
all the contours in the second image that could possibly match the selected contour.
For each of the candidates we computed their location in the third image. We repeated
this process for a number of contours. Figure 3 shows the best candidates projected to
the third image. Figure 4 shows some of the other candidates projected. None of these
candidates match an actual contour (although some of their points do). The results of
this algorithm were used to create object models for recognition. An example for the use
of these models can be found in [Ullman and Basri 1991].

3.2 Alternative constraints

In this section we briefly discuss several constraints that, combined with the epipolar lines,
can be used for establishing point correspondence. The first constraint is traditionally
referred to as the ordering constraint. Most objects are opaque. Contour segments (and
points) on such objects retain their spatial order from different viewpoints. Therefore, a
contour segment B that lies between two contour segments, A and C, in one image would
in general match some contour segment B’, which lies between the two corresponding
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Figure 2: Epipolar lines in three images of a VW car. Every image contains one set of epipolar lines
against each of the other two images.

Figure 3: Application of the three images algorithm to four contour pieces selected from the car in
Figure 2(a). (The selected contours include the roof silhouette, the front window, the rear side window,
and the bottom silhouette.) (a) The best prediction found by the algorithm for the four contour pieces.
(b) This prediction overlapped with the actual (third) image.
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Figure 4: Correspondence candidates that were not selected by the algorithm because their predictions
poorly matched the third image. (a) Prediction of false candidates. (b) This prediction overlapped with
the actual image. (c¢) Another prediction of false candidates. (d) This prediction overlapped with the
actual image.
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contour segments, A’ and C’ respectively. (Notice that right, left, up, and down can still
change, as in the case of a 180° rotation around the line of sight.)

Other cues that may be helpful to resolve the correspondence are parallelism and
symmetry. If a pair of contour segments are parallel or symmetrical in one image their
corresponding contour segments in the second image are often parallel or symmetrical
respectively. Resolving the correspondence for one segment would therefore indicate
a solution for the other segment. It is worth mentioning, however, that perspective
projection does not maintain parallelism, and that symmetrical components often appear
skewed in the image under both projections. Incorporating these cues into a process of
resolving the correspondence may therefore be fairly difficult.

Epipolar lines can be used to improve the correspondence achieved under aperture
conditions. Under these terms matching between contours is given along a direction
perpendicular to the contours [Marr and Ullman 1981]. Common techniques to correct
the matching use iterative computation to maximize the smoothness of the flow [Hildreth
1984}, use sequences of images to find a rigidly consistent solution [Ullman 1984}, or
compute a smooth, locally affine solution [Burt et al 1990, Bachelder and Ullman 1991].
The epipolar line technique offers an exact solution to the aperture problem for full rigid
motion that is both computationally simple and resolves the correspondence for as few
as two images.

Figure 5 compares the matching obtained under aperture conditions with the match-
ing obtained using epipolar lines for two car silhouettes. It should be noted that in
general the aperture problem is associated with short range motion applications. In this
case the computation of epipolar lines tends to be unstable. One way to overcome this
problem is to recover the epipolar lines for a sequence of images, such that the difference
between each pair of consecutive images is small, but the overall transformation accu-
mulated along the sequence is large. Alternatively, if two “distant” images are provided
the images may first be roughly aligned before aperture matching can take place.

4 Summary

The recovery of shape from a motion sequence requires in general establishing corre-
spondence between the points in the images. This task is particularly difficult when the
images are taken from viewpoints that are relatively distant from one another, condi-
tions referred to as “long range motion”. Establishing point correspondence under these
conditions is important for constructing both object-centered as well as viewer-centered
representations for object recognition. Such representations tend to be more stable as the
images from which they are constructed are separated by relatively large transformations.
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Figure 5: Matching silhouettes of a VW car under aperture conditions versus to using epipolar lines.
(a,b) Twosilhouette pictures of a VW car from two different viewpoints. (c) Matching the two silhouettes
under aperture conditions. (d) Matching the two silhouettes by epipolar lines. (In these two figures the
two silhouette drawings are overlapped. Straight lines connect matching points.)

(¢)
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Information about the shape of objects and the transformations they undergo can be
used to guide the matching process. In this paper we reviewed the constraints imposed
on the correspondence by rigid transformations and extended them to include images
of objects that undergo general 3-D affine transformations as well as rigid objects with
smooth surfaces. In all these cases the images are divided into epipolar lines, their
correspondence is determined by the transformation, but the correspondence of points
within the lines cannot be recovered. The epipolar lines can be computed from a small
set of anchor points.

The correspondence is not determined uniquely even when three or more images are
considered. Additional images can be used, however, in a heuristic algorithm to determine
point correspondence. Such an algorithm is the trinocular stereovision algorithm [Yachida
1986], which is designed to work with sparse images and in the absence of uniform texture.
We extended this algorithm to handle arbitrarily curved edge images and applied it to
images of natural objects. We discussed the use of other constraints such as ordering,
parallelism, and symmetry in solving the correspondence problem. Finally, we showed
that epipolar lines can be used to improve matching obtained under aperture conditions.
The techniques described in this paper were implemented and used to construct viewer-
centered models for object recognition.

Acknowledgments I wish to thank Tao Alter,, Eric Grimson, Yael Moses, Tomaso
Poggio, Amnon Shashua, and Shimon Ullman for their helpful comments throughout this
work.

Appendix A

In this appendix we show how the transformation can be recovered (up to a scale factor)
from two images under perspective projection using eight corresponding points. This is
a repetition of the method presented in [Tsai and Huang 1984].

Let P; and P, be two perspective images of a rigid object obtained by a rotation R
and a translation t in 3-D space. Denote r,, r,, and r, the three row vectors of R, and
(tz,ty,t.) the three translation components. Note: we can substitute R in this analysis
with any 3 x 3 matrix.

We define
a = tyry —t.r,
b = tyr, + t,ry
= i1, — 1,1,

Note that a, b, and c are vectors in R>.
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Let (z;,y:) € Py and (z},y!) € P, be a pair of corresponding points, denote p; =
(24, ¥i, 1), the following equations holds

ap; = bpiz; — cpiy;

When anchor points are given, p;, &}, and y! are known, while the vectors a, b, and c are
not. These vectors contain nine components, and the equation is linear and homogeneous
in their components. Therefore, a, b, and ¢ can be recovered up to a scale factor using
eight anchor points. Once the system is solved we can recover the parameters of the
transformation (up to a scale factor in the translation components) using the following
identities

al = ti-l—tg

b? = 2+

¢t = 244
And

ab = t.t,

ac = t,t,

bc = t,t,

The translation components are therefore given (up to a scale factor) by
1
2 = E(a2 —b?+c?)
1
A §(a2 +b? - c?)
1
2 = 5(—a2 + b% 4 c%)

And the rotation matrix can be retrieved from
-1

t, —t, O a
R=1] 0 1, ty b
t, 0 —t, c

Note that the rotation obtained is not scaled.
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