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Abstract

Earlier, we introduced a direct method called fization for the recovery
of shape and motion in the general case. The method uses neither feature
correspondence nor optical flow. Instead, it directly employs the spatio-
temporal gradients of image brightnesses.

This work reports the experimental results of applying some of our fixa-
tion algorithms to a sequence of real images where the motion is a combina-
tion of translation and rotation. These results show that parameters such as
the fization patch size have crucial effects on the estimation of some motion
parameters.

Some of the critical issues involved in the implementation of our au-
tonomous motion vision system are also discussed here. Among those are
the criteria for automatic choice of an optimum size for the fixation patch,
and an appropriate location for the fization point which result in good esti-
mates for important motion parameters.

Finally, a calibration method is described for identifying the real location
of the rotation axis in imaging systems.
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1 Introduction

Recovery of relative motion between an observer and an environment as well as the structure
of the environment, from time varying images, is the goal in motion vision. Much of the
earlier work on recovering motion has been based either on establishing correspondences
between the prominent features in the images of a sequence (correspondence) or establishing
the velocity of points over the whole image, commonly referred to as the optical flow.

In general, identifying features here means determining gray-level corners. For images of
smooth objects, it is difficult to find good features or corners. Furthermore, the correspon-
dence problem has to be solved, that is, feature points from consecutive frames have to be
matched. On the other hand, the computation of the local flow field exploits a constraint
equation between the local brightness changes and the two components of the optical flow.
This only gives the components of flow in the direction of the brightness gradient. To com-
pute the full flow field, one needs additional constraints such as the heuristic assumption
that the flow field is locally smooth [5, 4]. This leads to an estimated optical flow field which
may not be the same as the true motion field.

The use of optical flow or correspondence techniques for solving motion vision problems
has proven to be rather unreliable and computationally very expensive [16, 15, 7]. This has
motivated the investigation of direct methods which use the image brightness information
directly to recover the motion and shape.

Previous work in direct motion vision has used the Brightness-Change Constraint Equa-

tion (BCCE) for rigid body motion [8]

E,+v-w+§—'—t:0 (1)
Z
to solve special cases such as known depth [5], pure translation or known rotation [6], pure
rotation [6], and planar world [8]. All these direct methods are restricted in the types of the
motion or shape that they can handle.

Recently, we introduced a direct method called fization' for solving the motion vi-
sion problem in the general case without placing restrictions on the motion or the shape
[12, 13, 11]. The fixation method is based on the theoretical proof that for a sequence of
fixated images (a sequence of images with one stationary image point in them), the 3D ro-
tational velocity w can always be explicitly expressed in terms of a linear function of the 3D
translational velocity t. Namely,

N 1 N
= R,+ —(t xR,
w = WR, + ”Ro”( X ) (2)

where R, is the unit vector along the position vector of the fization point (a point in the
image plane which stays stationary) and wg, is the component of rotational velocity about
the fixation axis R,.

It should be emphasized that we do not need to know the real fixation point, if there is any,
to take advantage of this fization constraint equation (FCE), eqn. (2). In fact, our algorithm

1The terms and notations used in this paper have been defined in our previous work such as (10] or [12].
For a review of the necessary background, the reader is encouraged to consult one of those references.
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allows us to choose virtually any point as the fixation point by a simple manipulation of one
of the images and obtain a sequence of fixated images [12, 13].

The combination of the Fization Constraint Equation (FCE), eqn. (2), and the BCCE,
eqn. (1) offers a solution to the motion vision problem of arbitrary motion relative to an
arbitrary rigid environment. That is, it allows recovery of the depth map Z, total 3D
rotational velocity, and 3D translational velocity t without putting severe restrictions on the
motion or the shape [12, 13].

Fixation does not necessarily mean tracking! Our technique for obtaining fizated images
is not only simpler than the previous tracking methods, but also is more general. For
example, Aloimonos & Tsakiris [2] propose a method for tracking a target of known shape;
Bandopadhay et al. [3] use optical flow and feature correspondence for tracking the principal
point in order to find the motion in a special case (They assume that there is no rotation along
the optical axis.) without considering noise; and Sandini & Tistarelli [9] use an optical flow
based tracking method for finding the depth in a special case (no rotation along the optical
axis). Also, Thompson [14] introduces an optical flow method for recovering the motion in
special case where the rotational velocity along the optical axis is zero. His method requires
a sequence of tracked images at the principal point but he acknowledges that the actual
implementation of such tracking requirement in engineering systems is not possible yet.

On the other hand, our fization method does not require tracked images as its input.
Instead, it introduces a pizel shifting process which constructs a sequence of fixated images
at any arbitrary point, chosen as fization point, and for any input sequence of images [12, 13].
This is done entirely in software without physically moving the camera for tracking. Besides
being reliable, our pizel shifting process is much simpler than those tracking methods.

This work reports the experimental results of applying some of the fixation algorithms to
real image sequences where the motion is a combination of translation and rotation. Finding
the fization velocity (velocity at the fixation point) and the component of rotational velocity
about the fixation axis, wg,, are important steps in our fixation method [12, 13]. The
results here show that the fixation velocity and wg, can be estimated satisfactorily if proper
parameters values are used.

Some of the crucial implementation issues of our fixation technique are also discussed
here. Among those are the autonomous selection of an optimum size for the fixation patch
(the image patch around the fixation point) based on an error norm (normalized error), and
the choice of an appropriate location for the fixation point.

And finally, a calibration method is described for identifying the real location of the
rotation axis in imaging systems.

2 The Effect of Fixation Patch Size

Finding the fixation velocity (velocity at the fixation point), and the component of rotational
velocity about the fixation axis, wg,, is an important step in our fixation method for recov-
ering the shape and motion from an arbitrary sequence of input images. This is because
in our method a pizel shifting process uses the fixation velocity to construct a sequence of
fixated images from an arbitrary sequence of input images. We also need wg, for computing
the total rotational velocity [12].



The algorithms used for recovering the fixation velocity and wgr, obtain their input infor-
mation from the fixation patch (an image patch around the fixation point) [12, 13]. In order
to study the effect of the fixation patch size on the estimation of the desired motion parame-
ters, we have used a sequence of real images acquired at the Imaging Laboratory of Carnegie
Mellon University. Figures 1 and 2 show two of these 16 bits grey levels, 576 x 384 pixel
images. The camera has a nominal focal length of 24 mm, and a pixel size of 0.02 x 0.02 mm.
The calibrated principal point has been used as a fixation point. In the raster format system
(origin at the top left corner of the image), the principal point is located near the center of
image, pixel (275,205). The frontal depth of this point is about 1450 mm.

Figure 1: The First image in the landscape image sequence.

The real motion between these two images has both translational and rotational compo-
nents. The real rotation is —0.3 degree about the optical axis Z. The real translation is —2
mm along the horizontal axis X. Testing our algorithms using such real images is valuable
because the observed motion is relatively large (more than subpixel motion in the image
plane). For very large motions it is enough to use higher frame grabbing rates. These days,
there are commercially available frame grabbers which are capable of capturing up to 7,500
frame per second at 12-bit gray scale resolution on personal computers [1].

2.1 Estimation of rotational velocity component, wg,

The motion field velocity due to the component of the rotational velocity of an observer
relative to an environment along R, is given by —(wg, Xr) = —wg, (R, xr) = —%{m(ro Xr),

where R, = £, is the unit vector along r,, position vector of the fixation point in a viewer
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Figure 2: The second image in the landscape image sequence after undergoing a real motion of
—0.3 degree rotation about the nominal optical axis Z, and —2 mm translation along the horizontal
axis X.

centered coordinate system. Assuming that depth is approximately the same on the fization
patch (a small patch around the fixation point) and substituting for r, = (z, y, 1) and
r = (z y 1)T, we can write the components of the total motion field velocity due to fixation
velocity and wg as

Ty = Uy — %B:ﬁi . (ro X l') = U + GJRo(y - yo) (3)
Yy = vo—%%ﬂ-)"'-(ro XT) = v,—wR,(z—=z,)

where X and ¥ are the unit vectors along the = and y axes and @g, is a notation for T;;—Rn-
Ideally, the BCCE must be satisfied at any point on the fixation patch as [5]

o B, + ytEy + Et =0. (4)
Substituting for z; and y, from eqn. (3) into the BCCE, eqn. (4), gives
[uo + @R, (¥ — ¥o)| Ex + [vo — @R, (z — z0)|Ey + E, = 0. (5)

Due to noise, eqn. (5) does not necessarily hold for any pixel (z,y) so we can find u,, v, and
@R, by minimizing the sum of squares of errors over the fixation patch. In other words we
want to minimize

J[ (e + @R, (5 — ¥)Ee + (00 — Gm.(z — 20) B, + Edz dy (6)
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with respect to u,, v, and @g,. This results in a system of three linear equations that can
be solved for the three unknowns

@11 a2 a3 Uo C1
az1 az; a3 Vo =] c |. (7)
a3 @3z dass WR, c3

Matrix A is symmetric and its elements are given by

a; = [[E.E,dcdy

a1z = [[E;[E.(y—yo)— Ey(z —z,)]dz dy

Q23 = ff Ey[Ew(y - yo) - Ey(:ll - :Eo)]d:l: dy (8)
ann = [[E}dzdy

Aoy = ff E;d:c d’y

azz = ff[Ea:(y - yo) - Ey(w - zo)]zdw dy

and the of components of vector C are as follows:

e = —[[EE.dzdy
o = —J[EE,dzdy (9)
s = —[[E[E(y—yo) — Ey(z — zo)ldz dy.

Considering that the fixation point coordinates z, and y, are known, then the sets of equa-
tions in (8) and (9) show that the elements of matrix A and the components of vector C are
fully computablc. After finding Wgr,, we can easily calculate wgr, as

wRr, = @R,z +y3+ 1. (10)

In the special case where the fixation point is at the principal point, z, = y, = 0, elements
of matrix A and the components of the vector C' are simplified further and wR, becomes
equal to wp_.

Using these algorithms, we can find wg, for any given fixation patch size. Figure 3 shows
that for small patch sizes (less than 30 x 30 pixel in this case) the estimated value for wR,
is oscillating wildly and results in unacceptable values. As the patch size increases, the
estimated wr, converges towards the real value of rotation. For large patch sizes (around
100 x 100 pixel in this case) the estimated rotation, —0.309 degree, becomes roughly the
same as the real rotation, —0.3 degree.

It can be seen that the size of fixation patch has a critical effect on the estimated values of
the component of rotational velocity about the fixation axis, wg_. A small patch size results
in a value for wg, which is usually far distant from the real value. This is possibly because
in a small patch, small translations can be interpreted as large rotations. Figure 4 shows a
hypothetical situation where (a) and (b) are a sequence of a small 3 x 3 pixel patch. The real
motion in this case is most likely a pixel heigh vertical translation. But if we try to interpret
it as a rotation about the patch center we will end up with a 45 degree of rotation which is
not acceptable, considering the assumed small motion between images. As a conclusion, we
should use relatively large patch sizes in order to obtain good estimates for the rotational
velocity component about the fixation axis, wg,.
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Figure 3: Estimated value of the component of rotation velocity about the fixation axis, wR,, Versus
the fixation patch size for the landscape image sequence. For large patch sizes, the estimated value
of wg, converges towards the real value of wg , —0.3 degree.

3 Autonomous Choice of Optimum Fixation Patch
Size

The experimental results and explanations in the previous section suggest that relatively
large patch sizes should be used in order to get a good estimate for the component of the
rotation along the fixation axis, wg,. On the other hand, we know that in general a large
patch size will result in a wrong estimate for the fixation velocity because depth variations
generally increase as the patch size increases. In this section, we will describe a technique
for choosing an optimum fixation patch size which results in a good estimate for the fixation
velocity.



(a) (b)

Figure 4: Using small fixation patch can result in wrong interpretation of large rotation. In a
patch of 3 x 3 pixel, a pixel heigh vertical translation can be seen as 45 degree rotation which is
not an acceptable answer at all, considering the finite motion between images.

3.1 Computing the fixation velocity

We can find a good estimate for wg, using a relatively large patch but the corresponding
fixation velocity estimate from such large patches is not usually reliable. Using only the
acquired estimate for wg, from a large patch, we can write the total motion field at any
point (z,y) on a small patch around the fixation point (fization patch). As we showed in

subsection 2.1 .
e —_— —_
T, Uo + \/m (y Yo ) ( I )

— “R
v = - (e

where (z,, y,) is the position of fixation point (located in the image plane), and (u,,v,) is

the fixation velocity that we are about to estimate. After substituting for z; and y: into the

BCCE, eqn. (4), we will have

WR WR
o+ Bt (y —yo) | Bt 00— ——Be (2 —2,)| B, + E=0. (12)
( N ) NEETES o

However, due to noise, the above equation does not necessarily hold for any pixel. As a
result, we can find u, and v, by minimizing the sum of the errors over the whole fixation
patch. Namely, by minimizing

2
YR WR.
o+ e (y —y) | Bot (v — ——Re (2 —2,)| By + E,| dedy
//[( JEi 41 ) Jeltp 4l v
(13)

with respect to u, and v,. This will result in the following system of linear equations,



I, Eldz dy I, E-E dz dy U

fj;a E:zEydm dy ffp Ezd(l! dy Vo
/5 (\/;f'—yz;; (2 — 20)Ey — (¥ — ¥o) Ez) — Et) E.dz dy

: (14)
11, (3B (o = 20) By — (v~ w) ) — B.) Eyda dy

that can be solved for the two unknowns u,, and v,. Note that wgr, has been already
computed and is a known value in this equation.

Figure 5 shows the estimated values of the horizontal translation U = {;—: for the land-
scape image sequence for different sizes of the fixation patch where f is the focal length and
Z, is depth at the fixation point. It can be seen that U nicely converges towards the real
horizontal translation, —2 mm. The dependency of U on the patch size is quite clear in this
figure.

In practice, we do not know the real fixation velocity, and therefore we cannot select an
appropriate fixation patch size by checking the computed values of fixation velocity. In order
to solve this problem, we should find an autonomous way of choosing an optimum size for
the fixation patch.

3.2 Normalized error

We showed that for any given size of the fixation patch, we can find the fixation velocity
components, u, and v,. Also the component of the rotational velocity about the fixation
axis, wR,, can be estimated using a relatively large patch. Knowing these values, the motion
field velocity (z:,y.) at any point (z,y) in the image plane is given by eqn. (11). Ideally, for
any given image point (z,y) the BCCE, eqn.( 4), must be satisfied. However, in practice we
are dealing with real images which are noisy and as a result, the term z,E, + y:.Ey + E; does
not usually become zero. This term can be considered as an error term for the corresponding
pixel. In a patch of size p X p pixel, we can add these error terms to define the normalized

error as \
Yz B + Y Ey + E]

p? '

This definition allows us to compare the performance of different patch sizes by studying

the behavior of the normalized error e with respect to the changes in the patch size p. This
consideration makes it possible for us to find an optimum patch size.

€ =

(15)

3.3 Case I: Small changes in relative depth as p increases

Figure 6 shows the normalized error versus the fixation patch size for the landscape image
sequence. Although this plot corresponds to a specific image and motion, it shows one of
the two typical representations of the normalized error behavior as the patch size increases.
As shown in this figure, the normalized error first increases with the patch size and reaches
a peak and then dips down.
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Figure 5: Estimated value of the horizontal component of translational velocity, along the X-axis,
versus the fixation patch size for the landscape image sequence.

This is because initially for the smallest patch size (3 x 3 pixel) the algorithm finds the
motion estimates that makes the BCCE error term (z,E, + y,E, + E,) as small as possible.
In a 3 x 3 pixel patch, there is only one BCCE error term which corresponds to the central
pixel of the patch. The algorithm does a good job in minimizing this error term but the
motion estimates are usually very bad at this level because basically there is not enough
data available to the algorithm.

In the next level, we have a patch of 5 x5 pixel size which includes 9 different permutations
of the basic block of 3 x 3 pixel patch. There is still not enough data for the algorithm to
come up with good motion estimates but it finds parameters which minimize the the sum
of the BCCE error terms. Usually, the algorithm is not as successful as it was for the 3 x 3
pixel patch size because it should deal with 9 error terms instead of one and this will result
in higher normalized error.

As we increase the patch size, the struggle between providing more data to the algorithm
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Figure 6: Estimated value of the normalized error e versus the fixation patch size for the landscape
image sequence.

and satisfying more error terms continues and for relatively small patch sizes results in higher
normalized error. The normalized error increases until it reaches a peak point where the rule
of more input data becomes more important than satisfying more error terms. Then by
increasing the patch size, we are providing more useful data to the algorithm and this will
give a better motion estimate and results in a smaller normalized error.

After dipping down, the normalized error stays roughly the same in this case because the
relative depth variation does not change much with the patch size, (Fig. 6). The optimum
patch size in this example occurs around 100 x 100 pixel which corresponds to the start of
small normalized error slope (roughly flat) after the first peak. In this example, relative
depth changes are small (1250 mm to 1625 mm, about 30% difference) and stay roughly the
same as the patch size increases.
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3.4 Case II: Significant changes in relative depth as p increases

In this section we will study another image sequence where there is considerable relative
depth changes as we increase the patch size. The purpose is to see how the normalized error
behaves in this case. Figures 7 and 8 show a sequence of two 227 x 280 pixel, 32-bit images
(cup images). The real motion of the camera is a horizontal translation of 2.5 mm to the

Figure 7: The first image in the cup image sequence.

right. The camera has a nominal focal length of 18.66 mm, pixel-width of 0.032 mm, and
pixel height of 0.029 mm. We have used the nominal principal point (image center) as our
fixation point.

Figure 9 shows the estimates for the horizontal translation, vertical translation, and the
rotational velocity component wgr, which are obtained using the same algorithms used for
the landscape image sequence. It is obvious that the estimated values depend strongly on the
size of the fixation patch. However, we can find good estimates for these motion parameters
if we choose the right fixation patch size.

The normalized error for this sequence of cup images is shown in Fig. 10. As before,
the normalized error first increases and after reaching a peak it dips down and then grows
with the patch size again. This is because in the beginning, insufficient information results
in extremely wrong estimates specially for the rotational component and this causes the
normalized error to increase with the patch size. As we are providing more and more data
to the algorithm, we obtain better estimates for the motion components and this decreases
the normalized error. If we increase the patch size beyond an optimum patch size, which
occurs at about 50 pixel in this example, the normalized error starts increasing again. In this
50 x 50 pixel patch, we have a considerable amount of relative depth change (from 584 mm
to 914 mm, about 60 % increase). Such significant relative depth variation leads to wrong
fixation velocity estimates which in turn results in a larger normalized error.

12



Figure 8: The second image in the cup image sequence after 2.5 mm horizontal motion of
the camera to the right.

As one might expect, the optimum fixation patch size depends on the patch topology and
texture which may vary not only from image to image but also from patch to patch in a single
image. However, the general pattern of the normalized error allows us to autonomously find
an optimum fixation patch size which gives good estimates for the fixation velocity com-
ponents. This optimum fixation patch size corresponds to either the minimum normalized
error after the first peak (in case where there is considerable change in the relative depth,
as in the cup image sequence), or where there the normalized error starts changing slowly
with the patch size (in the case where the relative depth does not change significantly with
the patch size, as in the landscape image sequence).

4 Autonomous Choice of an Appropriate Fixation Point

In general, our fixation algorithms do not put any restrictions on the choice of the fixation
point location and virtually any point can be chosen as the fixation point. Among all points,
the choice of principal point (image center) makes the formulations simpler. However, in
practice, one should take some measures in choosing an appropriate fixation point. Most
significantly, the motion of the chosen fixation point should be detectable using the infor-
mation from its corresponding patch. To clarify this, we can consider a patch which has a
uniform brightness. Choosing the center of a such patch as the fixation point will not be
useful. Because the motion of such point is irrecoverable using only the information from
that patch.

Similar to 3.1 (with the exception that wr, = 0 here), the least square method can be
applied to the BCCE terms to obtain the following system of linear equations for the uniform

13
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Figure 9: The estimated values for the horizontal translation, vertical translation, and the
rotational velocity component, wg,, versus fixation patch size in the cup image sequence.

motion field (u,v) on the patch as

[, Eldz dy [l E:E dz dy u ) [ —Jf,E:E.dzdy
Il E:Eydzdy [[, Eldzdy v [, EtEydz dy |-

(16)

It is obvious that the solution for (u,v) exists if the determinant of the above matrix

D= / /,, E2dz dy)( / /,, Edz dy) — ( / f,, E.E,dz dy)? (17)

is not zero. But this is still not enough because it does not guarantee that the patch is an
appropriate one.

If we denote the smaller eigenvalue of the coefficient matrix in eqn. (16) with J,,

Ao =L[[f(E2 + E2)de dy — VIL(E2 — E})?de dy + 4(f[, E. Eydz dy)?| (18)
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Figure 10: The normalized error versus fixation patch size for the cup image sequence.

then we can define a good fixation point as a point whose corresponding patch has the
largest A,. Using such patch not only guarantees a solution (D # 0) but also ensures that
our solution (u,v) is not sensitive to noise errors in the coefficient matrix of eqn. (16). It is
simple to implement this criteria for autonomous choice of a good fixation point even in real
noisy images.

We have addressed the question of finding an appropriate fixation point (the center of
a fixation patch) among a number of given patches. But which patches should we check in
the first place? We can search the whole image for a globally optimum location of a fixation
point as follows:

1- Divide the whole image into 4 quadrants and find the corresponding ), for each
quadrant.

2- Use the quadrant with the largest )\, as a new base image.

3- Repeat steps 1 & 2 until reaching a quadrant with an acceptable size.

Doing such comprehensive search may not always be necessary. Instead, we can check a
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limited number of neighboring patches (near the principal point, for convenience) and choose
the center of the one with the largest ), as the fixation point.

5 Calibration of the Rotation Axis

In our experiment on the landscape images, we have not explicitly applied any vertical
translation (along Y axis). However, the experimental results in Fig. 11 show a vertical
translation of about -0.9 mm. This is mainly because the real rotation axis does not pass
through the center of projection®. To clarify this, we should mention that in motion vision, it
is assumed that the rotation axis passes through the origin of the viewer centered coordinate
system, i.e the center of projection. But at the CMU Imaging Laboratory, the rotation
mechanism is not set up so as to make the Z axis of rotation coincide with the optical axis.
To obtain this experimental result, we have used fixation algorithms which assume that the
rotation axis passes through the center of projection which is not true here.

According to the basic kinematics, the compensating translation which results from shift-
ing the rotation axis is given by

V,=—-wx B. (19)

Where B is a vector extending from a point on the real rotation axis to a point on the shifted
rotation axis. In our special case, V, = —(wZ) x (b2). In this experiment, V, = —0.95 mm,
and w = —0.3 degree. As a result we conclude that the real rotation axis is located at about
b= —(-0.9)/((—0.3 x 7)/180) = —172 mm perpendicular distance from the optical axis in
the horizontal plane.

A similar method can be used for the calibration of the rotation axis which is parallel to
the optical axis in any camera system arrangement. In order to find the real location of the
rotation axis, the following steps should be taken:

1- Apply a pure rotation about the axis which is supposed to be the optical axis.

2- If wp, is not accurately known, compute it by applying the algorithms given in section
5 of [12] to a relatively large patch around the principal point.

3- Find the translational motion (u.,v,) at the principal point using eqn. (14).

4- Find the real location of the rotation axis using,

{ b — __Zvof

T owno
— uoz (20)

by +Z°wR°

where Z, is depth at the principal point, and f is the focal length of the camera. As a result,
the real rotation axis is parallel to the optical axis and intersects the image plane at point

(bl" by)'

2If the CCD edges are not accurately aligned with the horizontal and vertical axes of the camera frame,
i.e. the CCD is mounted at an angle with respect to the camera coordinate system, such kind of errors
happen in both vertical and horizontal directions. But it is not the case here because the inaccuracy of
motion has happened only in the vertical direction.
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Figure 11: Estimated value of the vertical component of translational velocity, along the Y axis,
versus the size of fixation patch for the landscape images.

6 Conclusions

Recovery of fixation velocity and the component of the rotational velocity along the fixation
axis, wR,, are important important steps in our fixation method. The experimental results
presented here show that the fixation velocity and wg, can be computed satisfactorily using
only the information from a small patch around the fixation point. The corresponding
optimum patch sizes in these experiments is equivalent to a field of view of about 2 x 2.4
degree. Obtaining such good motion estimates while using only a small field of view ensures
the feasibility of our fixation method. This is especially important if we consider that the
nominal (not calibrated) focal length and pixel size are used in the computations.

The presented techniques for the autonomous choice of an appropriate fixation point, and
an optimum fixation patch size allows us to find good estimates for the motion parameters.
Also, the method described for the calibration of the real rotation axis offers a simple solution
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to an important practical problem. This problem can result in considerable error in the
motion estimates if it is not detected and compensated for.

Our goal has been to design a general motion vision system which takes any sequence of
images as its input and recovers the motion and shape without any need to check, choose,
and adjust parameters. Our fixation technique offers such a general system and this paper
answers the critical issues involved in the full implementation of such an autonomous motion
vision system.
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