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Abstract

In many different spatial discrimination tasks, such as in determining the sign of
the offset in a vernier stimulus, the human visual system exhibits hyperacuity-
level performance by evaluating spatial relations with the precision of a fraction
of a photoreceptor’s diameter. We propose that this impressive performance
depends in part on a fast learning process that uses relatively few examples
and occurs at an early processing stage in the visual pathway. We show that
this hypothesis is plausible by demonstrating that it is possible to synthesize,
from a small number of examples of a given task, a simple (HyperBF) network
that attains the required performance level. We then verify with psychophysical
experiments some of the key predictions of our conjecture. In particular, we
show that fast stimulus-specific learning indeed takes place in the human visual
system and that this learning does not transfer between two slightly different
hyperacuity tasks.
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For any given visual competence, it is tempting to conjecture a specific algorithm
and a corresponding neural circuitry. It has been often implicitly assumed that this
machinery may be hardwired in the brain. This extreme point of view, if taken se-
riously, may quickly lead to absurd consequences. Consider for instance the many
different hyperacuity tasks,! some of which are outlined in Figure 1. Computational
analysis reveals that the photoreceptor spacing and the low-pass characteristics of the
eye’s optics satisfy (in the fovea) the constraints of the sampling theorem.? Thus, the
underlying reason for the spectacular performance of human subjects in the hyperacu-
ity tasks is that the signal sampled by the photoreceptors and relayed to the brain
contains the information necessary for precise localization of image features. This ob-
servation, however, does not constitute an explanation of hyperacuity, since each of
a variety of hyperacuity tasks is different and, in principle, would require a different
circuit for its solution. Note that the idea of a fine-grid reconstruction of the image
in some layer of the cortex? does not address the problem, because it still requires
a homunculus looking at the reconstructed image and applying a different routine or
circuitry for each specific hyperacuity task.

We propose instead® that the brain may be able to synthesize — possibly in the
cortex — appropriate task-specific modules that receive input from retinotopic cells
and learn to solve the task, after a short training phase in which they are exposed
to examples of the task. To show the plausibility of our argument, we first describe
a model that learns to solve vernier acuity tasks from a few examples. Synthesizing
a module from examples for a specific computational task may be often regarded as
approximating a multivariate function from sparse data. We have chosen to use for
function approximation the HyperBF network technique.* Other schemes, such as the
popular Multilayer Perceptrons or more traditional classification techniques,’ could
probably be used as well. In our model we take the extreme view that the inputs
are photoreceptor activities, to demonstrate the plausibility of low-level, or “early”
learning. Biologically, it may be more reasonable to assume that the input to the
learning stage is provided by the circular center-surround and oriented cells in V1.6

In the simulated experiments, the learning module was given an array of “pho-
toreceptor” cell activities that corresponded to the input image blurred by the eye’s
optics. There were eight “receptors”, positioned randomly on a loose 4 x 2 grid (see
Figure 2). Each of the inputs was calculated by integrating the image over the point
spread function of the optics, approximated by a Gaussian of spatial extent o = 30"
and time extent oy = 0.5 units. The simulated “retinal” patch had spatial dimensions
of 180" x 360" and a time dimension of 3 units. The 8-component vector of receptor
outputs constituted the input to the HyperBF module, which was trained to produce
an output of +1 for one sense of the input vernier displacement, and —1 for the other
over a set of examples of verniers randomly placed relative to the photoreceptor array.”
The performance of the module was estimated by measuring the error, defined as the
absolute value of the difference between the actual output and the desired output,
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Figure 1: Examples of five tasks in which human subjects perform at hyperacuity levels
(that is, exhibit resolution finer than the spacing between individual photoreceptors).



Figure 2: Fig. 2a shows, superimposed on the vernier stimulus, the mosaic of receptive
fields of “cells” assumed to provide the input to the HyperBF module shown in (b).
Each receptive field is depicted as a circle that refers to the point spread function of
the optics. Our simulation is robust with respect to positioning the “cells” at precisely
defined locations and to their receptive field properties. The network in (b) is equivalent

to equation 1.4



which is a good analog of acuity threshold.® Another measure of performance that we
have considered is the percentage of correct responses (that is, responses in which the
sign of the module’s output agreed with the sign of the vernier displacement, as defined
during training).

The HyperBF module learned to solve the vernier task at a hyperacuity level fron
a few examples.® The time course of the learning, illustrated in Figure 3a, shows that
the output classification error rate came within 10% of its asymptotic value after just
five examples.® All in all, the model replicated® several findings in the psychophysics
of spatial acuity: (a) hyperacuity-level performance, (b) improvement in the threshold
with increasing length of the two segments comprising the vernier stimulus;! (c) de-
terioration of performance with increasing orientation difference between training and
testing trials;'® (d) high performance for moving verniers;' and (e) performance at a
similar level for another hyperacuity task, the three-point bisection, after learning from
suitable examples.!!

The model’s success demonstrates the plausibility of the hypothesis that learning
of hyperacuity tasks takes place early in the visual pathway. A more critical test
is provided by the predictions that learning of a hyperacuity task should be fast (see
Figure 3a) and may not transfer even to a slightly different hyperacuity task (Figure 3b
shows that the HyperBF model indeed exhibits no transfer of learning between vertical
and horizontal verniers).® We set out to verify experimentally these predictions for
human hyperacuity performance. The results of the psychophysical experiments have
borne out the predictions of the model. First, the vernier threshold and the error
rate in naive subjects improved quickly over a few tens of trials (Figure 4a). Second,
the subjects exhibited no transfer of learning between the vertical vernier and the
horizontal vernier tasks or vice versa (Figure 4b). In additional experiments (not
shown), there was no significant interocular transfer of learning, and little transfer
from a position 10° up in the visual field to a position of similar eccentricity down in
the visual field (or vice versa).!?

Our findings pertaining to fast stimulus-specific learning can be viewed in a wider
perspective that encompasses the issue of perceptual learning in general. A promi-
nent example is provided by the work of Fiorentini and Berardi’® who demonstrated
stimulus-specific learning effects in the discrimination of mixed spatial frequency grat-
ings that suggested the involvement of an early-stage mechanism. Similar to our case,
they found that learning did not transfer between different orientations of the grating.
They also found that there was interocular transfer of learning but little transfer across
retinal locations. Karni and Sagi'* recently described a texture discrimination task in
which the subjects showed stimulus-specific learning effect that did show interocular
transfer but did not transfer either across orientations or across positions. Other simi-
lar instances of specific perceptual learning had been reported even earlier.® Plasticity
early in the visual pathway has been demonstrated experimentally!® and could provide
the adaptive mechanisms required by a module of the HyperBF type.

4



% correct

30
Block No.

© - center Hl1

: © - center #2
0 * - center 13
» - center 4

% correct

Response of center

0 10 20

30 d
Block No. 2 BN v

10 2
X-offset, pixels

Figure 3: (a) shows the time course of learning by a HyperBF module given the input
shown in Fig. 2a (vertical verniers appearing at random positions, with random offsets
in a certain range). Each block in this simulation consists of just one trial; the ordinate
shows percentage of correct responses in each block (mean and +1 standard error
over 30 simulation runs). (b) shows the effect of changing stimulus orientation from
vertical to horizontal at block 20: there is no transfer of learning, as expected, since the
examples used by the network correspond to very different patterns of activation of the
photoreceptors in the two cases. Feedback was provided in these simulations (but is not
strictly required by the learning algorithm). (c) shows responses of the four HyperBF
centers (acquired during an incremental learning session that consisted of 150 trials)
vs. the offset of a vertical vernier presented at a fixed location. During learning, the
offsets were uniformly distributed between 4 and 12 pixels. The response was tested
with vertical verniers shown at the same location and having an offset ranging from
—20 to 20 pixels. This illustration may be regarded as a recording of the receptive
fields of the centers in the space of possible inputs. Of the four centers, one responded
strongly to positive offsets and weakly to negative ones, another one preferred negative
offsets, and the other two had no clear preference for any offset sign. An appropriate
response representing the sign of the offset may be formed at the output level of the
HyperBF module, using the responses of the sign-selective centers.
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Figure 4: Psychophysical experiments corresponding to the simulations of Fig. 3: (a)
shows the time course of learning in a vernier task. A fast initial component is clear.
Data are means of six subjects; vertical bars represent standard errors. Each block
consisted of 40 trials. We found similar learning effects with verniers consisting of
three dots rather than of two lines. (b) shows the effect of switching from vertical to
horizontal verniers (or vice versa) after block 20.” Averaged results of 12 subjects; six
started with horizontal verniers, the others started with vertical verniers. There is no
transfer of learning. In these experiments feedback was provided to the subjects.



Our computational and psychophysical results support the conjecture that the mod-
ules responsible for hyperacuity-level performance are synthesized early in the visual
pathway in a demand-driven fashion, when the appropriate task is first performed by
the subject. Related evidence regarding perceptual learning mentioned above suggests
that the same line of reasoning can be applied to visual tasks other than hyperacuity,
and even to faculties other than vision.®!” Importantly, learning HyperBF interpola-
tion can be implemented in a simple biologically plausible network.>* The proposal
that much of the information processing in the brain is performed by mechanisms re-
lated to the HyperBF modules acting as enhanced look-up tables may bridge apparently
conflicting paradigms, such as Gibson’s immediate perception and Marr’s representa-
tional theory, since appropriately encoded icons or “snapshots” of the world appear
to allow the synthesis of computational mechanisms effectively equivalent to vision
algorithms for tasks ranging from hyperacuity to object recognition.!®
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