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Abstract

The blocking probability of a network is a common measure of its
performance. There exist means of quickly calculating the block-
ing probabilities of Banyan networks; however, because Banyan
networks have no redundant paths, they are not inherently fault-
tolerant, and so their use in large-scale multiprocessors is prob-
lematic. Unfortunately, the addition of multiple paths between
message sources and sinks in a network complicates the calcula-
tion of blocking probabilities. A methodology for exact calcula-
tion of blocking probabilities for small networks with redundant
paths is presented here, with some discussion of its potential use
in approximating blocking probabilities for large networks with
redundant paths.
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1 Introduction

The M.I.T. Artificial Intelligence Laboratory’s Transit Project is develop-
ing high-performance networks for large-scale parallel computers. One of
the project’s aims is to make these networks fault-tolerant. This has been
difficult in traditional multistage interconnection networks for parallel com-
puters, because these networks have often been Banyan networks [9, 10].
Banyan networks do not have redundant paths [2], and thus the failure of
a switching element will necessarily cut off communication between at least
one message source and one message sink in the network.

The addition of redundant paths can enhance fault-tolerance. Unfortu-
nately, it also creates problems for the traffic theorist. In a Banyan net-
work, if one assumes messages at the inputs are generated by independent
processes, the presence or absence of messages at the inputs of any switch
in the network is independent of the presence or absence of messages at
the other inputs of that switch. Thus the analysis of blocking probabilities
in Banyan networks is simplified [5]. When redundant paths are allowed,
independence is violated.

A similar problem has been studied in the context of telephone switching
systems [4]. However, in telephone switching systems the model is one of
a circuit-switched network where the holding time for circuits varies. Fur-
thermore, in the methods described in [4], it is assumed that the networks
modeled are symmetric; because there are classes of asymmetric networks
that are of interest, and because we are partly interested in calculating
blocking probabilities in the presence of (asymmetric) faults, these methods
are not satisfactory.

The number of equations that must be solved in order to find the ex-
act blocking probability of a general network is probably exponential in the
number of communications channels entering a stage in a network; however,
there appears to be no proof of this in the literature. Still, even if large prob-
lems are intractable, a method of exact solution is useful because it allows
some evaluation of approximation methods through comparison with exact
solutions for small problems, and also because it can be used as the basis
for a Monte Carlo approximation method. This is the approach taken by
Harvey and Hills in [3]. Harvey and Hills were considering circuit-switched
telephone networks with unique paths; but their approach, which was to
find approximate solutions of exact equations, rather than exact solutions
to approximate equations, can still be of use here.




Figure 1: An 8 x 8 deterministically-interwired network with redundant
paths. There are a number of different paths from any source to any sink,
to increase fault-tolerance; redundant paths from message source 4 to sink
3 are highlighted. Routing is oblivious, with stochastic concentration. This
wiring scheme is from [1].

2 Problem Statement

Consider a multistage, unbuffered, synchronous, packet-switched network
with redundant paths. Such a network might look like the one depicted
in Figure 1. Messages enter the network on the channels leading from the
message sources, which in Figure 1 are depicted on the left side and labeled
Ip through I;. The network has multiple stages: if we consider the stage
consisting of all the sources to be stage 0, then stage 1 consists of the column
of switching elements connected directly to the sources; stage 2 the column
of switches to the right of stage 1, etc. The message sinks are the nodes on
the right side, labeled Oy through O;.

The processes generating messages at the sources are independent and
memoryless. With some specified probability p;, each source i generates
or fails to generate a single message at the beginning of each cycle. Each
generated message is directed to a stage 1 switch via one of the channels
connecting the source to the network. The channel by which to send the
message is chosen randomly, and each channel has the same probability of



being chosen; i.e., routing is oblivious. The network is synchronous: at each
cycle messages move from stage ¢ to stage ¢ + 1. It is also unbuffered: if a
message is blocked at some stage, it is considered to be lost, and does not
in any way affect the future states of the system.

In the networks we model, the set of output channels of a switching
element is divided into nonempty disjoint subsets called logical directions.
At each cycle, the switching element directs each incoming message in one
logical direction. We assume uniform addressing here; messages are equally
likely to be addressed in any one of the logical directions. We use stochastic
concentration:

e If there are fewer messages or exactly the same number of messages
directed in the logical direction as there are channels in that logical
direction, then the channels that will carry the messages are chosen
randomly, with uniform probability.

e If there are more messages directed in a logical direction than there
are channels in that direction, the messages that can be carried are
chosen with uniform probability, and the other messages are blocked
and lost.

We refer to a switching component with M input channels and N logical
directions, each consisting of K channels, as an “M x N, dilation K switch.”!

Having defined our model, let us return to the network of Figure 1. The
switches here are 4 x 2, dilation 2 switches, except at the last stage, where
they are simply 2 X 2 (dilation 1) switches. In the 4 x 2, dilation 2 switches,
the top two output channels constitute one logical direction, and the bottom
two constitute another.

We may state our question as follows: What is the probability that an
arbitrary message entering the network at a channel leading from a source
reaches a channel leading to a sink? We answer this question by finding the
probability mass functions of the loads on channels leading to sinks.

!One such switch is the RN1 switching component, designed at the M.I.T. Artificial
Intelligence Laboratory’s Transit Group. The RN1 switching component, intended for use
in interconnection networks for parallel multiprocessors, is an 8 x 4, dilation 2 switch. It
is described further in [7].
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Figure 2: Interstage wiring. Note that no subset of the channels depicted
need be mutually independent in a network with redundant paths.

3 The Joint Probability Mass Function of an Ag-
gregate of Channels

Suppose that the input channels of a switch S, depicted in Figure 2, are
connected to several switches Ry, Ry, ..., R;. Let us use the random variable
L to denote the entire output loading configuration of § at some specified
discrete time ¢, so that P{L = I} is the probability that the output channels
of the switch have some particular loads designated in their aggregate by I
during cycle t.

Now consider the loads on the input channels Cy;,...,C;, at cycle t — 1.
(Because we assume a synchronous, unbuffered network with memoryless
processes generating the messages at the inputs, only the cycle before cycle
t is of interest.) Let us denote the loads on the input channels at cycle ¢ — 1
with the random variables L¢,,,...,L¢,,-

In order to find the joint probability mass function of the loads on the
output channels of 5, we condition on the loads on the input channels:

P{L=1}= > P{L=1]|Lg, =lcy,--sLc,, =lc,,}

16y, ke,

P{L¢c,, =lcy,---sLc,, =lc,,} (1)

where the sum is over all tuples I¢,,,...,l¢,, with elements in {0,1}.
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Figure 3: Although the probabilities of the message loads on the channels
C11,---,Ciy are not in general independent, the loads on the subset of chan-
nels from each switching element are independent given the message loads
on the input channels Byq,..., B;.

Suppose that we can compute P{L = 1| L¢,, = l¢,,,...,Lc,, = lc,,}.2
In order to compute the probability of an output loading configuration of S
we will still need to find the joint probability mass function of the channel
loads L¢,,,...,Lc,,. In a Banyan network, it would be easy to compute this
function; it would simply be the product of the probability mass functions of
the loads on the individual channels, as channel loads in a Banyan network
are independent.® In a network with redundant paths, however, the loads
on these channels are not in general independent, as they may derive from
the same sources, and a message from a single source that has traveled one
path in the network cannot be traveling along another path. Thus another
method must be used.

In Figure 3, we see that the input channels Ci;,...,C;, of switch S
are the output channels of switches Ry,...,R;. Let us call the loads on
the input channels to these switches Lp,,,...,Lp,,. We may now calcu-
late P{L¢,, = l¢,,,...,Lc,, = lc,,} by conditioning on the values of the
variables Lp,,,...,Lp,. We have

P{Lcu = lcu’ cee ’LCiw = lCiw} =

2 An expression for this conditional probability is derived in Appendix A.
3See Appendix B.




Z P{Lc“ = lCn""’LCiw = lCiw ' LBu = lBu""’LBit = lB,-,} :

Ipyy ol

P{LB11 - lBll"' . ,LB'-t = IB“} (2)

where the sum is over all tuples Ig,,,...,Ip, with elements in {0,1}.

The loads on the output channels of these switches are not in general mu-
tually independent. However, let us partition them into subsets according to
the switch at which they originate, so that for the channels shown in Figure 3
we would have the subsets {C11,...C1,},{C21,...C2,} ..., {Ci1y...,Cin}-
Note that, under the assumption of uniform addressing, and given the loads
on the channels By,,..., B;;, the loads on the switch output channel sub-
sets are mutually independent. That is, if we know the input loads for the
switches Rq,..., R;, then the loading probabilities for the output channels
of each of the switches do not depend on the output loads of any other
switch. We may use this fact to derive the joint probability mass function of
the loads on the output channels Cy1,...,C;y, by conditioning on the input
channel loads. We have then

P{Lc,, =lcyys--5Lei, =l } =
Z P{LCII = lCu"' "I’Clu=lclu ‘ LBu = lBu" .. 7LBm = lBlr} .

lg,, B,

P{chx =lcyys .- ’L027=lcz,, | LB,y = 1By --- »LB,, = le.} :

P{LCu = lC’u"' "LCiw = lCiw I Lg, = IB.'n s ’LB.'z = lB.'z} :
P{LBll = an" .. ’LBit = IBu} (3)

where the sum is once again over all tuples lpg,,,...,Ip, with elements in

{0,1}.

The conditional probabilities can be evaluated as described in Appendix A,
and P{Lg,, =!g,,,...,LB,, =lpg,} can be evaluated recursively by means
of Equation (3), until the channels B;i,...,B;; correspond to sources. If
these channels originate at message sources, then we substitute instead the
probability mass functions corresponding to sources. We may simply take
the product of these functions for the sources in question, as in our model
the processes generating messages at the sources are mutually independent.

If source 7, depicted in Figure 4, generates a message with probability
p; and has k channels into the network, then we have for the loads on the

it



Figure 4: The source I; generates a single message at each cycle with prob-
ability p;. The message is transmitted with uniform probability over a ran-
domly picked channel in the set {Cy,...,C}.

channels Cy,...,C) the joint probability mass function

1—p; ifall the Ig; are 0

P if tl le; is 1 '
- o B ; il exactly one i¢; 1s 1,
P{L¢, =lc,,... yLe, = le} - and the rest are 0 @)
0 otherwise

4 Automatic Calculation of Blocking Probabili-
ties

It will be clear that the automatic calculation of blocking probabilities by
this means will require a great deal of time. Suppose we have a computer
program that calculates the blocking probabilities for a network in the most
obvious way, by finding the joint probability mass function of the channels
leaving the final stage, using Equation (3) recursively. In the worst case, we
can imagine a network where there are NV stages and M dependent channels
between each of the N stages, and the joint probability mass function of all
of the channels between each of the stages must be formed. The domain
of the joint probability mass function for each stage then is of size 2M,
each value being calculated as a sum over 2¥ terms. Assuming the time to
calculate each of the terms summed over in Equation (3) is O(M), we have
then O (N MM ) for the worst-case performance.

The performance on some networks can be better than this, however.
Suppose that we need to calculate P{L¢, = l¢,,...,Lg, =l¢,}. Let S(c)
denote the set of source nodes from which messages can reach channel c.
If we can partition the set of channels {Cy,...,C,} into disjoint subsets



$1y-++»Sm such that for any C; € S; and C3 € S, ¢ # §, S(C1) NS (Cy) is
empty, then the loads on the channels in each subset §; are independent of
the loads on the channels in any and all of the other subsets in the partition.*
Then the expression P{L¢, = l¢,,...,Lc, = lc,} can be factored into the
product of m joint probability mass functions, one for each subset S;. In the
limiting case of a Banyan network, a complete factoring will be possible for
every set of channels, and the summation itself can be factored, so that the
worst case performance for a Banyan network of N stages with M channels
between the stages becomes O(N M).

A program has been written to evaluate the joint probability mass func-
tion of the loads on specified channels in a multistage interconnection net-
work. The program is given a symbolic description of the interconnection
network. The program uses the network representation to build an internal
structure in which (for example) information about independence of chan-
nel loads has been precomputed, and channels have been assigned names
generated from the names of the their nodes of origin and destination. One
can then assign message generation probabilities to the sources and query
the program for the probability mass function of interest. The result is
numerical, as in the example below:

> (setq d8x8 (parse-multistage-network
deterministically-interwired-8x8-rep))
#<MULTISTAGE-NETWORK 8x8>
> (jlpmf ’(tt6-07-0 tt7-07-0) d8x8)
(#S(JLPMF-PART CHANNELS (#<CHANNEL TT6-07-0>
#<CHANNEL TT7-07-0>)
NUMBER-OF-CHANNELS 2
VECTOR #(10321939817/17179869184
2931771091/17179869184
2931771091/17179869184
994387185/17179869184)))

Here we have calculated the joint probability mass function of the loads on
two channels leading from two 2 x 2 switches to sink O7 in the network
of Figure 1, given a probability of transmission in each message source of
1/2; we assume here, as in [1], that a message sink can receive two messages
during a single cycle.

To find the blocking probability of the network, we can form the proba-
bility of successful message transmission as the ratio of the expected number

*As will be seen from the argument in Appendix B.



of messages entering the network to the expected number of messages ar-
riving at sinks. Because of the symmetry of the network, all the channels
leading to sinks have identical loading probabilities, and so we can simply
sum the expectations of their loads. We have then that the expected number
of messages arriving at a single sink is

1-P{Lrre-0r = 1, Lrr7.07 =0} + 1-P{LrT607 = 0, LTT7.07 = 1}
+ 2-P{Ltré6.07 = 1,LrT7.07 = 1}
~ 0.457

and the expected number of messages arriving at all sinks during any cycle
is then 8 - 0.457 ~ 3.66.

Because the expected number of messages entering the network is 8- -;— =
4, we have that the aggregate probability of successful message transmission
in this network at a loading factor of 1/2 is

E[messages arriving at sinks]

E[messages injected by sources] 0.914

and thus the blocking probability is approximately 0.086.

We plot for the network of Figure 1 the probability of successful message
transmission versus the probability that a source transmits in Figure 5.

The implementation internally records joint probability mass functions
so that they need not be recomputed. Although the asymptotic performance
is in general pessimal, the implementation has been coded with some atten-
tion to performance, because much of the same code is likely to be used in
an approximation scheme.

5 Conclusions; Future Work

We have presented a means of exact calculation of the blocking probability
of a multistage network with redundant paths, and demonstrated its use in
a program that automatically calculates blocking probabilities and exploits
independence of channel loading probabilities where this is possible.

The implementation described cannot be used to calculate the blocking
probabilities of networks with much more path redundancy than the one
of Figure 1. We might consider an implementation that could exploit the
symmetry exhibited by some multistage networks, but such an implemen-
tation could still not be used on a network like that in Figure 6, in which
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Figure 5: The probability of successful message transmission (P{Success})
plotted against the the source transmission probability (Pi) for the network
of Figure 1.

the wiring in the first and second stages is not symmetric and is in fact
randomly generated. That such networks are of interest is demonstrated in
[6].

We are investigating the possibility of approximately solving these sys-
tems of equations. Our hope is that the approximate solution of the equa-
tions will yield approximations of higher confidence in fewer steps than would
direct simulation of the network.

10



Figure 6: A 16 x 16 network with random interwiring in the first and second
stages. The figure is from [1].
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A Probability Mass Functions of Switching Com-
ponent Output Channels

Suppose we have an M x N, dilation K switch. We may form the conditional
probability mass function of the loads on the output channels, given the
input load, by conditioning. Say that the random variable Ly, represents
the load on the g'® channel in the f*! logical direction. Now for ease of
representation, let us say that the random variable L represents the entire
output configuration of the switch, and takes on values I that are N x K
arrays whose elements Iz  are 0 if the channel in question carries no message,
or 1if it carries a message. Thus in our notation the event we denote by

{L=1}
is equivalent to the event

{ Liyi=hyIiz=h2....L1k = Lk,
Ly =131,L22 =1l32,...,Lox = Ik,

Lyny=1In1, LNz =IN2s- s LNe =Nk }

We wish to evaluate the expression P{L =1 | L¢, = l¢,,...,Lc,, = loy, }-
The switches that we are modeling do not distinguish in any way between
messages arriving at distinct input channels. Thus the loads on the individ-
ual input channels Cy,...,Cps are not individually of significance, but their
sum is. Say that Zgl lc; = j. For simplicity of expression, while working
in an event space where L¢, + ...+ L¢,, = j, we use the superscript j.
Thus we say P{L =1 | L¢, =l¢,,...,Lc,, = lc, } = P{L? =1}. Now, to
form the conditional probability P{L =1 | J = j}, we condition on the num-
ber of messages directed in each logical direction. If the random variable
C; represents the number of messages routed in logical direction i, we can
condition:

P{Li =1} =d2d P{L/ =1| D, = dy,...,Dy =dy}-
e

P{D; = dy,...,Dy = d,} (5)

where the sum is over all N-tuples d,,...,dy such that each d; > 0 and
N .
=1 di = ]'
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Under uniform addressing, the probability that of the j arriving mes-
sages, d; are directed in direction 1, d; in direction 2, and so on, is simply
multinomial, so that

P{Dy = dy,..., Dy = dy} = (dl ’dN) (5) (6)

Now let us evaluate P{Lj =1| Dy =dy,...,Dn = d,}. Say that ¢; is the
number of messages output in direction i when L? = [; that is, ¢; = E;":l lig-
This number is not the same as d;, because if there are more than K messages
to be output in a K-wide direction, some messages are dropped and lost.
If ¢c; messages are output, then under stochastic concentration the channels
are picked with uniform probability, and so the probability of any single

configuration will be 1/ (f ). Thus

P{szllDlzdl,...,DN:dN}:

0 if for any i,c; # min (d;, K)

N

H L otherwise (7
=1 (ci

where ¢; = E;(:l lig-
Combining Equations (5), (6), and (7), we have

P{L =1|Lc, = leys...s Loy, :ch} =
N . ;
: ") &)
S — 8
() .5 (o)) G ®

where ¢; = Efle g, 5 = ¥, Ic,, and the sum is over the N-tuples
d1,...,dy such that Y, d; = j and for each i, ¢; = min (d;, K).

B Loads on Banyan Network Channels at a Sin-
gle Stage are Independent

A proof for the special case of delta networks is presented in [8]; here we
present a different proof for the general case.

The proof is entirely straightforward. Note first that, if messages are
generated at source nodes by mutually independent random processes, and

13



the sets of messages on distinct channels entering a switching node origi-
nate at disjoint sets of source nodes, then the loads on those channels are
necessarily independent.

We now claim that the sets of messages on distinct channels entering
any switching node in a Banyan network satisfy this criterion: i.e., they
originate at disjoint sets of sources.

For, consider: if channel A and channel B are two channels entering a
switching node, and a message on channel A and a message on channel B
originate at a single source, then it must be the case that at least two paths
exist from that source to any sinks accessible from the switching node: one
path that uses channel A and one that uses channel B. But this is impossible
in a Banyan network, as Banyan networks are in fact those in which there
is exactly one path from each source to each sink.

Thus the sets of messages on distinct channels entering any switching
node in a Banyan network must originate at disjoint sets of sources, and so
the loads on the channels entering any switching node in a Banyan network
must be mutually independent, as was to be proved.
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