MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

A.l. Memo No. 1339 December 1991

Systematic Nonlinear Planning

David McAllester and David Rosenblitt

Abstract

This paper presents a simple, sound, complete, and systematic algo-
rithm for domain independent STRIPS planning. Simplicity is achieved
by starting with a ground procedure and then applying a general,
and independently verifiable, lifting transformation. Previous planners
have been designed directly as lifted procedures. Our ground procedure
is a ground version of Tate’s NONLIN procedure. In Tate’s procedure
one is not required to determine whether a prerequisite of a step in an
unfinished plan is guaranteed to hold in all linearizations. This allows
Tate’s procedure to avoid the use of Chapman’s modal truth criterion.
Systematicity is the property that the same plan, or partial plan, is
never examined more than once. Systematicity is achieved through a
simple modification of Tate’s procedure.

Copyright (©) Massachusetts Institute of Technology, 1991

This report describes research done at the Artificial Intelligence Laboratory of the Massachusetts
Institute of Technology. Support for the work described in this paper was provided in part by
Misubishi Electric Research Laboratories, Inc. Support for the laboratory’s artificial intelligence
research is provided in part by the Advanced Research Projects Agency of the Department of
Defense under Office of Naval Research contract N00014-85-K-0124.

1 Introduction

STRIPS planning was introduced in [Fikes and Nilsson, 1971] as a model of the
kind of planning problems that people appear to solve in common sense reasoning.
STRIPS planning corresponds to a certain formal graph search problem. John
Canny has observed that the formal STRIPS planning problem is PSPACE com-
plete [Canny, 1985]. This means, essentially, that any sound and complete planner
must search. It is well known that certain NP complete and PSPACE complete
problems can be solved efficiently for the vast majority of problems that arise in
practice. Although it is still controversial whether STRIPS planning can be made
practical for large problems, it now seems clear that certain methods of search
optimization can dramatically improve the performance of planning algorithms.

Planning procedures have used three basic techniques to optimize the required
search process. First, even the earliest planning systems were “lifted”. This means
that they used expressions involving variables, e.g., PUTON(A z), to represent a
large number of different possible ground instances, e.g., PUTON(A B). The earliest
planners were based on resolution theorem proving and inherited their lifted nature
from the lifting lemma of resolution [Fikes and Nilsson, 1971] [Robinson, 1965). In
addition to being lifted, most modern planners are “nonlinear” — they maintain
a partial order on plan steps rather than a total order. This partial order is
gradually refined during the planning process [Sacerdoti, 1975), [Sacerdoti, 1977],
[Tate, 1977], [Chapman, 1987]. Finally, some planners use “abstraction spaces” in
which planning is first done at a high level of abstraction and then low level details
are filled in once a high level plan has been found [Sacerdoti, 1974), [Korf, 1987],
[Yang and Tenenberg, 1990].

Nonlinear planners are sometimes called “least commitment planners”. In gen-
eral, the informal principle of least commitment states that one should should
make low commitment choices before making high commitment choices. Lifting
is a good example of the general principle of least commitment. In searching for
a plan we might select PUTON(A B) as the first step of the plan. This is a high
commitment choice. A lower commitment choice is to state that the first step of
the plan is an expression of the form PUTON(A). Nonlinearity is another exam-
ple of the principle of least commitment. Rather than select an expression of the
form PUTON(A z) as the first step in the plan, we can state that PUTON(A z) is to
appear somewhere in the plan without committing ourselves as to where. This is
a very low commitment choice.

This paper presents a simple, sound, complete, and systematic planning algo-
rithm. As with many previous planners, our algorithm uses lifting and nonlinearity
to optimize the required search.! Qur algorithm has two novel features which jus-
tify the present paper — simplicity and systematicity. The planner is simple for

! Abstraction can also be easily incorporated into our algorithm, as described in a later section.

two reasons. First, the procedure is constructed by combining two independent
components — a simple ground procedure and a general lifting technique. Pre-
vious planning algorithms have been designed directly as lifted procedures. Our
ground procedure is a simplified ground version of Tate’s NONLIN procedure. We
observe that the ground version of Tate’s procedure is sound and complete. This
is true in spite of the absence of any subroutine for determining whether a prereq-
uisite of a step in an incomplete plan is guaranteed in all linearization. Chapman
has shown that any such subroutine must evaluate a certain complex modal truth
criterion [Chapman, 1987]. The algorithm presented here does not involve any
such subroutine, nor does it make use of any modal truth criterion.

In addition to being simple, the procedure presented here performs systematic
search, i.e., the same plan (or partial plan) is never examined more than once.
Systematicity is achieved through a simple modification of the ground version of
Tate’s procedure.

2 STRIPS Planning

First we formally define the STRIPS planning problem. In the initial formula-
tion we only consider the ground case — we do not allow variables to appear in
propositions or in the specification of operators.

Definition: A STRIPS operator consists of an operator name plus
a prerequisite list, an add list and a delete list. The elements of the
prerequisite, add, and delete lists are all proposition expressions.

For example, in blocks world planning the operator with name MOVE(A, B,
C), which should be read as “move block A from block B to block C”, has prereq-
uisites CLEAR(A), ON(A, B), and CLEAR(C), delete list ON(A, B) and CLEAR(C),
and add list CLEAR(B) and ON(A, C). A “state of the world” is modeled by a set
of proposition expressions. We now give the standard definition for the result of
performing a STRIPS operation in a given state of the world and the definition of
a STRIPS planning problem.

Definition: If o is a STRIPS operator, and ¥ is a set of proposition
expressions, then, if the prerequisites list of o is a subset of ¥, then the
result of performing operation o in the state ¥ is ¥ minus the delete
list of o plus the add list of o. If the prerequisite list of o is not a subset
of ¥, then then result of performing o in the state ¥ is the empty set.

Definition: A STRIPS planning problem is a triple <O, X, Q> where
O is a set of STRIPS operators, ¥ is a set of initial propositions, and
(2 is a set of goal propositions.

Definition: A solution to a STRIPS planning problem <O, X, Q> is a
sequence a of operations, each of which must be a member of @, such
that the result of consecutively applying the operations in «a starting
with the initial state X results in a set that contains the goal set T'.

As mentioned above, determining whether or not an arbitrary STRIPS planning
problem has a solution is a PSPACE complete problem. The following section
presents a simplified ground version of Tate’s NONLIN planning procedure.

3 Nonlinear Planning

A plan is a sequence of operations. Intuitively, two plans are considered to be
equivalent if one can be derived from the other by reordering non-interacting steps.
For example, consider a robot that must perform a bunch of tasks in room A and
a bunch of tasks in room B. Each task is formally associated with a certain goal
proposition. We want to achieve propositions Py,---, P, Q1,-++,Qm. We are
given operators A,,---,A,, By,---, B,, where A; achieves P; but must be done in
room A and B; achieves @); but must be done in room B. More formally, each A;
has the single prerequisite IN(A), adds the proposition P;, and does not delete any
propositions. Each B; is defined similarly with the prerequisite IN(B). We also have
an operator GO(A) which has no prerequisites, adds the proposition IN(A), and
deletes the proposition IN(B). We also have an analogous operator GO(B). The goal
set {Py,--, Pa,Q1,--+,Qm} can be achieved (without any initial assumptions) by
the plan GO(A); Ay;- -5 An;G0(B); By; - - -5 By, Clearly, the order of the A; steps
and the order of the B; steps does not matter as long as all the A; steps are done in
room A and all the B; steps are done in room B. This plan should be considered to
be equivalent to the plan GO(A); Ay,; - - -; A1;G0(B); Bp; - - - ; By which performs the
A; steps and B; steps in the opposite order. Every (linear) plan that is a solution
to a given planning problem can be abstracted to a “nonlinear plan” where the

START
GO(A) GO(B)
IN(A) {/ | \ \ IN(B)
L v v Vv -
A A, --- A, B, B, --- B,
SO e . T -
s FINISH

Figure 1: The causal links in the plan GO(A); Ay;---; An;GO(B); By;---; By,

nonlinear plan contains only a partial order on the plan steps. Two linear plans
are considered to be equivalent if they are different representations of the same
nonlinear plan.

To define the nonlinear plan associated with a given linear plan we must first
overcome a minor technical difficulty. In a linear plan we can name the individual
plan steps by referring to the first step, the second step, and so on. In a nonlinear
plan, however, there may not be any well defined second step. We can not name
a step by giving the operator used at that step because several steps may involve
the same operator. To provide names for the steps in a nonlinear plan we assume
that each step is associated with a distinct symbol called the name of that step.

Definition: A symbol table is a mapping from a finite set of step
names to operators. Every symbol table is required to contain two
distinguished step names called START and FINISH. START is mapped
to an operator that has no prerequisites and no delete list but which
adds a set of “initial propositions”. FINISH is mapped to an operator

that has a set of prerequisites called “goal formulas” but has an empty
add list and delete list.

Note that a symbol table does not impose ordering constraints on the step
names. Also note that step names are different from operator names. Two step
names, say STEP-37 and STEP-52, may both map to the operator named MOVE(A,
B, C). Also note that STEP-37 does not necessarily precede STEP-52 — the step
names have no significance other than as place holders for steps in a plan.

Consider a (linear) solution to a STRIPS planning problem. Without loss of
generality we can assume that every prerequisite of every step in the solution plan
is true when that step is executed. If w is a step name, and P is a prerequisite of
w, then there must be some “source” for P at w — although the source may be the
virtual step START. If every prerequisite is satisfied for every operation in the plan,
then every prerequisite P of every step has a unique source — the last preceding
step that adds P. This includes the prerequisites of the virtual step FINISH, ie.,
the goal formulas. The notion of source motivates the definition of a causal link.?

Definition: A causal link is a triple <s, P,w> where P is a proposition
symbol, w is a step name that has P as a prerequisite, and s is a step

name that has P in its add list. Causal links are written as sﬁw

Causal links indicate the dependencies among steps in a plan. A causal link

should be viewed as a constraint. The causal link s fvw requires that step s precede
step w and that no step between s and w either adds or deletes P. Given any linear

?Tate uses the term “range” rather than causal link.

plan, one can extract the causal links of that plan. For example, consider the plan
GO(A); Ay;---; An;GO(B); By« - -3 By, discussed earlier. This plan has the set of
causal links shown in figure 1. Unfortunately, the causal links do not contain all
of the relevant ordering constraints in this plan. The partial order information
implicit in the casual links does not require each A; to be done before GO(B). This
example shows the need for ordering information other than causal links.

Definition: A step name v is called a threat to a causal link sﬁw if
v is a step name, other than s and w, that either adds or deletes P.

Definition: A safety condition is an ordering s < w or w > s where s
and w are step names.

In the plan shown in figure 1, the step GO(A) is a threat to each casual link

of the form GO(B) IN(B) B; (since GO(A) deletes the proposition IN(B)), leading
to the safety condition GO(A) < GO(B). Similarly, the step GO(B) is a threat to

each causal link of the form GO(A) IN(A) A;, leading to safety conditions of the
form A; < GO(B). These safety conditions, along with the orderings implicit in the
causal links, allow the steps to be executed in any order in which GO(A) precedes
every A;, every A; precedes GO(B), and GO(B) precedes every B;.

Definition: A nonlinear plan consists of a symbol table, a set of casual
links, and a set of safety conditions.

Definition: A nonlinear plan is called complete if the following condi-
tions hold.

e Every step name appearing in the causal links and safety condi-
tions has an entry in the symbol table.

o If w is a step name in the symbol table, and w has prerequisite

P, then the plan contains some causal link of the form sﬂw.

o If the plan contains a causal link sﬂw, and the symbol table

contains a step name v that is a threat to the causal link 3£>w,
then the plan contains either the safety condition v < s or the
safety condition v > w.

It is possible to show that any (linear) solution to a STRIPS planning problem
corresponds to a nonlinear plan that is the least (smallest number of causal links
and safety conditions) complete nonlinear plan corresponding to the given linear
plan. This “nonlinear abstraction” of a given linear plan is unique up to the arbi-
trary choice of step names. The nonlinear abstraction of linear plans determines
an equivalence relation on linear plans — two linear plans are considered to be
equivalent if they have the same nonlinear abstraction.

5

Definition: A topological sort of a nonlinear plan is a linear sequence of
all the step names in the symbol table such that the following conditions
hold.

The first step in the sequence is START.
The last step in the sequence is FINISH.

For each causal link s fvw in the plan, the step s precedes the step
w.

e For each safety constraint v < v (or v > u) in the plan, the step
u precedes the step v.

Definition: A topological sort of a nonlinear plan is a solution if
executing the sequence of operations of the steps between the START
and FINISH steps, starting in the state given by the add list of the
START step, results in a state that contain all the preconditions of the
FINISH step.

Lemma: Any topological sort of a complete nonlinear plan is a solu-
tion.

It is possible to construct a planning procedure which systematically searches
the space of nonlinear plans. The search is systematic in the technical sense that
it never visits the same plan, or even equivalent plans, twice — every branch in
the search tree divides the remaining possibilities into disjoint sets of potential
solutions such that all equivalent plans are down the same branch of the search
tree. Before defining the procedure, however, one additional definition is needed.

Definition: A nonlinear plan (not necessarily complete) is called order
inconsistent if 1t has no topological sort.

A transitive closure algorithm can be used to determine if a given nonlinear
plan is order inconsistent. A nonlinear plan is order inconsistent if and only if the
causal links and safety conditions of the plan define a cycle in the plan steps.

Our search procedure is a bounded depth first procedure that can be used with
iterative deepening [Korf, 1985]. The procedure takes an (incomplete) nonlinear
plan and a cost bound and searches for a completion of the given plan such that
total cost of the steps in the completion is not greater than the given bound.
Initially the procedure is called on a (partial) nonlinear plan that contains only
the START and FINISH steps corresponding to a given STRIPS planning problem.
We also assume a set of given allowed operations.

The Procedure FIND-COMPLETION(S c)

1. If the nonlinear plan f is order inconsistent, or the total cost of the steps in
B is greater than ¢, then fail.

2. If the nonlinear plan 8 is complete then return 3.

3. If there is a causal link 3f+w in B and a threat v to this link in the symbol
table such that B does not contain either v < s or v > w, then nondetermin-
istically return one of the following.

(a) FIND-COMPLETION(S + (v < s),¢)
(b) FIND-COMPLETION(S + (v > w),¢)

4. There must now exist some step w in the symbol table and some prerequisite

P

P of w such that there is no causal link of the form s w. In this case
nondeterministically do one of the following.

(a) Let s be (nondeterministically) some step name in the symbol table that
adds P and return the plan

FIND-COMPLETION(S + s B w,c).

(b) Select (nondeterministically) an operator o; from the allowed set of op-
erations such that o; adds P. Create a new entry in the symbol table
that maps a new step name s to the operator o;. Then return the plan

FIND-COMPLETION(S + s £ w,c).

One can check that every completion of the given plan with cost ¢ or less is
equivalent (up to renaming of steps) to a possible value of the above procedure.
Furthermore, one can show that no two distinct execution paths can produce
equivalent complete plans. To see this note that every plan step can be uniquely
named by starting with the FINISH step and moving backward over causal links
noting the prerequisite at each link. This implies that each step can be uniquely
identified in a way that is independent of step names. So no two equivalent plans
can be generated by different choices for s in steps 4a and 4b. It also implies that
the order constraints v < s and v > w used in step 3 can be defined independent of
the step names. This implies that no completion satisfying v < s can be equivalent
(under step renaming) to a completion satisfying v > w. So the above procedure
defines a systematic search of the space of complete nonlinear plans.

4 Comments on the Procedure

Although the procedure given in the previous section is essentially a simplification
of Tate’s NONLIN procedure, there is one technical difference worth noting. Tate’s
procedure uses a different notion of threat under which v is considered to be a

threat to s 5w only if v deletes P. The stronger notion of threat used here (in

which v is a threat to s 5w if v either adds or deletes P) is needed for systematicity.
Under Tate’s notion of threat it is possible that two distinct complete nonlinear
plans share a common topological sort. In this case linear plans do not have unique
nonlinear abstractions. However, it seems likely that Tate’s weaker notion of threat
works just as well, if not better, in practice.

The procedure given in the previous section can modified to handle planning in
a series of abstraction spaces. Suppose that each proposition expression is given a.
number expressing “abstractness”. We want to ensure that abstract prerequisites
are satisfied before we attempt to satisfy concrete prerequisites. Steps 3 and 4
of the procedure select either a prerequisite that is not involved in a causal link,
or a threat to an existing causal link. The selection of prerequisite or threatened
causal link can be made arbitrarily. In particular, this selection can be done in a
way that maximizes the abstractness of the prerequisite involved. If this is done,
the procedure will only consider concrete prerequisites after all the more abstract
prerequisites have been fully handled. Intuitively, one should consider “difficult”
prerequisites before considering “easy” prerequisites.

The lemma in the previous section states that every complete nonlinear plan
is safe in the sense that every topological sort of the plan is a solution. However,
the converse of this lemma does not hold — there exist safe partial orders on
plan steps which do not correspond to any complete nonlinear plan. For example,
consider the partial order on plan steps shown in figure 2.3 In this plan FINISH has
prerequisites P, @ and R. The step w; adds P and Q while the step w, adds P
and R. Step w,; has prerequisite W1, which is added by s,, and w; has prerequisite
W2, which is added by s;. Unfortunately, both s; and s, delete P. The partial
order on plan steps shown in figure 2 is safe.* However, any complete plan (under
the definition given here) must specify which of w; or w; is the casual source of
the prerequisite P of the FINISH step. This will enforce an explicit ordering of w,
and w,.

It is possible to systematically search all partial orders on step names and
find the most abstract (least committed) partial order that is safe. Unfortunately,
there appears to be no way of doing this efficiently. Evaluating Chapman’s modal
truth criterion at each node of the search space is very expensive. Furthermore,

3This example is due to Subbarao Kambhampati.

4This example demonstrates the necessity of the white night condition in checking the safety
of ground nonlinear plans.

S1 S2

2 N

wy w2

/

FINISH

Figure 2: A safe but incomplete nonlinear plan

treating the modal truth criterion as a nondeterministic procedure, as is done in
TWEAK, destroys the systematicity of the search — the choices in the modal
truth criterion (the disjunctions and existential quantifiers) do not correspond
to dividing the space of partial orders into disjoint sets (the same partial order
can be reached through different branches in the modal truth criterion). Even if
one did systematically search the space of partial orders on step names, different
orderings of step names can correspond to the same ordering of actual operations.
This implies that, unlike the procedure given here, the search would still not be a
systematic search of operation sequences.

5 Lifting

Lifting was invented by J. A. Robinson in conjunction with the development of
resolution theorem proving [Robinson, 1965). Lifting is now a standard technique
in the construction of new theorem proving and term rewriting algorithms. Any
application of lifting is associated with a lifting lemma which states that for every
possible computation involving ground expressions there is a lifted computation
involving variables such that the ground computation is a substitution instance of
the lifted computation.

The procedure given above is designed for the ground case — the case where
the propositions in the prerequisite list, add list, and delete lists of the operators do
not contain variables. This procedure can be lifted to handle operator specification
schemas and plan schemas involving variables. The lifting transformation used here
is quite general — it applies to a large class of nondeterministic programs.

To lift the procedure of the previous section first note that the procedure, as
written, can be used with operator schemas. An operator schema is an operator in
which variables appear in the operator name, prerequisite list, add list, and delete
list. For example, in a blocks world with n blocks there are n® operators of the
form MOVE(A, B, C). These n® different operators are just different substitution
instances of one operator schema MOVE(z, y, z) which has variables z, y, and z.
To use the procedure of the previous section with operator schemas rather than
ground operators step 4b is changed to read as follows.

4b Let o; be some ground instance of one of the given operator schemas. If P is
not a member of the add list of o; then fail. Otherwise, create a new entry
in the symbol table that maps a new step name s to the operator o;. ...

The above version of step 4b is still a ground procedure. Note that the nonde-
terministic branching factor of this step is infinite — if arbitrary ground terms may
be introduced by the substitution operation then there are infinitely many ground
instances of a single operator schema. This is clearly unacceptable for practical
planning. To lift the ground procedure we replace step 4b as stated above with
the following.

4b Let o; be a copy, with fresh variables, of one of the given operator schemas.
If P is not a member of the add list of o;, fail. Otherwise, create a new entry
in the symbol table that maps a new step name s to the schema copy o;. ..

Note that only the first part of the step has changed. The branching factor
of first part of the lifted step 4b is equal to the number of different operator
schemas given — in the case of the blocks world there is only one schema so the
step is deterministic. The remainder of the lifted procedure reads identically to
the procedure given in the previous section. However, in the lifted version of
the procedure expressions may contain variables. An equality test between two
expressions that contain variables is treated as a nondeterministic operation. The
equality test may return true, in which case an “equality constraint” is generated.
The equality test may also return false in which case a disequality constraint is
generated.> For example, the second part of step 4b reads “If P is not a member
of the add list of o; then fail”. To determine if P is a member of the add list
of o; we can write a simple recursive membership test that performs an equality
test between the proposition P and each member of the add list of 0;. Each
equality test can either return true or false. The computation only proceeds if some
equality test returns true and therefore generates an equality constraint between
P and a particular member of the add list of o;. Equality constraints invoke
unification. If an equality constraint is generated between expressions that can
not be unified, then that branch of the nondeterministic computation fails. Thus,
the above version of step 4b only succeeds if P unifies with some element of the
add list of o;.

In the general lifting transformation each statement of the form “let x be a
ground instance of schema y” is replaced by “let x be a copy of y with fresh vari-
ables”. Each equality test is then treated as a nondeterministic operation that
either returns true and generates an equality constraint or returns false and gen-
erates a disequality constraint. If the set of equality and disequality constraints

SDisequality constraints of the form s # w are an essential part of sound and complete lifted
planning procedures such as TWEAK.

10

ever becomes unsatisfiable, that branch of the nondeterministic computation fails.
Given any such set of equality and disequality constraints on expressions involving
variables it is possible to quickly determine if the constraints are satisfiable. More
specifically, one first applies a unification algorithm to the equality constraints
to see if the these constraints can be satisfied simultaneously. If the unification
succeeds, then one applies the substitution resulting from that unification to all
expressions. If there is a disequality constraint between two expressions that be-
come the same expression when the substitution is applied, then the constraints
are unsatisfiable. Otherwise, the constraints are satisfiable. In practice, the uni-
fication operation would be performed incrementally as equality constraints are
generated.

6 Conclusion

Previous lifted nonlinear planning algorithms have been quite complex and have
failed to generate systematic searches. By treating lifting as a separate optimiza-
tion that can be performed after a ground algorithm is designed, we have found a
simple, sound, complete, and systematic lifted nonlinear procedure.

References

[Canny, 1985] John Canny. Unpublished Observation, 1985.

[Chapman, 1987] David Chapman. Planning for conjunctive goals. Artificial In-
telligence, 32:333-377, 1987.

[Fikes and Nilsson, 1971] Richard E. Fikes and Nils J. Nilsson. Strips: A new

approach to the application of theorem proving to problem solving. Artificial
Intelligence, 2:198-208, 1971.

[Korf, 1985] Richard E. Korf. Iterative-deepening a*: An optimal admissible tree
search. In Proceedings of the 9th IJCAI, pages 1034-1036, August 1985.

[Korf, 1987] Richard E. Korf. Planning as search, a quantitative approach. Arti-
ficial Intelligence, 33:65-88, 1987.

[Robinson, 1965] J. A. Robinson. A machine-oriented logic based on the resolution
principle. JACM, 12(1), January 1965.

[Sacerdoti, 1974] Earl D. Sacerdoti. Planning in a hierarchy of abstraction spaces.
Artificial Intelligence, 5:115-135, 1974.

11

[Sacerdoti, 1975] Earl D. Sacerdoti. The nonlinear nature of plans. In IJCAI75,
pages 206-214, 1975.

[Sacerdoti, 1977] Earl D. Sacerdoti. A Structure for Plans and Behavior. American
Elsevier, New York, NY, 1977.

[Tate, 1977] Austin Tate. Generating project networks. In IJCAI77, pages 888
893, 1977.

[Yang and Tenenberg, 1990] Qiang Yang and Josh D. Tenenberg. Abtweak: Ab-
stracting a nonlinear least commitment planner. In IJCAI90, pages 204-209,
1990.

12

REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of infarmatinn 15 25tMatng 12 average | hour per response, Inciuding the time for reviewing instructions, searching vxsting data sources,
gathenng arit raaintaining the data needed. and comyieting and e oA ing the sollectnion ot intormation send comments rp?ardmg this burden estimate other aspect of this
coifeton of ntarmation ecluding suggestiiny HOr reduding This DGR, to Ay ylon Headyguarters s L rectorate for nformation Operationy and Reports, 1215 Jefferson
Daviy Highaoay, Suity 1784 0k guon, /A 220024307 and 1a the Offre of Matagement ang Budqgel Paperaors deduntion Projevt (0704-0188), Washimygt e 00 10903
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

December 1991 memorandum
4. TITLE AND SUBTITLE S. FUNDING NUMBERS

Systematic Nonlinear Planning NOOO14—85-K-0124

6. AUTHOR(S)
David McAllester and David Rosenblitt

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
PORT NUMBE
Artificial Intelligence Laboratory REPORT NU R
545 Technology Square AIM 1339

Cambridge, Massachusetts 02139

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
S AGENCY REPORT NUMBER

Office of Naval Research

Information Systems

Arlington, Virginia 22217 A—D"A}’ﬁ ¢ ?/

11, SUPPLEMENTARY NOTES
None

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Distribution of this document is unlimited

13. ABSTRACT (Maximum 200 words)

This paper presents a simple, sound, complete, and systematic algo-
rithm for domain independent STRIPS planning. Simplicity is achieved
by starting with a ground procedure and then applying a general,
and independently verifiable, lifting transformation. Previous planners
have been designed directly as lifted procedures. Our ground procedure
is a ground version of Tate’s NONLIN procedure. In Tate’s procedure
one is not required to determine whether a prerequisite of a step in an
unfinished plan is guaranteed to hold in all linearizations. This allows
Tate’s procedure to avoid the use of Chapman’s modal truth criterion.
Systematicity is the property that the same plan, or partial plan, is
never examined more than once. Systematicity is achieved through a
simple modification of Tate’s procedure.

14. SUBJECT TERMS (key words) 15. NUMBER OF PAGES
automatic planning systematicity 12
search lifting 16, PRICE CODE
strips planning nonlinear planning
17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION }19. SECURITY CLASSIFICATION] 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED
NSN 7540-01-280-5500 N Standard Form 098 (Rev 2-89)

* Prosenben by ANSE Sta /£ 39-18
298-102

CS-TR Scanning Project |
Document Control Form Date: ©8/4s /Y

Report#__ 1339

Each of the following should be identified by a checkmark:
Originating Department:
B Artificial Intellegence Laboratory (Al)

O Laboratory for Computer Science (LCS)

Document Type:

[J Technical Report MR) X Technical Memo (TM)
O Other:

Document.lnformation

Number of pages: 13
Not to include DOD forms, printer intstructions, etc... original pages only.

Single-sided or O Double-sided
Print type:
[Typewriter (7] oOffset Press K Laser Print
[J inkJetPrinter [] Unknown [0 other:

Check each if included with document:

M. DOD Form O Funding Agent Form O cover Page
[J spine [J Printers Notes O Pnoto negatives
O oOther:

Page Data:

Blank PageS(by page number).

Photographs/Tonal Material ey sage aumpen.

Other {note descrnption/page numbe():
Description : Page Number:

Scanning Agent Signoff:
Date Received: 88/85/9y Date Scanned: 27/07/94 Date Returned: ﬂlgﬁ_/it

Scanning Agent Signature: (}TU:(JZJ [!A/ . CﬁY{L

